research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of the ortho­rhom­bic polymorph of a ZnII complex with 3,5-di­nitro­benzoic acid and ethyl­enedi­amine

aInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, M. Ulugbek Str., 83, Tashkent, 700125, Uzbekistan, bAgency on Development of the Pharmaceutical Industry, Ch. Aytmatov Str., 1a, Tashkent, 10008, Uzbekistan, and cInstitute of Total and Inorganic Chemistry, Academy of Sciences of Uzbekistan, M. Ulugbek Str., 77a, Tashkent, 700170, Uzbekistan
*Correspondence e-mail: alex.ibragimov@inbox.ru

Edited by A. V. Yatsenko, Moscow State University, Russia (Received 27 May 2020; accepted 11 June 2020; online 19 June 2020)

During systematic investigations of the biological action enhancement of well known compounds, a new metal complex, namely, bis­(3,5-di­nitro­benzoato)(ethane-1,2-di­amine)zinc(II), [Zn(C7H3N2O6)2(C2H8N2)], was synthesized and the structure of its ortho­rhom­bic form has determined. The synthesis and crystal structure of the monoclinic polymorph has previously been reported [Ibragimov et al. (2020[Ibragimov, A. B., Ashurov, J. M. & Ibragimov, A. B. (2020). Rep. Uzbek. Acad. Sci. 1, 45-50.]). Rep. Uzb. Acad. Sci. 1, 45–50]. The zinc ion has a distorted tetra­­hedral environment formed by two monodentate 3,5-di­nitro­benzoato anions and chelating ethyl­enedi­amine mol­ecule. In the crystal, the complex mol­ecules are linked by N—H⋯O and C—H⋯O hydrogen bonds into a two-dimensional network parallel to the ac plane. The Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯O/O⋯H (43.4%) and O⋯C/C⋯O (17.7%) inter­actions.

1. Chemical context

The benzoic acid derivative 3,5-di­nitro­benzoic acid (DNBA) is an important corrosion inhibitor that is also applied in photography (Elks & Ganellin, 1990[Elks, E. J. & Ganellin, C. R. (1990). Editors. Dictionary of Drugs, p. 445. London: Chapman & Hall.]). This aromatic compound is used by chemists in the fluoro­metric analysis of creatinine (Lewinska et al., 2018[Lewinska, I., Michalec, M. & Tymecki, L. (2018). Proceedings of the 14th International Students Conference `Modern Analytical Chemistry', Prague, pp. 145-151.]; Chandrasekaran et al., 2013[Chandrasekaran, J., Babu, B., Balaprabhakaran, S., Ilayabarathi, P., Maadeswaran, P. & Sathishkumar, K. (2013). Optik, 124, 1250-1253.]). It demonstrates a weak anti­microbial activity against bacteria and yeasts with a minimum inhibitory concentration (MIC) of 3 mmol L−1, but shows moderate biological action with respect to the filamentous fungi M. gypseum with IC50 = 2.1 mmol L−1 (Vaskova et al., 2009[Vaskova, Z., Stachova, P., Krupkova, L., Hudecova, D. & Valigura, D. (2009). Acta Chim. Slovac. 2, 77-87.]).

Ethyl­enedi­amine (En) is widely used in the chemical industry. It is a well-known bidentate chelating ligand that donates lone pairs of electrons of two nitro­gen atoms (Matsushita & Taira, 1999[Matsushita, N. & Taira, A. (1999). Synth. Met. 102, 1787-1788.]). En is not itself biologically active against different strains of microoraganisms, but its CoIII complex demonstrates a strong anti­fungal action relative to a broad spectrum of Candida species (Turecka et al., 2018[Turecka, K., Chylewska, A., Kawiak, A. & Waleron, K. F. (2018). Front. Microbiol. 9, art. 1594.]).

DNBA is poorly water soluble; its solubility is only 1.35 g L−1 at 25°C. In order to enhance its water solubility and anti­microbial activity, we tested some of the presently known approaches (Jain et al., 2015[Jain, S., Patel, N. & Lin, S. (2015). Drug Dev. Ind. Pharm. 41, 875-887.]). More promising is a preparation of organic salts of DNBA and En as well as mixed-ligand complexes based on them. Such an approach has been applied for the biopharmaceutical optimization of 4-nitro­benzoic acid (Ibragimov et al., 2017[Ibragimov, A. B., Ashurov, Zh. M., Ibragimov, A. B. & Tashpulatov, Zh. Zh. (2017). Russ. J. Coord. Chem. 43, 380-388.]) and 4-amino­benzoic acid (Ibragimov et al., 2016[Ibragimov, A. B., Ashurov, Zh. M. & Zakirov, B. S. (2016). J. Chem. Crystallogr. 46, 352-363.]) yielding impressive results.

However, an analysis of the Cambridge Structural Database (CSD Version 5.41, update of November 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) attests that organic salts based on DNBA and En have already been obtained as ethyl­endi­ammonium bis­(3,5-di­nitro­benzoate) (refcode VUJXIH; Nethaji et al., 1992[Nethaji, M., Pattabhi, V., Chhabra, N. & Poonia, N. S. (1992). Acta Cryst. C48, 2207-2209.]) and ethyl­endi­ammonium bis­(3,5-di­nitro­benzoate) bis­(3,5-di­nitro­benzoic acid) (FONCER; Jones et al., 2005[Jones, H. P., Gillon, A. L. & Davey, R. J. (2005). Acta Cryst. E61, o1823-o1825.]). Therefore, we synthesized two polymorphic forms of the zinc mixed-ligand complex. The synthesis and crystal structure of the monoclinic polymorph has been published recently (Ibragimov et al., 2020[Ibragimov, A. B., Ashurov, J. M. & Ibragimov, A. B. (2020). Rep. Uzbek. Acad. Sci. 1, 45-50.]), and the present paper is devoted to an ortho­rhom­bic polymorph that crystallizes in space group Pbca.

[Scheme 1]

2. Structural commentary

Two DNBA anions coordinate the ZnII ion in a monodentate mode via the oxygen atoms of the carboxyl­ate groups. As is usual, the En mol­ecule acts as a chelating ligand through the two nitro­gen atoms (Fig. 1[link]). The coordination tetra­hedron is distorted because of the Zn1⋯O2 and Zn1⋯O2′ inter­actions, the angles N3—Zn1—N4 [87.09 (7)°] and O1—Zn1—O1′ [101.82 (5)°] being less than the idealized tetra­hedral values. The least-squares planes through the nitro groups are almost parallel to the planes of the aromatic rings. The nitro group N2′O5′O6′ subtends the largest dihedral angle to the attached aromatic ring [16.65 (11)°]. The conformation of the complex mol­ecule is fixed due to the intra­molecular N4—H4A⋯O2 hydrogen bond, which closes a six-membered ring with graph-set notation S(6) (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]).

[Figure 1]
Figure 1
Mol­ecular structure of [Zn(DNBA)2(En)] with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, complex mol­ecules are linked by three relatively weak hydrogen bonds of the N—H⋯O type and two bonds of C—H⋯O type (Table 1[link]). The N3—H3A⋯O2′, N4—H4A⋯O5′ and N4—H4B⋯O1 hydrogen bonds link the complex mol­ecules into a two-dimensional network parallel to the ac plane. Weak C6′—H6′⋯O6′ and C8—H8B⋯O3 hydrogen bonds strengthen the association of the complex mol­ecules into this network (Fig. 2[link]). Thus, only the H3B hydrogen on the N3 atom is without an acceptor and five oxygen atoms O1′, O3′, O4′, O4 and O5 do not participate in hydrogen bonding.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4′—H4′⋯O6i 0.93 2.63 3.539 (2) 167
C8—H8A⋯O3ii 0.97 2.51 3.353 (3) 145
N3—H3A⋯O2′iii 0.89 (1) 2.19 (1) 3.055 (2) 165 (2)
N4—H4A⋯O2 0.89 (1) 2.42 (2) 3.010 (2) 124 (2)
N4—H4A⋯O5′iv 0.89 (1) 2.58 (2) 3.273 (3) 136 (2)
N4—H4B⋯O1v 0.88 (1) 2.18 (1) 3.021 (2) 159 (2)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+1, -z; (iii) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iv) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}]; (v) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A packing diagram for [Zn(DNBA)2(En)] showing the two-dimensional networks parallel to (010). For clarity, H atoms not involved in hydrogen bonding are omitted.

4. Hirshfeld surface analysis

In order to visualize the inter­molecular inter­actions in the crystals of the title compound, a Hirshfeld surface analysis was carried out using Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia. http://hirshfeldsurface.net.]). The Hirshfeld surface mapped over dnorm (Fig. 3[link]) shows the expected bright-red spots near atoms O1, O2, O2, O3, O5′, O6, H3A, H4A, H4′, H4B and H8A involved in the N—H⋯O and C—H⋯O hydrogen-bonding inter­actions described above. Fingerprint plots (Fig. 4[link]) reveal that while H⋯O/O⋯H inter­actions make the greatest contributions to the surface contacts, as would be expected for a mol­ecule with such a predominance of oxygen atoms, O⋯C/C⋯O, H⋯H and O⋯O contacts are also substantial (Table 2[link]), while H⋯C/C⋯H, O⋯N/N⋯O, H⋯N/N⋯H, C⋯C, N⋯C/C⋯N and N⋯N contacts are less significant.

Table 2
Percentage contributions to the Hirshfeld surface for [Zn(DNBA)2(En)]

Contacts Included surface area %
H⋯O/O⋯H 43.4
O⋯C/C⋯O 17.7
H⋯H 13.5
H⋯C/C⋯H 6.8
O⋯N/N⋯O 4.9
H⋯N/N⋯H 2.0
C⋯C 0.9
N⋯C/C⋯N 0.4
N⋯N 0.1
[Figure 3]
Figure 3
View of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm in the range −0.4180 to 1.3344 a.u.
[Figure 4]
Figure 4
Full two-dimensional fingerprint plots for the title compound, showing all inter­actions (a), and delineated into (b) H⋯O/O⋯H, (c) O⋯C/C⋯O, (d) H⋯H, (e) O⋯O, (f) H⋯C/C⋯H, (g) O⋯N/N⋯O, (h) H⋯N/N⋯H and (i) C⋯C inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from a given point on the Hirshfeld surface.

5. Database survey

A search of the Cambridge Structural Database (CSD Version 5.41, update of November 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) found 277 metal complexes involving DNBA. Among them, 29 hits are zinc complexes, of which 14 have the coordination number four. In all of these complexes, two DNBA anions are coordinated in a monodentate fashion and only in structures JOHYEN (Torres et al., 2019[Torres, J. F., Macías, M. A., Franco-Ulloa, S., Miscione, G. P., Cobo, J. & Hurtado, J. J. (2019). Cryst. Growth Des. 19, 3348-3357.]) and VIQFAE (Dey et al., 2013[Dey, D., Roy, S., Dutta Purkayastha, R. N., Pallepogu, R. & McArdle, P. (2013). J. Mol. Struct. 1053, 127-133.]) is the coordination of ZnII accomplished by chelating ligands: 1,1′-methyl­enebis(3,5-dimethyl-1H-pyrazole and 2,2′-bipyridyl for JOHYEN and VIQFAE, respectively.

6. Synthesis and crystallization

To an aqueous solution (2.5 ml) of ZnCl2 (0,068 g, 0.5 mmol) was slowly added a mixture of ethanol (4 ml), En (60 µL) and DNBA (0.212 g, 1 mmol) under constant stirring. A white crystalline product was obtained at room temperature by slow solvent evaporation after 5 d, yield: 70%. Elemental analysis for C16H14N6O12Zn (547.70): calculated C: 35.09, H: 2.58, N:15.34%; found: C: 35.12, H: 2.62, N: 15.41%.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. C-bound hydrogen atoms were placed in calculated positions and refined using the riding-model approximation with Uiso(H) = 1.2Ueq(C), C—H = 0.93 and 0.97 Å for aromatic and methyl­ene hydrogen atoms, respectively. N-bound H atoms were located in a difference-Fourier map and refined with bond-length restraints of 0.89 (1) Å.

Table 3
Experimental details

Crystal data
Chemical formula [Zn(C7H3N2O6)2(C2H8N2)]
Mr 547.70
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 293
a, b, c (Å) 10.26799 (6), 18.26557 (10), 21.67365 (12)
V3) 4064.91 (4)
Z 8
Radiation type Cu Kα
μ (mm−1) 2.45
Crystal size (mm) 0.42 × 0.3 × 0.18
 
Data collection
Diffractometer Rigaku Oxford Diffraction Xcalibur, Ruby
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.613, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 26085, 4214, 4070
Rint 0.024
(sin θ/λ)max−1) 0.629
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.091, 1.09
No. of reflections 4214
No. of parameters 333
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.31, −0.52
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis(3,5-dinitrobenzoato)(ethane-1,2-diamine)zinc(II) top
Crystal data top
[Zn(C7H3N2O6)2(C2H8N2)]Dx = 1.790 Mg m3
Mr = 547.70Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, PbcaCell parameters from 19707 reflections
a = 10.26799 (6) Åθ = 4.3–76.0°
b = 18.26557 (10) ŵ = 2.44 mm1
c = 21.67365 (12) ÅT = 293 K
V = 4064.91 (4) Å3Block, white
Z = 80.42 × 0.3 × 0.18 mm
F(000) = 2224
Data collection top
Rigaku Oxford Diffraction Xcalibur, Ruby
diffractometer
4214 independent reflections
Radiation source: Enhance (Cu) X-ray Source4070 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 10.2576 pixels mm-1θmax = 76.0°, θmin = 4.1°
ω scansh = 1212
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2015)
k = 2022
Tmin = 0.613, Tmax = 1.000l = 2027
26085 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.053P)2 + 1.5574P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.091(Δ/σ)max = 0.002
S = 1.09Δρmax = 0.31 e Å3
4214 reflectionsΔρmin = 0.52 e Å3
333 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
4 restraintsExtinction coefficient: 0.00077 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.67282 (2)0.42317 (2)0.24573 (2)0.03229 (10)
O10.53739 (12)0.49815 (7)0.23272 (6)0.0371 (3)
O1'0.68069 (13)0.41811 (7)0.33561 (6)0.0414 (3)
O4'1.02982 (15)0.26641 (9)0.58578 (7)0.0576 (4)
O2'0.83739 (14)0.33654 (10)0.31937 (6)0.0544 (4)
O50.02506 (14)0.68636 (8)0.22153 (8)0.0551 (4)
N30.62989 (16)0.32537 (8)0.20461 (7)0.0396 (3)
N1'1.02277 (14)0.27851 (8)0.53038 (8)0.0410 (3)
N40.82786 (14)0.42902 (9)0.18869 (8)0.0389 (3)
O30.28325 (19)0.57939 (10)0.01964 (7)0.0670 (5)
O6'0.57039 (17)0.47877 (10)0.55318 (8)0.0695 (5)
N2'0.64170 (16)0.43071 (9)0.57126 (7)0.0419 (4)
O40.11575 (17)0.64392 (10)0.00591 (7)0.0634 (4)
O20.57988 (17)0.48659 (12)0.13270 (7)0.0750 (6)
N10.21307 (17)0.60866 (9)0.01838 (7)0.0459 (4)
N20.13183 (16)0.66326 (8)0.23606 (8)0.0425 (4)
C10.39543 (16)0.55533 (9)0.16039 (8)0.0324 (3)
C2'0.89150 (16)0.32663 (9)0.44488 (8)0.0336 (3)
H2'0.9473150.3029240.4176220.040*
C5'0.72941 (16)0.39536 (9)0.52664 (7)0.0333 (3)
C6'0.70569 (16)0.40357 (9)0.46427 (8)0.0326 (3)
H6'0.6366430.4320890.4503620.039*
C1'0.78781 (15)0.36807 (9)0.42272 (7)0.0314 (3)
C50.21151 (16)0.62756 (9)0.18838 (8)0.0345 (3)
C3'0.91054 (16)0.32112 (9)0.50751 (8)0.0333 (3)
C20.35964 (17)0.56172 (9)0.09885 (8)0.0350 (3)
H20.4093580.5398650.0680720.042*
C40.17179 (16)0.63447 (9)0.12799 (9)0.0372 (4)
H40.0969680.6602320.1173580.045*
C70.51413 (17)0.50986 (10)0.17523 (8)0.0377 (4)
C30.24905 (17)0.60106 (9)0.08403 (8)0.0354 (3)
C60.32130 (15)0.58895 (9)0.20600 (8)0.0336 (3)
H60.3449370.5855660.2473230.040*
C4'0.83052 (15)0.35433 (9)0.55020 (8)0.0335 (3)
H4'0.8439530.3493570.5924230.040*
C7'0.76869 (16)0.37360 (10)0.35383 (7)0.0354 (3)
C80.7149 (2)0.32148 (11)0.14984 (9)0.0461 (4)
H8A0.6751730.3480060.1159510.055*
H8B0.7253790.2708240.1373400.055*
C90.84714 (18)0.35432 (11)0.16435 (9)0.0434 (4)
H9A0.8918410.3244350.1946910.052*
H9B0.8999900.3560170.1272850.052*
O5'0.64367 (18)0.40972 (11)0.62426 (7)0.0680 (5)
O60.17650 (17)0.66780 (11)0.28763 (8)0.0723 (5)
O3'1.10353 (16)0.25867 (9)0.49322 (7)0.0613 (4)
H3A0.5474 (12)0.3214 (13)0.1932 (11)0.053 (6)*
H3B0.647 (2)0.2916 (10)0.2324 (9)0.052 (6)*
H4A0.804 (2)0.4583 (12)0.1581 (9)0.058 (7)*
H4B0.9014 (15)0.4475 (13)0.2027 (11)0.060 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.03023 (15)0.03616 (16)0.03048 (15)0.00523 (8)0.00034 (8)0.00139 (8)
O10.0346 (6)0.0406 (6)0.0359 (6)0.0097 (5)0.0028 (5)0.0036 (5)
O1'0.0477 (7)0.0479 (7)0.0286 (6)0.0089 (5)0.0025 (5)0.0032 (5)
O4'0.0614 (9)0.0618 (9)0.0495 (8)0.0088 (7)0.0174 (7)0.0118 (7)
O2'0.0478 (8)0.0838 (11)0.0315 (7)0.0216 (7)0.0036 (5)0.0027 (7)
O50.0417 (7)0.0530 (8)0.0707 (10)0.0174 (6)0.0058 (7)0.0022 (7)
N30.0381 (8)0.0375 (8)0.0432 (8)0.0031 (6)0.0070 (6)0.0030 (6)
N1'0.0356 (7)0.0349 (7)0.0524 (9)0.0006 (6)0.0056 (7)0.0090 (6)
N40.0312 (8)0.0455 (9)0.0402 (9)0.0006 (6)0.0017 (6)0.0066 (6)
O30.0748 (11)0.0892 (13)0.0370 (8)0.0189 (9)0.0014 (8)0.0096 (7)
O6'0.0760 (11)0.0794 (11)0.0530 (9)0.0400 (9)0.0073 (8)0.0040 (8)
N2'0.0421 (8)0.0484 (9)0.0351 (8)0.0024 (7)0.0012 (6)0.0068 (6)
O40.0625 (9)0.0736 (10)0.0542 (9)0.0172 (8)0.0210 (7)0.0129 (8)
O20.0726 (11)0.1122 (15)0.0401 (8)0.0598 (11)0.0008 (7)0.0021 (8)
N10.0489 (9)0.0474 (9)0.0414 (8)0.0008 (7)0.0080 (7)0.0114 (7)
N20.0415 (8)0.0343 (7)0.0518 (9)0.0064 (7)0.0014 (7)0.0021 (6)
C10.0305 (8)0.0299 (7)0.0368 (8)0.0014 (6)0.0025 (6)0.0030 (6)
C2'0.0315 (8)0.0338 (8)0.0355 (8)0.0009 (6)0.0033 (6)0.0015 (6)
C5'0.0347 (8)0.0325 (7)0.0326 (8)0.0031 (6)0.0013 (6)0.0029 (6)
C6'0.0324 (8)0.0328 (7)0.0327 (8)0.0009 (6)0.0011 (6)0.0019 (6)
C1'0.0313 (7)0.0321 (7)0.0307 (8)0.0026 (6)0.0004 (6)0.0022 (6)
C50.0315 (8)0.0299 (7)0.0423 (9)0.0013 (6)0.0002 (7)0.0001 (6)
C3'0.0299 (8)0.0310 (7)0.0389 (8)0.0025 (6)0.0026 (6)0.0052 (6)
C20.0352 (8)0.0327 (8)0.0371 (9)0.0007 (7)0.0002 (7)0.0042 (6)
C40.0299 (8)0.0332 (8)0.0484 (10)0.0031 (6)0.0064 (7)0.0054 (7)
C70.0363 (8)0.0390 (8)0.0378 (9)0.0093 (7)0.0025 (7)0.0039 (7)
C30.0344 (8)0.0350 (8)0.0369 (8)0.0026 (7)0.0063 (7)0.0072 (6)
C60.0324 (8)0.0320 (8)0.0364 (9)0.0007 (6)0.0042 (6)0.0014 (6)
C4'0.0363 (8)0.0353 (8)0.0289 (8)0.0057 (6)0.0035 (6)0.0020 (6)
C7'0.0324 (8)0.0435 (9)0.0304 (8)0.0018 (7)0.0012 (6)0.0024 (6)
C80.0520 (11)0.0485 (10)0.0376 (9)0.0067 (9)0.0072 (8)0.0096 (8)
C90.0383 (9)0.0543 (11)0.0376 (9)0.0118 (8)0.0030 (7)0.0031 (8)
O5'0.0750 (11)0.0951 (13)0.0339 (8)0.0224 (10)0.0123 (7)0.0028 (8)
O60.0726 (12)0.0943 (13)0.0500 (10)0.0323 (9)0.0066 (8)0.0238 (9)
O3'0.0454 (8)0.0677 (10)0.0709 (10)0.0218 (7)0.0111 (7)0.0211 (8)
Geometric parameters (Å, º) top
Zn1—O11.9721 (12)C1—C21.388 (2)
Zn1—O1'1.9519 (13)C1—C71.509 (2)
Zn1—N32.0445 (15)C1—C61.391 (2)
Zn1—N42.0184 (15)C2'—H2'0.9300
O1—C71.287 (2)C2'—C1'1.392 (2)
O1'—C7'1.278 (2)C2'—C3'1.375 (2)
O4'—N1'1.223 (2)C5'—C6'1.382 (2)
O2'—C7'1.230 (2)C5'—C4'1.378 (2)
O5—N21.216 (2)C6'—H6'0.9300
N3—C81.475 (3)C6'—C1'1.394 (2)
N3—H3A0.885 (10)C1'—C7'1.509 (2)
N3—H3B0.879 (10)C5—C41.377 (2)
N1'—C3'1.476 (2)C5—C61.383 (2)
N1'—O3'1.211 (2)C3'—C4'1.378 (2)
N4—C91.476 (3)C2—H20.9300
N4—H4A0.886 (10)C2—C31.382 (2)
N4—H4B0.881 (10)C4—H40.9300
O3—N11.218 (2)C4—C31.382 (3)
O6'—N2'1.208 (2)C6—H60.9300
N2'—C5'1.471 (2)C4'—H4'0.9300
N2'—O5'1.211 (2)C8—H8A0.9700
O4—N11.219 (2)C8—H8B0.9700
O2—C71.219 (2)C8—C91.517 (3)
N1—C31.477 (2)C9—H9A0.9700
N2—C51.470 (2)C9—H9B0.9700
N2—O61.211 (2)
O1—Zn1—N3113.10 (6)C1'—C6'—H6'120.8
O1—Zn1—N4115.58 (6)C2'—C1'—C6'119.53 (15)
O1'—Zn1—O1101.82 (5)C2'—C1'—C7'118.50 (14)
O1'—Zn1—N3113.74 (6)C6'—C1'—C7'121.97 (15)
O1'—Zn1—N4125.53 (6)C4—C5—N2117.56 (15)
N4—Zn1—N387.09 (7)C4—C5—C6123.40 (16)
C7—O1—Zn1112.64 (11)C6—C5—N2119.04 (16)
C7'—O1'—Zn1111.57 (11)C2'—C3'—N1'118.75 (15)
Zn1—N3—H3A113.6 (16)C2'—C3'—C4'123.08 (15)
Zn1—N3—H3B105.8 (16)C4'—C3'—N1'118.17 (15)
C8—N3—Zn1105.38 (11)C1—C2—H2120.5
C8—N3—H3A109.7 (16)C3—C2—C1118.99 (16)
C8—N3—H3B113.7 (16)C3—C2—H2120.5
H3A—N3—H3B109 (2)C5—C4—H4121.8
O4'—N1'—C3'118.10 (16)C5—C4—C3116.43 (15)
O3'—N1'—O4'123.92 (16)C3—C4—H4121.8
O3'—N1'—C3'117.96 (15)O1—C7—C1116.60 (15)
Zn1—N4—H4A105.7 (16)O2—C7—O1124.85 (16)
Zn1—N4—H4B119.1 (17)O2—C7—C1118.55 (16)
C9—N4—Zn1106.00 (11)C2—C3—N1118.59 (16)
C9—N4—H4A109.1 (17)C2—C3—C4122.76 (16)
C9—N4—H4B111.2 (17)C4—C3—N1118.64 (15)
H4A—N4—H4B105 (2)C1—C6—H6120.8
O6'—N2'—C5'118.47 (16)C5—C6—C1118.36 (16)
O6'—N2'—O5'123.21 (17)C5—C6—H6120.8
O5'—N2'—C5'118.32 (16)C5'—C4'—H4'122.0
O3—N1—O4124.53 (17)C3'—C4'—C5'116.09 (15)
O3—N1—C3117.56 (16)C3'—C4'—H4'122.0
O4—N1—C3117.92 (17)O1'—C7'—C1'116.11 (14)
O5—N2—C5118.25 (16)O2'—C7'—O1'124.60 (16)
O6—N2—O5123.82 (17)O2'—C7'—C1'119.29 (15)
O6—N2—C5117.92 (16)N3—C8—H8A109.6
C2—C1—C7117.68 (15)N3—C8—H8B109.6
C2—C1—C6120.06 (15)N3—C8—C9110.10 (14)
C6—C1—C7122.24 (15)H8A—C8—H8B108.2
C1'—C2'—H2'120.4C9—C8—H8A109.6
C3'—C2'—H2'120.4C9—C8—H8B109.6
C3'—C2'—C1'119.28 (15)N4—C9—C8108.63 (14)
C6'—C5'—N2'119.19 (15)N4—C9—H9A110.0
C4'—C5'—N2'117.16 (15)N4—C9—H9B110.0
C4'—C5'—C6'123.65 (15)C8—C9—H9A110.0
C5'—C6'—H6'120.8C8—C9—H9B110.0
C5'—C6'—C1'118.36 (15)H9A—C9—H9B108.3
Zn1—O1—C7—O210.6 (3)C5'—C6'—C1'—C7'179.61 (15)
Zn1—O1—C7—C1168.80 (11)C6'—C5'—C4'—C3'0.5 (2)
Zn1—O1'—C7'—O2'2.2 (2)C6'—C1'—C7'—O1'6.4 (2)
Zn1—O1'—C7'—C1'177.15 (11)C6'—C1'—C7'—O2'174.22 (17)
Zn1—N3—C8—C937.33 (17)C1'—C2'—C3'—N1'178.51 (14)
Zn1—N4—C9—C840.97 (17)C1'—C2'—C3'—C4'0.7 (3)
O4'—N1'—C3'—C2'171.17 (16)C5—C4—C3—N1178.17 (15)
O4'—N1'—C3'—C4'9.6 (2)C5—C4—C3—C20.9 (3)
O5—N2—C5—C411.9 (2)C3'—C2'—C1'—C6'0.4 (2)
O5—N2—C5—C6167.92 (17)C3'—C2'—C1'—C7'179.87 (15)
N3—C8—C9—N454.1 (2)C2—C1—C7—O1172.74 (16)
N1'—C3'—C4'—C5'178.08 (14)C2—C1—C7—O26.7 (3)
O3—N1—C3—C20.2 (3)C2—C1—C6—C50.8 (2)
O3—N1—C3—C4179.28 (18)C4—C5—C6—C10.0 (3)
O6'—N2'—C5'—C6'16.6 (2)C7—C1—C2—C3177.96 (15)
O6'—N2'—C5'—C4'164.53 (18)C7—C1—C6—C5177.85 (15)
N2'—C5'—C6'—C1'178.32 (15)C6—C1—C2—C30.8 (2)
N2'—C5'—C4'—C3'179.34 (14)C6—C1—C7—O16.0 (2)
O4—N1—C3—C2179.51 (18)C6—C1—C7—O2174.6 (2)
O4—N1—C3—C40.4 (3)C6—C5—C4—C30.8 (3)
N2—C5—C4—C3179.36 (15)C4'—C5'—C6'—C1'0.5 (2)
N2—C5—C6—C1179.82 (15)O5'—N2'—C5'—C6'162.72 (18)
C1—C2—C3—N1178.93 (15)O5'—N2'—C5'—C4'16.1 (3)
C1—C2—C3—C40.1 (3)O6—N2—C5—C4168.19 (18)
C2'—C1'—C7'—O1'173.09 (15)O6—N2—C5—C612.0 (3)
C2'—C1'—C7'—O2'6.3 (2)O3'—N1'—C3'—C2'10.0 (2)
C2'—C3'—C4'—C5'1.1 (2)O3'—N1'—C3'—C4'169.18 (17)
C5'—C6'—C1'—C2'0.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O6i0.932.633.539 (2)167
C8—H8A···O3ii0.972.513.353 (3)145
N3—H3A···O2iii0.89 (1)2.19 (1)3.055 (2)165 (2)
N4—H4A···O20.89 (1)2.42 (2)3.010 (2)124 (2)
N4—H4A···O5iv0.89 (1)2.58 (2)3.273 (3)136 (2)
N4—H4B···O1v0.88 (1)2.18 (1)3.021 (2)159 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z; (iii) x1/2, y, z+1/2; (iv) x+3/2, y+1, z1/2; (v) x+1/2, y, z+1/2.
Percentage contributions to the Hirshfeld surface for [Zn(DNBA)2(En)] top
ContactsIncluded surface area %
H···O/O···H43.4
O···C/C···O17.7
H···H13.5
H···C/C···H6.8
O···N/N···O4.9
H···N/N···H2.0
C···C0.9
N···C/C···N0.4
N···N0.1
 

Funding information

This work was supported by a Grant for Fundamental Research from the Center of Science and Technology, Uzbekistan (No. BA–FA–F7–004).

References

First citationChandrasekaran, J., Babu, B., Balaprabhakaran, S., Ilayabarathi, P., Maadeswaran, P. & Sathishkumar, K. (2013). Optik, 124, 1250–1253.  CrossRef CAS Google Scholar
First citationDey, D., Roy, S., Dutta Purkayastha, R. N., Pallepogu, R. & McArdle, P. (2013). J. Mol. Struct. 1053, 127–133.  Web of Science CSD CrossRef CAS Google Scholar
First citationElks, E. J. & Ganellin, C. R. (1990). Editors. Dictionary of Drugs, p. 445. London: Chapman & Hall.  Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationIbragimov, A. B., Ashurov, J. M. & Ibragimov, A. B. (2020). Rep. Uzbek. Acad. Sci. 1, 45–50.  Google Scholar
First citationIbragimov, A. B., Ashurov, Zh. M., Ibragimov, A. B. & Tashpulatov, Zh. Zh. (2017). Russ. J. Coord. Chem. 43, 380–388.  CSD CrossRef CAS Google Scholar
First citationIbragimov, A. B., Ashurov, Zh. M. & Zakirov, B. S. (2016). J. Chem. Crystallogr. 46, 352–363.  CSD CrossRef CAS Google Scholar
First citationJain, S., Patel, N. & Lin, S. (2015). Drug Dev. Ind. Pharm. 41, 875–887.  CrossRef CAS PubMed Google Scholar
First citationJones, H. P., Gillon, A. L. & Davey, R. J. (2005). Acta Cryst. E61, o1823–o1825.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLewinska, I., Michalec, M. & Tymecki, L. (2018). Proceedings of the 14th International Students Conference `Modern Analytical Chemistry', Prague, pp. 145–151.  Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMatsushita, N. & Taira, A. (1999). Synth. Met. 102, 1787–1788.  Web of Science CSD CrossRef CAS Google Scholar
First citationNethaji, M., Pattabhi, V., Chhabra, N. & Poonia, N. S. (1992). Acta Cryst. C48, 2207–2209.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTorres, J. F., Macías, M. A., Franco-Ulloa, S., Miscione, G. P., Cobo, J. & Hurtado, J. J. (2019). Cryst. Growth Des. 19, 3348–3357.  Web of Science CSD CrossRef CAS Google Scholar
First citationTurecka, K., Chylewska, A., Kawiak, A. & Waleron, K. F. (2018). Front. Microbiol. 9, art. 1594.  CrossRef Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia. http://hirshfeldsurface.net.  Google Scholar
First citationVaskova, Z., Stachova, P., Krupkova, L., Hudecova, D. & Valigura, D. (2009). Acta Chim. Slovac. 2, 77–87.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds