research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 1-(2-fluoro­phen­yl)-1H-tetra­zole-5(4H)-thione

CROSSMARK_Color_square_no_text.svg

aOrganic Chemistry Department, Baku State University, Z. Xalilov str. 23, Az, 1148 Baku, Azerbaijan, bDepartment of Physics and Chemistry, "Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az 1063, Baku, Azerbaijan, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, dAcad. Sci. Republ. Tadzhikistan, Kh. Yu. Yusufbekov Pamir Biol. Inst., 1 Kholdorova St, Khorog 736002, Gbao, Tajikistan, and eNizhny Novgorod State Technical University n.a. R.E. Alekseev, Nizhny Novgorod, Russian Federation
*Correspondence e-mail: anzurat2003@mail.ru

Edited by A. V. Yatsenko, Moscow State University, Russia (Received 19 May 2020; accepted 25 May 2020; online 5 June 2020)

In the crystal of the title compound, C7H5FN4S, the mol­ecules are non-planar, with dihedral angle formed by least-squares planes of tetra­zole and benzene rings of 59.94 (8) °. The crystal packing is formed by N—H⋯S hydrogen bonds, which link the mol­ecules into centrosymmetric dimers with an R22(8) ring motif, and by the offset face-to-face ππ stacking inter­actions between the benzene rings, which join the dimers into layers parallel to (100). The Hirshfeld surface analysis shows that the most important contributions to the surface contacts are from N⋯H/H⋯N (21.9%), S⋯H/H⋯S (21.1%), H⋯H (14.6%), F⋯H/H⋯F (11.8%) and C⋯H/H⋯C (9.5%) inter­actions.

1. Chemical context

Tetra­zoles as an important class of five-membered heterocyclic compounds have been known for over a hundred years. The most common synthetic approach to construct tetra­zoles, based on the reaction of nitriles with hydrazoic acid, was first discovered by Hantzsch & Vagt (1901[Hantzsch, A. & Vagt, A. (1901). Justus Liebigs Ann. Chem. 314, 339-369.]). Up to know, most synthetic protocols comprise the cyclo­addition of nitriles, thio­cyanates or iso­thio­cyanates with an azide moiety, under different conditions. Tetra­zole derivatives have found a broad range of applications in medicinal chemistry (Wang et al., 2019[Wang, S.-Q., Wang, Y.-F. & Xu, Z. (2019). Eur. J. Med. Chem. 170, 225-234.]; Gao et al., 2019[Gao, C., Chang, L., Xu, Z., Yan, X.-F., Ding, C., Zhao, F., Wu, X. & Feng, L.-S. (2019). Eur. J. Med. Chem. 163, 404-412.]; Arulmozhi et al., 2017[Arulmozhi, R., Abirami, N. & Helen, K. P. (2017). Int. J. Pharm. Sci. Rev. Res. 21, 110-114.]), coordination chemistry (Askerov et al., 2018[Askerov, R. K., Maharramov, A. M., Osmanov, V. K., Baranov, E. V., Borisova, G. N., Dorovatovskii, P. V., Khrustalev, V. N. & Borisov, A. V. (2018). J. Struct. Chem. 59, 1658-1663.]; Askerov et al., 2019a[Askerov, R. K., Magerramov, A. M., Osmanov, V. K., Baranov, E. V., Borisova, G. N., Samsonova, A. D. & Borisov, A. V. (2019a). Russ. J. Coord. Chem. 45, 112-118.],b[Askerov, R. K., Magerramov, A. M., Osmanov, V. K., Baranov, E. V., Borisova, G. N. & Borisov, A. V. (2019b). Russ. J. Coord. Chem. 45, 555-562.]; Aromí et al., 2011[Aromí, G., Barrios, L. A., Roubeau, O. & Gamez, P. (2011). Coord. Chem. Rev. 255, 485-546.]) and material science (Frija et al., 2010[Frija, L. M. T., Ismael, A. & Cristiano, M. L. S. (2010). Molecules, 15, 3757-3774.]; Lv et al., 2006[Lv, F., Liu, Y., Zou, J., Zhang, D. & Yao, Z. (2006). Dyes Pigments, 68, 211-216.]). Numerous tetra­zole-based synthetic compounds such as tomelukast, cefazolin, losartan, valsartan and alfentanil have already been used in medicinal practice.

[Scheme 1]

As a result of the considerable inter­est in this field, significant developments in the synthesis of tetra­zoles have been attained, which were recently reviewed (Neochoritis et al., 2019[Neochoritis, C. G., Zhao, T. & Dömling, A. (2019). Chem. Rev. 119, 1970-2042.]). As a further study of the chemistry of tetra­zoles, herein we report the crystal structure and Hirshfeld surface analysis of the title compound.

2. Structural commentary

The mol­ecule of the title compound (Fig. 1[link]) is non-planar. The five-membered 4-di­hydro-5H-tetra­zole ring (N1–N4/C5) is essentially planar, with a largest deviation of 0.005 (1) Å for N3. The dihedral angle between the mean planes of the tetra­zole and benzene rings is 59.94 (8)°. The bond dimensions are typical of similar compounds, with a distinct N2=N3 double bond.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, mol­ecules are linked by pairs of N—H⋯S hydrogen bonds, forming centrosymmetric dimers with an [R_{2}^{2}](8) ring motif (see Fig. 2[link] and Table 1[link]). The dimers are linked by the offset face-to-face ππ stacking inter­actions between the benzene rings, which are characterized by inter­centroid distances of 3.8963 (9) and 3.8964 (9) Å, and centroid-to-plane distances of 3.4589 (6) and 3.4578 (6) Å (Fig. 2[link]). Neighbouring mol­ecules within the stack are related by the c glide plane. The hydrogen bonds and stacking inter­actions link the mol­ecules into layers parallel to (100). Other short inter­molecular contacts are collected in Table 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯S1i 0.90 (2) 2.35 (2) 3.2456 (12) 173.2 (18)
Symmetry code: (i) -x+1, -y+2, -z+1.

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

Contact Distance Symmetry operation
S1⋯S1 3.7741 (6) 1 − x, y, [{3\over 2}] − z
C5⋯S1 3.6367 (13) 1 − x, y, [{1\over 2}] − z
H4⋯S1 2.35 1 − x, 2 − y, 1 − z
H10A⋯S1 3.18 1 − x, 1 − y, 1 − z
S1⋯H10A 3.04 x, 1 − y, [{1\over 2}] + z
F1⋯H8A 2.63 [{3\over 2}] − x, [{1\over 2}] + y, [{3\over 2}] − z
F1⋯F1 3.0330 (15) [{3\over 2}] − x, [{3\over 2}] − y, 1 − z
N3⋯H10A 2.82 x, 1 + y, z
N3⋯C5 3.38 x, 2 − y, − [{1\over 2}] + z
[Figure 2]
Figure 2
Crystal packing of the title compound viewed along the a-axis direction. Dashed lines indicate the N—H⋯S hydrogen bonds, which form centrosymmetric dimers with an [R_{2}^{2}](8) ring motif, and the face-to-face ππ stacking inter­actions, which connect the dimers into layers parallel to (100).

4. Hirshfeld surface analysis

In order to investigate the inter­molecular inter­actions in the crystal structure of the title compound in a visual manner, Hirshfeld surfaces (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) and their associated two-dimensional fingerprint plots (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]) were generated using CrystalExplorer17 (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]). The shorter and longer contacts are indicated as red and blue spots, respectively, on the Hirshfeld surfaces, and contacts with distances approximately equal to the sum of the van der Waals radii are represented as white spots. The contribution of inter­atomic contacts (Table 2[link]) to the dnorm surface of the title compound is shown in Fig. 3[link]. In Fig. 4[link], red and blue triangles can be seen on the shape-index surface, which indicate the presence of ππ stacking inter­actions in the crystal structure. Analysis of the two-dimensional fingerprint plots (Fig. 5[link]) reveals that N⋯H/H⋯N (21.9%) and S⋯H/H⋯S (21.1%) contacts (i.e. N—H⋯S) are the major contributors to the Hirshfeld surface, while H⋯H (14.6%), F⋯H/H⋯F (11.8%) and C⋯H/H⋯C (9.5%) contacts make a less significant contribution. The contribution of the C⋯C (6.6%) (i.e. ππ stacking) contacts and other contacts such as N⋯N (2.8%), F⋯C/C⋯F (2.4%), N⋯C/C⋯N (2.4%), F⋯N/N⋯F (1.7%), S⋯N/N⋯S (1.7%), S⋯C/C⋯S (1.7%), F⋯F (1.5%) and S⋯S (0.4%) make a small contribution to the overall Hirshfeld surface.

[Figure 3]
Figure 3
A view of the three-dimensional Hirshfeld surface for the title mol­ecule, plotted over dnorm ranging from −0.4612 to 1.2843 a.u. A dimer formed by N—H⋯S hydrogen bonds is shown.
[Figure 4]
Figure 4
Hirshfeld surface of the title mol­ecule plotted over shape-index.
[Figure 5]
Figure 5
A view of two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) N⋯H/H⋯N, (c) S⋯H/H⋯S, (d) H⋯H, (e) F⋯H/H⋯F and (f) C⋯H/H⋯C inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface contacts.

5. Database survey

A search of the Cambridge Crystallographic Database (CSD version 5.40, update of September 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) yielded nine entries closely related to the title compound, viz. 1-(4-fluoro­phen­yl)-4,4,6-trimethyl-3,4-di­hydro­pyrimidine-2(1H)-thione (CSD refcode ASEHIR; Kadir et al., 2016[Kadir, A., Abd Malek, N. A., Mohd Zaki, H., Hasbullah, S. A. & Yamin, B. M. (2016). IUCrData, 1, x161189.]), 3-(adamantan-1-yl)-4-(4-fluoro­phen­yl)-1-[(4-phenyl­piperazin-1-yl)meth­yl]-4,5-di­hydro-1H-1,2,4-triazole-5-thione (ZEFKED; Al-Alshaikh et al., 2017[Al-Alshaikh, M. A., Al-Mutairi, A. A., Ghabbour, H. A., El-Emam, A. A., Abdelbaky, M. S. M. & Garcia-Granda, S. (2017). Acta Cryst. E73, 1135-1139.]), 3-(adamantan-1-yl)-4-(4-fluoro­phen­yl)-1-{[4-(2-meth­oxy­phen­yl)piperazin-1-yl]-meth­yl}-4,5-di­hydro-1H-1,2,4-triazole-5-thione (ZEFKAZ; Al-Alshaikh et al., 2017[Al-Alshaikh, M. A., Al-Mutairi, A. A., Ghabbour, H. A., El-Emam, A. A., Abdelbaky, M. S. M. & Garcia-Granda, S. (2017). Acta Cryst. E73, 1135-1139.]), 3-(adamantan-1-yl)-4-(2-bromo-4-fluoro­phen­yl)-1H-1,2,4-triazole-5(4H)-thione (ZOZNEK; Abdelrazeq et al., 2020[Abdelrazeq, A. S., Ghabbour, H. A., El-Emam, A. A., Osman, D. A. & Garcia-Granda, S. (2020). Acta Cryst. E76, 162-166.]), 2-fluoro-N-(3-(methyl­sulfan­yl)-1H-1,2,4-triazol-5-yl)benzamide (MITMOU; Moreno-Fuquen et al., 2019[Moreno-Fuquen, R., Arango-Daraviña, K., Becerra, D., Castillo, J.-C., Kennedy, A. R. & Macías, M. A. (2019). Acta Cryst. C75, 359-371.]), (5-amino-3-(methyl­sulfan­yl)-1H-1,2,4-triazol-1-yl)(2-fluoro­phen­yl)methanone (MITMIO; Moreno-Fuquen et al., 2019[Moreno-Fuquen, R., Arango-Daraviña, K., Becerra, D., Castillo, J.-C., Kennedy, A. R. & Macías, M. A. (2019). Acta Cryst. C75, 359-371.]), 4-(benzo[b]thio­phen-2-yl)-5-(3,4,5-tri­meth­oxy­phen­yl)-2H-1,2,3-triazole (PONWIA; Penthala et al., 2014[Penthala, N. R., Madadi, N. R., Bommagani, S., Parkin, S. & Crooks, P. A. (2014). Acta Cryst. E70, 392-395.]), 4-(benzo[b]thiophen-2-yl)-2-methyl-5-(3,4,5-tri­meth­oxy­phen­yl)-2H-1,2,3-triazole (PONWOG; Penthala et al., 2014[Penthala, N. R., Madadi, N. R., Bommagani, S., Parkin, S. & Crooks, P. A. (2014). Acta Cryst. E70, 392-395.]), (E)-3-(4-fluoro­phen­yl)-1-[1-(4-fluoro­phen­yl)-5-methyl-1H-1,2,3-triazol-4-yl]prop-2-en-1-one (MESTAI; El-Hiti et al., 2018[El-Hiti, G. A., Abdel-Wahab, B. F., Alotaibi, M. H., Hegazy, A. S. & Kariuki, B. M. (2018). IUCrData, 3, x171841.]), 4-amino-3-methyl-5-(p-tol­yl)-4H-1,2,4-triazole (JESTOR; Şahin et al., 2006[Şahin, O., Büyükgüngör, O., Şaşmaz, S., Gümrükçüoğlu, N. & Kantar, C. (2006). Acta Cryst. C62, o643-o646.]), 4-amino-3-methyl-5-phenyl-4H-1,2,4-triazole (JESTUX; Şahin et al., 2006[Şahin, O., Büyükgüngör, O., Şaşmaz, S., Gümrükçüoğlu, N. & Kantar, C. (2006). Acta Cryst. C62, o643-o646.]), and 2-phenyl-4,5-dianilino-2H-1,2,3-triazole (PANTZL10; Harlow et al., 1977[Harlow, R. L., Brown, S. B., Dewar, M. J. S. & Simonsen, S. H. (1977). Acta Cryst. B33, 3423-3428.]).

In the crystal of ASEHIR, pairs of mol­ecules related by the twofold rotation axis are linked by N—H⋯S hydrogen bonds, forming dimers.

The crystal structure of ZEFKED shows pairs of C—H⋯F hydrogen bonds forming inversion dimers, while in the crystal of ZEFKAZ, in addition to the C—H⋯F hydrogen bonds that generate chains parallel to the b axis, there are C—H⋯π inter­actions that link the chains to form layers parallel to the ab plane.

In the crystal of ZOZNEK, the mol­ecules are linked by weak C—H⋯π(phen­yl) inter­actions, forming supra­molecular chains extending along the c-axis direction. The crystal packing is further consolidated by inter­molecular N—H⋯S hydrogen bonds and by weak C—H⋯S inter­actions, yielding double chains propagating along the a-axis direction.

In the crystal structure of MITMOU, the supra­molecular assembly is formed mainly by (N,C)—H⋯(N,O) hydrogen-bond inter­actions. Initially, strong N—H⋯N hydrogen bonds link pairs of inversion-related mol­ecules that act as slabs of infinite chains running along the [100] direction connected by a C—H⋯O hydrogen bond. Along the [010] direction, neighbouring chains are further connected by weak ππ inter­actions between two arene rings of adjacent mol­ecules.

The crystal structure of MITMIO is built by a combination of strong N—H⋯O and N—H⋯N hydrogen bonds, which form chains of mol­ecules running along the [100] direction. Parallel inversion-related chains of mol­ecules are further connected by weaker C—H⋯O inter­actions to build the mol­ecular architecture along the [001] direction. Weak C—H⋯N inter­actions connect the mol­ecules in order to complete the three-dimensional structure along the [010] direction.

In the crystal of PONWIA, the mol­ecules are linked into chains by N—H⋯O hydrogen bonds with R12(5) ring motifs. After the N-methyl­ation of the PONWIA mol­ecule, no hydrogen-bonding inter­actions were observed for structure PONWOG. The crystal structure of PONWOG shows a disorder due to a 180° flip of the benzo­thio­phene ring system.

In the crystal of MESTAI, the asymmetric unit comprises two mol­ecules with similar conformations. In the crystal, weak C—H⋯F inter­actions form chains of mol­ecules and the chains are stacked to form layers parallel to (101).

In JESTOR, mol­ecules are linked principally by N—H⋯N hydrogen bonds involving the amino NH2 group and a triazole N atom, forming R44(20) and R42(10) rings that combine to give a three-dimensional network of mol­ecules. The hydrogen bonding is supported by two different C—H⋯π inter­actions from the tolyl ring to either a triazole ring or a tolyl ring in a neighboring mol­ecule. In JESTUX, inter­molecular hydrogen bonds and C—H⋯π inter­actions generate R43(15) and R44(21) rings.

6. Synthesis and crystallization

To a solution of of NaN3 (29 mmol) in 50 mL of H2O 2-fluoro­phenyl­iso­thio­cyanate (19.6 mmol) was added at 293 K. The reaction mixture was boiled for 2 h, cooled to 293 K; then the aqueous solution was filtered from undissolved impurities and a 10% aqueous solution of HCl was added to it with stirring to pH = 2. The precipitate of the title compound was filtered off, washed with water, and then the product was recrystallized from ethanol.

1-(2-Fluoro­phen­yl)-1H-tetra­zole-5(4H)-thione: yield 72% as white powder, m.p. 426 K. Analysis calculated for C7H5FN4S (%): C 42.85, H 2.57, N 28.56. Found (%): C 42.62, H 2.66, N 28.59. 1H NMR (400.00 MHz, DMSO-d6): δ = 7.73 (m, 1H), 7.68 (m, 1H), 7.55 (t, 1H), 7.45 (t, 1H). 13C NMR (100.60 MHz, DMSO-d6): δ = 162.76 (C=S), 156.39 (C—F), [137.33 (C—N, Ar), 128.76, 127.08, 124.94, 114.88 (4CH, Ar)].

7. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The C-bound H atoms were placed in calculated positions (0.93 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound H atom was located in a difference map and refined isotropically.

Table 3
Experimental details

Crystal data
Chemical formula C7H5FN4S
Mr 196.21
Crystal system, space group Monoclinic, C2/c
Temperature (K) 296
a, b, c (Å) 23.5593 (11), 9.2849 (5), 7.7927 (4)
β (°) 104.009 (1)
V3) 1653.92 (15)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.36
Crystal size (mm) 0.23 × 0.15 × 0.08
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2003[Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.690, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 9005, 2406, 2135
Rint 0.017
(sin θ/λ)max−1) 0.713
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.098, 1.00
No. of reflections 2406
No. of parameters 122
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.29, −0.22
Computer programs: APEX2 and SAINT (Bruker, 2003[Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

1-(2-Fluorophenyl)-1H-tetrazole-5(4H)-thione top
Crystal data top
C7H5FN4SF(000) = 800
Mr = 196.21Dx = 1.576 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 23.5593 (11) ÅCell parameters from 4417 reflections
b = 9.2849 (5) Åθ = 2.4–30.5°
c = 7.7927 (4) ŵ = 0.36 mm1
β = 104.009 (1)°T = 296 K
V = 1653.92 (15) Å3Prism, colourless
Z = 80.23 × 0.15 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
2135 reflections with I > 2σ(I)
φ and ω scansRint = 0.017
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
θmax = 30.5°, θmin = 1.8°
Tmin = 0.690, Tmax = 0.746h = 3233
9005 measured reflectionsk = 1313
2406 independent reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: mixed
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0487P)2 + 1.1614P]
where P = (Fo2 + 2Fc2)/3
2406 reflections(Δ/σ)max = 0.001
122 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.51038 (2)0.75776 (4)0.51736 (5)0.03900 (12)
F10.71634 (4)0.73413 (10)0.64199 (14)0.0536 (3)
N10.61196 (5)0.77955 (12)0.40738 (16)0.0346 (2)
N20.64339 (6)0.88176 (13)0.3424 (2)0.0480 (3)
N30.61568 (6)1.00050 (13)0.3346 (2)0.0494 (3)
N40.56649 (5)0.97577 (12)0.39123 (17)0.0399 (3)
H40.5428 (9)1.048 (2)0.408 (3)0.060 (5)*
C50.56255 (5)0.83768 (13)0.43970 (17)0.0320 (2)
C60.63424 (5)0.63719 (13)0.44289 (17)0.0314 (2)
C70.68772 (6)0.61740 (14)0.56178 (18)0.0361 (3)
C80.71115 (6)0.48238 (16)0.6014 (2)0.0434 (3)
H8A0.7474330.4704950.6800480.052*
C90.67955 (7)0.36465 (16)0.5217 (2)0.0444 (3)
H9A0.6945630.2724350.5479320.053*
C100.62584 (7)0.38250 (15)0.4034 (2)0.0419 (3)
H10A0.6049790.3022790.3511720.050*
C110.60297 (6)0.51874 (14)0.36219 (19)0.0369 (3)
H11A0.5671100.5308300.2814720.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.03642 (19)0.03299 (18)0.0519 (2)0.00355 (12)0.01903 (15)0.00288 (13)
F10.0467 (5)0.0476 (5)0.0603 (6)0.0097 (4)0.0012 (4)0.0104 (4)
N10.0316 (5)0.0285 (5)0.0465 (6)0.0026 (4)0.0148 (4)0.0020 (4)
N20.0431 (6)0.0347 (6)0.0728 (9)0.0013 (5)0.0267 (6)0.0084 (6)
N30.0476 (7)0.0330 (6)0.0737 (9)0.0031 (5)0.0266 (6)0.0085 (6)
N40.0404 (6)0.0291 (5)0.0529 (7)0.0056 (4)0.0165 (5)0.0035 (5)
C50.0314 (5)0.0287 (6)0.0356 (6)0.0034 (4)0.0076 (5)0.0012 (4)
C60.0311 (5)0.0277 (5)0.0378 (6)0.0035 (4)0.0126 (5)0.0009 (4)
C70.0334 (6)0.0351 (6)0.0400 (6)0.0017 (5)0.0095 (5)0.0028 (5)
C80.0350 (6)0.0463 (8)0.0475 (8)0.0082 (6)0.0072 (6)0.0077 (6)
C90.0486 (8)0.0338 (7)0.0548 (8)0.0104 (6)0.0202 (6)0.0088 (6)
C100.0472 (7)0.0307 (6)0.0508 (8)0.0028 (5)0.0178 (6)0.0032 (6)
C110.0345 (6)0.0338 (6)0.0421 (7)0.0007 (5)0.0086 (5)0.0014 (5)
Geometric parameters (Å, º) top
S1—C51.6696 (13)C6—C111.3868 (18)
F1—C71.3476 (15)C7—C81.3745 (19)
N1—C51.3608 (15)C8—C91.382 (2)
N1—N21.3735 (16)C8—H8A0.9300
N1—C61.4244 (16)C9—C101.384 (2)
N2—N31.2752 (16)C9—H9A0.9300
N3—N41.3558 (17)C10—C111.3818 (19)
N4—C51.3462 (17)C10—H10A0.9300
N4—H40.90 (2)C11—H11A0.9300
C6—C71.3836 (18)
C5—N1—N2110.84 (11)F1—C7—C6118.43 (12)
C5—N1—C6128.58 (11)C8—C7—C6121.51 (12)
N2—N1—C6120.44 (10)C7—C8—C9118.49 (13)
N3—N2—N1107.44 (11)C7—C8—H8A120.8
N2—N3—N4107.81 (11)C9—C8—H8A120.8
C5—N4—N3112.04 (11)C8—C9—C10120.72 (13)
C5—N4—H4125.3 (13)C8—C9—H9A119.6
N3—N4—H4122.1 (13)C10—C9—H9A119.6
N4—C5—N1101.86 (11)C11—C10—C9120.44 (13)
N4—C5—S1129.19 (10)C11—C10—H10A119.8
N1—C5—S1128.94 (10)C9—C10—H10A119.8
C7—C6—C11119.73 (12)C10—C11—C6119.10 (13)
C7—C6—N1119.10 (11)C10—C11—H11A120.4
C11—C6—N1121.17 (11)C6—C11—H11A120.4
F1—C7—C8120.05 (12)
C5—N1—N2—N30.45 (18)N2—N1—C6—C11122.21 (15)
C6—N1—N2—N3175.58 (13)C11—C6—C7—F1178.12 (12)
N1—N2—N3—N40.81 (18)N1—C6—C7—F11.09 (18)
N2—N3—N4—C50.94 (19)C11—C6—C7—C80.5 (2)
N3—N4—C5—N10.62 (16)N1—C6—C7—C8179.75 (13)
N3—N4—C5—S1179.93 (11)F1—C7—C8—C9177.56 (13)
N2—N1—C5—N40.11 (15)C6—C7—C8—C91.1 (2)
C6—N1—C5—N4175.73 (13)C7—C8—C9—C100.7 (2)
N2—N1—C5—S1179.57 (11)C8—C9—C10—C110.3 (2)
C6—N1—C5—S14.8 (2)C9—C10—C11—C60.9 (2)
C5—N1—C6—C7116.67 (15)C7—C6—C11—C100.4 (2)
N2—N1—C6—C758.59 (18)N1—C6—C11—C10178.76 (12)
C5—N1—C6—C1162.53 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···S1i0.90 (2)2.35 (2)3.2456 (12)173.2 (18)
C5—S1···Cg1ii1.67 (1)3.77 (1)4.0760 (14)88 (1)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y, z+1/2.
Summary of short interatomic contacts (Å) in the title compound top
ContactDistanceSymmetry operation
S1···S13.7741 (6)1 - x, y, 3/2 - z
C5···S13.6367 (13)1 - x, y, 1/2 - z
H4···S12.351 - x, 2 - y, 1 - z
H10A···S13.181 - x, 1 - y, 1 - z
S1···H10A3.04x, 1 - y, 1/2 + z
F1···H8A2.633/2 - x, 1/2 + y, 3/2 - z
F1···F13.0330 (15)3/2 - x, 3/2 - y, 1 - z
N3···H10A2.82x, 1 + y, z
N3···C53.38x, 2 - y, - 1/2 + z
 

References

First citationAbdelrazeq, A. S., Ghabbour, H. A., El-Emam, A. A., Osman, D. A. & Garcia-Granda, S. (2020). Acta Cryst. E76, 162–166.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAl-Alshaikh, M. A., Al-Mutairi, A. A., Ghabbour, H. A., El-Emam, A. A., Abdelbaky, M. S. M. & Garcia-Granda, S. (2017). Acta Cryst. E73, 1135–1139.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAromí, G., Barrios, L. A., Roubeau, O. & Gamez, P. (2011). Coord. Chem. Rev. 255, 485–546.  Google Scholar
First citationArulmozhi, R., Abirami, N. & Helen, K. P. (2017). Int. J. Pharm. Sci. Rev. Res. 21, 110–114.  Google Scholar
First citationAskerov, R. K., Magerramov, A. M., Osmanov, V. K., Baranov, E. V., Borisova, G. N. & Borisov, A. V. (2019b). Russ. J. Coord. Chem. 45, 555–562.  Web of Science CSD CrossRef CAS Google Scholar
First citationAskerov, R. K., Magerramov, A. M., Osmanov, V. K., Baranov, E. V., Borisova, G. N., Samsonova, A. D. & Borisov, A. V. (2019a). Russ. J. Coord. Chem. 45, 112–118.  Web of Science CSD CrossRef CAS Google Scholar
First citationAskerov, R. K., Maharramov, A. M., Osmanov, V. K., Baranov, E. V., Borisova, G. N., Dorovatovskii, P. V., Khrustalev, V. N. & Borisov, A. V. (2018). J. Struct. Chem. 59, 1658–1663.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl-Hiti, G. A., Abdel-Wahab, B. F., Alotaibi, M. H., Hegazy, A. S. & Kariuki, B. M. (2018). IUCrData, 3, x171841.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrija, L. M. T., Ismael, A. & Cristiano, M. L. S. (2010). Molecules, 15, 3757–3774.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGao, C., Chang, L., Xu, Z., Yan, X.-F., Ding, C., Zhao, F., Wu, X. & Feng, L.-S. (2019). Eur. J. Med. Chem. 163, 404–412.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHantzsch, A. & Vagt, A. (1901). Justus Liebigs Ann. Chem. 314, 339–369.  CrossRef CAS Google Scholar
First citationHarlow, R. L., Brown, S. B., Dewar, M. J. S. & Simonsen, S. H. (1977). Acta Cryst. B33, 3423–3428.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationKadir, A., Abd Malek, N. A., Mohd Zaki, H., Hasbullah, S. A. & Yamin, B. M. (2016). IUCrData, 1, x161189.  Google Scholar
First citationLv, F., Liu, Y., Zou, J., Zhang, D. & Yao, Z. (2006). Dyes Pigments, 68, 211–216.  Web of Science CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMoreno-Fuquen, R., Arango-Daraviña, K., Becerra, D., Castillo, J.-C., Kennedy, A. R. & Macías, M. A. (2019). Acta Cryst. C75, 359–371.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNeochoritis, C. G., Zhao, T. & Dömling, A. (2019). Chem. Rev. 119, 1970–2042.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPenthala, N. R., Madadi, N. R., Bommagani, S., Parkin, S. & Crooks, P. A. (2014). Acta Cryst. E70, 392–395.  CSD CrossRef IUCr Journals Google Scholar
First citationŞahin, O., Büyükgüngör, O., Şaşmaz, S., Gümrükçüoğlu, N. & Kantar, C. (2006). Acta Cryst. C62, o643–o646.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationWang, S.-Q., Wang, Y.-F. & Xu, Z. (2019). Eur. J. Med. Chem. 170, 225–234.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds