research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structures of 2-(ferrocenyl­carbon­yl)benzoic acid and 3-ferrocenylphthalide

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry & Physical Sciences, Nicholls State University, Thibodaux, Louisiana 70301, USA, and bDepartment of Chemistry, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
*Correspondence e-mail: uttam.pokharel@nicholls.edu

Edited by M. Zeller, Purdue University, USA (Received 28 May 2020; accepted 23 June 2020; online 30 June 2020)

The title compounds, 2-(ferrocenylcarbon­yl)benzoic acid, [Fe(C5H5)(C13H9O3)], 1, and 3-ferrocenylphthalide [systematic name: 3-ferrocenyl-2-benzo­furan-1(3H)-one], [Fe(C5H5)(C13H9O2)], 2, have been synthesized and structurally characterized by single-crystal X-ray diffraction. The crystal structure of compound 1 was solved recently at room temperature [Qin, Y. (2019[Qin, Y. (2019). CSD Communication (CCDC deposition number 1912662). CCDC, Cambridge, England.]). CSD Communication (CCDC deposition number 1912662). CCDC, Cambridge, England]. Here we report a redetermination of its crystal structure at 90 K with improved precision by a factor of about three. The mol­ecular structures of both compounds exhibit a typical sandwich structure. In the crystal packing of compound 1, each mol­ecule engages in inter­molecular hydrogen bonding, forming a centrosymmetric dimer with graph-set notation R22 (8) and an O⋯O distance of 2.6073 (15) Å. There are weak C—H⋯O and C—H⋯π inter­actions in the crystal packing of compound 2. The phthalide moiety in 2 is oriented roughly perpendicular to the ferrocene backbone, with a dihedral angle of 77.4 (2)°.

1. Chemical context

Our research group has been inter­ested in developing methodologies to synthesize metallocene-fused quinones as synthetic precursors of π-extended metallocenes. These are of inter­est because an integration of the redox-active metal center with the polycyclic aromatic hydro­carbons could alter their properties for organic semiconducting applications (Anthony, 2006[Anthony, J. E. (2006). Chem. Rev. 106, 5028-5048.]). Previously, we synthesized metallocene-fused quinones via the double Friedel–Crafts acyl­ation reaction between 1′,2′,3′,4′,5′-penta­methyl­ruthenocene-1,2-diacyl chloride with organic aromatics (Pokharel et al., 2011[Pokharel, U. R., Selegue, J. P. & Parkin, S. (2011). Organometallics, 30, 3254-3256.]). Later, we realized that switching the functionality of two reaction partners allows us to obtain quinones in a much simpler synthetic scheme. Ferrocene being a close analog of ruthenocene, we decided to pursue the synthesis of ferrocene-fused quinones (Nesmeyanov et al., 1966[Nesmeyanov, A. N., Vilchevskaya, V. D. & Kochetkova, N. S. (1966). Izv. Akad. Nauk SSSR, Ser. Khim. pp. 938-940.]; Pokharel, 2012[Pokharel, U. R. (2012). Organometallic Heterocycles and Acene-Quinone Complexes of Ruthenium, Iron and Manganese. PhD dissertation, University of Kentucky.]), starting from ferrocene itself as the aromatic reagent. As the first step of this synthetic route, we prepared 2-ferrocenylcarbonyl benzoic acid, 1, following a previously reported procedure (Shen et al., 2012[Shen, J., Jiang, M. W., Li, Y. K., Guo, C., Qiu, X. Y. & Wang, C. Q. (2012). Colloid Polym. Sci. 290, 1193-1200.]; Xu et al., 2017[Xu, X., Hu, F. & Shuai, Q. (2017). New J. Chem. 41, 13319-13326.]). The published procedure uses di­chloro­methane as the reaction solvent. However, using this solvent, we obtained consistently low reaction yields. On switching to di­chloro­ethane from di­chloro­methane, the yield of the reaction was improved from 13% to a more satisfactory 51% even at room temperature, possibly due to higher solubility of the reaction mixture. The crystal structure of the complex has been reported at room temperature (Qin, 2019[Qin, Y. (2019). CSD Communication (CCDC deposition number 1912662). CCDC, Cambridge, England.]). Our redetermination of its crystal structure at 90 K has improved the precision by a factor of about three.

[Scheme 1]

With an easy route towards 2-ferrocenylcarbonyl benzoic acid, 1, at hand, we investigated the reduction of its keto group to methyl­ene using a large excess of zinc powder (ca 48 equivalents) with aqueous sodium hydroxide as the solvent (Lee & Harvey, 1986[Lee, H. & Harvey, R. G. (1986). J. Org. Chem. 51, 3502-3507.]). Under these reaction conditions, we were able to reduce complex 1 to 2-carb­oxy­benzyl­ferrocene in 89% yield (Pokharel, 2012[Pokharel, U. R. (2012). Organometallic Heterocycles and Acene-Quinone Complexes of Ruthenium, Iron and Manganese. PhD dissertation, University of Kentucky.]). Following this successful transformation, we investigated the reaction outcome in the presence of a smaller amount (5 equivalents) of Zn. Under these reaction conditions, the reaction mixture changed color from red to light orange. However, on acidification, the reaction yielded the title compound 2 in a 77% yield. We assume that the limited amount of zinc leads to incomplete reduction of the ketone to a secondary alcohol, 1′ (Fig. 1[link]), similar to the reduction of aryl ketones reported by Zhang and co-workers (Zhang et al., 2007[Zhang, C. Z., Yang, H., Wu, D. L. & Lu, G. Y. (2007). Chin. J. Chem. 25, 653-660.]). Upon acidification during reaction workup, alcohol 1′ undergoes solvolysis to give the carbocation, which is electronically stabilized by the ferrocenyl group (Goodman et al., 2019[Goodman, H., Mei, L. & Gianetti, T. L. (2019). Front. Chem. 7, article 365. https://doi.org/10.3389/fchem.2019.00365]). The nucleophilic attack of the carb­oxy­lic O atom leads to the formation of the cyclic lactone, 2. Although the title compound 2 was reported long ago as a major product from the reaction of 3,3′-diferrocenyl-3,3′-diphthalide with KOH (Nesmeyanov et al., 1961[Nesmeyanov, A. N., Vilchevskaya, V. D. & Kochetkova, N. S. (1961). Dokl. Akad. Nauk SSSR, 138, 390-392.]) and as a byproduct from the polycondensation reaction of ferrocene with o-carb­oxy­benzaldehyde (Neuse & Koda, 1966[Neuse, E. W. & Koda, K. (1966). J. Polym. Sci. A-1 Polym. Chem. 4, 2145-2160.]), to our knowledge, this is the first report of the conversion of keto carb­oxy­lic acid, 1, to cyclic lactone 2 in a reasonably high yield. Here we report the synthesis, spectroscopic characterization, and single-crystal X-ray analysis of the title compounds 1 and 2.

