research communications
II complex with 3,5-dinitrobenzoic acid and ethylenediamine
and Hirshfeld surface analysis of the orthorhombic polymorph of a ZnaInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, M. Ulugbek Str., 83, Tashkent, 700125, Uzbekistan, bAgency on Development of the Pharmaceutical Industry, Ch. Aytmatov Str., 1a, Tashkent, 10008, Uzbekistan, and cInstitute of Total and Inorganic Chemistry, Academy of Sciences of Uzbekistan, M. Ulugbek Str., 77a, Tashkent, 700170, Uzbekistan
*Correspondence e-mail: alex.ibragimov@inbox.ru
During systematic investigations of the biological action enhancement of well known compounds, a new metal complex, namely, bis(3,5-dinitrobenzoato)(ethane-1,2-diamine)zinc(II), [Zn(C7H3N2O6)2(C2H8N2)], was synthesized and the structure of its orthorhombic form has determined. The synthesis and of the monoclinic polymorph has previously been reported [Ibragimov et al. (2020). Rep. Uzb. Acad. Sci. 1, 45–50]. The zinc ion has a distorted tetrahedral environment formed by two monodentate 3,5-dinitrobenzoato anions and chelating ethylenediamine molecule. In the crystal, the complex molecules are linked by N—H⋯O and C—H⋯O hydrogen bonds into a two-dimensional network parallel to the ac plane. The Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯O/O⋯H (43.4%) and O⋯C/C⋯O (17.7%) interactions.
Keywords: crystal structure; 3,5-dinitrobenzoic acid; ethylenediamine; Hirshfeld surface analysis; hydrogen bonding.
CCDC reference: 2009339
1. Chemical context
The benzoic acid derivative 3,5-dinitrobenzoic acid (DNBA) is an important corrosion inhibitor that is also applied in photography (Elks & Ganellin, 1990). This aromatic compound is used by chemists in the fluorometric analysis of creatinine (Lewinska et al., 2018; Chandrasekaran et al., 2013). It demonstrates a weak antimicrobial activity against bacteria and yeasts with a minimum (MIC) of 3 mmol L−1, but shows moderate biological action with respect to the filamentous fungi M. gypseum with IC50 = 2.1 mmol L−1 (Vaskova et al., 2009).
Ethylenediamine (En) is widely used in the chemical industry. It is a well-known bidentate chelating ligand that donates lone pairs of electrons of two nitrogen atoms (Matsushita & Taira, 1999). En is not itself biologically active against different strains of microoraganisms, but its CoIII complex demonstrates a strong antifungal action relative to a broad spectrum of Candida species (Turecka et al., 2018).
DNBA is poorly water soluble; its solubility is only 1.35 g L−1 at 25°C. In order to enhance its water solubility and antimicrobial activity, we tested some of the presently known approaches (Jain et al., 2015). More promising is a preparation of organic salts of DNBA and En as well as mixed-ligand complexes based on them. Such an approach has been applied for the biopharmaceutical optimization of 4-nitrobenzoic acid (Ibragimov et al., 2017) and 4-aminobenzoic acid (Ibragimov et al., 2016) yielding impressive results.
However, an analysis of the Cambridge Structural Database (CSD Version 5.41, update of November 2019; Groom et al., 2016) attests that organic salts based on DNBA and En have already been obtained as ethylendiammonium bis(3,5-dinitrobenzoate) (refcode VUJXIH; Nethaji et al., 1992) and ethylendiammonium bis(3,5-dinitrobenzoate) bis(3,5-dinitrobenzoic acid) (FONCER; Jones et al., 2005). Therefore, we synthesized two polymorphic forms of the zinc mixed-ligand complex. The synthesis and of the monoclinic polymorph has been published recently (Ibragimov et al., 2020), and the present paper is devoted to an orthorhombic polymorph that crystallizes in Pbca.
2. Structural commentary
Two DNBA anions coordinate the ZnII ion in a monodentate mode via the oxygen atoms of the carboxylate groups. As is usual, the En molecule acts as a chelating ligand through the two nitrogen atoms (Fig. 1). The coordination tetrahedron is distorted because of the Zn1⋯O2 and Zn1⋯O2′ interactions, the angles N3—Zn1—N4 [87.09 (7)°] and O1—Zn1—O1′ [101.82 (5)°] being less than the idealized tetrahedral values. The least-squares planes through the nitro groups are almost parallel to the planes of the aromatic rings. The nitro group N2′O5′O6′ subtends the largest dihedral angle to the attached aromatic ring [16.65 (11)°]. The conformation of the complex molecule is fixed due to the intramolecular N4—H4A⋯O2 hydrogen bond, which closes a six-membered ring with graph-set notation S(6) (Etter, 1990).
3. Supramolecular features
In the crystal, complex molecules are linked by three relatively weak hydrogen bonds of the N—H⋯O type and two bonds of C—H⋯O type (Table 1). The N3—H3A⋯O2′, N4—H4A⋯O5′ and N4—H4B⋯O1 hydrogen bonds link the complex molecules into a two-dimensional network parallel to the ac plane. Weak C6′—H6′⋯O6′ and C8—H8B⋯O3 hydrogen bonds strengthen the association of the complex molecules into this network (Fig. 2). Thus, only the H3B hydrogen on the N3 atom is without an acceptor and five oxygen atoms O1′, O3′, O4′, O4 and O5 do not participate in hydrogen bonding.
4. Hirshfeld surface analysis
In order to visualize the intermolecular interactions in the crystals of the title compound, a Hirshfeld surface analysis was carried out using Crystal Explorer 17.5 (Turner et al., 2017). The Hirshfeld surface mapped over dnorm (Fig. 3) shows the expected bright-red spots near atoms O1, O2, O2, O3, O5′, O6, H3A, H4A, H4′, H4B and H8A involved in the N—H⋯O and C—H⋯O hydrogen-bonding interactions described above. Fingerprint plots (Fig. 4) reveal that while H⋯O/O⋯H interactions make the greatest contributions to the surface contacts, as would be expected for a molecule with such a predominance of oxygen atoms, O⋯C/C⋯O, H⋯H and O⋯O contacts are also substantial (Table 2), while H⋯C/C⋯H, O⋯N/N⋯O, H⋯N/N⋯H, C⋯C, N⋯C/C⋯N and N⋯N contacts are less significant.
|
5. Database survey
A search of the Cambridge Structural Database (CSD Version 5.41, update of November 2019; Groom et al., 2016) found 277 metal complexes involving DNBA. Among them, 29 hits are zinc complexes, of which 14 have the four. In all of these complexes, two DNBA anions are coordinated in a monodentate fashion and only in structures JOHYEN (Torres et al., 2019) and VIQFAE (Dey et al., 2013) is the coordination of ZnII accomplished by chelating ligands: 1,1′-methylenebis(3,5-dimethyl-1H-pyrazole and 2,2′-bipyridyl for JOHYEN and VIQFAE, respectively.
6. Synthesis and crystallization
To an aqueous solution (2.5 ml) of ZnCl2 (0,068 g, 0.5 mmol) was slowly added a mixture of ethanol (4 ml), En (60 µL) and DNBA (0.212 g, 1 mmol) under constant stirring. A white crystalline product was obtained at room temperature by slow solvent evaporation after 5 d, yield: 70%. Elemental analysis for C16H14N6O12Zn (547.70): calculated C: 35.09, H: 2.58, N:15.34%; found: C: 35.12, H: 2.62, N: 15.41%.
7. Refinement
Crystal data, data collection and structure . C-bound hydrogen atoms were placed in calculated positions and refined using the riding-model approximation with Uiso(H) = 1.2Ueq(C), C—H = 0.93 and 0.97 Å for aromatic and methylene hydrogen atoms, respectively. N-bound H atoms were located in a difference-Fourier map and refined with bond-length restraints of 0.89 (1) Å.
details are summarized in Table 3
|
Supporting information
CCDC reference: 2009339
https://doi.org/10.1107/S2056989020007938/yk2132sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020007938/yk2132Isup2.hkl
Data collection: CrysAlis PRO (Rigaku OD, 2015); cell
CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).[Zn(C7H3N2O6)2(C2H8N2)] | Dx = 1.790 Mg m−3 |
Mr = 547.70 | Cu Kα radiation, λ = 1.54184 Å |
Orthorhombic, Pbca | Cell parameters from 19707 reflections |
a = 10.26799 (6) Å | θ = 4.3–76.0° |
b = 18.26557 (10) Å | µ = 2.44 mm−1 |
c = 21.67365 (12) Å | T = 293 K |
V = 4064.91 (4) Å3 | Block, white |
Z = 8 | 0.42 × 0.3 × 0.18 mm |
F(000) = 2224 |
Rigaku Oxford Diffraction Xcalibur, Ruby diffractometer | 4214 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 4070 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
Detector resolution: 10.2576 pixels mm-1 | θmax = 76.0°, θmin = 4.1° |
ω scans | h = −12→12 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2015) | k = −20→22 |
Tmin = 0.613, Tmax = 1.000 | l = −20→27 |
26085 measured reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.032 | w = 1/[σ2(Fo2) + (0.053P)2 + 1.5574P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.091 | (Δ/σ)max = 0.002 |
S = 1.09 | Δρmax = 0.31 e Å−3 |
4214 reflections | Δρmin = −0.52 e Å−3 |
333 parameters | Extinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
4 restraints | Extinction coefficient: 0.00077 (6) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.67282 (2) | 0.42317 (2) | 0.24573 (2) | 0.03229 (10) | |
O1 | 0.53739 (12) | 0.49815 (7) | 0.23272 (6) | 0.0371 (3) | |
O1' | 0.68069 (13) | 0.41811 (7) | 0.33561 (6) | 0.0414 (3) | |
O4' | 1.02982 (15) | 0.26641 (9) | 0.58578 (7) | 0.0576 (4) | |
O2' | 0.83739 (14) | 0.33654 (10) | 0.31937 (6) | 0.0544 (4) | |
O5 | 0.02506 (14) | 0.68636 (8) | 0.22153 (8) | 0.0551 (4) | |
N3 | 0.62989 (16) | 0.32537 (8) | 0.20461 (7) | 0.0396 (3) | |
N1' | 1.02277 (14) | 0.27851 (8) | 0.53038 (8) | 0.0410 (3) | |
N4 | 0.82786 (14) | 0.42902 (9) | 0.18869 (8) | 0.0389 (3) | |
O3 | 0.28325 (19) | 0.57939 (10) | −0.01964 (7) | 0.0670 (5) | |
O6' | 0.57039 (17) | 0.47877 (10) | 0.55318 (8) | 0.0695 (5) | |
N2' | 0.64170 (16) | 0.43071 (9) | 0.57126 (7) | 0.0419 (4) | |
O4 | 0.11575 (17) | 0.64392 (10) | 0.00591 (7) | 0.0634 (4) | |
O2 | 0.57988 (17) | 0.48659 (12) | 0.13270 (7) | 0.0750 (6) | |
N1 | 0.21307 (17) | 0.60866 (9) | 0.01838 (7) | 0.0459 (4) | |
N2 | 0.13183 (16) | 0.66326 (8) | 0.23606 (8) | 0.0425 (4) | |
C1 | 0.39543 (16) | 0.55533 (9) | 0.16039 (8) | 0.0324 (3) | |
C2' | 0.89150 (16) | 0.32663 (9) | 0.44488 (8) | 0.0336 (3) | |
H2' | 0.947315 | 0.302924 | 0.417622 | 0.040* | |
C5' | 0.72941 (16) | 0.39536 (9) | 0.52664 (7) | 0.0333 (3) | |
C6' | 0.70569 (16) | 0.40357 (9) | 0.46427 (8) | 0.0326 (3) | |
H6' | 0.636643 | 0.432089 | 0.450362 | 0.039* | |
C1' | 0.78781 (15) | 0.36807 (9) | 0.42272 (7) | 0.0314 (3) | |
C5 | 0.21151 (16) | 0.62756 (9) | 0.18838 (8) | 0.0345 (3) | |
C3' | 0.91054 (16) | 0.32112 (9) | 0.50751 (8) | 0.0333 (3) | |
C2 | 0.35964 (17) | 0.56172 (9) | 0.09885 (8) | 0.0350 (3) | |
H2 | 0.409358 | 0.539865 | 0.068072 | 0.042* | |
C4 | 0.17179 (16) | 0.63447 (9) | 0.12799 (9) | 0.0372 (4) | |
H4 | 0.096968 | 0.660232 | 0.117358 | 0.045* | |
C7 | 0.51413 (17) | 0.50986 (10) | 0.17523 (8) | 0.0377 (4) | |
C3 | 0.24905 (17) | 0.60106 (9) | 0.08403 (8) | 0.0354 (3) | |
C6 | 0.32130 (15) | 0.58895 (9) | 0.20600 (8) | 0.0336 (3) | |
H6 | 0.344937 | 0.585566 | 0.247323 | 0.040* | |
C4' | 0.83052 (15) | 0.35433 (9) | 0.55020 (8) | 0.0335 (3) | |
H4' | 0.843953 | 0.349357 | 0.592423 | 0.040* | |
C7' | 0.76869 (16) | 0.37360 (10) | 0.35383 (7) | 0.0354 (3) | |
C8 | 0.7149 (2) | 0.32148 (11) | 0.14984 (9) | 0.0461 (4) | |
H8A | 0.675173 | 0.348006 | 0.115951 | 0.055* | |
H8B | 0.725379 | 0.270824 | 0.137340 | 0.055* | |
C9 | 0.84714 (18) | 0.35432 (11) | 0.16435 (9) | 0.0434 (4) | |
H9A | 0.891841 | 0.324435 | 0.194691 | 0.052* | |
H9B | 0.899990 | 0.356017 | 0.127285 | 0.052* | |
O5' | 0.64367 (18) | 0.40972 (11) | 0.62426 (7) | 0.0680 (5) | |
O6 | 0.17650 (17) | 0.66780 (11) | 0.28763 (8) | 0.0723 (5) | |
O3' | 1.10353 (16) | 0.25867 (9) | 0.49322 (7) | 0.0613 (4) | |
H3A | 0.5474 (12) | 0.3214 (13) | 0.1932 (11) | 0.053 (6)* | |
H3B | 0.647 (2) | 0.2916 (10) | 0.2324 (9) | 0.052 (6)* | |
H4A | 0.804 (2) | 0.4583 (12) | 0.1581 (9) | 0.058 (7)* | |
H4B | 0.9014 (15) | 0.4475 (13) | 0.2027 (11) | 0.060 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.03023 (15) | 0.03616 (16) | 0.03048 (15) | 0.00523 (8) | −0.00034 (8) | 0.00139 (8) |
O1 | 0.0346 (6) | 0.0406 (6) | 0.0359 (6) | 0.0097 (5) | −0.0028 (5) | 0.0036 (5) |
O1' | 0.0477 (7) | 0.0479 (7) | 0.0286 (6) | 0.0089 (5) | −0.0025 (5) | 0.0032 (5) |
O4' | 0.0614 (9) | 0.0618 (9) | 0.0495 (8) | 0.0088 (7) | −0.0174 (7) | 0.0118 (7) |
O2' | 0.0478 (8) | 0.0838 (11) | 0.0315 (7) | 0.0216 (7) | 0.0036 (5) | −0.0027 (7) |
O5 | 0.0417 (7) | 0.0530 (8) | 0.0707 (10) | 0.0174 (6) | 0.0058 (7) | 0.0022 (7) |
N3 | 0.0381 (8) | 0.0375 (8) | 0.0432 (8) | −0.0031 (6) | −0.0070 (6) | 0.0030 (6) |
N1' | 0.0356 (7) | 0.0349 (7) | 0.0524 (9) | −0.0006 (6) | −0.0056 (7) | 0.0090 (6) |
N4 | 0.0312 (8) | 0.0455 (9) | 0.0402 (9) | −0.0006 (6) | 0.0017 (6) | 0.0066 (6) |
O3 | 0.0748 (11) | 0.0892 (13) | 0.0370 (8) | 0.0189 (9) | 0.0014 (8) | 0.0096 (7) |
O6' | 0.0760 (11) | 0.0794 (11) | 0.0530 (9) | 0.0400 (9) | 0.0073 (8) | −0.0040 (8) |
N2' | 0.0421 (8) | 0.0484 (9) | 0.0351 (8) | 0.0024 (7) | 0.0012 (6) | −0.0068 (6) |
O4 | 0.0625 (9) | 0.0736 (10) | 0.0542 (9) | 0.0172 (8) | −0.0210 (7) | 0.0129 (8) |
O2 | 0.0726 (11) | 0.1122 (15) | 0.0401 (8) | 0.0598 (11) | 0.0008 (7) | 0.0021 (8) |
N1 | 0.0489 (9) | 0.0474 (9) | 0.0414 (8) | −0.0008 (7) | −0.0080 (7) | 0.0114 (7) |
N2 | 0.0415 (8) | 0.0343 (7) | 0.0518 (9) | 0.0064 (7) | 0.0014 (7) | −0.0021 (6) |
C1 | 0.0305 (8) | 0.0299 (7) | 0.0368 (8) | 0.0014 (6) | −0.0025 (6) | 0.0030 (6) |
C2' | 0.0315 (8) | 0.0338 (8) | 0.0355 (8) | 0.0009 (6) | 0.0033 (6) | 0.0015 (6) |
C5' | 0.0347 (8) | 0.0325 (7) | 0.0326 (8) | −0.0031 (6) | 0.0013 (6) | −0.0029 (6) |
C6' | 0.0324 (8) | 0.0328 (7) | 0.0327 (8) | 0.0009 (6) | −0.0011 (6) | 0.0019 (6) |
C1' | 0.0313 (7) | 0.0321 (7) | 0.0307 (8) | −0.0026 (6) | 0.0004 (6) | 0.0022 (6) |
C5 | 0.0315 (8) | 0.0299 (7) | 0.0423 (9) | 0.0013 (6) | −0.0002 (7) | −0.0001 (6) |
C3' | 0.0299 (8) | 0.0310 (7) | 0.0389 (8) | −0.0025 (6) | −0.0026 (6) | 0.0052 (6) |
C2 | 0.0352 (8) | 0.0327 (8) | 0.0371 (9) | 0.0007 (7) | 0.0002 (7) | 0.0042 (6) |
C4 | 0.0299 (8) | 0.0332 (8) | 0.0484 (10) | 0.0031 (6) | −0.0064 (7) | 0.0054 (7) |
C7 | 0.0363 (8) | 0.0390 (8) | 0.0378 (9) | 0.0093 (7) | −0.0025 (7) | 0.0039 (7) |
C3 | 0.0344 (8) | 0.0350 (8) | 0.0369 (8) | −0.0026 (7) | −0.0063 (7) | 0.0072 (6) |
C6 | 0.0324 (8) | 0.0320 (8) | 0.0364 (9) | 0.0007 (6) | −0.0042 (6) | 0.0014 (6) |
C4' | 0.0363 (8) | 0.0353 (8) | 0.0289 (8) | −0.0057 (6) | −0.0035 (6) | 0.0020 (6) |
C7' | 0.0324 (8) | 0.0435 (9) | 0.0304 (8) | −0.0018 (7) | 0.0012 (6) | 0.0024 (6) |
C8 | 0.0520 (11) | 0.0485 (10) | 0.0376 (9) | 0.0067 (9) | −0.0072 (8) | −0.0096 (8) |
C9 | 0.0383 (9) | 0.0543 (11) | 0.0376 (9) | 0.0118 (8) | 0.0030 (7) | −0.0031 (8) |
O5' | 0.0750 (11) | 0.0951 (13) | 0.0339 (8) | 0.0224 (10) | 0.0123 (7) | 0.0028 (8) |
O6 | 0.0726 (12) | 0.0943 (13) | 0.0500 (10) | 0.0323 (9) | −0.0066 (8) | −0.0238 (9) |
O3' | 0.0454 (8) | 0.0677 (10) | 0.0709 (10) | 0.0218 (7) | 0.0111 (7) | 0.0211 (8) |
Zn1—O1 | 1.9721 (12) | C1—C2 | 1.388 (2) |
Zn1—O1' | 1.9519 (13) | C1—C7 | 1.509 (2) |
Zn1—N3 | 2.0445 (15) | C1—C6 | 1.391 (2) |
Zn1—N4 | 2.0184 (15) | C2'—H2' | 0.9300 |
O1—C7 | 1.287 (2) | C2'—C1' | 1.392 (2) |
O1'—C7' | 1.278 (2) | C2'—C3' | 1.375 (2) |
O4'—N1' | 1.223 (2) | C5'—C6' | 1.382 (2) |
O2'—C7' | 1.230 (2) | C5'—C4' | 1.378 (2) |
O5—N2 | 1.216 (2) | C6'—H6' | 0.9300 |
N3—C8 | 1.475 (3) | C6'—C1' | 1.394 (2) |
N3—H3A | 0.885 (10) | C1'—C7' | 1.509 (2) |
N3—H3B | 0.879 (10) | C5—C4 | 1.377 (2) |
N1'—C3' | 1.476 (2) | C5—C6 | 1.383 (2) |
N1'—O3' | 1.211 (2) | C3'—C4' | 1.378 (2) |
N4—C9 | 1.476 (3) | C2—H2 | 0.9300 |
N4—H4A | 0.886 (10) | C2—C3 | 1.382 (2) |
N4—H4B | 0.881 (10) | C4—H4 | 0.9300 |
O3—N1 | 1.218 (2) | C4—C3 | 1.382 (3) |
O6'—N2' | 1.208 (2) | C6—H6 | 0.9300 |
N2'—C5' | 1.471 (2) | C4'—H4' | 0.9300 |
N2'—O5' | 1.211 (2) | C8—H8A | 0.9700 |
O4—N1 | 1.219 (2) | C8—H8B | 0.9700 |
O2—C7 | 1.219 (2) | C8—C9 | 1.517 (3) |
N1—C3 | 1.477 (2) | C9—H9A | 0.9700 |
N2—C5 | 1.470 (2) | C9—H9B | 0.9700 |
N2—O6 | 1.211 (2) | ||
O1—Zn1—N3 | 113.10 (6) | C1'—C6'—H6' | 120.8 |
O1—Zn1—N4 | 115.58 (6) | C2'—C1'—C6' | 119.53 (15) |
O1'—Zn1—O1 | 101.82 (5) | C2'—C1'—C7' | 118.50 (14) |
O1'—Zn1—N3 | 113.74 (6) | C6'—C1'—C7' | 121.97 (15) |
O1'—Zn1—N4 | 125.53 (6) | C4—C5—N2 | 117.56 (15) |
N4—Zn1—N3 | 87.09 (7) | C4—C5—C6 | 123.40 (16) |
C7—O1—Zn1 | 112.64 (11) | C6—C5—N2 | 119.04 (16) |
C7'—O1'—Zn1 | 111.57 (11) | C2'—C3'—N1' | 118.75 (15) |
Zn1—N3—H3A | 113.6 (16) | C2'—C3'—C4' | 123.08 (15) |
Zn1—N3—H3B | 105.8 (16) | C4'—C3'—N1' | 118.17 (15) |
C8—N3—Zn1 | 105.38 (11) | C1—C2—H2 | 120.5 |
C8—N3—H3A | 109.7 (16) | C3—C2—C1 | 118.99 (16) |
C8—N3—H3B | 113.7 (16) | C3—C2—H2 | 120.5 |
H3A—N3—H3B | 109 (2) | C5—C4—H4 | 121.8 |
O4'—N1'—C3' | 118.10 (16) | C5—C4—C3 | 116.43 (15) |
O3'—N1'—O4' | 123.92 (16) | C3—C4—H4 | 121.8 |
O3'—N1'—C3' | 117.96 (15) | O1—C7—C1 | 116.60 (15) |
Zn1—N4—H4A | 105.7 (16) | O2—C7—O1 | 124.85 (16) |
Zn1—N4—H4B | 119.1 (17) | O2—C7—C1 | 118.55 (16) |
C9—N4—Zn1 | 106.00 (11) | C2—C3—N1 | 118.59 (16) |
C9—N4—H4A | 109.1 (17) | C2—C3—C4 | 122.76 (16) |
C9—N4—H4B | 111.2 (17) | C4—C3—N1 | 118.64 (15) |
H4A—N4—H4B | 105 (2) | C1—C6—H6 | 120.8 |
O6'—N2'—C5' | 118.47 (16) | C5—C6—C1 | 118.36 (16) |
O6'—N2'—O5' | 123.21 (17) | C5—C6—H6 | 120.8 |
O5'—N2'—C5' | 118.32 (16) | C5'—C4'—H4' | 122.0 |
O3—N1—O4 | 124.53 (17) | C3'—C4'—C5' | 116.09 (15) |
O3—N1—C3 | 117.56 (16) | C3'—C4'—H4' | 122.0 |
O4—N1—C3 | 117.92 (17) | O1'—C7'—C1' | 116.11 (14) |
O5—N2—C5 | 118.25 (16) | O2'—C7'—O1' | 124.60 (16) |
O6—N2—O5 | 123.82 (17) | O2'—C7'—C1' | 119.29 (15) |
O6—N2—C5 | 117.92 (16) | N3—C8—H8A | 109.6 |
C2—C1—C7 | 117.68 (15) | N3—C8—H8B | 109.6 |
C2—C1—C6 | 120.06 (15) | N3—C8—C9 | 110.10 (14) |
C6—C1—C7 | 122.24 (15) | H8A—C8—H8B | 108.2 |
C1'—C2'—H2' | 120.4 | C9—C8—H8A | 109.6 |
C3'—C2'—H2' | 120.4 | C9—C8—H8B | 109.6 |
C3'—C2'—C1' | 119.28 (15) | N4—C9—C8 | 108.63 (14) |
C6'—C5'—N2' | 119.19 (15) | N4—C9—H9A | 110.0 |
C4'—C5'—N2' | 117.16 (15) | N4—C9—H9B | 110.0 |
C4'—C5'—C6' | 123.65 (15) | C8—C9—H9A | 110.0 |
C5'—C6'—H6' | 120.8 | C8—C9—H9B | 110.0 |
C5'—C6'—C1' | 118.36 (15) | H9A—C9—H9B | 108.3 |
Zn1—O1—C7—O2 | −10.6 (3) | C5'—C6'—C1'—C7' | 179.61 (15) |
Zn1—O1—C7—C1 | 168.80 (11) | C6'—C5'—C4'—C3' | 0.5 (2) |
Zn1—O1'—C7'—O2' | −2.2 (2) | C6'—C1'—C7'—O1' | 6.4 (2) |
Zn1—O1'—C7'—C1' | 177.15 (11) | C6'—C1'—C7'—O2' | −174.22 (17) |
Zn1—N3—C8—C9 | 37.33 (17) | C1'—C2'—C3'—N1' | −178.51 (14) |
Zn1—N4—C9—C8 | 40.97 (17) | C1'—C2'—C3'—C4' | 0.7 (3) |
O4'—N1'—C3'—C2' | −171.17 (16) | C5—C4—C3—N1 | −178.17 (15) |
O4'—N1'—C3'—C4' | 9.6 (2) | C5—C4—C3—C2 | 0.9 (3) |
O5—N2—C5—C4 | 11.9 (2) | C3'—C2'—C1'—C6' | 0.4 (2) |
O5—N2—C5—C6 | −167.92 (17) | C3'—C2'—C1'—C7' | 179.87 (15) |
N3—C8—C9—N4 | −54.1 (2) | C2—C1—C7—O1 | −172.74 (16) |
N1'—C3'—C4'—C5' | 178.08 (14) | C2—C1—C7—O2 | 6.7 (3) |
O3—N1—C3—C2 | 0.2 (3) | C2—C1—C6—C5 | 0.8 (2) |
O3—N1—C3—C4 | 179.28 (18) | C4—C5—C6—C1 | 0.0 (3) |
O6'—N2'—C5'—C6' | −16.6 (2) | C7—C1—C2—C3 | 177.96 (15) |
O6'—N2'—C5'—C4' | 164.53 (18) | C7—C1—C6—C5 | −177.85 (15) |
N2'—C5'—C6'—C1' | −178.32 (15) | C6—C1—C2—C3 | −0.8 (2) |
N2'—C5'—C4'—C3' | 179.34 (14) | C6—C1—C7—O1 | 6.0 (2) |
O4—N1—C3—C2 | −179.51 (18) | C6—C1—C7—O2 | −174.6 (2) |
O4—N1—C3—C4 | −0.4 (3) | C6—C5—C4—C3 | −0.8 (3) |
N2—C5—C4—C3 | 179.36 (15) | C4'—C5'—C6'—C1' | 0.5 (2) |
N2—C5—C6—C1 | 179.82 (15) | O5'—N2'—C5'—C6' | 162.72 (18) |
C1—C2—C3—N1 | 178.93 (15) | O5'—N2'—C5'—C4' | −16.1 (3) |
C1—C2—C3—C4 | −0.1 (3) | O6—N2—C5—C4 | −168.19 (18) |
C2'—C1'—C7'—O1' | −173.09 (15) | O6—N2—C5—C6 | 12.0 (3) |
C2'—C1'—C7'—O2' | 6.3 (2) | O3'—N1'—C3'—C2' | 10.0 (2) |
C2'—C3'—C4'—C5' | −1.1 (2) | O3'—N1'—C3'—C4' | −169.18 (17) |
C5'—C6'—C1'—C2' | −0.9 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C4′—H4′···O6i | 0.93 | 2.63 | 3.539 (2) | 167 |
C8—H8A···O3ii | 0.97 | 2.51 | 3.353 (3) | 145 |
N3—H3A···O2′iii | 0.89 (1) | 2.19 (1) | 3.055 (2) | 165 (2) |
N4—H4A···O2 | 0.89 (1) | 2.42 (2) | 3.010 (2) | 124 (2) |
N4—H4A···O5′iv | 0.89 (1) | 2.58 (2) | 3.273 (3) | 136 (2) |
N4—H4B···O1v | 0.88 (1) | 2.18 (1) | 3.021 (2) | 159 (2) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+1, −z; (iii) x−1/2, y, −z+1/2; (iv) −x+3/2, −y+1, z−1/2; (v) x+1/2, y, −z+1/2. |
Contacts | Included surface area % |
H···O/O···H | 43.4 |
O···C/C···O | 17.7 |
H···H | 13.5 |
H···C/C···H | 6.8 |
O···N/N···O | 4.9 |
H···N/N···H | 2.0 |
C···C | 0.9 |
N···C/C···N | 0.4 |
N···N | 0.1 |
Funding information
This work was supported by a Grant for Fundamental Research from the Center of Science and Technology, Uzbekistan (No. BA–FA–F7–004).
References
Chandrasekaran, J., Babu, B., Balaprabhakaran, S., Ilayabarathi, P., Maadeswaran, P. & Sathishkumar, K. (2013). Optik, 124, 1250–1253. CrossRef CAS Google Scholar
Dey, D., Roy, S., Dutta Purkayastha, R. N., Pallepogu, R. & McArdle, P. (2013). J. Mol. Struct. 1053, 127–133. Web of Science CSD CrossRef CAS Google Scholar
Elks, E. J. & Ganellin, C. R. (1990). Editors. Dictionary of Drugs, p. 445. London: Chapman & Hall. Google Scholar
Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Ibragimov, A. B., Ashurov, J. M. & Ibragimov, A. B. (2020). Rep. Uzbek. Acad. Sci. 1, 45–50. Google Scholar
Ibragimov, A. B., Ashurov, Zh. M., Ibragimov, A. B. & Tashpulatov, Zh. Zh. (2017). Russ. J. Coord. Chem. 43, 380–388. CSD CrossRef CAS Google Scholar
Ibragimov, A. B., Ashurov, Zh. M. & Zakirov, B. S. (2016). J. Chem. Crystallogr. 46, 352–363. CSD CrossRef CAS Google Scholar
Jain, S., Patel, N. & Lin, S. (2015). Drug Dev. Ind. Pharm. 41, 875–887. CrossRef CAS PubMed Google Scholar
Jones, H. P., Gillon, A. L. & Davey, R. J. (2005). Acta Cryst. E61, o1823–o1825. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lewinska, I., Michalec, M. & Tymecki, L. (2018). Proceedings of the 14th International Students Conference `Modern Analytical Chemistry', Prague, pp. 145–151. Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Matsushita, N. & Taira, A. (1999). Synth. Met. 102, 1787–1788. Web of Science CSD CrossRef CAS Google Scholar
Nethaji, M., Pattabhi, V., Chhabra, N. & Poonia, N. S. (1992). Acta Cryst. C48, 2207–2209. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Torres, J. F., Macías, M. A., Franco-Ulloa, S., Miscione, G. P., Cobo, J. & Hurtado, J. J. (2019). Cryst. Growth Des. 19, 3348–3357. Web of Science CSD CrossRef CAS Google Scholar
Turecka, K., Chylewska, A., Kawiak, A. & Waleron, K. F. (2018). Front. Microbiol. 9, art. 1594. CrossRef Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia. https://hirshfeldsurface.net. Google Scholar
Vaskova, Z., Stachova, P., Krupkova, L., Hudecova, D. & Valigura, D. (2009). Acta Chim. Slovac. 2, 77–87. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.