research communications
Synthesis and crystal structures of 2-(ferrocenylcarbonyl)benzoic acid and 3-ferrocenylphthalide
aDepartment of Chemistry & Physical Sciences, Nicholls State University, Thibodaux, Louisiana 70301, USA, and bDepartment of Chemistry, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
*Correspondence e-mail: uttam.pokharel@nicholls.edu
The title compounds, 2-(ferrocenylcarbonyl)benzoic acid, [Fe(C5H5)(C13H9O3)], 1, and 3-ferrocenylphthalide [systematic name: 3-ferrocenyl-2-benzofuran-1(3H)-one], [Fe(C5H5)(C13H9O2)], 2, have been synthesized and structurally characterized by single-crystal X-ray diffraction. The of compound 1 was solved recently at room temperature [Qin, Y. (2019). CSD Communication (CCDC deposition number 1912662). CCDC, Cambridge, England]. Here we report a redetermination of its at 90 K with improved precision by a factor of about three. The molecular structures of both compounds exhibit a typical sandwich structure. In the crystal packing of compound 1, each molecule engages in intermolecular hydrogen bonding, forming a centrosymmetric dimer with graph-set notation R22 (8) and an O⋯O distance of 2.6073 (15) Å. There are weak C—H⋯O and C—H⋯π interactions in the crystal packing of compound 2. The phthalide moiety in 2 is oriented roughly perpendicular to the ferrocene backbone, with a dihedral angle of 77.4 (2)°.
1. Chemical context
Our research group has been interested in developing methodologies to synthesize metallocene-fused π-extended These are of interest because an integration of the redox-active metal center with the polycyclic aromatic hydrocarbons could alter their properties for organic semiconducting applications (Anthony, 2006). Previously, we synthesized metallocene-fused via the double Friedel–Crafts acylation reaction between 1′,2′,3′,4′,5′-pentamethylruthenocene-1,2-diacyl chloride with organic aromatics (Pokharel et al., 2011). Later, we realized that switching the functionality of two reaction partners allows us to obtain in a much simpler synthetic scheme. Ferrocene being a close analog of ruthenocene, we decided to pursue the synthesis of ferrocene-fused (Nesmeyanov et al., 1966; Pokharel, 2012), starting from ferrocene itself as the aromatic reagent. As the first step of this synthetic route, we prepared 2-ferrocenylcarbonyl benzoic acid, 1, following a previously reported procedure (Shen et al., 2012; Xu et al., 2017). The published procedure uses dichloromethane as the reaction solvent. However, using this solvent, we obtained consistently low reaction yields. On switching to dichloroethane from dichloromethane, the yield of the reaction was improved from 13% to a more satisfactory 51% even at room temperature, possibly due to higher solubility of the reaction mixture. The of the complex has been reported at room temperature (Qin, 2019). Our redetermination of its at 90 K has improved the precision by a factor of about three.
as synthetic precursors ofWith an easy route towards 2-ferrocenylcarbonyl benzoic acid, 1, at hand, we investigated the reduction of its keto group to methylene using a large excess of zinc powder (ca 48 equivalents) with aqueous sodium hydroxide as the solvent (Lee & Harvey, 1986). Under these reaction conditions, we were able to reduce complex 1 to 2-carboxybenzylferrocene in 89% yield (Pokharel, 2012). Following this successful transformation, we investigated the reaction outcome in the presence of a smaller amount (5 equivalents) of Zn. Under these reaction conditions, the reaction mixture changed color from red to light orange. However, on acidification, the reaction yielded the title compound 2 in a 77% yield. We assume that the limited amount of zinc leads to incomplete reduction of the ketone to a secondary alcohol, 1′ (Fig. 1), similar to the reduction of aryl reported by Zhang and co-workers (Zhang et al., 2007). Upon acidification during reaction workup, alcohol 1′ undergoes solvolysis to give the carbocation, which is electronically stabilized by the ferrocenyl group (Goodman et al., 2019). The nucleophilic attack of the carboxylic O atom leads to the formation of the cyclic lactone, 2. Although the title compound 2 was reported long ago as a major product from the reaction of 3,3′-diferrocenyl-3,3′-diphthalide with KOH (Nesmeyanov et al., 1961) and as a byproduct from the reaction of ferrocene with o-carboxybenzaldehyde (Neuse & Koda, 1966), to our knowledge, this is the first report of the conversion of keto carboxylic acid, 1, to cyclic lactone 2 in a reasonably high yield. Here we report the synthesis, spectroscopic characterization, and single-crystal X-ray analysis of the title compounds 1 and 2.
2. Structural commentary
A view of the molecular structures of the title compounds 1 and 2, with their atom labeling, is shown in Fig. 2. The ferrocenyl moieties adopt typical sandwich structures with Fe—C distances in the range 2.0287 (17)–2.0498 (15) Å in compound 1 and of 2.032 (2)–2.055 (2) Å in 2. In both structures, the Fe—C bond lengths towards the substituted carbon are shorter [Fe—C1 2.031 (1) Å in 1; 2.032 (2) Å in 2] than the remaining Fe—C bond lengths, similar to literature reports (Pérez et al., 2015; Wu et al., 2011). The C—C distances within the Cp rings fall in the range 1.412 (2)–1.429 (2) Å in compound 1 and 1.414 (3)–1.431 (3) Å in 2. Similar to its carboxylate salts (Li et al., 2003; Li, Li et al., 2008; Li, Liu et al., 2008; Xu et al., 2016), the two Cp rings of the ferrocene residue in complex 1 are close to an eclipsed conformation (mean of five C—Cg—Cg—C torsion angles = 12.68°; Cg is the centroid of the respective cyclopentadienyl ring). The analogous angle in complex 2 is 3.31°. The Cp rings are essentially parallel in both complexes, making a dihedral angle of 2.45 (12)° in compound 1 and 1.14 (10)° in 2. The Fe⋯Cg distances in both compounds are in a similar range [substituted and unsubstituted Cp in 1: 1.6436 (7) and 1.6458 (7) Å; 2: 1.6455 (10) and 1.6510 (10) Å, respectively]. The Cg—Fe—Cg angle in both structures is ca 178°. The carbonyl carbon, C11 in compound 1 bends toward the iron center with a distance of 0.163 (3) from the least-squares plane of the substituted Cp while the corresponding C11 atom in compound 2 bends slightly outward with a distance of 0.117 (4) Å from the plane of Cp. Similar bending can be seen in the N-imidazolyl derivative of compound 2 (Simenel et al., 2008). The carbonyl carbon in compound 1 lies roughly in the same plane as the substituted Cp with a torsional angle C2—C1—C11—O1 of 2.9 (2)°. The phenyl ring in compound 1 is twisted away from the plane of the carbonyl (C=O) plane with a torsional angle O1—C11—C12—C13 of −112.41 (16)°. The aromatic ring of the phthalide moiety in compound 2 bends away from ferrocene and orients roughly perpendicular to the ferrocene backbone. The nine-atom phthalide plane of compound 2 inclines with the substituted Cp at a dihedral angle of 77.31 (7)°. This molecule contains a single asymmetric center at the C11 position in this racemic structure.
3. Supramolecular features
The molecules in compound 1 are associated via classical hydrogen-bonding interactions between the carboxylic OH group of one molecule with the carbonyl oxygen of an adjacent molecule. The carboxylic acid groups are related via a crystallographic inversion center to form hydrogen bonds [O3—H3O⋯O2i [symmetry code: (i) −x, −y, 1 − z] with an R22 (8) dimer (Etter et al., 1990) motif (Table 1 and Fig. 3). This centrosymmetric pairwise hydrogen-bonding dimer formation results in short hydrogen-bond distances of 2.6073 (15). In the crystal packing of title compound 2 (Fig. 4), the unsubstituted Cp orients towards the substituted Cp of a molecule at x, 1 − y, z − with a Cg⋯Cg separation of 3.929 (1) Å. There is a weak hydrogen-bonding interaction between the carbonyl oxygen O2 of the phthalide ring, and hydrogen H6 of the unsubstituted Cp with an H6⋯O2 (x, 2 − y, z − ) distance of 2.58 Å (Table 2). The phthalide moieties in the two molecules are oriented at an angle of 73.49° and exhibit a weak C—H⋯π interaction as evidenced by the distance of 3.044 Å between H16 and the centroid of the aromatic ring of a phthalide moiety at − x, y − , − z.
|
4. Database survey
The structure of title compound 1 (CSD refcode JOJGOH) at room temperature has been recently reported as a CSD Communication (Qin, 2019) but no details of the molecular or were provided. Various salts of this carboxylic acid: sodium (LULSAN; Li, Liu et al., 2008), magnesium (ADULUJ; Xu et al., 2016), barium (ECIVIY; Xu et al., 2017), zinc (CIXNED; Li, Li et al., 2008), cadmium (IKAZID), zinc (IKAZEZ), and lead(II) (IKAZOJ) (Li et al., 2003) have been reported. The structure of a compound analogous to the title compound 2 but with an N-imidazolyl group at C11 has also been reported (VIYTIH; Simenel et al., 2008). That structure has a disorder of the ferrocenyl substituent involving both eclipsed and staggered conformations.
5. Synthesis and crystallization
2-Ferrocenylcarbonyl benzoic acid (1). To a stirred solution of phthalic anhydride (16.00 g, 0.108 mol) and AlCl3 (14.4 g, 0.108 mol) in dichloroethane (60 mL), ferrocene (10.00 g, 0.053 mol) in dichloroethane (65 mL) was added dropwise. The reaction mixture was stirred for 2 h at room temperature, and the mixture poured into ice-cold water (400 mL). The product was extracted with dichloromethane (2 × 250 mL). The organic phase was collected and again extracted with 2 M NaOH (3 × 100 mL). The combined aqueous phase was acidified with conc. HCl until the pH dropped into the 2–3 range. The precipitate was filtered off, washed with water (200 mL), and dried under vacuum to give 1 (9.20 g, 51%) as a red–brown crystalline solid. Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation, at ambient temperature, of a solution in a mixture of hexane and diethyl ether. M.p. 457–459 K [Lit. 459 K (Nesmeyanov et al., 1961)]. IR (ATR, cm−1): 1652 (C=O), 1688 (C=O), 2600–3200 (OH). 1H NMR (400 MHz, acetone-d6, ppm): δ 4.22 (s, 5H, Cp) 4.53 (br, 4H, Cp), 7.62–7.66 (m, 1H, Ar), 7.72–7.79 (m, 2H, Ar), 7.98 (dd, 1H, 3J = 7.6 Hz, 4J = 0.8 Hz, Ar). 13C NMR (100 MHz, acetone-d6, ppm): δ 70.7, 70.8, 72.9, 81.4 (Cp), 128.9, 130.3, 130.6, 130.7, 133.0, 143.8 (Ar), 167.7 (COOH), 200.1 (CO).
3-Ferrocenylphthalide (2). In a 250 mL Schlenk flask, zinc powder (5.0 g, 0.076 mol) was activated by stirring it in a solution of CuSO4 (0.17 g, 0.0011 mol) in DI water (15 mL) for 10 minutes. The solution was decanted, and the residue was washed with water (50 mL). To the activated zinc, keto-acid 1 (5.0 g, 0.015 mol) in NaOH solution (4.80 g in 30 mL of water) was added. The reaction mixture was allowed to reflux for 5 h, and then cooled to room temperature. The reaction mixture was filtered, and the filtrate acidified with conc. HCl. The resulting precipitate was collected, washed with water, and dried to give a viscous mass. The crude product was redissolved in dichloromethane (100 mL) and the acidic impurities extracted with 1 M NaOH (2 × 10 mL). The organic layer was collected, dried with anhydrous MgSO4, filtered, and the filtrate evaporated to dryness to give the title compound 2 (3.65 g, 77%) as a pale-yellow solid. Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation, at ambient temperature, of a solution in a mixture of hexane and diethyl ether. M..p: 410–411 K. IR (ATR, cm−1): 1760 (s); 1286 (s); 1068 (s). 1H NMR (400 MHz; acetone-d6; ppm): δ 4.14 (br, 1H, Cp), 4.20 (s, 5H, Cp), 4.21 (m, 1H, Cp), 4.25 (br, 1H, Cp), 4.30 (br, 1H, Cp), 6.44 (s, 1H, CH), 7.63 (br, 1H, Ar), 7.78–7.84 (m, 3H, Ar). 13C NMR (100 MHz, acetone-d6, ppm): δ 66.7, 66.9, 68.2, 68.9, 79.6, 85.2, 123.4, 125.0, 126.1, 129.4, 134.1, 149.5, 169.5.
6. Refinement
Crystal data, data collection and structure . All H atoms were located in difference maps and then treated as riding in geometrically idealized positions with C—H distances of 1.00 Å (0.95 Å phenyl) and with Uiso(H) =1.2Ueq for the attached C atom. The coordinates of the OH hydrogen atom in 1 were refined with the O—H distance restrained to 0.88 (2) Å, and its Uiso value was assigned as 1.5Ueq of the O atom.
details are summarized in Table 3Supporting information
https://doi.org/10.1107/S2056989020008452/zl2783sup1.cif
contains datablocks 1, 2. DOI:Structure factors: contains datablock 1. DOI: https://doi.org/10.1107/S2056989020008452/zl27831sup2.hkl
Structure factors: contains datablock 2. DOI: https://doi.org/10.1107/S2056989020008452/zl27832sup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989020008452/zl27831sup4.cdx
For both structures, data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).[Fe(C5H5)(C13H9O3)] | F(000) = 688 |
Mr = 334.14 | Dx = 1.638 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 17.1332 (13) Å | Cell parameters from 7843 reflections |
b = 7.4478 (5) Å | θ = 2.5–32.0° |
c = 11.0345 (8) Å | µ = 1.12 mm−1 |
β = 105.758 (4)° | T = 110 K |
V = 1355.13 (17) Å3 | Plate, yellow-orange |
Z = 4 | 0.25 × 0.12 × 0.05 mm |
Bruker Kappa APEXII DUO CCD diffractometer | 4737 independent reflections |
Radiation source: fine-focus sealed tube | 3834 reflections with I > 2σ(I) |
TRIUMPH curved graphite monochromator | Rint = 0.037 |
φ and ω scans | θmax = 32.1°, θmin = 1.2° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −25→25 |
Tmin = 0.891, Tmax = 0.946 | k = −11→11 |
25434 measured reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | Hydrogen site location: mixed |
wR(F2) = 0.082 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0391P)2 + 0.6785P] where P = (Fo2 + 2Fc2)/3 |
4737 reflections | (Δ/σ)max < 0.001 |
202 parameters | Δρmax = 0.55 e Å−3 |
1 restraint | Δρmin = −0.28 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Fe1 | 0.35842 (2) | 0.21980 (3) | 0.79339 (2) | 0.01110 (6) | |
O1 | 0.16447 (6) | 0.39240 (15) | 0.82421 (10) | 0.0166 (2) | |
O2 | 0.07156 (6) | 0.12073 (14) | 0.59281 (9) | 0.0148 (2) | |
O3 | 0.00212 (6) | 0.18223 (15) | 0.39475 (10) | 0.0156 (2) | |
H3O | −0.0206 (12) | 0.089 (2) | 0.4037 (19) | 0.023* | |
C1 | 0.23630 (8) | 0.18631 (19) | 0.73350 (13) | 0.0112 (2) | |
C2 | 0.26963 (8) | 0.0784 (2) | 0.84282 (13) | 0.0139 (3) | |
H2 | 0.2556 | 0.0867 | 0.9249 | 0.017* | |
C3 | 0.32643 (8) | −0.0411 (2) | 0.81410 (14) | 0.0162 (3) | |
H3A | 0.3600 | −0.1311 | 0.8730 | 0.019* | |
C4 | 0.32878 (8) | −0.0089 (2) | 0.68811 (14) | 0.0155 (3) | |
H4 | 0.3640 | −0.0727 | 0.6431 | 0.019* | |
C5 | 0.27296 (8) | 0.1310 (2) | 0.63776 (13) | 0.0133 (3) | |
H5 | 0.2618 | 0.1824 | 0.5510 | 0.016* | |
C6 | 0.37747 (9) | 0.4747 (2) | 0.85968 (17) | 0.0226 (3) | |
H6 | 0.3348 | 0.5605 | 0.8700 | 0.027* | |
C7 | 0.42094 (9) | 0.3531 (2) | 0.95154 (15) | 0.0201 (3) | |
H7 | 0.4140 | 0.3368 | 1.0380 | 0.024* | |
C8 | 0.47552 (9) | 0.2566 (2) | 0.89958 (15) | 0.0194 (3) | |
H8 | 0.5135 | 0.1600 | 0.9429 | 0.023* | |
C9 | 0.46628 (9) | 0.3191 (2) | 0.77533 (16) | 0.0232 (3) | |
H9 | 0.4966 | 0.2752 | 0.7155 | 0.028* | |
C10 | 0.40535 (10) | 0.4548 (2) | 0.75049 (17) | 0.0252 (4) | |
H10 | 0.3856 | 0.5238 | 0.6702 | 0.030* | |
C11 | 0.18211 (8) | 0.3415 (2) | 0.73014 (13) | 0.0113 (2) | |
C12 | 0.15537 (7) | 0.45069 (19) | 0.61065 (12) | 0.0105 (2) | |
C13 | 0.09795 (7) | 0.39345 (19) | 0.50127 (13) | 0.0109 (2) | |
C14 | 0.07597 (8) | 0.5053 (2) | 0.39646 (13) | 0.0127 (3) | |
H14 | 0.0369 | 0.4658 | 0.3226 | 0.015* | |
C15 | 0.11056 (8) | 0.6736 (2) | 0.39890 (13) | 0.0143 (3) | |
H15 | 0.0959 | 0.7489 | 0.3267 | 0.017* | |
C16 | 0.16672 (8) | 0.7316 (2) | 0.50722 (14) | 0.0153 (3) | |
H16 | 0.1905 | 0.8472 | 0.5096 | 0.018* | |
C17 | 0.18832 (8) | 0.6210 (2) | 0.61246 (13) | 0.0141 (3) | |
H17 | 0.2263 | 0.6628 | 0.6868 | 0.017* | |
C18 | 0.05658 (7) | 0.2189 (2) | 0.50034 (13) | 0.0113 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe1 | 0.00902 (9) | 0.01024 (10) | 0.01257 (10) | −0.00193 (7) | 0.00041 (6) | −0.00021 (7) |
O1 | 0.0193 (5) | 0.0185 (5) | 0.0126 (5) | 0.0008 (4) | 0.0055 (4) | −0.0015 (4) |
O2 | 0.0141 (4) | 0.0142 (5) | 0.0132 (5) | −0.0044 (4) | −0.0012 (3) | 0.0016 (4) |
O3 | 0.0164 (4) | 0.0157 (5) | 0.0118 (5) | −0.0078 (4) | −0.0012 (4) | 0.0005 (4) |
C1 | 0.0097 (5) | 0.0104 (6) | 0.0120 (6) | −0.0019 (4) | 0.0003 (4) | 0.0001 (5) |
C2 | 0.0131 (5) | 0.0125 (7) | 0.0145 (6) | −0.0031 (5) | 0.0009 (5) | 0.0014 (5) |
C3 | 0.0149 (6) | 0.0106 (7) | 0.0203 (7) | −0.0011 (5) | 0.0000 (5) | 0.0023 (5) |
C4 | 0.0142 (6) | 0.0124 (7) | 0.0181 (7) | −0.0002 (5) | 0.0013 (5) | −0.0035 (5) |
C5 | 0.0124 (5) | 0.0130 (7) | 0.0126 (6) | −0.0007 (5) | 0.0002 (5) | −0.0009 (5) |
C6 | 0.0170 (6) | 0.0136 (7) | 0.0336 (9) | −0.0042 (5) | 0.0005 (6) | −0.0048 (6) |
C7 | 0.0157 (6) | 0.0235 (8) | 0.0184 (7) | −0.0054 (6) | 0.0003 (5) | −0.0070 (6) |
C8 | 0.0109 (5) | 0.0215 (8) | 0.0222 (7) | −0.0019 (5) | −0.0018 (5) | −0.0032 (6) |
C9 | 0.0142 (6) | 0.0303 (9) | 0.0252 (8) | −0.0091 (6) | 0.0053 (6) | −0.0026 (7) |
C10 | 0.0218 (7) | 0.0196 (8) | 0.0302 (9) | −0.0108 (6) | 0.0002 (6) | 0.0072 (7) |
C11 | 0.0094 (5) | 0.0114 (6) | 0.0122 (6) | −0.0033 (4) | 0.0013 (4) | −0.0011 (5) |
C12 | 0.0093 (5) | 0.0106 (6) | 0.0113 (6) | 0.0007 (4) | 0.0022 (4) | −0.0004 (5) |
C13 | 0.0095 (5) | 0.0108 (6) | 0.0122 (6) | −0.0006 (4) | 0.0025 (4) | −0.0012 (5) |
C14 | 0.0124 (5) | 0.0143 (7) | 0.0105 (6) | −0.0003 (5) | 0.0013 (4) | −0.0004 (5) |
C15 | 0.0146 (6) | 0.0136 (7) | 0.0140 (6) | 0.0006 (5) | 0.0027 (5) | 0.0030 (5) |
C16 | 0.0160 (6) | 0.0106 (6) | 0.0180 (7) | −0.0016 (5) | 0.0024 (5) | 0.0013 (5) |
C17 | 0.0150 (6) | 0.0119 (7) | 0.0133 (6) | −0.0014 (5) | 0.0002 (5) | −0.0016 (5) |
C18 | 0.0091 (5) | 0.0127 (6) | 0.0118 (6) | −0.0015 (5) | 0.0022 (4) | −0.0022 (5) |
Fe1—C6 | 2.0287 (17) | C5—H5 | 1.0000 |
Fe1—C1 | 2.0311 (13) | C6—C7 | 1.412 (2) |
Fe1—C10 | 2.0351 (16) | C6—C10 | 1.419 (3) |
Fe1—C7 | 2.0403 (15) | C6—H6 | 1.0000 |
Fe1—C5 | 2.0409 (13) | C7—C8 | 1.418 (2) |
Fe1—C2 | 2.0424 (14) | C7—H7 | 1.0000 |
Fe1—C4 | 2.0468 (15) | C8—C9 | 1.415 (2) |
Fe1—C8 | 2.0485 (14) | C8—H8 | 1.0000 |
Fe1—C3 | 2.0485 (15) | C9—C10 | 1.425 (2) |
Fe1—C9 | 2.0498 (15) | C9—H9 | 1.0000 |
O1—C11 | 1.2179 (17) | C10—H10 | 1.0000 |
O2—C18 | 1.2243 (17) | C11—C12 | 1.5107 (19) |
O3—C18 | 1.3085 (16) | C12—C17 | 1.387 (2) |
O3—H3O | 0.816 (15) | C12—C13 | 1.4005 (18) |
C1—C5 | 1.429 (2) | C13—C14 | 1.3918 (19) |
C1—C2 | 1.4328 (19) | C13—C18 | 1.4797 (19) |
C1—C11 | 1.476 (2) | C14—C15 | 1.383 (2) |
C2—C3 | 1.417 (2) | C14—H14 | 0.9500 |
C2—H2 | 1.0000 | C15—C16 | 1.384 (2) |
C3—C4 | 1.422 (2) | C15—H15 | 0.9500 |
C3—H3A | 1.0000 | C16—C17 | 1.389 (2) |
C4—C5 | 1.421 (2) | C16—H16 | 0.9500 |
C4—H4 | 1.0000 | C17—H17 | 0.9500 |
C6—Fe1—C1 | 106.43 (6) | C5—C4—Fe1 | 69.43 (8) |
C6—Fe1—C10 | 40.88 (7) | C3—C4—Fe1 | 69.75 (8) |
C1—Fe1—C10 | 117.84 (6) | C5—C4—H4 | 125.9 |
C6—Fe1—C7 | 40.60 (7) | C3—C4—H4 | 125.9 |
C1—Fe1—C7 | 126.38 (6) | Fe1—C4—H4 | 125.9 |
C10—Fe1—C7 | 68.39 (7) | C4—C5—C1 | 107.86 (13) |
C6—Fe1—C5 | 127.97 (6) | C4—C5—Fe1 | 69.88 (8) |
C1—Fe1—C5 | 41.08 (5) | C1—C5—Fe1 | 69.10 (8) |
C10—Fe1—C5 | 108.76 (6) | C4—C5—H5 | 126.1 |
C7—Fe1—C5 | 165.35 (6) | C1—C5—H5 | 126.1 |
C6—Fe1—C2 | 116.41 (7) | Fe1—C5—H5 | 126.1 |
C1—Fe1—C2 | 41.19 (5) | C7—C6—C10 | 108.02 (15) |
C10—Fe1—C2 | 151.12 (7) | C7—C6—Fe1 | 70.14 (9) |
C7—Fe1—C2 | 106.17 (6) | C10—C6—Fe1 | 69.80 (10) |
C5—Fe1—C2 | 68.98 (6) | C7—C6—H6 | 126.0 |
C6—Fe1—C4 | 166.99 (7) | C10—C6—H6 | 126.0 |
C1—Fe1—C4 | 68.79 (6) | Fe1—C6—H6 | 126.0 |
C10—Fe1—C4 | 129.55 (7) | C6—C7—C8 | 108.18 (15) |
C7—Fe1—C4 | 151.90 (6) | C6—C7—Fe1 | 69.26 (9) |
C5—Fe1—C4 | 40.70 (6) | C8—C7—Fe1 | 70.02 (9) |
C2—Fe1—C4 | 68.56 (6) | C6—C7—H7 | 125.9 |
C6—Fe1—C8 | 68.40 (6) | C8—C7—H7 | 125.9 |
C1—Fe1—C8 | 164.76 (6) | Fe1—C7—H7 | 125.9 |
C10—Fe1—C8 | 68.32 (7) | C9—C8—C7 | 108.21 (15) |
C7—Fe1—C8 | 40.59 (6) | C9—C8—Fe1 | 69.85 (8) |
C5—Fe1—C8 | 153.14 (6) | C7—C8—Fe1 | 69.40 (8) |
C2—Fe1—C8 | 126.94 (6) | C9—C8—H8 | 125.9 |
C4—Fe1—C8 | 119.31 (6) | C7—C8—H8 | 125.9 |
C6—Fe1—C3 | 150.36 (7) | Fe1—C8—H8 | 125.9 |
C1—Fe1—C3 | 68.69 (6) | C8—C9—C10 | 107.64 (15) |
C10—Fe1—C3 | 167.54 (7) | C8—C9—Fe1 | 69.74 (9) |
C7—Fe1—C3 | 117.40 (7) | C10—C9—Fe1 | 69.02 (9) |
C5—Fe1—C3 | 68.52 (6) | C8—C9—H9 | 126.2 |
C2—Fe1—C3 | 40.52 (6) | C10—C9—H9 | 126.2 |
C4—Fe1—C3 | 40.64 (6) | Fe1—C9—H9 | 126.2 |
C8—Fe1—C3 | 108.25 (6) | C6—C10—C9 | 107.96 (15) |
C6—Fe1—C9 | 68.68 (7) | C6—C10—Fe1 | 69.32 (9) |
C1—Fe1—C9 | 152.73 (6) | C9—C10—Fe1 | 70.14 (9) |
C10—Fe1—C9 | 40.84 (7) | C6—C10—H10 | 126.0 |
C7—Fe1—C9 | 68.28 (7) | C9—C10—H10 | 126.0 |
C5—Fe1—C9 | 119.66 (6) | Fe1—C10—H10 | 126.0 |
C2—Fe1—C9 | 165.59 (6) | O1—C11—C1 | 121.49 (13) |
C4—Fe1—C9 | 109.66 (7) | O1—C11—C12 | 119.31 (13) |
C8—Fe1—C9 | 40.41 (7) | C1—C11—C12 | 118.88 (12) |
C3—Fe1—C9 | 128.95 (7) | C17—C12—C13 | 118.61 (13) |
C18—O3—H3O | 108.5 (14) | C17—C12—C11 | 117.03 (12) |
C5—C1—C2 | 107.82 (12) | C13—C12—C11 | 124.32 (12) |
C5—C1—C11 | 127.38 (13) | C14—C13—C12 | 120.14 (13) |
C2—C1—C11 | 124.35 (12) | C14—C13—C18 | 119.96 (12) |
C5—C1—Fe1 | 69.83 (7) | C12—C13—C18 | 119.77 (12) |
C2—C1—Fe1 | 69.83 (7) | C15—C14—C13 | 120.56 (12) |
C11—C1—Fe1 | 119.82 (9) | C15—C14—H14 | 119.7 |
C3—C2—C1 | 107.75 (12) | C13—C14—H14 | 119.7 |
C3—C2—Fe1 | 69.97 (8) | C14—C15—C16 | 119.54 (13) |
C1—C2—Fe1 | 68.99 (8) | C14—C15—H15 | 120.2 |
C3—C2—H2 | 126.1 | C16—C15—H15 | 120.2 |
C1—C2—H2 | 126.1 | C15—C16—C17 | 120.11 (14) |
Fe1—C2—H2 | 126.1 | C15—C16—H16 | 119.9 |
C2—C3—C4 | 108.45 (13) | C17—C16—H16 | 119.9 |
C2—C3—Fe1 | 69.50 (8) | C12—C17—C16 | 121.02 (13) |
C4—C3—Fe1 | 69.62 (9) | C12—C17—H17 | 119.5 |
C2—C3—H3A | 125.8 | C16—C17—H17 | 119.5 |
C4—C3—H3A | 125.8 | O2—C18—O3 | 123.72 (13) |
Fe1—C3—H3A | 125.8 | O2—C18—C13 | 121.82 (12) |
C5—C4—C3 | 108.11 (13) | O3—C18—C13 | 114.44 (12) |
C5—C1—C2—C3 | 0.28 (15) | C7—C6—C10—Fe1 | 59.98 (11) |
C11—C1—C2—C3 | −172.45 (12) | C8—C9—C10—C6 | −0.06 (18) |
Fe1—C1—C2—C3 | −59.46 (10) | Fe1—C9—C10—C6 | 59.21 (11) |
C5—C1—C2—Fe1 | 59.73 (9) | C8—C9—C10—Fe1 | −59.27 (11) |
C11—C1—C2—Fe1 | −112.99 (13) | C5—C1—C11—O1 | −168.41 (13) |
C1—C2—C3—C4 | −0.05 (16) | C2—C1—C11—O1 | 2.9 (2) |
Fe1—C2—C3—C4 | −58.89 (10) | Fe1—C1—C11—O1 | −81.98 (15) |
C1—C2—C3—Fe1 | 58.84 (9) | C5—C1—C11—C12 | 5.0 (2) |
C2—C3—C4—C5 | −0.20 (16) | C2—C1—C11—C12 | 176.29 (12) |
Fe1—C3—C4—C5 | −59.02 (10) | Fe1—C1—C11—C12 | 91.44 (13) |
C2—C3—C4—Fe1 | 58.82 (10) | O1—C11—C12—C17 | 65.23 (17) |
C3—C4—C5—C1 | 0.37 (16) | C1—C11—C12—C17 | −108.34 (15) |
Fe1—C4—C5—C1 | −58.85 (9) | O1—C11—C12—C13 | −112.41 (16) |
C3—C4—C5—Fe1 | 59.22 (10) | C1—C11—C12—C13 | 74.02 (17) |
C2—C1—C5—C4 | −0.40 (15) | C17—C12—C13—C14 | 1.08 (19) |
C11—C1—C5—C4 | 172.04 (13) | C11—C12—C13—C14 | 178.69 (12) |
Fe1—C1—C5—C4 | 59.33 (9) | C17—C12—C13—C18 | −174.74 (12) |
C2—C1—C5—Fe1 | −59.73 (9) | C11—C12—C13—C18 | 2.9 (2) |
C11—C1—C5—Fe1 | 112.71 (13) | C12—C13—C14—C15 | 0.2 (2) |
C10—C6—C7—C8 | −0.36 (17) | C18—C13—C14—C15 | 175.97 (12) |
Fe1—C6—C7—C8 | 59.41 (11) | C13—C14—C15—C16 | −0.8 (2) |
C10—C6—C7—Fe1 | −59.77 (11) | C14—C15—C16—C17 | 0.2 (2) |
C6—C7—C8—C9 | 0.33 (17) | C13—C12—C17—C16 | −1.7 (2) |
Fe1—C7—C8—C9 | 59.26 (11) | C11—C12—C17—C16 | −179.45 (13) |
C6—C7—C8—Fe1 | −58.94 (10) | C15—C16—C17—C12 | 1.0 (2) |
C7—C8—C9—C10 | −0.16 (17) | C14—C13—C18—O2 | −176.50 (13) |
Fe1—C8—C9—C10 | 58.82 (11) | C12—C13—C18—O2 | −0.7 (2) |
C7—C8—C9—Fe1 | −58.98 (11) | C14—C13—C18—O3 | 1.82 (19) |
C7—C6—C10—C9 | 0.26 (17) | C12—C13—C18—O3 | 177.65 (12) |
Fe1—C6—C10—C9 | −59.72 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3O···O2i | 0.82 (2) | 1.79 (2) | 2.6073 (15) | 174 (2) |
Symmetry code: (i) −x, −y, −z+1. |
[Fe(C5H5)(C13H9O2)] | F(000) = 1312 |
Mr = 318.14 | Dx = 1.619 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 35.4613 (11) Å | Cell parameters from 7794 reflections |
b = 5.6873 (2) Å | θ = 3.2–32.1° |
c = 13.1523 (4) Å | µ = 1.16 mm−1 |
β = 100.2019 (16)° | T = 110 K |
V = 2610.61 (15) Å3 | Plate, yellow |
Z = 8 | 0.42 × 0.38 × 0.03 mm |
Bruker Kappa APEXII DUO CCD diffractometer | 4536 independent reflections |
Radiation source: fine-focus sealed tube | 3996 reflections with I > 2σ(I) |
TRIUMPH curved graphite monochromator | Rint = 0.028 |
φ and ω scans | θmax = 32.1°, θmin = 3.2° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −52→52 |
Tmin = 0.826, Tmax = 0.966 | k = −7→8 |
18463 measured reflections | l = −19→19 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.047 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.116 | H-atom parameters constrained |
S = 1.18 | w = 1/[σ2(Fo2) + (0.0315P)2 + 13.1297P] where P = (Fo2 + 2Fc2)/3 |
4536 reflections | (Δ/σ)max = 0.001 |
190 parameters | Δρmax = 0.91 e Å−3 |
0 restraints | Δρmin = −0.49 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Fe1 | 0.57389 (2) | 0.67010 (6) | 0.58883 (2) | 0.01039 (8) | |
O1 | 0.65076 (5) | 1.0009 (3) | 0.84658 (13) | 0.0165 (3) | |
O2 | 0.68358 (5) | 0.9504 (4) | 1.00710 (14) | 0.0250 (4) | |
C1 | 0.60472 (6) | 0.8061 (4) | 0.72069 (15) | 0.0113 (3) | |
C2 | 0.58955 (6) | 0.5814 (4) | 0.74145 (16) | 0.0130 (4) | |
H2 | 0.6048 | 0.4402 | 0.7690 | 0.016* | |
C3 | 0.54919 (6) | 0.5933 (5) | 0.71433 (16) | 0.0159 (4) | |
H3 | 0.5310 | 0.4614 | 0.7192 | 0.019* | |
C4 | 0.53896 (6) | 0.8244 (5) | 0.67775 (17) | 0.0173 (4) | |
H4 | 0.5123 | 0.8830 | 0.6528 | 0.021* | |
C5 | 0.57335 (6) | 0.9569 (4) | 0.68203 (16) | 0.0143 (4) | |
H5 | 0.5751 | 1.1249 | 0.6611 | 0.017* | |
C6 | 0.60854 (6) | 0.6500 (4) | 0.48005 (16) | 0.0146 (4) | |
H6 | 0.6358 | 0.7030 | 0.4892 | 0.018* | |
C7 | 0.59580 (7) | 0.4215 (4) | 0.50246 (16) | 0.0149 (4) | |
H7 | 0.6125 | 0.2861 | 0.5301 | 0.018* | |
C8 | 0.55499 (7) | 0.4205 (4) | 0.47973 (17) | 0.0163 (4) | |
H8 | 0.5380 | 0.2842 | 0.4882 | 0.020* | |
C9 | 0.54272 (7) | 0.6482 (5) | 0.44290 (17) | 0.0176 (4) | |
H9 | 0.5155 | 0.6999 | 0.4211 | 0.021* | |
C10 | 0.57580 (7) | 0.7897 (4) | 0.44237 (16) | 0.0168 (4) | |
H10 | 0.5760 | 0.9580 | 0.4205 | 0.020* | |
C11 | 0.64568 (6) | 0.8790 (4) | 0.74621 (16) | 0.0133 (4) | |
H11 | 0.6521 | 0.9870 | 0.6917 | 0.016* | |
C12 | 0.67423 (6) | 0.6817 (4) | 0.76521 (17) | 0.0142 (4) | |
C13 | 0.69187 (6) | 0.6877 (4) | 0.86754 (18) | 0.0158 (4) | |
C14 | 0.71987 (7) | 0.5259 (5) | 0.9088 (2) | 0.0200 (4) | |
H14 | 0.7316 | 0.5313 | 0.9795 | 0.024* | |
C15 | 0.72993 (7) | 0.3569 (5) | 0.8429 (2) | 0.0228 (5) | |
H15 | 0.7491 | 0.2445 | 0.8681 | 0.027* | |
C16 | 0.71201 (7) | 0.3503 (5) | 0.7390 (2) | 0.0210 (5) | |
H16 | 0.7192 | 0.2325 | 0.6950 | 0.025* | |
C17 | 0.68418 (7) | 0.5112 (4) | 0.69940 (19) | 0.0180 (4) | |
H17 | 0.6722 | 0.5054 | 0.6289 | 0.022* | |
C18 | 0.67642 (6) | 0.8863 (4) | 0.91828 (18) | 0.0170 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe1 | 0.01266 (13) | 0.01193 (14) | 0.00692 (13) | −0.00146 (11) | 0.00262 (9) | −0.00142 (10) |
O1 | 0.0162 (7) | 0.0157 (8) | 0.0163 (7) | 0.0010 (6) | −0.0007 (6) | −0.0061 (6) |
O2 | 0.0213 (8) | 0.0346 (11) | 0.0175 (8) | 0.0019 (8) | −0.0012 (6) | −0.0067 (8) |
C1 | 0.0139 (8) | 0.0111 (9) | 0.0090 (8) | −0.0012 (7) | 0.0020 (6) | −0.0018 (7) |
C2 | 0.0148 (9) | 0.0151 (9) | 0.0093 (8) | −0.0028 (7) | 0.0026 (7) | −0.0001 (7) |
C3 | 0.0146 (9) | 0.0228 (11) | 0.0112 (9) | −0.0052 (8) | 0.0045 (7) | −0.0020 (8) |
C4 | 0.0143 (9) | 0.0251 (11) | 0.0128 (9) | 0.0013 (8) | 0.0035 (7) | −0.0049 (8) |
C5 | 0.0177 (9) | 0.0138 (9) | 0.0116 (8) | 0.0027 (8) | 0.0031 (7) | −0.0026 (7) |
C6 | 0.0185 (9) | 0.0162 (10) | 0.0109 (8) | −0.0033 (8) | 0.0069 (7) | −0.0019 (7) |
C7 | 0.0204 (10) | 0.0139 (9) | 0.0114 (9) | −0.0003 (8) | 0.0056 (7) | −0.0015 (7) |
C8 | 0.0209 (10) | 0.0167 (10) | 0.0121 (9) | −0.0051 (8) | 0.0047 (7) | −0.0042 (8) |
C9 | 0.0180 (10) | 0.0241 (12) | 0.0098 (8) | 0.0010 (9) | 0.0002 (7) | −0.0030 (8) |
C10 | 0.0267 (11) | 0.0150 (10) | 0.0094 (8) | 0.0001 (8) | 0.0050 (8) | −0.0002 (7) |
C11 | 0.0147 (9) | 0.0121 (9) | 0.0130 (8) | −0.0017 (7) | 0.0020 (7) | −0.0024 (7) |
C12 | 0.0127 (8) | 0.0138 (9) | 0.0168 (9) | −0.0017 (7) | 0.0043 (7) | −0.0006 (8) |
C13 | 0.0121 (8) | 0.0169 (10) | 0.0187 (9) | −0.0020 (8) | 0.0039 (7) | −0.0006 (8) |
C14 | 0.0132 (9) | 0.0240 (12) | 0.0225 (11) | 0.0009 (8) | 0.0025 (8) | 0.0038 (9) |
C15 | 0.0170 (10) | 0.0185 (11) | 0.0339 (13) | 0.0043 (9) | 0.0071 (9) | 0.0065 (10) |
C16 | 0.0161 (10) | 0.0198 (11) | 0.0280 (12) | 0.0020 (9) | 0.0064 (9) | −0.0008 (9) |
C17 | 0.0166 (10) | 0.0179 (11) | 0.0211 (10) | −0.0011 (8) | 0.0074 (8) | −0.0042 (8) |
C18 | 0.0124 (9) | 0.0198 (11) | 0.0186 (10) | −0.0032 (8) | 0.0021 (7) | −0.0037 (8) |
Fe1—C1 | 2.032 (2) | C6—C10 | 1.421 (3) |
Fe1—C9 | 2.042 (2) | C6—C7 | 1.424 (3) |
Fe1—C5 | 2.042 (2) | C6—H6 | 1.0000 |
Fe1—C8 | 2.045 (2) | C7—C8 | 1.425 (3) |
Fe1—C4 | 2.046 (2) | C7—H7 | 1.0000 |
Fe1—C6 | 2.047 (2) | C8—C9 | 1.424 (4) |
Fe1—C3 | 2.048 (2) | C8—H8 | 1.0000 |
Fe1—C2 | 2.049 (2) | C9—C10 | 1.423 (3) |
Fe1—C7 | 2.051 (2) | C9—H9 | 1.0000 |
Fe1—C10 | 2.055 (2) | C10—H10 | 1.0000 |
O1—C18 | 1.356 (3) | C11—C12 | 1.502 (3) |
O1—C11 | 1.474 (3) | C11—H11 | 1.0000 |
O2—C18 | 1.207 (3) | C12—C13 | 1.381 (3) |
C1—C5 | 1.425 (3) | C12—C17 | 1.386 (3) |
C1—C2 | 1.431 (3) | C13—C14 | 1.391 (3) |
C1—C11 | 1.490 (3) | C13—C18 | 1.467 (3) |
C2—C3 | 1.414 (3) | C14—C15 | 1.383 (4) |
C2—H2 | 1.0000 | C14—H14 | 0.9500 |
C3—C4 | 1.424 (4) | C15—C16 | 1.401 (4) |
C3—H3 | 1.0000 | C15—H15 | 0.9500 |
C4—C5 | 1.426 (3) | C16—C17 | 1.378 (3) |
C4—H4 | 1.0000 | C16—H16 | 0.9500 |
C5—H5 | 1.0000 | C17—H17 | 0.9500 |
C1—Fe1—C9 | 160.95 (10) | C3—C4—H4 | 126.0 |
C1—Fe1—C5 | 40.95 (8) | C5—C4—H4 | 126.0 |
C9—Fe1—C5 | 123.48 (10) | Fe1—C4—H4 | 126.0 |
C1—Fe1—C8 | 157.36 (9) | C1—C5—C4 | 107.7 (2) |
C9—Fe1—C8 | 40.77 (10) | C1—C5—Fe1 | 69.13 (12) |
C5—Fe1—C8 | 159.82 (9) | C4—C5—Fe1 | 69.71 (13) |
C1—Fe1—C4 | 68.75 (9) | C1—C5—H5 | 126.2 |
C9—Fe1—C4 | 106.36 (9) | C4—C5—H5 | 126.2 |
C5—Fe1—C4 | 40.84 (9) | Fe1—C5—H5 | 126.2 |
C8—Fe1—C4 | 122.84 (9) | C10—C6—C7 | 108.2 (2) |
C1—Fe1—C6 | 108.60 (9) | C10—C6—Fe1 | 70.02 (12) |
C9—Fe1—C6 | 68.39 (9) | C7—C6—Fe1 | 69.80 (12) |
C5—Fe1—C6 | 122.32 (9) | C10—C6—H6 | 125.9 |
C8—Fe1—C6 | 68.51 (9) | C7—C6—H6 | 125.9 |
C4—Fe1—C6 | 157.29 (10) | Fe1—C6—H6 | 125.9 |
C1—Fe1—C3 | 68.63 (9) | C6—C7—C8 | 107.9 (2) |
C9—Fe1—C3 | 120.46 (9) | C6—C7—Fe1 | 69.55 (12) |
C5—Fe1—C3 | 68.64 (10) | C8—C7—Fe1 | 69.43 (13) |
C8—Fe1—C3 | 106.47 (9) | C6—C7—H7 | 126.0 |
C4—Fe1—C3 | 40.71 (10) | C8—C7—H7 | 126.0 |
C6—Fe1—C3 | 161.17 (10) | Fe1—C7—H7 | 126.0 |
C1—Fe1—C2 | 41.07 (8) | C9—C8—C7 | 107.8 (2) |
C9—Fe1—C2 | 156.00 (10) | C9—C8—Fe1 | 69.49 (13) |
C5—Fe1—C2 | 68.80 (9) | C7—C8—Fe1 | 69.85 (13) |
C8—Fe1—C2 | 120.98 (9) | C9—C8—H8 | 126.1 |
C4—Fe1—C2 | 68.41 (9) | C7—C8—H8 | 126.1 |
C6—Fe1—C2 | 125.37 (9) | Fe1—C8—H8 | 126.1 |
C3—Fe1—C2 | 40.38 (9) | C10—C9—C8 | 108.3 (2) |
C1—Fe1—C7 | 122.40 (9) | C10—C9—Fe1 | 70.17 (13) |
C9—Fe1—C7 | 68.44 (9) | C8—C9—Fe1 | 69.74 (12) |
C5—Fe1—C7 | 158.09 (9) | C10—C9—H9 | 125.9 |
C8—Fe1—C7 | 40.72 (9) | C8—C9—H9 | 125.9 |
C4—Fe1—C7 | 159.96 (10) | Fe1—C9—H9 | 125.9 |
C6—Fe1—C7 | 40.65 (9) | C6—C10—C9 | 107.8 (2) |
C3—Fe1—C7 | 123.88 (10) | C6—C10—Fe1 | 69.43 (12) |
C2—Fe1—C7 | 108.02 (9) | C9—C10—Fe1 | 69.17 (12) |
C1—Fe1—C10 | 124.89 (9) | C6—C10—H10 | 126.1 |
C9—Fe1—C10 | 40.66 (10) | C9—C10—H10 | 126.1 |
C5—Fe1—C10 | 107.68 (9) | Fe1—C10—H10 | 126.1 |
C8—Fe1—C10 | 68.48 (9) | O1—C11—C1 | 107.00 (17) |
C4—Fe1—C10 | 121.18 (10) | O1—C11—C12 | 103.34 (17) |
C6—Fe1—C10 | 40.54 (9) | C1—C11—C12 | 115.52 (18) |
C3—Fe1—C10 | 156.30 (10) | O1—C11—H11 | 110.2 |
C2—Fe1—C10 | 162.11 (9) | C1—C11—H11 | 110.2 |
C7—Fe1—C10 | 68.31 (9) | C12—C11—H11 | 110.2 |
C18—O1—C11 | 110.93 (17) | C13—C12—C17 | 120.3 (2) |
C5—C1—C2 | 108.03 (19) | C13—C12—C11 | 108.63 (19) |
C5—C1—C11 | 125.5 (2) | C17—C12—C11 | 131.1 (2) |
C2—C1—C11 | 126.12 (19) | C12—C13—C14 | 122.2 (2) |
C5—C1—Fe1 | 69.92 (12) | C12—C13—C18 | 108.7 (2) |
C2—C1—Fe1 | 70.10 (12) | C14—C13—C18 | 129.1 (2) |
C11—C1—Fe1 | 130.81 (14) | C15—C14—C13 | 117.4 (2) |
C3—C2—C1 | 107.9 (2) | C15—C14—H14 | 121.3 |
C3—C2—Fe1 | 69.79 (12) | C13—C14—H14 | 121.3 |
C1—C2—Fe1 | 68.83 (11) | C14—C15—C16 | 120.4 (2) |
C3—C2—H2 | 126.1 | C14—C15—H15 | 119.8 |
C1—C2—H2 | 126.1 | C16—C15—H15 | 119.8 |
Fe1—C2—H2 | 126.1 | C17—C16—C15 | 121.5 (2) |
C2—C3—C4 | 108.4 (2) | C17—C16—H16 | 119.3 |
C2—C3—Fe1 | 69.83 (12) | C15—C16—H16 | 119.3 |
C4—C3—Fe1 | 69.56 (12) | C16—C17—C12 | 118.2 (2) |
C2—C3—H3 | 125.8 | C16—C17—H17 | 120.9 |
C4—C3—H3 | 125.8 | C12—C17—H17 | 120.9 |
Fe1—C3—H3 | 125.8 | O2—C18—O1 | 121.9 (2) |
C3—C4—C5 | 108.0 (2) | O2—C18—C13 | 129.9 (2) |
C3—C4—Fe1 | 69.73 (13) | O1—C18—C13 | 108.22 (19) |
C5—C4—Fe1 | 69.45 (12) | ||
C5—C1—C2—C3 | 0.8 (2) | Fe1—C9—C10—C6 | 58.89 (15) |
C11—C1—C2—C3 | 174.33 (19) | C8—C9—C10—Fe1 | −59.56 (15) |
Fe1—C1—C2—C3 | −59.07 (15) | C18—O1—C11—C1 | 118.5 (2) |
C5—C1—C2—Fe1 | 59.88 (14) | C18—O1—C11—C12 | −3.9 (2) |
C11—C1—C2—Fe1 | −126.6 (2) | C5—C1—C11—O1 | 77.4 (2) |
C1—C2—C3—C4 | −0.6 (2) | C2—C1—C11—O1 | −95.0 (2) |
Fe1—C2—C3—C4 | −59.06 (15) | Fe1—C1—C11—O1 | 170.79 (15) |
C1—C2—C3—Fe1 | 58.47 (14) | C5—C1—C11—C12 | −168.17 (19) |
C2—C3—C4—C5 | 0.1 (2) | C2—C1—C11—C12 | 19.4 (3) |
Fe1—C3—C4—C5 | −59.09 (15) | Fe1—C1—C11—C12 | −74.8 (3) |
C2—C3—C4—Fe1 | 59.23 (15) | O1—C11—C12—C13 | 2.8 (2) |
C2—C1—C5—C4 | −0.7 (2) | C1—C11—C12—C13 | −113.7 (2) |
C11—C1—C5—C4 | −174.30 (19) | O1—C11—C12—C17 | −177.1 (2) |
Fe1—C1—C5—C4 | 59.26 (15) | C1—C11—C12—C17 | 66.4 (3) |
C2—C1—C5—Fe1 | −59.99 (14) | C17—C12—C13—C14 | −0.1 (3) |
C11—C1—C5—Fe1 | 126.4 (2) | C11—C12—C13—C14 | 180.0 (2) |
C3—C4—C5—C1 | 0.4 (2) | C17—C12—C13—C18 | 179.1 (2) |
Fe1—C4—C5—C1 | −58.90 (14) | C11—C12—C13—C18 | −0.8 (2) |
C3—C4—C5—Fe1 | 59.27 (15) | C12—C13—C14—C15 | 0.5 (4) |
C10—C6—C7—C8 | −0.7 (2) | C18—C13—C14—C15 | −178.5 (2) |
Fe1—C6—C7—C8 | 59.02 (15) | C13—C14—C15—C16 | −0.6 (4) |
C10—C6—C7—Fe1 | −59.70 (15) | C14—C15—C16—C17 | 0.3 (4) |
C6—C7—C8—C9 | 0.3 (2) | C15—C16—C17—C12 | 0.1 (4) |
Fe1—C7—C8—C9 | 59.36 (15) | C13—C12—C17—C16 | −0.2 (3) |
C6—C7—C8—Fe1 | −59.09 (15) | C11—C12—C17—C16 | 179.7 (2) |
C7—C8—C9—C10 | 0.2 (2) | C11—O1—C18—O2 | −176.6 (2) |
Fe1—C8—C9—C10 | 59.83 (15) | C11—O1—C18—C13 | 3.6 (2) |
C7—C8—C9—Fe1 | −59.58 (15) | C12—C13—C18—O2 | 178.5 (3) |
C7—C6—C10—C9 | 0.8 (2) | C14—C13—C18—O2 | −2.3 (4) |
Fe1—C6—C10—C9 | −58.73 (15) | C12—C13—C18—O1 | −1.7 (3) |
C7—C6—C10—Fe1 | 59.56 (14) | C14—C13—C18—O1 | 177.5 (2) |
C8—C9—C10—C6 | −0.7 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6···O2i | 1.00 | 2.58 | 3.470 (3) | 148 |
Symmetry code: (i) x, −y+2, z−1/2. |
Acknowledgements
UP and JB gratefully acknowledge the Department of Chemistry, Louisiana State University for providing access to single-crystal X-ray analysis of the reported compounds without any charge.
Funding information
This research was supported by a grant from the Louisiana Board of Regents, Contract No. LEQSF (2017-18)-RD-A-28.
References
Anthony, J. E. (2006). Chem. Rev. 106, 5028–5048. Web of Science CrossRef PubMed CAS Google Scholar
Bruker (2016). APEX2 and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Goodman, H., Mei, L. & Gianetti, T. L. (2019). Front. Chem. 7, article 365. https://doi.org/10.3389/fchem.2019.00365 Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Lee, H. & Harvey, R. G. (1986). J. Org. Chem. 51, 3502–3507. CrossRef CAS Google Scholar
Li, G., Hou, H., Li, L., Meng, X., Fan, Y. & Zhu, Y. (2003). Inorg. Chem. 42, 4995–5004. Web of Science CSD CrossRef PubMed CAS Google Scholar
Li, G., Li, Z. F., Wu, J. X., Yue, C. & Hou, H. W. (2008). J. Coord. Chem. 61, 464–471. Web of Science CSD CrossRef CAS Google Scholar
Li, Z., Liu, S., Wu, J. & Li, G. (2008). Huaxue Yanjiu, 19, 51–54. CAS Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Nesmeyanov, A. N., Vilchevskaya, V. D. & Kochetkova, N. S. (1961). Dokl. Akad. Nauk SSSR, 138, 390–392. CAS Google Scholar
Nesmeyanov, A. N., Vilchevskaya, V. D. & Kochetkova, N. S. (1966). Izv. Akad. Nauk SSSR, Ser. Khim. pp. 938–940. Google Scholar
Neuse, E. W. & Koda, K. (1966). J. Polym. Sci. A-1 Polym. Chem. 4, 2145–2160. CrossRef CAS Google Scholar
Pérez, W. I., Rheingold, A. L. & Meléndez, E. (2015). Acta Cryst. E71, 536–539. Web of Science CSD CrossRef IUCr Journals Google Scholar
Pokharel, U. R. (2012). Organometallic Heterocycles and Acene-Quinone Complexes of Ruthenium, Iron and Manganese. PhD dissertation, University of Kentucky. Google Scholar
Pokharel, U. R., Selegue, J. P. & Parkin, S. (2011). Organometallics, 30, 3254–3256. CrossRef CAS Google Scholar
Qin, Y. (2019). CSD Communication (CCDC deposition number 1912662). CCDC, Cambridge, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shen, J., Jiang, M. W., Li, Y. K., Guo, C., Qiu, X. Y. & Wang, C. Q. (2012). Colloid Polym. Sci. 290, 1193–1200. CrossRef CAS Google Scholar
Simenel, A. A., Samarina, S. V., Snegur, L. V., Starikova, Z. A., Ostrovskaya, L. A., Bluchterova, N. V. & Fomina, M. M. (2008). Appl. Organomet. Chem. 22, 276–280. CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wu, X.-X., Zhu, X., Ma, Q.-J., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, m1875. CrossRef IUCr Journals Google Scholar
Xu, X., Hu, F. & Shuai, Q. (2017). New J. Chem. 41, 13319–13326. CrossRef CAS Google Scholar
Xu, X., Lu, Y., Hu, F., Xu, L. & Shuai, Q. (2016). J. Coord. Chem. 69, 3294–3302. CrossRef CAS Google Scholar
Zhang, C. Z., Yang, H., Wu, D. L. & Lu, G. Y. (2007). Chin. J. Chem. 25, 653–660. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.