[Figure 1]
Figure 1
The synthetic scheme to the formation of unexpected title compound 2 from the title compound 1 with proposed inter­mediate.

2. Structural commentary

A view of the mol­ecular structures of the title compounds 1 and 2, with their atom labeling, is shown in Fig. 2[link]. The ferrocenyl moieties adopt typical sandwich structures with Fe—C distances in the range 2.0287 (17)–2.0498 (15) Å in compound 1 and of 2.032 (2)–2.055 (2) Å in 2. In both structures, the Fe—C bond lengths towards the substituted carbon are shorter [Fe—C1 2.031 (1) Å in 1; 2.032 (2) Å in 2] than the remaining Fe—C bond lengths, similar to literature reports (Pérez et al., 2015[Pérez, W. I., Rheingold, A. L. & Meléndez, E. (2015). Acta Cryst. E71, 536-539.]; Wu et al., 2011[Wu, X.-X., Zhu, X., Ma, Q.-J., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, m1875.]). The C—C distances within the Cp rings fall in the range 1.412 (2)–1.429 (2) Å in compound 1 and 1.414 (3)–1.431 (3) Å in 2. Similar to its carboxyl­ate salts (Li et al., 2003[Li, G., Hou, H., Li, L., Meng, X., Fan, Y. & Zhu, Y. (2003). Inorg. Chem. 42, 4995-5004.]; Li, Li et al., 2008[Li, G., Li, Z. F., Wu, J. X., Yue, C. & Hou, H. W. (2008). J. Coord. Chem. 61, 464-471.]; Li, Liu et al., 2008[Li, Z., Liu, S., Wu, J. & Li, G. (2008). Huaxue Yanjiu, 19, 51-54.]; Xu et al., 2016[Xu, X., Lu, Y., Hu, F., Xu, L. & Shuai, Q. (2016). J. Coord. Chem. 69, 3294-3302.]), the two Cp rings of the ferrocene residue in complex 1 are close to an eclipsed conformation (mean of five C—CgCg—C torsion angles = 12.68°; Cg is the centroid of the respective cyclo­penta­dienyl ring). The analogous angle in complex 2 is 3.31°. The Cp rings are essentially parallel in both complexes, making a dihedral angle of 2.45 (12)° in compound 1 and 1.14 (10)° in 2. The Fe⋯Cg distances in both compounds are in a similar range [substituted and unsubstituted Cp in 1: 1.6436 (7) and 1.6458 (7) Å; 2: 1.6455 (10) and 1.6510 (10) Å, respectively]. The Cg—Fe—Cg angle in both structures is ca 178°. The carbonyl carbon, C11 in compound 1 bends toward the iron center with a distance of 0.163 (3) from the least-squares plane of the substituted Cp while the corresponding C11 atom in compound 2 bends slightly outward with a distance of 0.117 (4) Å from the plane of Cp. Similar bending can be seen in the N-imidazolyl derivative of compound 2 (Simenel et al., 2008[Simenel, A. A., Samarina, S. V., Snegur, L. V., Starikova, Z. A., Ostrovskaya, L. A., Bluchterova, N. V. & Fomina, M. M. (2008). Appl. Organomet. Chem. 22, 276-280.]). The carbonyl carbon in compound 1 lies roughly in the same plane as the substituted Cp with a torsional angle C2—C1—C11—O1 of 2.9 (2)°. The phenyl ring in compound 1 is twisted away from the plane of the carbonyl (C=O) plane with a torsional angle O1—C11—C12—C13 of −112.41 (16)°. The aromatic ring of the phthalide moiety in compound 2 bends away from ferrocene and orients roughly perpendicular to the ferrocene backbone. The nine-atom phthalide plane of compound 2 inclines with the substituted Cp at a dihedral angle of 77.31 (7)°. This mol­ecule contains a single asymmetric center at the C11 position in this racemic structure.

[Figure 2]
Figure 2
Mol­ecular structure of the title compounds 1 and 2 showing the atom-numbering schemes. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

The mol­ecules in compound 1 are associated via classical hydrogen-bonding inter­actions between the carb­oxy­lic OH group of one mol­ecule with the carbonyl oxygen of an adjacent mol­ecule. The carb­oxy­lic acid groups are related via a crystallographic inversion center to form hydrogen bonds [O3—H3O⋯O2i [symmetry code: (i) −x, −y, 1 − z] with an R22 (8) dimer (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]) motif (Table 1[link] and Fig. 3[link]). This centrosymmetric pairwise hydrogen-bonding dimer formation results in short hydrogen-bond distances of 2.6073 (15). In the crystal packing of title compound 2 (Fig. 4[link]), the unsubstituted Cp orients towards the substituted Cp of a mol­ecule at x, 1 − y, z − [{1\over 2}] with a CgCg separation of 3.929 (1) Å. There is a weak hydrogen-bonding inter­action between the carbonyl oxygen O2 of the phthalide ring, and hydrogen H6 of the unsubstituted Cp with an H6⋯O2 (x, 2 − y, z − [{1\over 2}]) distance of 2.58 Å (Table 2[link]). The phthalide moieties in the two mol­ecules are oriented at an angle of 73.49° and exhibit a weak C—H⋯π inter­action as evidenced by the distance of 3.044 Å between H16 and the centroid of the aromatic ring of a phthalide moiety at [{3\over 2}] − x, y − [{1\over 2}], [{3\over 2}] − z.

Table 1
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯O2i 0.82 (2) 1.79 (2) 2.6073 (15) 174 (2)
Symmetry code: (i) -x, -y, -z+1.

Table 2
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O2i 1.00 2.58 3.470 (3) 148
Symmetry code: (i) [x, -y+2, z-{\script{1\over 2}}].
[Figure 3]
Figure 3
The hydrogen-bonded dimer of title compound 1. Unlabeled atoms are related to their labeled counterparts by a crystallographic inversion center [Symmetry code: (i) −x, −y, 1 − z]. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 4]
Figure 4
The crystal packing of title compound 2, viewed along the b axis. Displacement ellipsoids are drawn at the 50% probability level.

4. Database survey

The structure of title compound 1 (CSD refcode JOJGOH) at room temperature has been recently reported as a CSD Communication (Qin, 2019[Qin, Y. (2019). CSD Communication (CCDC deposition number 1912662). CCDC, Cambridge, England.]) but no details of the mol­ecular or crystal structure were provided. Various salts of this carb­oxy­lic acid: sodium (LULSAN; Li, Liu et al., 2008[Li, Z., Liu, S., Wu, J. & Li, G. (2008). Huaxue Yanjiu, 19, 51-54.]), magnesium (ADULUJ; Xu et al., 2016[Xu, X., Lu, Y., Hu, F., Xu, L. & Shuai, Q. (2016). J. Coord. Chem. 69, 3294-3302.]), barium (ECIVIY; Xu et al., 2017[Xu, X., Hu, F. & Shuai, Q. (2017). New J. Chem. 41, 13319-13326.]), zinc (CIXNED; Li, Li et al., 2008[Li, G., Li, Z. F., Wu, J. X., Yue, C. & Hou, H. W. (2008). J. Coord. Chem. 61, 464-471.]), cadmium (IKAZID), zinc (IKAZEZ), and lead(II) (IKAZOJ) (Li et al., 2003[Li, G., Hou, H., Li, L., Meng, X., Fan, Y. & Zhu, Y. (2003). Inorg. Chem. 42, 4995-5004.]) have been reported. The structure of a compound analogous to the title compound 2 but with an N-imidazolyl group at C11 has also been reported (VIYTIH; Simenel et al., 2008[Simenel, A. A., Samarina, S. V., Snegur, L. V., Starikova, Z. A., Ostrovskaya, L. A., Bluchterova, N. V. & Fomina, M. M. (2008). Appl. Organomet. Chem. 22, 276-280.]). That structure has a disorder of the ferrocenyl substituent involving both eclipsed and staggered conformations.

5. Synthesis and crystallization

2-Ferrocenylcarbonyl benzoic acid (1). To a stirred solution of phthalic anhydride (16.00 g, 0.108 mol) and AlCl3 (14.4 g, 0.108 mol) in di­chloro­ethane (60 mL), ferrocene (10.00 g, 0.053 mol) in di­chloro­ethane (65 mL) was added dropwise. The reaction mixture was stirred for 2 h at room temperature, and the mixture poured into ice-cold water (400 mL). The product was extracted with di­chloro­methane (2 × 250 mL). The organic phase was collected and again extracted with 2 M NaOH (3 × 100 mL). The combined aqueous phase was acidified with conc. HCl until the pH dropped into the 2–3 range. The precipitate was filtered off, washed with water (200 mL), and dried under vacuum to give 1 (9.20 g, 51%) as a red–brown crystalline solid. Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation, at ambient temperature, of a solution in a mixture of hexane and diethyl ether. M.p. 457–459 K [Lit. 459 K (Nesmeyanov et al., 1961[Nesmeyanov, A. N., Vilchevskaya, V. D. & Kochetkova, N. S. (1961). Dokl. Akad. Nauk SSSR, 138, 390-392.])]. IR (ATR, cm−1): 1652 (C=O), 1688 (C=O), 2600–3200 (OH). 1H NMR (400 MHz, acetone-d6, ppm): δ 4.22 (s, 5H, Cp) 4.53 (br, 4H, Cp), 7.62–7.66 (m, 1H, Ar), 7.72–7.79 (m, 2H, Ar), 7.98 (dd, 1H, 3J = 7.6 Hz, 4J = 0.8 Hz, Ar). 13C NMR (100 MHz, acetone-d6, ppm): δ 70.7, 70.8, 72.9, 81.4 (Cp), 128.9, 130.3, 130.6, 130.7, 133.0, 143.8 (Ar), 167.7 (COOH), 200.1 (CO).

3-Ferrocenylphthalide (2). In a 250 mL Schlenk flask, zinc powder (5.0 g, 0.076 mol) was activated by stirring it in a solution of CuSO4 (0.17 g, 0.0011 mol) in DI water (15 mL) for 10 minutes. The solution was deca­nted, and the residue was washed with water (50 mL). To the activated zinc, keto-acid 1 (5.0 g, 0.015 mol) in NaOH solution (4.80 g in 30 mL of water) was added. The reaction mixture was allowed to reflux for 5 h, and then cooled to room temperature. The reaction mixture was filtered, and the filtrate acidified with conc. HCl. The resulting precipitate was collected, washed with water, and dried to give a viscous mass. The crude product was redissolved in di­chloro­methane (100 mL) and the acidic impurities extracted with 1 M NaOH (2 × 10 mL). The organic layer was collected, dried with anhydrous MgSO4, filtered, and the filtrate evaporated to dryness to give the title compound 2 (3.65 g, 77%) as a pale-yellow solid. Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation, at ambient temperature, of a solution in a mixture of hexane and diethyl ether. M..p: 410–411 K. IR (ATR, cm−1): 1760 (s); 1286 (s); 1068 (s). 1H NMR (400 MHz; acetone-d6; ppm): δ 4.14 (br, 1H, Cp), 4.20 (s, 5H, Cp), 4.21 (m, 1H, Cp), 4.25 (br, 1H, Cp), 4.30 (br, 1H, Cp), 6.44 (s, 1H, CH), 7.63 (br, 1H, Ar), 7.78–7.84 (m, 3H, Ar). 13C NMR (100 MHz, acetone-d6, ppm): δ 66.7, 66.9, 68.2, 68.9, 79.6, 85.2, 123.4, 125.0, 126.1, 129.4, 134.1, 149.5, 169.5.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were located in difference maps and then treated as riding in geometrically idealized positions with C—H distances of 1.00 Å (0.95 Å phen­yl) and with Uiso(H) =1.2Ueq for the attached C atom. The coordinates of the OH hydrogen atom in 1 were refined with the O—H distance restrained to 0.88 (2) Å, and its Uiso value was assigned as 1.5Ueq of the O atom.

Table 3
Experimental details

  1 2
Crystal data
Chemical formula [Fe(C5H5)(C13H9O3)] [Fe(C5H5)(C13H9O2)]
Mr 334.14 318.14
Crystal system, space group Monoclinic, P21/c Monoclinic, C2/c
Temperature (K) 110 110
a, b, c (Å) 17.1332 (13), 7.4478 (5), 11.0345 (8) 35.4613 (11), 5.6873 (2), 13.1523 (4)
β (°) 105.758 (4) 100.2019 (16)
V3) 1355.13 (17) 2610.61 (15)
Z 4 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 1.12 1.16
Crystal size (mm) 0.25 × 0.12 × 0.05 0.42 × 0.38 × 0.03
 
Data collection
Diffractometer Bruker Kappa APEXII DUO CCD Bruker Kappa APEXII DUO CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.891, 0.946 0.826, 0.966
No. of measured, independent and observed [I > 2σ(I)] reflections 25434, 4737, 3834 18463, 4536, 3996
Rint 0.037 0.028
(sin θ/λ)max−1) 0.748 0.748
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.082, 1.04 0.047, 0.116, 1.18
No. of reflections 4737 4536
No. of parameters 202 190
No. of restraints 1 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.55, −0.28 0.91, −0.49
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX2 and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

2-(Ferrocenylcarbonyl)benzoic acid (1) top
Crystal data top
[Fe(C5H5)(C13H9O3)]F(000) = 688
Mr = 334.14Dx = 1.638 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 17.1332 (13) ÅCell parameters from 7843 reflections
b = 7.4478 (5) Åθ = 2.5–32.0°
c = 11.0345 (8) ŵ = 1.12 mm1
β = 105.758 (4)°T = 110 K
V = 1355.13 (17) Å3Plate, yellow-orange
Z = 40.25 × 0.12 × 0.05 mm
Data collection top
Bruker Kappa APEXII DUO CCD
diffractometer
4737 independent reflections
Radiation source: fine-focus sealed tube3834 reflections with I > 2σ(I)
TRIUMPH curved graphite monochromatorRint = 0.037
φ and ω scansθmax = 32.1°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 2525
Tmin = 0.891, Tmax = 0.946k = 1111
25434 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: mixed
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0391P)2 + 0.6785P]
where P = (Fo2 + 2Fc2)/3
4737 reflections(Δ/σ)max < 0.001
202 parametersΔρmax = 0.55 e Å3
1 restraintΔρmin = 0.28 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.35842 (2)0.21980 (3)0.79339 (2)0.01110 (6)
O10.16447 (6)0.39240 (15)0.82421 (10)0.0166 (2)
O20.07156 (6)0.12073 (14)0.59281 (9)0.0148 (2)
O30.00212 (6)0.18223 (15)0.39475 (10)0.0156 (2)
H3O0.0206 (12)0.089 (2)0.4037 (19)0.023*
C10.23630 (8)0.18631 (19)0.73350 (13)0.0112 (2)
C20.26963 (8)0.0784 (2)0.84282 (13)0.0139 (3)
H20.25560.08670.92490.017*
C30.32643 (8)0.0411 (2)0.81410 (14)0.0162 (3)
H3A0.36000.13110.87300.019*
C40.32878 (8)0.0089 (2)0.68811 (14)0.0155 (3)
H40.36400.07270.64310.019*
C50.27296 (8)0.1310 (2)0.63776 (13)0.0133 (3)
H50.26180.18240.55100.016*
C60.37747 (9)0.4747 (2)0.85968 (17)0.0226 (3)
H60.33480.56050.87000.027*
C70.42094 (9)0.3531 (2)0.95154 (15)0.0201 (3)
H70.41400.33681.03800.024*
C80.47552 (9)0.2566 (2)0.89958 (15)0.0194 (3)
H80.51350.16000.94290.023*
C90.46628 (9)0.3191 (2)0.77533 (16)0.0232 (3)
H90.49660.27520.71550.028*
C100.40535 (10)0.4548 (2)0.75049 (17)0.0252 (4)
H100.38560.52380.67020.030*
C110.18211 (8)0.3415 (2)0.73014 (13)0.0113 (2)
C120.15537 (7)0.45069 (19)0.61065 (12)0.0105 (2)
C130.09795 (7)0.39345 (19)0.50127 (13)0.0109 (2)
C140.07597 (8)0.5053 (2)0.39646 (13)0.0127 (3)
H140.03690.46580.32260.015*
C150.11056 (8)0.6736 (2)0.39890 (13)0.0143 (3)
H150.09590.74890.32670.017*
C160.16672 (8)0.7316 (2)0.50722 (14)0.0153 (3)
H160.19050.84720.50960.018*
C170.18832 (8)0.6210 (2)0.61246 (13)0.0141 (3)
H170.22630.66280.68680.017*
C180.05658 (7)0.2189 (2)0.50034 (13)0.0113 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.00902 (9)0.01024 (10)0.01257 (10)0.00193 (7)0.00041 (6)0.00021 (7)
O10.0193 (5)0.0185 (5)0.0126 (5)0.0008 (4)0.0055 (4)0.0015 (4)
O20.0141 (4)0.0142 (5)0.0132 (5)0.0044 (4)0.0012 (3)0.0016 (4)
O30.0164 (4)0.0157 (5)0.0118 (5)0.0078 (4)0.0012 (4)0.0005 (4)
C10.0097 (5)0.0104 (6)0.0120 (6)0.0019 (4)0.0003 (4)0.0001 (5)
C20.0131 (5)0.0125 (7)0.0145 (6)0.0031 (5)0.0009 (5)0.0014 (5)
C30.0149 (6)0.0106 (7)0.0203 (7)0.0011 (5)0.0000 (5)0.0023 (5)
C40.0142 (6)0.0124 (7)0.0181 (7)0.0002 (5)0.0013 (5)0.0035 (5)
C50.0124 (5)0.0130 (7)0.0126 (6)0.0007 (5)0.0002 (5)0.0009 (5)
C60.0170 (6)0.0136 (7)0.0336 (9)0.0042 (5)0.0005 (6)0.0048 (6)
C70.0157 (6)0.0235 (8)0.0184 (7)0.0054 (6)0.0003 (5)0.0070 (6)
C80.0109 (5)0.0215 (8)0.0222 (7)0.0019 (5)0.0018 (5)0.0032 (6)
C90.0142 (6)0.0303 (9)0.0252 (8)0.0091 (6)0.0053 (6)0.0026 (7)
C100.0218 (7)0.0196 (8)0.0302 (9)0.0108 (6)0.0002 (6)0.0072 (7)
C110.0094 (5)0.0114 (6)0.0122 (6)0.0033 (4)0.0013 (4)0.0011 (5)
C120.0093 (5)0.0106 (6)0.0113 (6)0.0007 (4)0.0022 (4)0.0004 (5)
C130.0095 (5)0.0108 (6)0.0122 (6)0.0006 (4)0.0025 (4)0.0012 (5)
C140.0124 (5)0.0143 (7)0.0105 (6)0.0003 (5)0.0013 (4)0.0004 (5)
C150.0146 (6)0.0136 (7)0.0140 (6)0.0006 (5)0.0027 (5)0.0030 (5)
C160.0160 (6)0.0106 (6)0.0180 (7)0.0016 (5)0.0024 (5)0.0013 (5)
C170.0150 (6)0.0119 (7)0.0133 (6)0.0014 (5)0.0002 (5)0.0016 (5)
C180.0091 (5)0.0127 (6)0.0118 (6)0.0015 (5)0.0022 (4)0.0022 (5)
Geometric parameters (Å, º) top
Fe1—C62.0287 (17)C5—H51.0000
Fe1—C12.0311 (13)C6—C71.412 (2)
Fe1—C102.0351 (16)C6—C101.419 (3)
Fe1—C72.0403 (15)C6—H61.0000
Fe1—C52.0409 (13)C7—C81.418 (2)
Fe1—C22.0424 (14)C7—H71.0000
Fe1—C42.0468 (15)C8—C91.415 (2)
Fe1—C82.0485 (14)C8—H81.0000
Fe1—C32.0485 (15)C9—C101.425 (2)
Fe1—C92.0498 (15)C9—H91.0000
O1—C111.2179 (17)C10—H101.0000
O2—C181.2243 (17)C11—C121.5107 (19)
O3—C181.3085 (16)C12—C171.387 (2)
O3—H3O0.816 (15)C12—C131.4005 (18)
C1—C51.429 (2)C13—C141.3918 (19)
C1—C21.4328 (19)C13—C181.4797 (19)
C1—C111.476 (2)C14—C151.383 (2)
C2—C31.417 (2)C14—H140.9500
C2—H21.0000C15—C161.384 (2)
C3—C41.422 (2)C15—H150.9500
C3—H3A1.0000C16—C171.389 (2)
C4—C51.421 (2)C16—H160.9500
C4—H41.0000C17—H170.9500
C6—Fe1—C1106.43 (6)C5—C4—Fe169.43 (8)
C6—Fe1—C1040.88 (7)C3—C4—Fe169.75 (8)
C1—Fe1—C10117.84 (6)C5—C4—H4125.9
C6—Fe1—C740.60 (7)C3—C4—H4125.9
C1—Fe1—C7126.38 (6)Fe1—C4—H4125.9
C10—Fe1—C768.39 (7)C4—C5—C1107.86 (13)
C6—Fe1—C5127.97 (6)C4—C5—Fe169.88 (8)
C1—Fe1—C541.08 (5)C1—C5—Fe169.10 (8)
C10—Fe1—C5108.76 (6)C4—C5—H5126.1
C7—Fe1—C5165.35 (6)C1—C5—H5126.1
C6—Fe1—C2116.41 (7)Fe1—C5—H5126.1
C1—Fe1—C241.19 (5)C7—C6—C10108.02 (15)
C10—Fe1—C2151.12 (7)C7—C6—Fe170.14 (9)
C7—Fe1—C2106.17 (6)C10—C6—Fe169.80 (10)
C5—Fe1—C268.98 (6)C7—C6—H6126.0
C6—Fe1—C4166.99 (7)C10—C6—H6126.0
C1—Fe1—C468.79 (6)Fe1—C6—H6126.0
C10—Fe1—C4129.55 (7)C6—C7—C8108.18 (15)
C7—Fe1—C4151.90 (6)C6—C7—Fe169.26 (9)
C5—Fe1—C440.70 (6)C8—C7—Fe170.02 (9)
C2—Fe1—C468.56 (6)C6—C7—H7125.9
C6—Fe1—C868.40 (6)C8—C7—H7125.9
C1—Fe1—C8164.76 (6)Fe1—C7—H7125.9
C10—Fe1—C868.32 (7)C9—C8—C7108.21 (15)
C7—Fe1—C840.59 (6)C9—C8—Fe169.85 (8)
C5—Fe1—C8153.14 (6)C7—C8—Fe169.40 (8)
C2—Fe1—C8126.94 (6)C9—C8—H8125.9
C4—Fe1—C8119.31 (6)C7—C8—H8125.9
C6—Fe1—C3150.36 (7)Fe1—C8—H8125.9
C1—Fe1—C368.69 (6)C8—C9—C10107.64 (15)
C10—Fe1—C3167.54 (7)C8—C9—Fe169.74 (9)
C7—Fe1—C3117.40 (7)C10—C9—Fe169.02 (9)
C5—Fe1—C368.52 (6)C8—C9—H9126.2
C2—Fe1—C340.52 (6)C10—C9—H9126.2
C4—Fe1—C340.64 (6)Fe1—C9—H9126.2
C8—Fe1—C3108.25 (6)C6—C10—C9107.96 (15)
C6—Fe1—C968.68 (7)C6—C10—Fe169.32 (9)
C1—Fe1—C9152.73 (6)C9—C10—Fe170.14 (9)
C10—Fe1—C940.84 (7)C6—C10—H10126.0
C7—Fe1—C968.28 (7)C9—C10—H10126.0
C5—Fe1—C9119.66 (6)Fe1—C10—H10126.0
C2—Fe1—C9165.59 (6)O1—C11—C1121.49 (13)
C4—Fe1—C9109.66 (7)O1—C11—C12119.31 (13)
C8—Fe1—C940.41 (7)C1—C11—C12118.88 (12)
C3—Fe1—C9128.95 (7)C17—C12—C13118.61 (13)
C18—O3—H3O108.5 (14)C17—C12—C11117.03 (12)
C5—C1—C2107.82 (12)C13—C12—C11124.32 (12)
C5—C1—C11127.38 (13)C14—C13—C12120.14 (13)
C2—C1—C11124.35 (12)C14—C13—C18119.96 (12)
C5—C1—Fe169.83 (7)C12—C13—C18119.77 (12)
C2—C1—Fe169.83 (7)C15—C14—C13120.56 (12)
C11—C1—Fe1119.82 (9)C15—C14—H14119.7
C3—C2—C1107.75 (12)C13—C14—H14119.7
C3—C2—Fe169.97 (8)C14—C15—C16119.54 (13)
C1—C2—Fe168.99 (8)C14—C15—H15120.2
C3—C2—H2126.1C16—C15—H15120.2
C1—C2—H2126.1C15—C16—C17120.11 (14)
Fe1—C2—H2126.1C15—C16—H16119.9
C2—C3—C4108.45 (13)C17—C16—H16119.9
C2—C3—Fe169.50 (8)C12—C17—C16121.02 (13)
C4—C3—Fe169.62 (9)C12—C17—H17119.5
C2—C3—H3A125.8C16—C17—H17119.5
C4—C3—H3A125.8O2—C18—O3123.72 (13)
Fe1—C3—H3A125.8O2—C18—C13121.82 (12)
C5—C4—C3108.11 (13)O3—C18—C13114.44 (12)
C5—C1—C2—C30.28 (15)C7—C6—C10—Fe159.98 (11)
C11—C1—C2—C3172.45 (12)C8—C9—C10—C60.06 (18)
Fe1—C1—C2—C359.46 (10)Fe1—C9—C10—C659.21 (11)
C5—C1—C2—Fe159.73 (9)C8—C9—C10—Fe159.27 (11)
C11—C1—C2—Fe1112.99 (13)C5—C1—C11—O1168.41 (13)
C1—C2—C3—C40.05 (16)C2—C1—C11—O12.9 (2)
Fe1—C2—C3—C458.89 (10)Fe1—C1—C11—O181.98 (15)
C1—C2—C3—Fe158.84 (9)C5—C1—C11—C125.0 (2)
C2—C3—C4—C50.20 (16)C2—C1—C11—C12176.29 (12)
Fe1—C3—C4—C559.02 (10)Fe1—C1—C11—C1291.44 (13)
C2—C3—C4—Fe158.82 (10)O1—C11—C12—C1765.23 (17)
C3—C4—C5—C10.37 (16)C1—C11—C12—C17108.34 (15)
Fe1—C4—C5—C158.85 (9)O1—C11—C12—C13112.41 (16)
C3—C4—C5—Fe159.22 (10)C1—C11—C12—C1374.02 (17)
C2—C1—C5—C40.40 (15)C17—C12—C13—C141.08 (19)
C11—C1—C5—C4172.04 (13)C11—C12—C13—C14178.69 (12)
Fe1—C1—C5—C459.33 (9)C17—C12—C13—C18174.74 (12)
C2—C1—C5—Fe159.73 (9)C11—C12—C13—C182.9 (2)
C11—C1—C5—Fe1112.71 (13)C12—C13—C14—C150.2 (2)
C10—C6—C7—C80.36 (17)C18—C13—C14—C15175.97 (12)
Fe1—C6—C7—C859.41 (11)C13—C14—C15—C160.8 (2)
C10—C6—C7—Fe159.77 (11)C14—C15—C16—C170.2 (2)
C6—C7—C8—C90.33 (17)C13—C12—C17—C161.7 (2)
Fe1—C7—C8—C959.26 (11)C11—C12—C17—C16179.45 (13)
C6—C7—C8—Fe158.94 (10)C15—C16—C17—C121.0 (2)
C7—C8—C9—C100.16 (17)C14—C13—C18—O2176.50 (13)
Fe1—C8—C9—C1058.82 (11)C12—C13—C18—O20.7 (2)
C7—C8—C9—Fe158.98 (11)C14—C13—C18—O31.82 (19)
C7—C6—C10—C90.26 (17)C12—C13—C18—O3177.65 (12)
Fe1—C6—C10—C959.72 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O2i0.82 (2)1.79 (2)2.6073 (15)174 (2)
Symmetry code: (i) x, y, z+1.
3-Ferrocenyl-2-benzofuran-1(3H)-one (2) top
Crystal data top
[Fe(C5H5)(C13H9O2)]F(000) = 1312
Mr = 318.14Dx = 1.619 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 35.4613 (11) ÅCell parameters from 7794 reflections
b = 5.6873 (2) Åθ = 3.2–32.1°
c = 13.1523 (4) ŵ = 1.16 mm1
β = 100.2019 (16)°T = 110 K
V = 2610.61 (15) Å3Plate, yellow
Z = 80.42 × 0.38 × 0.03 mm
Data collection top
Bruker Kappa APEXII DUO CCD
diffractometer
4536 independent reflections
Radiation source: fine-focus sealed tube3996 reflections with I > 2σ(I)
TRIUMPH curved graphite monochromatorRint = 0.028
φ and ω scansθmax = 32.1°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 5252
Tmin = 0.826, Tmax = 0.966k = 78
18463 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.18 w = 1/[σ2(Fo2) + (0.0315P)2 + 13.1297P]
where P = (Fo2 + 2Fc2)/3
4536 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 0.91 e Å3
0 restraintsΔρmin = 0.49 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.57389 (2)0.67010 (6)0.58883 (2)0.01039 (8)
O10.65076 (5)1.0009 (3)0.84658 (13)0.0165 (3)
O20.68358 (5)0.9504 (4)1.00710 (14)0.0250 (4)
C10.60472 (6)0.8061 (4)0.72069 (15)0.0113 (3)
C20.58955 (6)0.5814 (4)0.74145 (16)0.0130 (4)
H20.60480.44020.76900.016*
C30.54919 (6)0.5933 (5)0.71433 (16)0.0159 (4)
H30.53100.46140.71920.019*
C40.53896 (6)0.8244 (5)0.67775 (17)0.0173 (4)
H40.51230.88300.65280.021*
C50.57335 (6)0.9569 (4)0.68203 (16)0.0143 (4)
H50.57511.12490.66110.017*
C60.60854 (6)0.6500 (4)0.48005 (16)0.0146 (4)
H60.63580.70300.48920.018*
C70.59580 (7)0.4215 (4)0.50246 (16)0.0149 (4)
H70.61250.28610.53010.018*
C80.55499 (7)0.4205 (4)0.47973 (17)0.0163 (4)
H80.53800.28420.48820.020*
C90.54272 (7)0.6482 (5)0.44290 (17)0.0176 (4)
H90.51550.69990.42110.021*
C100.57580 (7)0.7897 (4)0.44237 (16)0.0168 (4)
H100.57600.95800.42050.020*
C110.64568 (6)0.8790 (4)0.74621 (16)0.0133 (4)
H110.65210.98700.69170.016*
C120.67423 (6)0.6817 (4)0.76521 (17)0.0142 (4)
C130.69187 (6)0.6877 (4)0.86754 (18)0.0158 (4)
C140.71987 (7)0.5259 (5)0.9088 (2)0.0200 (4)
H140.73160.53130.97950.024*
C150.72993 (7)0.3569 (5)0.8429 (2)0.0228 (5)
H150.74910.24450.86810.027*
C160.71201 (7)0.3503 (5)0.7390 (2)0.0210 (5)
H160.71920.23250.69500.025*
C170.68418 (7)0.5112 (4)0.69940 (19)0.0180 (4)
H170.67220.50540.62890.022*
C180.67642 (6)0.8863 (4)0.91828 (18)0.0170 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01266 (13)0.01193 (14)0.00692 (13)0.00146 (11)0.00262 (9)0.00142 (10)
O10.0162 (7)0.0157 (8)0.0163 (7)0.0010 (6)0.0007 (6)0.0061 (6)
O20.0213 (8)0.0346 (11)0.0175 (8)0.0019 (8)0.0012 (6)0.0067 (8)
C10.0139 (8)0.0111 (9)0.0090 (8)0.0012 (7)0.0020 (6)0.0018 (7)
C20.0148 (9)0.0151 (9)0.0093 (8)0.0028 (7)0.0026 (7)0.0001 (7)
C30.0146 (9)0.0228 (11)0.0112 (9)0.0052 (8)0.0045 (7)0.0020 (8)
C40.0143 (9)0.0251 (11)0.0128 (9)0.0013 (8)0.0035 (7)0.0049 (8)
C50.0177 (9)0.0138 (9)0.0116 (8)0.0027 (8)0.0031 (7)0.0026 (7)
C60.0185 (9)0.0162 (10)0.0109 (8)0.0033 (8)0.0069 (7)0.0019 (7)
C70.0204 (10)0.0139 (9)0.0114 (9)0.0003 (8)0.0056 (7)0.0015 (7)
C80.0209 (10)0.0167 (10)0.0121 (9)0.0051 (8)0.0047 (7)0.0042 (8)
C90.0180 (10)0.0241 (12)0.0098 (8)0.0010 (9)0.0002 (7)0.0030 (8)
C100.0267 (11)0.0150 (10)0.0094 (8)0.0001 (8)0.0050 (8)0.0002 (7)
C110.0147 (9)0.0121 (9)0.0130 (8)0.0017 (7)0.0020 (7)0.0024 (7)
C120.0127 (8)0.0138 (9)0.0168 (9)0.0017 (7)0.0043 (7)0.0006 (8)
C130.0121 (8)0.0169 (10)0.0187 (9)0.0020 (8)0.0039 (7)0.0006 (8)
C140.0132 (9)0.0240 (12)0.0225 (11)0.0009 (8)0.0025 (8)0.0038 (9)
C150.0170 (10)0.0185 (11)0.0339 (13)0.0043 (9)0.0071 (9)0.0065 (10)
C160.0161 (10)0.0198 (11)0.0280 (12)0.0020 (9)0.0064 (9)0.0008 (9)
C170.0166 (10)0.0179 (11)0.0211 (10)0.0011 (8)0.0074 (8)0.0042 (8)
C180.0124 (9)0.0198 (11)0.0186 (10)0.0032 (8)0.0021 (7)0.0037 (8)
Geometric parameters (Å, º) top
Fe1—C12.032 (2)C6—C101.421 (3)
Fe1—C92.042 (2)C6—C71.424 (3)
Fe1—C52.042 (2)C6—H61.0000
Fe1—C82.045 (2)C7—C81.425 (3)
Fe1—C42.046 (2)C7—H71.0000
Fe1—C62.047 (2)C8—C91.424 (4)
Fe1—C32.048 (2)C8—H81.0000
Fe1—C22.049 (2)C9—C101.423 (3)
Fe1—C72.051 (2)C9—H91.0000
Fe1—C102.055 (2)C10—H101.0000
O1—C181.356 (3)C11—C121.502 (3)
O1—C111.474 (3)C11—H111.0000
O2—C181.207 (3)C12—C131.381 (3)
C1—C51.425 (3)C12—C171.386 (3)
C1—C21.431 (3)C13—C141.391 (3)
C1—C111.490 (3)C13—C181.467 (3)
C2—C31.414 (3)C14—C151.383 (4)
C2—H21.0000C14—H140.9500
C3—C41.424 (4)C15—C161.401 (4)
C3—H31.0000C15—H150.9500
C4—C51.426 (3)C16—C171.378 (3)
C4—H41.0000C16—H160.9500
C5—H51.0000C17—H170.9500
C1—Fe1—C9160.95 (10)C3—C4—H4126.0
C1—Fe1—C540.95 (8)C5—C4—H4126.0
C9—Fe1—C5123.48 (10)Fe1—C4—H4126.0
C1—Fe1—C8157.36 (9)C1—C5—C4107.7 (2)
C9—Fe1—C840.77 (10)C1—C5—Fe169.13 (12)
C5—Fe1—C8159.82 (9)C4—C5—Fe169.71 (13)
C1—Fe1—C468.75 (9)C1—C5—H5126.2
C9—Fe1—C4106.36 (9)C4—C5—H5126.2
C5—Fe1—C440.84 (9)Fe1—C5—H5126.2
C8—Fe1—C4122.84 (9)C10—C6—C7108.2 (2)
C1—Fe1—C6108.60 (9)C10—C6—Fe170.02 (12)
C9—Fe1—C668.39 (9)C7—C6—Fe169.80 (12)
C5—Fe1—C6122.32 (9)C10—C6—H6125.9
C8—Fe1—C668.51 (9)C7—C6—H6125.9
C4—Fe1—C6157.29 (10)Fe1—C6—H6125.9
C1—Fe1—C368.63 (9)C6—C7—C8107.9 (2)
C9—Fe1—C3120.46 (9)C6—C7—Fe169.55 (12)
C5—Fe1—C368.64 (10)C8—C7—Fe169.43 (13)
C8—Fe1—C3106.47 (9)C6—C7—H7126.0
C4—Fe1—C340.71 (10)C8—C7—H7126.0
C6—Fe1—C3161.17 (10)Fe1—C7—H7126.0
C1—Fe1—C241.07 (8)C9—C8—C7107.8 (2)
C9—Fe1—C2156.00 (10)C9—C8—Fe169.49 (13)
C5—Fe1—C268.80 (9)C7—C8—Fe169.85 (13)
C8—Fe1—C2120.98 (9)C9—C8—H8126.1
C4—Fe1—C268.41 (9)C7—C8—H8126.1
C6—Fe1—C2125.37 (9)Fe1—C8—H8126.1
C3—Fe1—C240.38 (9)C10—C9—C8108.3 (2)
C1—Fe1—C7122.40 (9)C10—C9—Fe170.17 (13)
C9—Fe1—C768.44 (9)C8—C9—Fe169.74 (12)
C5—Fe1—C7158.09 (9)C10—C9—H9125.9
C8—Fe1—C740.72 (9)C8—C9—H9125.9
C4—Fe1—C7159.96 (10)Fe1—C9—H9125.9
C6—Fe1—C740.65 (9)C6—C10—C9107.8 (2)
C3—Fe1—C7123.88 (10)C6—C10—Fe169.43 (12)
C2—Fe1—C7108.02 (9)C9—C10—Fe169.17 (12)
C1—Fe1—C10124.89 (9)C6—C10—H10126.1
C9—Fe1—C1040.66 (10)C9—C10—H10126.1
C5—Fe1—C10107.68 (9)Fe1—C10—H10126.1
C8—Fe1—C1068.48 (9)O1—C11—C1107.00 (17)
C4—Fe1—C10121.18 (10)O1—C11—C12103.34 (17)
C6—Fe1—C1040.54 (9)C1—C11—C12115.52 (18)
C3—Fe1—C10156.30 (10)O1—C11—H11110.2
C2—Fe1—C10162.11 (9)C1—C11—H11110.2
C7—Fe1—C1068.31 (9)C12—C11—H11110.2
C18—O1—C11110.93 (17)C13—C12—C17120.3 (2)
C5—C1—C2108.03 (19)C13—C12—C11108.63 (19)
C5—C1—C11125.5 (2)C17—C12—C11131.1 (2)
C2—C1—C11126.12 (19)C12—C13—C14122.2 (2)
C5—C1—Fe169.92 (12)C12—C13—C18108.7 (2)
C2—C1—Fe170.10 (12)C14—C13—C18129.1 (2)
C11—C1—Fe1130.81 (14)C15—C14—C13117.4 (2)
C3—C2—C1107.9 (2)C15—C14—H14121.3
C3—C2—Fe169.79 (12)C13—C14—H14121.3
C1—C2—Fe168.83 (11)C14—C15—C16120.4 (2)
C3—C2—H2126.1C14—C15—H15119.8
C1—C2—H2126.1C16—C15—H15119.8
Fe1—C2—H2126.1C17—C16—C15121.5 (2)
C2—C3—C4108.4 (2)C17—C16—H16119.3
C2—C3—Fe169.83 (12)C15—C16—H16119.3
C4—C3—Fe169.56 (12)C16—C17—C12118.2 (2)
C2—C3—H3125.8C16—C17—H17120.9
C4—C3—H3125.8C12—C17—H17120.9
Fe1—C3—H3125.8O2—C18—O1121.9 (2)
C3—C4—C5108.0 (2)O2—C18—C13129.9 (2)
C3—C4—Fe169.73 (13)O1—C18—C13108.22 (19)
C5—C4—Fe169.45 (12)
C5—C1—C2—C30.8 (2)Fe1—C9—C10—C658.89 (15)
C11—C1—C2—C3174.33 (19)C8—C9—C10—Fe159.56 (15)
Fe1—C1—C2—C359.07 (15)C18—O1—C11—C1118.5 (2)
C5—C1—C2—Fe159.88 (14)C18—O1—C11—C123.9 (2)
C11—C1—C2—Fe1126.6 (2)C5—C1—C11—O177.4 (2)
C1—C2—C3—C40.6 (2)C2—C1—C11—O195.0 (2)
Fe1—C2—C3—C459.06 (15)Fe1—C1—C11—O1170.79 (15)
C1—C2—C3—Fe158.47 (14)C5—C1—C11—C12168.17 (19)
C2—C3—C4—C50.1 (2)C2—C1—C11—C1219.4 (3)
Fe1—C3—C4—C559.09 (15)Fe1—C1—C11—C1274.8 (3)
C2—C3—C4—Fe159.23 (15)O1—C11—C12—C132.8 (2)
C2—C1—C5—C40.7 (2)C1—C11—C12—C13113.7 (2)
C11—C1—C5—C4174.30 (19)O1—C11—C12—C17177.1 (2)
Fe1—C1—C5—C459.26 (15)C1—C11—C12—C1766.4 (3)
C2—C1—C5—Fe159.99 (14)C17—C12—C13—C140.1 (3)
C11—C1—C5—Fe1126.4 (2)C11—C12—C13—C14180.0 (2)
C3—C4—C5—C10.4 (2)C17—C12—C13—C18179.1 (2)
Fe1—C4—C5—C158.90 (14)C11—C12—C13—C180.8 (2)
C3—C4—C5—Fe159.27 (15)C12—C13—C14—C150.5 (4)
C10—C6—C7—C80.7 (2)C18—C13—C14—C15178.5 (2)
Fe1—C6—C7—C859.02 (15)C13—C14—C15—C160.6 (4)
C10—C6—C7—Fe159.70 (15)C14—C15—C16—C170.3 (4)
C6—C7—C8—C90.3 (2)C15—C16—C17—C120.1 (4)
Fe1—C7—C8—C959.36 (15)C13—C12—C17—C160.2 (3)
C6—C7—C8—Fe159.09 (15)C11—C12—C17—C16179.7 (2)
C7—C8—C9—C100.2 (2)C11—O1—C18—O2176.6 (2)
Fe1—C8—C9—C1059.83 (15)C11—O1—C18—C133.6 (2)
C7—C8—C9—Fe159.58 (15)C12—C13—C18—O2178.5 (3)
C7—C6—C10—C90.8 (2)C14—C13—C18—O22.3 (4)
Fe1—C6—C10—C958.73 (15)C12—C13—C18—O11.7 (3)
C7—C6—C10—Fe159.56 (14)C14—C13—C18—O1177.5 (2)
C8—C9—C10—C60.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i1.002.583.470 (3)148
Symmetry code: (i) x, y+2, z1/2.
 

Acknowledgements

UP and JB gratefully acknowledge the Department of Chemistry, Louisiana State University for providing access to single-crystal X-ray analysis of the reported compounds without any charge.

Funding information

This research was supported by a grant from the Louisiana Board of Regents, Contract No. LEQSF (2017-18)-RD-A-28.

References

First citationAnthony, J. E. (2006). Chem. Rev. 106, 5028–5048.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2016). APEX2 and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationGoodman, H., Mei, L. & Gianetti, T. L. (2019). Front. Chem. 7, article 365. https://doi.org/10.3389/fchem.2019.00365  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLee, H. & Harvey, R. G. (1986). J. Org. Chem. 51, 3502–3507.  CrossRef CAS Google Scholar
First citationLi, G., Hou, H., Li, L., Meng, X., Fan, Y. & Zhu, Y. (2003). Inorg. Chem. 42, 4995–5004.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLi, G., Li, Z. F., Wu, J. X., Yue, C. & Hou, H. W. (2008). J. Coord. Chem. 61, 464–471.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, Z., Liu, S., Wu, J. & Li, G. (2008). Huaxue Yanjiu, 19, 51–54.  CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNesmeyanov, A. N., Vilchevskaya, V. D. & Kochetkova, N. S. (1961). Dokl. Akad. Nauk SSSR, 138, 390–392.  CAS Google Scholar
First citationNesmeyanov, A. N., Vilchevskaya, V. D. & Kochetkova, N. S. (1966). Izv. Akad. Nauk SSSR, Ser. Khim. pp. 938–940.  Google Scholar
First citationNeuse, E. W. & Koda, K. (1966). J. Polym. Sci. A-1 Polym. Chem. 4, 2145–2160.  CrossRef CAS Google Scholar
First citationPérez, W. I., Rheingold, A. L. & Meléndez, E. (2015). Acta Cryst. E71, 536–539.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPokharel, U. R. (2012). Organometallic Heterocycles and Acene-Quinone Complexes of Ruthenium, Iron and Manganese. PhD dissertation, University of Kentucky.  Google Scholar
First citationPokharel, U. R., Selegue, J. P. & Parkin, S. (2011). Organometallics, 30, 3254–3256.  CrossRef CAS Google Scholar
First citationQin, Y. (2019). CSD Communication (CCDC deposition number 1912662). CCDC, Cambridge, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShen, J., Jiang, M. W., Li, Y. K., Guo, C., Qiu, X. Y. & Wang, C. Q. (2012). Colloid Polym. Sci. 290, 1193–1200.  CrossRef CAS Google Scholar
First citationSimenel, A. A., Samarina, S. V., Snegur, L. V., Starikova, Z. A., Ostrovskaya, L. A., Bluchterova, N. V. & Fomina, M. M. (2008). Appl. Organomet. Chem. 22, 276–280.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, X.-X., Zhu, X., Ma, Q.-J., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, m1875.  CrossRef IUCr Journals Google Scholar
First citationXu, X., Hu, F. & Shuai, Q. (2017). New J. Chem. 41, 13319–13326.  CrossRef CAS Google Scholar
First citationXu, X., Lu, Y., Hu, F., Xu, L. & Shuai, Q. (2016). J. Coord. Chem. 69, 3294–3302.  CrossRef CAS Google Scholar
First citationZhang, C. Z., Yang, H., Wu, D. L. & Lu, G. Y. (2007). Chin. J. Chem. 25, 653–660.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds