research communications
μ-η5:η5-Cp′)3Yb]n oligomer
of the [(THF)Cs(aDepartment of Chemistry, University of California, Irvine, California, 92697, USA
*Correspondence e-mail: wevans@uci.edu
The green compound poly[(tetrahydrofuran)tris[μ-η5:η5-1-(trimethylsilyl)cyclopentadienyl]caesium(I)ytterbium(II)], [CsYb(C8H13Si)3(C4H8O)]n or [(THF)Cs(μ-η5:η5-Cp′)3YbII]n was synthesized by reduction of a red THF solution of (C5H4SiMe3)3YbIII with excess Cs metal and identified by X-ray diffraction. The compound crystallizes as a two-dimensional array of hexagons with alternating CsI and YbII ions at the vertices and cyclopentadienyl groups bridging each edge. This, based off the six-electron cyclopentadienyl rings occupying three coordination positions, gives a formally nine-coordinate tris(cyclopentadienyl) coordination environment to Yb and the Cs is ten-coordinate due to the three cyclopentadienyl rings and a coordinated molecule of THF. The complex comprises layers of Cs3Yb3 hexagons with THF ligands and Me3Si groups in between the layers. The Yb—C metrical parameters are consistent with a 4f14 YbII electron configuration.
Keywords: lanthanide; caesium; cyclopentadienide; oligomer; crystal structure.
CCDC reference: 2010185
1. Chemical context
The new +2 oxidation states for the rare-earth metals Y, La, Ce, Pr, Gd, Tb, Ho, Er, and Lu were recently discovered by reduction of Cpx3Ln (Cpx = C5H4SiMe3, C5H3(SiMe3)2; Ln = rare-earth metal) using alkali metal reductants Li, Na, K, and KC8 (Fig. 1) (Hitchcock et al., 2008; MacDonald et al., 2013; Fieser et al., 2015; Evans, 2016; Palumbo et al., 2018). In each of these cases, 2.2.2-cryptand was added in these reactions to encapsulate the alkali metal. It was thought that chelating agents were necessary to sequester the alkali metal to prevent interactions with cyclopentadienide ligands and subsequent ligand dissociation leading to product decomposition. This idea was challenged by examining reduction reactions of Cp′′3M (Cp′′ = C5H3(SiMe3)2; M = La, Ce, U) with Li and Cs in the absence of chelating agents (Huh et al., 2018). The reaction resulted in the isolation of the first chelate-free synthesis of LaII, CeII, and UII complexes. The [Li(THF)4]1+ cation of the Li salts in these chelate-free MII complexes were well-separated from the (Cp′′3M)1− anion. However, the Cs reductions yielded polymeric complexes of general formula [Cp′′M(μ-Cp′′)2Cs(THF)2]n where the Cs cation has coordinated THF and cyclopentadienide ligands. Attempts to extend this chemistry to smaller rare-earth metals by reduction of Cp′3Ln (Cp′ = C5H4SiMe3; Ln = Y, Tb, Dy) showed evidence of LnII in solution; however, the reduction products were highly unstable and decomposed even at 238 K.
In this study, we were interested in examining the reduction of Cp′3YbIII with Cs metal. Unlike YII, TbII, and DyII ions, YbII complexes are more easily obtainable, as reflected by their less negative reduction potentials (Morss, 1976). A crystal containing the oligomeric compound; [(THF)Cs(μ-η5:η5-Cp′)3Yb]n, 1 (Cp′ = C5H4SiMe3) was isolated by reduction of the Cp′3YbIII complex (Fieser et al., 2015) in THF using Cs metal (Figs. 2 and 3).
2. Structural commentary
All three Cp′ rings remain coordinated to the Yb metal center after reduction and are coordinated in a trigonal–planar fashion. The Yb atom is within 0.107 Å of the plane of the three ring centroids. Each ring bridges Yb to Cs, which also is surrounded by three cyclopentadienyl ligands as well as a coordinated molecule of THF. The three ring centroids and the oxygen of THF are arranged in a pseudo-tetrahedral geometry around Cs with a calculated four-coordinate Cs τ′4 value of 0.76 (τ′4 = 1 for tetrahedral; τ′4 = 0 for square planar; Rosiak et al., 2018). The Cs metal center has a pseudo-tetrahedral geometry with Cp′(centroid)⋯Cs⋯Cp′(centroid) angles of 109.0, 114.3, and 121.4° and Cp′(centroid)⋯Cs⋯O(THF) angles of 88.8, 94.1, and 127.8°.
The bond distances and angles in 1 are summarized in Table 1. The range of 2.504 (1)–2.513 (2) Å Cp′(centroid)⋯Yb bond distances in 1 is the same as that in the complex [K(crypt)][Cp′3YbII] (crypt = 2.2.2-cryptand), which was fully characterized as a 4f14 YbII complex, Table 2 and Fig. 4. In Cp3Ln reduction chemistry, the difference in Ln⋯Cp(centroid) distances between the LnIII and LnII complexes provides important information on the of the lanthanide ion (Evans, 2016). Differences in Ln⋯Cp(centroid) distances for reduction of 4fn LnIII ions to 4fn+1 LnII ions range from 0.1 to 0.2 Å (Fieser et al., 2015). In this study, the difference of 0.14 Å in the Ln⋯Cp(centroid) distance is characteristic of a 4f13 YbIII reduction to a 4f14 YbII ion. In contrast, LnII ions with 4fn5d1 configurations where the additional electron populates a d-orbital instead of the an f-orbital have differences of only 0.02–0.05 Å (Evans, 2016).
|
|
3. Supramolecular features
In 1, all of the cyclopentadienyl ligands are bridging. The threefold symmetry of three bridging Cp′ ligands on each metal generates a hexagonal pattern as shown in Fig. 5. The Yb⋯Cp′(centroid)⋯Cs angles are 172.5–176.7° such that each side of the hexagon is nearly linear. The 112.4–117.3° Yb⋯Cs⋯Yb angles are smaller than the 120.8–125.6° Cs⋯Yb⋯Cs angles, which makes the hexagon slightly irregular. This could be of interest to quantum scientists trying to make thin-film layers of magnetic materials since the hexagonal pattern could lead to spin frustration with a paramagnetic lanthanide.
The side view of these layers in Fig. 6 shows how the space in between them is filled with THF and Me3Si substituent groups. The 116.6–122.8° Cp′(centroid)⋯Yb⋯Cp′(centroid) and 109.0–121.4° Cp′(centroid)⋯Cs⋯Cp′(centroid) angles generate the undulation of the hexagons shown in Fig. 6.
4. Database survey
The 3.159 (1), 3.197 (1), and 3.268 (2) Å Cs⋯Cp′(centroid) distances in 1 are shorter than the 3.278 and 3.435 Å Cs⋯Cp′′(centroid) distances in [(THF)2Cs][(μ-η5:η5-Cp′′)2UII(η5-Cp′′)]n, (Huh et al., 2018), the 3.396 Å Cs⋯C5H5(centroid) distances in {[(Me3Si)2NCs]2·[(C5H5)2Fe)] 0.5·(C6H5Me)}n, (Morris et al., 2007) and the 3.337 Å Cs⋯C5Me5(centroid) distances in [(THF)2Cs(μ3-O)3{[Ti(C5Me5)]3-(μ3-CCH2)}] (González-del Moral et al., 2005). The 3.095 (3) Å Cs—O(THF) bond distance is consistent with the Cs—O(THF) distances of 3.081 (7) to 3.119 (8) Å in [(THF)2Cs][(μ-η5:η5-Cp′′)2UII(η5-Cp′′)]n (Huh et al., 2018) and 3.034 (9)–3.06 (1) Å in [(THF)2Cs(μ3-O)3{[Ti(C5Me5)]3(μ3-CCH2)}] (González-del Moral et al., 2005).
The extended structure of 1 differs from that of the [(THF)2Cs][(μ-η5:η5-Cp′′)2MII(η5-Cp′′)]n, complexes (M = La, U), which comprise zigzag chains of –M–(μ-Cp′′)–Cs–(μ-Cp′′)– repeat units with a terminal Cp′′ attached to M and two terminal THF ligands attached to Cs (Huh et al., 2018). These were obtained by reduction of Cp′′3MIII compounds with Cs in THF. In those structures, La and U have a trigonal–planar tris(cyclopentadienyl) coordination like Yb in 1, but the Cs is coordinated by only two cyclopentadienyl ligands to give a bent metallocene Cp′′2Cs(THF)2 sub-structure with these larger rings.
A survey of the Cambridge Structural Database (CSD, version 5.41, March 2020; Groom et al., 2016) also revealed four oligomeric complexes containing Yb–Cpx moieties with various types of cyclopentadienyl rings (Cpx): [Na(μ-η5:η5-C5H5)3YbII]n (Apostolidis et al., 1997), [Na(μ-η5:η5-Cp′′)2YbII2(μ-η5:η5-Cp′′)2]n (Voskoboynikov et al., 1997), [(C5Me5)Yb(μ-I)(μ-η5:η5-C5Me5)Yb(C5Me5)]n (Evans et al., 2006) and [Yb(μ-η5:η5-C5H5)(Ph2Pz)(THF)]n (Ph2Pz = 3,5–diphenylpyrazolate) (Ali et al., 2018). The [Na(μ-η5:η5-C5H5)3YbII]n (Apostolidis et al., 1997) complex adopts a hexagonal net extended structure similar to that in 1 except the alkali metal does not have a coordinated solvent. The structure of [Na(μ-η5:η5-CptBu)3SmII] is similar (Bel'sky et al., 1990). Three oligomeric complexes containing Cs–cyclopentadienyl moieties have previously been reported: [(THF)2Cs][(μ-η5:η5-Cp′′)2UII(η5-Cp′′)]n (Huh et al., 2018), {[(Me3Si)2NCs]2[(C5H5)2Fe)]·0.5(C6H5Me)}n (Morris et al., 2007) and [(THF)2Cs(μ3-O)3{[Ti(C5Me5)]3(μ3-CCH2)}] (González-del Moral et al., 2005). An oligomeric, base-free Li–Cp′ compound was also previously reported in the literature, [(μ-η5:η5-Cp′)Li]n (Evans et al., 1992).
5. Synthesis and crystallization
In an argon-filled glovebox, addition of a red solution of Cp′3Yb (50 mg, 0.085 mmol) in THF (2 mL) to excess Cs as a smear produced a green solution. This was stirred for 15 min at room temperature and then layered at the bottom of a vial below an Et2O (10 mL) layer for crystallization at −35°C. After 1 d, X-ray quality dark-green crystals of [(THF)Cs(μ-η5:η5-Cp′)3YbII]n were isolated. A small number of crystals were obtained and used for crystallographic analysis. Too little sample was available for other characterization.
6. Refinement
Crystal data and structure μ-η5:η5-Cp′)3YbII]n, 1 are summarized in Table 3. Hydrogen atoms were included using a riding model with Uiso(H) values of 1.2Ueq(C) for CH2 and aromatic hydrogens and 1.5Ueq(C) for CH3 hydrogens with C—H distances of 0.99 (CH2), 0.95 (aromatic), and 0.98 Å (CH3).
for [(THF)Cs(Supporting information
CCDC reference: 2010185
https://doi.org/10.1107/S2056989020008051/zl2785sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020008051/zl2785Isup2.hkl
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT2014/4 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[CsYb(C8H13Si)3(C4H8O)] | F(000) = 1560 |
Mr = 789.87 | Dx = 1.568 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 9.4401 (4) Å | Cell parameters from 9869 reflections |
b = 16.8718 (8) Å | θ = 2.3–28.5° |
c = 21.0246 (10) Å | µ = 3.99 mm−1 |
β = 92.0668 (6)° | T = 88 K |
V = 3346.4 (3) Å3 | Prism, green |
Z = 4 | 0.15 × 0.09 × 0.08 mm |
Bruker SMART APEXII CCD diffractometer | 6580 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.055 |
φ and ω scans | θmax = 28.3°, θmin = 1.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | h = −12→12 |
Tmin = 0.374, Tmax = 0.432 | k = −22→22 |
40586 measured reflections | l = −27→27 |
8223 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.056 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0229P)2 + 0.1327P] where P = (Fo2 + 2Fc2)/3 |
8223 reflections | (Δ/σ)max = 0.001 |
316 parameters | Δρmax = 1.14 e Å−3 |
0 restraints | Δρmin = −0.62 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. A green crystal of approximate dimensions 0.079 x 0.086 x 0.148 mm was mounted in a cryoloop and transferred to a Bruker SMART APEX II diffractometer. The APEX2 program package was used to determine the unit-cell parameters and for data collection (90 sec/frame scan time for a sphere of diffraction data). The raw frame data was processed using SAINT and SADABS to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL program. The diffraction symmetry was 2/m and the systematic absences were consistent with the monoclinic space group P21/n that was later determined to be correct. The structure was solved by dual space methods and refined on F2 by full-matrix least-squares techniques. The analytical scattering factors for neutral atoms were used throughout the analysis. Hydrogen atoms were included using a riding model. The structure is polymeric. Least-squares analysis yielded wR2 = 0.0562 and Goof = 1.017 for 316 variables refined against 8223 data (0.75 Å), R1 = 0.0315 for those 6580 data with I > 2.0sigma(I). |
x | y | z | Uiso*/Ueq | ||
Yb1 | 0.48657 (2) | 0.44122 (2) | 0.25290 (2) | 0.01341 (4) | |
Cs1 | 0.99437 (2) | 0.27157 (2) | 0.31696 (2) | 0.01493 (5) | |
Si1 | 0.69834 (10) | 0.29048 (6) | 0.15029 (5) | 0.0184 (2) | |
Si2 | 0.23952 (11) | 0.57037 (6) | 0.11663 (5) | 0.0204 (2) | |
Si3 | 0.25791 (10) | 0.45182 (6) | 0.40988 (5) | 0.0187 (2) | |
O1 | 0.8795 (3) | 0.24593 (16) | 0.45145 (12) | 0.0285 (6) | |
C1 | 0.7108 (3) | 0.33895 (19) | 0.22942 (16) | 0.0161 (7) | |
C2 | 0.6551 (3) | 0.3115 (2) | 0.28743 (17) | 0.0174 (8) | |
H2A | 0.6070 | 0.2626 | 0.2929 | 0.021* | |
C3 | 0.6826 (3) | 0.3680 (2) | 0.33517 (17) | 0.0196 (8) | |
H3A | 0.6554 | 0.3643 | 0.3781 | 0.024* | |
C4 | 0.7575 (4) | 0.4310 (2) | 0.30831 (17) | 0.0194 (8) | |
H4A | 0.7902 | 0.4774 | 0.3298 | 0.023* | |
C5 | 0.7751 (3) | 0.4129 (2) | 0.24430 (17) | 0.0184 (8) | |
H5A | 0.8231 | 0.4453 | 0.2150 | 0.022* | |
C6 | 0.6270 (4) | 0.1878 (2) | 0.15741 (18) | 0.0257 (9) | |
H6A | 0.6848 | 0.1582 | 0.1890 | 0.039* | |
H6B | 0.6299 | 0.1611 | 0.1161 | 0.039* | |
H6C | 0.5288 | 0.1902 | 0.1709 | 0.039* | |
C7 | 0.5764 (4) | 0.3487 (2) | 0.09635 (17) | 0.0276 (9) | |
H7A | 0.6159 | 0.4017 | 0.0900 | 0.041* | |
H7B | 0.4836 | 0.3533 | 0.1155 | 0.041* | |
H7C | 0.5656 | 0.3216 | 0.0552 | 0.041* | |
C8 | 0.8767 (4) | 0.2878 (2) | 0.11484 (18) | 0.0263 (9) | |
H8A | 0.9435 | 0.2601 | 0.1438 | 0.039* | |
H8B | 0.9099 | 0.3421 | 0.1081 | 0.039* | |
H8C | 0.8702 | 0.2599 | 0.0740 | 0.039* | |
C9 | 0.3846 (3) | 0.57009 (19) | 0.17806 (16) | 0.0162 (7) | |
C10 | 0.5320 (4) | 0.56244 (19) | 0.16482 (17) | 0.0173 (7) | |
H10A | 0.5679 | 0.5462 | 0.1253 | 0.021* | |
C11 | 0.6148 (4) | 0.58254 (19) | 0.21886 (17) | 0.0171 (8) | |
H11A | 0.7154 | 0.5833 | 0.2220 | 0.021* | |
C12 | 0.5224 (4) | 0.60152 (19) | 0.26788 (17) | 0.0190 (8) | |
H12A | 0.5497 | 0.6163 | 0.3102 | 0.023* | |
C13 | 0.3823 (4) | 0.59465 (19) | 0.24280 (16) | 0.0180 (8) | |
H13A | 0.2992 | 0.6048 | 0.2656 | 0.022* | |
C14 | 0.2553 (5) | 0.4858 (2) | 0.0598 (2) | 0.0380 (11) | |
H14A | 0.2394 | 0.4358 | 0.0822 | 0.057* | |
H14B | 0.3503 | 0.4856 | 0.0425 | 0.057* | |
H14C | 0.1843 | 0.4916 | 0.0249 | 0.057* | |
C15 | 0.0612 (4) | 0.5700 (3) | 0.1518 (2) | 0.0379 (11) | |
H15A | 0.0433 | 0.5178 | 0.1705 | 0.057* | |
H15B | −0.0113 | 0.5811 | 0.1185 | 0.057* | |
H15C | 0.0577 | 0.6107 | 0.1849 | 0.057* | |
C16 | 0.2543 (4) | 0.6620 (2) | 0.06760 (17) | 0.0230 (8) | |
H16A | 0.3509 | 0.6665 | 0.0524 | 0.034* | |
H16B | 0.2329 | 0.7085 | 0.0936 | 0.034* | |
H16C | 0.1869 | 0.6593 | 0.0311 | 0.034* | |
C17 | 0.2651 (3) | 0.4025 (2) | 0.33118 (16) | 0.0151 (7) | |
C18 | 0.1959 (3) | 0.42821 (19) | 0.27347 (17) | 0.0169 (7) | |
H18A | 0.1408 | 0.4751 | 0.2686 | 0.020* | |
C19 | 0.2216 (3) | 0.3741 (2) | 0.22535 (17) | 0.0187 (8) | |
H19A | 0.1879 | 0.3780 | 0.1823 | 0.022* | |
C20 | 0.3061 (4) | 0.3127 (2) | 0.25131 (17) | 0.0206 (8) | |
H20A | 0.3395 | 0.2678 | 0.2291 | 0.025* | |
C21 | 0.3320 (3) | 0.3300 (2) | 0.31617 (17) | 0.0173 (8) | |
H21A | 0.3858 | 0.2981 | 0.3453 | 0.021* | |
C22 | 0.2748 (5) | 0.3775 (2) | 0.47533 (18) | 0.0346 (10) | |
H22A | 0.1956 | 0.3400 | 0.4718 | 0.052* | |
H22B | 0.2732 | 0.4047 | 0.5165 | 0.052* | |
H22C | 0.3644 | 0.3487 | 0.4721 | 0.052* | |
C23 | 0.4026 (4) | 0.5264 (2) | 0.42253 (18) | 0.0280 (9) | |
H23A | 0.3884 | 0.5702 | 0.3923 | 0.042* | |
H23B | 0.4944 | 0.5012 | 0.4158 | 0.042* | |
H23C | 0.4008 | 0.5469 | 0.4661 | 0.042* | |
C24 | 0.0843 (4) | 0.5039 (3) | 0.4147 (2) | 0.0399 (11) | |
H24A | 0.0071 | 0.4652 | 0.4106 | 0.060* | |
H24B | 0.0748 | 0.5429 | 0.3803 | 0.060* | |
H24C | 0.0798 | 0.5309 | 0.4559 | 0.060* | |
C25 | 0.8427 (4) | 0.3003 (2) | 0.50059 (19) | 0.0306 (9) | |
H25A | 0.8093 | 0.3512 | 0.4820 | 0.037* | |
H25B | 0.9255 | 0.3108 | 0.5296 | 0.037* | |
C26 | 0.7248 (4) | 0.2603 (2) | 0.53629 (19) | 0.0338 (10) | |
H26A | 0.7634 | 0.2246 | 0.5700 | 0.041* | |
H26B | 0.6615 | 0.2998 | 0.5555 | 0.041* | |
C27 | 0.6489 (4) | 0.2145 (2) | 0.4835 (2) | 0.0315 (10) | |
H27A | 0.5959 | 0.1690 | 0.5005 | 0.038* | |
H27B | 0.5827 | 0.2489 | 0.4585 | 0.038* | |
C28 | 0.7700 (4) | 0.1873 (2) | 0.44422 (18) | 0.0278 (9) | |
H28A | 0.8052 | 0.1351 | 0.4593 | 0.033* | |
H28B | 0.7388 | 0.1823 | 0.3989 | 0.033* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Yb1 | 0.01020 (7) | 0.01233 (7) | 0.01766 (8) | −0.00136 (6) | −0.00014 (6) | 0.00251 (6) |
Cs1 | 0.01034 (10) | 0.01249 (10) | 0.02208 (12) | −0.00018 (8) | 0.00232 (8) | 0.00028 (9) |
Si1 | 0.0150 (5) | 0.0213 (5) | 0.0190 (5) | 0.0031 (4) | 0.0009 (4) | −0.0011 (4) |
Si2 | 0.0214 (5) | 0.0157 (5) | 0.0236 (6) | −0.0009 (4) | −0.0052 (4) | 0.0028 (4) |
Si3 | 0.0177 (5) | 0.0192 (5) | 0.0191 (5) | −0.0009 (4) | 0.0012 (4) | −0.0017 (4) |
O1 | 0.0207 (14) | 0.0355 (16) | 0.0295 (16) | −0.0014 (12) | 0.0062 (12) | −0.0009 (13) |
C1 | 0.0112 (16) | 0.0161 (17) | 0.0209 (19) | 0.0018 (14) | 0.0018 (14) | 0.0027 (15) |
C2 | 0.0130 (17) | 0.0140 (17) | 0.025 (2) | 0.0030 (14) | 0.0021 (15) | 0.0029 (15) |
C3 | 0.0184 (18) | 0.024 (2) | 0.0162 (19) | 0.0082 (15) | 0.0003 (15) | 0.0016 (15) |
C4 | 0.0151 (17) | 0.0177 (19) | 0.025 (2) | 0.0022 (14) | −0.0071 (15) | −0.0016 (16) |
C5 | 0.0083 (16) | 0.0175 (18) | 0.030 (2) | −0.0002 (13) | 0.0033 (15) | 0.0049 (16) |
C6 | 0.027 (2) | 0.023 (2) | 0.027 (2) | 0.0011 (16) | −0.0006 (17) | −0.0044 (17) |
C7 | 0.029 (2) | 0.033 (2) | 0.021 (2) | 0.0055 (18) | −0.0059 (17) | 0.0013 (17) |
C8 | 0.023 (2) | 0.031 (2) | 0.024 (2) | 0.0038 (17) | 0.0045 (17) | −0.0018 (17) |
C9 | 0.0162 (17) | 0.0111 (17) | 0.0212 (19) | 0.0006 (13) | 0.0003 (14) | 0.0012 (14) |
C10 | 0.0208 (18) | 0.0103 (16) | 0.0210 (19) | 0.0006 (14) | 0.0037 (15) | 0.0040 (15) |
C11 | 0.0133 (17) | 0.0139 (17) | 0.024 (2) | −0.0047 (13) | −0.0014 (15) | 0.0047 (15) |
C12 | 0.0241 (19) | 0.0118 (17) | 0.021 (2) | −0.0067 (15) | −0.0054 (15) | 0.0020 (15) |
C13 | 0.0208 (18) | 0.0118 (17) | 0.022 (2) | −0.0011 (14) | 0.0012 (15) | 0.0009 (15) |
C14 | 0.056 (3) | 0.020 (2) | 0.037 (3) | 0.004 (2) | −0.023 (2) | −0.0014 (19) |
C15 | 0.022 (2) | 0.049 (3) | 0.043 (3) | 0.0003 (19) | −0.0048 (19) | 0.024 (2) |
C16 | 0.028 (2) | 0.0204 (19) | 0.021 (2) | 0.0025 (16) | −0.0007 (16) | 0.0022 (16) |
C17 | 0.0097 (16) | 0.0196 (18) | 0.0162 (19) | −0.0037 (14) | 0.0024 (14) | 0.0003 (15) |
C18 | 0.0099 (16) | 0.0156 (18) | 0.025 (2) | −0.0029 (13) | 0.0026 (14) | 0.0024 (15) |
C19 | 0.0129 (17) | 0.028 (2) | 0.0149 (19) | −0.0086 (15) | −0.0025 (14) | 0.0029 (15) |
C20 | 0.0165 (18) | 0.0192 (19) | 0.027 (2) | −0.0062 (15) | 0.0096 (16) | −0.0061 (16) |
C21 | 0.0124 (17) | 0.0176 (18) | 0.022 (2) | −0.0025 (14) | 0.0044 (14) | 0.0051 (15) |
C22 | 0.056 (3) | 0.026 (2) | 0.023 (2) | −0.009 (2) | 0.006 (2) | −0.0032 (18) |
C23 | 0.031 (2) | 0.029 (2) | 0.024 (2) | −0.0056 (18) | 0.0015 (18) | −0.0038 (17) |
C24 | 0.028 (2) | 0.044 (3) | 0.048 (3) | 0.008 (2) | 0.002 (2) | −0.020 (2) |
C25 | 0.034 (2) | 0.030 (2) | 0.028 (2) | −0.0032 (18) | −0.0060 (19) | 0.0018 (18) |
C26 | 0.042 (3) | 0.032 (2) | 0.028 (2) | 0.006 (2) | 0.012 (2) | −0.0031 (19) |
C27 | 0.024 (2) | 0.026 (2) | 0.044 (3) | 0.0008 (17) | 0.0085 (19) | 0.0089 (19) |
C28 | 0.033 (2) | 0.025 (2) | 0.026 (2) | −0.0010 (17) | 0.0071 (18) | 0.0006 (17) |
Yb1—Cnt1 | 2.510 | C7—H7B | 0.9800 |
Yb1—Cnt2 | 2.513 | C7—H7C | 0.9800 |
Yb1—Cnt3 | 2.504 | C8—H8A | 0.9800 |
Cs1—Cnt1 | 3.197 | C8—H8B | 0.9800 |
Cs1—Cnt2 | 3.268 | C8—H8C | 0.9800 |
Cs1—Cnt3 | 3.159 | C9—C13 | 1.424 (5) |
Yb1—C12 | 2.742 (3) | C9—C10 | 1.434 (5) |
Yb1—C21 | 2.750 (3) | C9—Cs1iii | 3.587 (3) |
Yb1—C20 | 2.757 (3) | C10—C11 | 1.398 (5) |
Yb1—C13 | 2.775 (3) | C10—Cs1iii | 3.559 (3) |
Yb1—C3 | 2.777 (3) | C10—H10A | 0.9500 |
Yb1—C4 | 2.778 (3) | C11—C12 | 1.410 (5) |
Yb1—C5 | 2.778 (3) | C11—Cs1iii | 3.427 (3) |
Yb1—C11 | 2.779 (3) | C11—H11A | 0.9500 |
Yb1—C17 | 2.785 (3) | C12—C13 | 1.411 (5) |
Yb1—C2 | 2.787 (3) | C12—Cs1iii | 3.379 (3) |
Yb1—C19 | 2.787 (3) | C12—H12A | 0.9500 |
Yb1—C1 | 2.788 (3) | C13—Cs1iii | 3.457 (3) |
Yb1—C18 | 2.802 (3) | C13—H13A | 0.9500 |
Yb1—C10 | 2.802 (3) | C14—H14A | 0.9800 |
Yb1—C9 | 2.832 (3) | C14—H14B | 0.9800 |
Cs1—O1 | 3.095 (3) | C14—H14C | 0.9800 |
Cs1—C2 | 3.309 (3) | C15—H15A | 0.9800 |
Cs1—C21i | 3.337 (3) | C15—H15B | 0.9800 |
Cs1—C20i | 3.367 (3) | C15—H15C | 0.9800 |
Cs1—C12ii | 3.379 (3) | C16—Cs1iii | 3.810 (4) |
Cs1—C17i | 3.383 (3) | C16—H16A | 0.9800 |
Cs1—C1 | 3.390 (3) | C16—H16B | 0.9800 |
Cs1—C3 | 3.396 (3) | C16—H16C | 0.9800 |
Cs1—C18i | 3.401 (3) | C17—C21 | 1.417 (5) |
Cs1—C19i | 3.407 (3) | C17—C18 | 1.425 (5) |
Cs1—C11ii | 3.427 (3) | C17—Cs1iv | 3.383 (3) |
Cs1—C13ii | 3.457 (3) | C18—C19 | 1.390 (5) |
Cs1—C5 | 3.475 (3) | C18—Cs1iv | 3.401 (3) |
Cs1—C4 | 3.499 (3) | C18—H18A | 0.9500 |
Cs1—C10ii | 3.559 (3) | C19—C20 | 1.406 (5) |
Cs1—C9ii | 3.587 (3) | C19—Cs1iv | 3.407 (3) |
Si1—C1 | 1.854 (4) | C19—H19A | 0.9500 |
Si1—C8 | 1.866 (4) | C20—C21 | 1.407 (5) |
Si1—C7 | 1.866 (4) | C20—Cs1iv | 3.367 (3) |
Si1—C6 | 1.867 (4) | C20—H20A | 0.9500 |
Si2—C9 | 1.848 (4) | C21—Cs1iv | 3.337 (3) |
Si2—C15 | 1.863 (4) | C21—H21A | 0.9500 |
Si2—C16 | 1.867 (3) | C22—H22A | 0.9800 |
Si2—C14 | 1.871 (4) | C22—H22B | 0.9800 |
Si3—C17 | 1.856 (3) | C22—H22C | 0.9800 |
Si3—C22 | 1.864 (4) | C23—H23A | 0.9800 |
Si3—C24 | 1.865 (4) | C23—H23B | 0.9800 |
Si3—C23 | 1.869 (4) | C23—H23C | 0.9800 |
O1—C25 | 1.434 (5) | C24—H24A | 0.9800 |
O1—C28 | 1.435 (4) | C24—H24B | 0.9800 |
C1—C5 | 1.418 (5) | C24—H24C | 0.9800 |
C1—C2 | 1.423 (5) | C25—C26 | 1.522 (5) |
C2—C3 | 1.402 (5) | C25—H25A | 0.9900 |
C2—H2A | 0.9500 | C25—H25B | 0.9900 |
C3—C4 | 1.407 (5) | C26—C27 | 1.511 (6) |
C3—H3A | 0.9500 | C26—H26A | 0.9900 |
C4—C5 | 1.396 (5) | C26—H26B | 0.9900 |
C4—H4A | 0.9500 | C27—C28 | 1.507 (5) |
C5—H5A | 0.9500 | C27—H27A | 0.9900 |
C6—H6A | 0.9800 | C27—H27B | 0.9900 |
C6—H6B | 0.9800 | C28—H28A | 0.9900 |
C6—H6C | 0.9800 | C28—H28B | 0.9900 |
C7—H7A | 0.9800 | ||
Cnt1—Yb1—Cnt2 | 120.1 | C15—Si2—C14 | 110.1 (2) |
Cnt1—Yb1—Cnt3 | 116.6 | C16—Si2—C14 | 105.67 (18) |
Cnt2—Yb1—Cnt3 | 122.8 | C17—Si3—C22 | 110.60 (16) |
Cnt1—Cs1—O1 | 88.8 | C17—Si3—C24 | 108.68 (17) |
Cnt2—Cs1—O1 | 94.1 | C22—Si3—C24 | 109.2 (2) |
Cnt3—Cs1—O1 | 127.8 | C17—Si3—C23 | 112.26 (16) |
Cnt1—Cs1—Cnt3 | 109.0 | C22—Si3—C23 | 107.77 (19) |
Cnt1—Cs1—Cnt2 | 121.4 | C24—Si3—C23 | 108.32 (19) |
Cnt2—Cs1—Cnt3 | 114.3 | C25—O1—C28 | 109.0 (3) |
Yb1—Cnt1—Cs1 | 175.3 | C25—O1—Cs1 | 132.2 (2) |
Yb1—Cnt2—Cs1 | 172.5 | C28—O1—Cs1 | 105.9 (2) |
Yb1—Cnt3—Cs1 | 176.7 | C5—C1—C2 | 105.4 (3) |
C12—Yb1—C21 | 133.07 (10) | C5—C1—Si1 | 126.8 (3) |
C12—Yb1—C20 | 148.28 (10) | C2—C1—Si1 | 127.7 (3) |
C21—Yb1—C20 | 29.62 (10) | C5—C1—Yb1 | 74.82 (18) |
C12—Yb1—C13 | 29.63 (10) | C2—C1—Yb1 | 75.16 (18) |
C21—Yb1—C13 | 118.73 (10) | Si1—C1—Yb1 | 114.08 (15) |
C20—Yb1—C13 | 121.02 (10) | C5—C1—Cs1 | 81.47 (19) |
C12—Yb1—C3 | 106.89 (10) | C2—C1—Cs1 | 74.58 (18) |
C21—Yb1—C3 | 75.43 (10) | Si1—C1—Cs1 | 111.25 (13) |
C20—Yb1—C3 | 93.17 (11) | Yb1—C1—Cs1 | 134.51 (12) |
C13—Yb1—C3 | 133.57 (10) | C3—C2—C1 | 109.1 (3) |
C12—Yb1—C4 | 84.54 (10) | C3—C2—Yb1 | 75.02 (19) |
C21—Yb1—C4 | 104.58 (10) | C1—C2—Yb1 | 75.27 (19) |
C20—Yb1—C4 | 121.05 (10) | C3—C2—Cs1 | 81.44 (19) |
C13—Yb1—C4 | 114.11 (10) | C1—C2—Cs1 | 80.94 (19) |
C3—Yb1—C4 | 29.34 (10) | Yb1—C2—Cs1 | 138.44 (12) |
C12—Yb1—C5 | 93.42 (10) | C3—C2—H2A | 125.4 |
C21—Yb1—C5 | 116.94 (10) | C1—C2—H2A | 125.4 |
C20—Yb1—C5 | 118.11 (10) | Yb1—C2—H2A | 116.2 |
C13—Yb1—C5 | 120.08 (10) | Cs1—C2—H2A | 105.3 |
C3—Yb1—C5 | 48.02 (10) | C2—C3—C4 | 108.0 (3) |
C4—Yb1—C5 | 29.10 (10) | C2—C3—Yb1 | 75.79 (19) |
C12—Yb1—C11 | 29.58 (10) | C4—C3—Yb1 | 75.34 (19) |
C21—Yb1—C11 | 162.49 (10) | C2—C3—Cs1 | 74.48 (18) |
C20—Yb1—C11 | 161.12 (11) | C4—C3—Cs1 | 82.34 (19) |
C13—Yb1—C11 | 48.43 (10) | Yb1—C3—Cs1 | 134.71 (12) |
C3—Yb1—C11 | 104.80 (10) | C2—C3—H3A | 126.0 |
C4—Yb1—C11 | 76.00 (10) | C4—C3—H3A | 126.0 |
C5—Yb1—C11 | 72.15 (10) | Yb1—C3—H3A | 115.1 |
C12—Yb1—C17 | 104.81 (10) | Cs1—C3—H3A | 110.0 |
C21—Yb1—C17 | 29.67 (9) | C5—C4—C3 | 107.5 (3) |
C20—Yb1—C17 | 49.15 (10) | C5—C4—Yb1 | 75.45 (19) |
C13—Yb1—C17 | 89.55 (10) | C3—C4—Yb1 | 75.31 (19) |
C3—Yb1—C17 | 91.45 (10) | C5—C4—Cs1 | 77.52 (19) |
C4—Yb1—C17 | 115.93 (10) | C3—C4—Cs1 | 74.17 (18) |
C5—Yb1—C17 | 139.21 (10) | Yb1—C4—Cs1 | 130.28 (12) |
C11—Yb1—C17 | 134.15 (10) | C5—C4—H4A | 126.3 |
C12—Yb1—C2 | 132.66 (10) | C3—C4—H4A | 126.3 |
C21—Yb1—C2 | 69.27 (10) | Yb1—C4—H4A | 115.3 |
C20—Yb1—C2 | 74.47 (10) | Cs1—C4—H4A | 114.4 |
C13—Yb1—C2 | 161.85 (10) | C4—C5—C1 | 109.9 (3) |
C3—Yb1—C2 | 29.18 (10) | C4—C5—Yb1 | 75.44 (19) |
C4—Yb1—C2 | 48.21 (10) | C1—C5—Yb1 | 75.66 (18) |
C5—Yb1—C2 | 47.93 (10) | C4—C5—Cs1 | 79.4 (2) |
C11—Yb1—C2 | 119.41 (10) | C1—C5—Cs1 | 74.73 (19) |
C17—Yb1—C2 | 95.49 (10) | Yb1—C5—Cs1 | 131.24 (12) |
C12—Yb1—C19 | 122.04 (10) | C4—C5—H5A | 125.0 |
C21—Yb1—C19 | 48.35 (10) | C1—C5—H5A | 125.0 |
C20—Yb1—C19 | 29.37 (10) | Yb1—C5—H5A | 115.8 |
C13—Yb1—C19 | 92.85 (10) | Cs1—C5—H5A | 112.9 |
C3—Yb1—C19 | 121.44 (10) | Si1—C6—H6A | 109.5 |
C4—Yb1—C19 | 150.23 (10) | Si1—C6—H6B | 109.5 |
C5—Yb1—C19 | 142.33 (10) | H6A—C6—H6B | 109.5 |
C11—Yb1—C19 | 133.69 (10) | Si1—C6—H6C | 109.5 |
C17—Yb1—C19 | 48.72 (10) | H6A—C6—H6C | 109.5 |
C2—Yb1—C19 | 103.58 (10) | H6B—C6—H6C | 109.5 |
C12—Yb1—C1 | 122.63 (10) | Si1—C7—H7A | 109.5 |
C21—Yb1—C1 | 94.75 (10) | Si1—C7—H7B | 109.5 |
C20—Yb1—C1 | 89.08 (10) | H7A—C7—H7B | 109.5 |
C13—Yb1—C1 | 146.41 (10) | Si1—C7—H7C | 109.5 |
C3—Yb1—C1 | 48.85 (10) | H7A—C7—H7C | 109.5 |
C4—Yb1—C1 | 48.90 (10) | H7B—C7—H7C | 109.5 |
C5—Yb1—C1 | 29.52 (9) | Si1—C8—H8A | 109.5 |
C11—Yb1—C1 | 98.33 (10) | Si1—C8—H8B | 109.5 |
C17—Yb1—C1 | 123.39 (10) | H8A—C8—H8B | 109.5 |
C2—Yb1—C1 | 29.57 (9) | Si1—C8—H8C | 109.5 |
C19—Yb1—C1 | 113.15 (10) | H8A—C8—H8C | 109.5 |
C12—Yb1—C18 | 100.20 (10) | H8B—C8—H8C | 109.5 |
C21—Yb1—C18 | 48.09 (10) | C13—C9—C10 | 105.1 (3) |
C20—Yb1—C18 | 48.09 (10) | C13—C9—Si2 | 129.1 (3) |
C13—Yb1—C18 | 74.83 (10) | C10—C9—Si2 | 124.3 (3) |
C3—Yb1—C18 | 120.22 (10) | C13—C9—Yb1 | 73.08 (19) |
C4—Yb1—C18 | 145.35 (10) | C10—C9—Yb1 | 74.11 (18) |
C5—Yb1—C18 | 164.74 (10) | Si2—C9—Yb1 | 128.22 (15) |
C11—Yb1—C18 | 123.02 (10) | C13—C9—Cs1iii | 73.26 (18) |
C17—Yb1—C18 | 29.55 (9) | C10—C9—Cs1iii | 77.33 (18) |
C2—Yb1—C18 | 116.83 (10) | Si2—C9—Cs1iii | 104.19 (12) |
C19—Yb1—C18 | 28.80 (10) | Yb1—C9—Cs1iii | 127.59 (11) |
C1—Yb1—C18 | 137.11 (10) | C11—C10—C9 | 109.8 (3) |
C12—Yb1—C10 | 48.31 (10) | C11—C10—Yb1 | 74.58 (19) |
C21—Yb1—C10 | 156.10 (10) | C9—C10—Yb1 | 76.40 (19) |
C20—Yb1—C10 | 132.46 (11) | C11—C10—Cs1iii | 73.21 (18) |
C13—Yb1—C10 | 48.00 (10) | C9—C10—Cs1iii | 79.51 (18) |
C3—Yb1—C10 | 128.46 (10) | Yb1—C10—Cs1iii | 129.76 (12) |
C4—Yb1—C10 | 99.32 (10) | C11—C10—H10A | 125.1 |
C5—Yb1—C10 | 84.76 (10) | C9—C10—H10A | 125.1 |
C11—Yb1—C10 | 29.00 (10) | Yb1—C10—H10A | 115.8 |
C17—Yb1—C10 | 134.24 (10) | Cs1iii—C10—H10A | 114.2 |
C2—Yb1—C10 | 130.23 (10) | C10—C11—C12 | 107.9 (3) |
C19—Yb1—C10 | 108.45 (10) | C10—C11—Yb1 | 76.42 (18) |
C1—Yb1—C10 | 101.51 (10) | C12—C11—Yb1 | 73.76 (18) |
C18—Yb1—C10 | 109.46 (10) | C10—C11—Cs1iii | 83.81 (19) |
C12—Yb1—C9 | 49.06 (10) | C12—C11—Cs1iii | 76.14 (19) |
C21—Yb1—C9 | 128.10 (10) | Yb1—C11—Cs1iii | 136.45 (12) |
C20—Yb1—C9 | 113.55 (10) | C10—C11—H11A | 126.1 |
C13—Yb1—C9 | 29.39 (9) | C12—C11—H11A | 126.1 |
C3—Yb1—C9 | 153.27 (10) | Yb1—C11—H11A | 115.9 |
C4—Yb1—C9 | 124.75 (10) | Cs1iii—C11—H11A | 107.2 |
C5—Yb1—C9 | 114.22 (10) | C11—C12—C13 | 107.7 (3) |
C11—Yb1—C9 | 48.76 (10) | C11—C12—Yb1 | 76.66 (19) |
C17—Yb1—C9 | 105.13 (10) | C13—C12—Yb1 | 76.46 (19) |
C2—Yb1—C9 | 158.00 (10) | C11—C12—Cs1iii | 79.95 (19) |
C19—Yb1—C9 | 84.94 (10) | C13—C12—Cs1iii | 81.20 (19) |
C1—Yb1—C9 | 128.44 (10) | Yb1—C12—Cs1iii | 140.67 (13) |
C18—Yb1—C9 | 80.25 (10) | C11—C12—H12A | 126.1 |
C10—Yb1—C9 | 29.49 (9) | C13—C12—H12A | 126.1 |
O1—Cs1—C2 | 80.28 (8) | Yb1—C12—H12A | 113.2 |
O1—Cs1—C21i | 114.33 (8) | Cs1iii—C12—H12A | 106.1 |
C2—Cs1—C21i | 148.98 (8) | C12—C13—C9 | 109.6 (3) |
O1—Cs1—C20i | 138.03 (8) | C12—C13—Yb1 | 73.92 (19) |
C2—Cs1—C20i | 137.32 (9) | C9—C13—Yb1 | 77.53 (19) |
C21i—Cs1—C20i | 24.23 (8) | C12—C13—Cs1iii | 75.02 (18) |
O1—Cs1—C12ii | 110.63 (8) | C9—C13—Cs1iii | 83.51 (19) |
C2—Cs1—C12ii | 92.69 (8) | Yb1—C13—Cs1iii | 135.26 (12) |
C21i—Cs1—C12ii | 105.96 (8) | C12—C13—H13A | 125.2 |
C20i—Cs1—C12ii | 89.07 (8) | C9—C13—H13A | 125.2 |
O1—Cs1—C17i | 107.40 (7) | Yb1—C13—H13A | 115.3 |
C2—Cs1—C17i | 127.34 (8) | Cs1iii—C13—H13A | 108.8 |
C21i—Cs1—C17i | 24.34 (8) | Si2—C14—H14A | 109.5 |
C20i—Cs1—C17i | 39.93 (8) | Si2—C14—H14B | 109.5 |
C12ii—Cs1—C17i | 128.47 (8) | H14A—C14—H14B | 109.5 |
O1—Cs1—C1 | 104.30 (7) | Si2—C14—H14C | 109.5 |
C2—Cs1—C1 | 24.49 (8) | H14A—C14—H14C | 109.5 |
C21i—Cs1—C1 | 129.35 (8) | H14B—C14—H14C | 109.5 |
C20i—Cs1—C1 | 113.14 (8) | Si2—C15—H15A | 109.5 |
C12ii—Cs1—C1 | 88.68 (8) | Si2—C15—H15B | 109.5 |
C17i—Cs1—C1 | 114.09 (8) | H15A—C15—H15B | 109.5 |
O1—Cs1—C3 | 68.30 (8) | Si2—C15—H15C | 109.5 |
C2—Cs1—C3 | 24.09 (8) | H15A—C15—H15C | 109.5 |
C21i—Cs1—C3 | 133.69 (8) | H15B—C15—H15C | 109.5 |
C20i—Cs1—C3 | 136.14 (9) | Si2—C16—Cs1iii | 96.16 (13) |
C12ii—Cs1—C3 | 116.22 (8) | Si2—C16—H16A | 109.5 |
C17i—Cs1—C3 | 109.40 (8) | Cs1iii—C16—H16A | 66.8 |
C1—Cs1—C3 | 39.65 (8) | Si2—C16—H16B | 109.5 |
O1—Cs1—C18i | 124.90 (8) | Cs1iii—C16—H16B | 52.7 |
C2—Cs1—C18i | 109.78 (8) | H16A—C16—H16B | 109.5 |
C21i—Cs1—C18i | 39.23 (8) | Si2—C16—H16C | 109.5 |
C20i—Cs1—C18i | 39.10 (8) | Cs1iii—C16—H16C | 153.3 |
C12ii—Cs1—C18i | 122.27 (8) | H16A—C16—H16C | 109.5 |
C17i—Cs1—C18i | 24.24 (8) | H16B—C16—H16C | 109.5 |
C1—Cs1—C18i | 91.83 (8) | C21—C17—C18 | 105.5 (3) |
C3—Cs1—C18i | 98.84 (8) | C21—C17—Si3 | 128.0 (3) |
O1—Cs1—C19i | 146.73 (8) | C18—C17—Si3 | 126.4 (3) |
C2—Cs1—C19i | 114.55 (8) | C21—C17—Yb1 | 73.79 (18) |
C21i—Cs1—C19i | 39.29 (8) | C18—C17—Yb1 | 75.89 (18) |
C20i—Cs1—C19i | 23.95 (8) | Si3—C17—Yb1 | 118.31 (14) |
C12ii—Cs1—C19i | 98.71 (9) | C21—C17—Cs1iv | 75.99 (18) |
C17i—Cs1—C19i | 39.57 (8) | C18—C17—Cs1iv | 78.58 (18) |
C1—Cs1—C19i | 91.36 (8) | Si3—C17—Cs1iv | 108.65 (13) |
C3—Cs1—C19i | 112.73 (8) | Yb1—C17—Cs1iv | 132.98 (11) |
C18i—Cs1—C19i | 23.56 (8) | C19—C18—C17 | 109.5 (3) |
O1—Cs1—C11ii | 87.61 (8) | C19—C18—Yb1 | 75.02 (19) |
C2—Cs1—C11ii | 82.35 (8) | C17—C18—Yb1 | 74.57 (18) |
C21i—Cs1—C11ii | 123.61 (8) | C19—C18—Cs1iv | 78.45 (19) |
C20i—Cs1—C11ii | 111.22 (8) | C17—C18—Cs1iv | 77.18 (18) |
C12ii—Cs1—C11ii | 23.90 (8) | Yb1—C18—Cs1iv | 131.52 (11) |
C17i—Cs1—C11ii | 147.92 (8) | C19—C18—H18A | 125.3 |
C1—Cs1—C11ii | 88.14 (8) | C17—C18—H18A | 125.3 |
C3—Cs1—C11ii | 102.45 (8) | Yb1—C18—H18A | 117.0 |
C18i—Cs1—C11ii | 146.18 (8) | Cs1iv—C18—H18A | 111.4 |
C19i—Cs1—C11ii | 122.61 (8) | C18—C19—C20 | 108.2 (3) |
O1—Cs1—C13ii | 110.19 (8) | C18—C19—Yb1 | 76.18 (19) |
C2—Cs1—C13ii | 116.34 (8) | C20—C19—Yb1 | 74.12 (19) |
C21i—Cs1—C13ii | 85.36 (8) | C18—C19—Cs1iv | 77.99 (19) |
C20i—Cs1—C13ii | 73.64 (8) | C20—C19—Cs1iv | 76.46 (19) |
C12ii—Cs1—C13ii | 23.79 (8) | Yb1—C19—Cs1iv | 131.87 (12) |
C17i—Cs1—C13ii | 109.44 (8) | C18—C19—H19A | 125.9 |
C1—Cs1—C13ii | 111.22 (8) | C20—C19—H19A | 125.9 |
C3—Cs1—C13ii | 139.38 (8) | Yb1—C19—H19A | 115.9 |
C18i—Cs1—C13ii | 111.98 (8) | Cs1iv—C19—H19A | 112.2 |
C19i—Cs1—C13ii | 90.34 (8) | C19—C20—C21 | 107.4 (3) |
C11ii—Cs1—C13ii | 38.65 (8) | C19—C20—Yb1 | 76.50 (19) |
O1—Cs1—C5 | 105.94 (7) | C21—C20—Yb1 | 74.91 (19) |
C2—Cs1—C5 | 38.83 (8) | C19—C20—Cs1iv | 79.59 (19) |
C21i—Cs1—C5 | 110.42 (8) | C21—C20—Cs1iv | 76.66 (18) |
C20i—Cs1—C5 | 101.17 (8) | Yb1—C20—Cs1iv | 134.91 (12) |
C12ii—Cs1—C5 | 109.56 (8) | C19—C20—H20A | 126.3 |
C17i—Cs1—C5 | 91.53 (8) | C21—C20—H20A | 126.3 |
C1—Cs1—C5 | 23.80 (8) | Yb1—C20—H20A | 114.7 |
C3—Cs1—C5 | 38.38 (8) | Cs1iv—C20—H20A | 110.3 |
C18i—Cs1—C5 | 71.25 (8) | C20—C21—C17 | 109.3 (3) |
C19i—Cs1—C5 | 77.29 (8) | C20—C21—Yb1 | 75.48 (19) |
C11ii—Cs1—C5 | 111.87 (8) | C17—C21—Yb1 | 76.54 (18) |
C13ii—Cs1—C5 | 129.48 (8) | C20—C21—Cs1iv | 79.11 (19) |
O1—Cs1—C4 | 84.87 (8) | C17—C21—Cs1iv | 79.67 (18) |
C2—Cs1—C4 | 38.88 (8) | Yb1—C21—Cs1iv | 136.70 (12) |
C21i—Cs1—C4 | 112.41 (8) | C20—C21—H21A | 125.3 |
C20i—Cs1—C4 | 112.73 (8) | C17—C21—H21A | 125.3 |
C12ii—Cs1—C4 | 127.43 (8) | Yb1—C21—H21A | 114.7 |
C17i—Cs1—C4 | 88.95 (8) | Cs1iv—C21—H21A | 108.6 |
C1—Cs1—C4 | 39.03 (8) | Si3—C22—H22A | 109.5 |
C3—Cs1—C4 | 23.49 (8) | Si3—C22—H22B | 109.5 |
C18i—Cs1—C4 | 75.59 (8) | H22A—C22—H22B | 109.5 |
C19i—Cs1—C4 | 89.67 (8) | Si3—C22—H22C | 109.5 |
C11ii—Cs1—C4 | 121.18 (8) | H22A—C22—H22C | 109.5 |
C13ii—Cs1—C4 | 150.24 (8) | H22B—C22—H22C | 109.5 |
C5—Cs1—C4 | 23.09 (8) | Si3—C23—H23A | 109.5 |
O1—Cs1—C10ii | 74.63 (7) | Si3—C23—H23B | 109.5 |
C2—Cs1—C10ii | 98.69 (8) | H23A—C23—H23B | 109.5 |
C21i—Cs1—C10ii | 111.34 (8) | Si3—C23—H23C | 109.5 |
C20i—Cs1—C10ii | 108.30 (8) | H23A—C23—H23C | 109.5 |
C12ii—Cs1—C10ii | 38.08 (8) | H23B—C23—H23C | 109.5 |
C17i—Cs1—C10ii | 133.90 (8) | Si3—C24—H24A | 109.5 |
C1—Cs1—C10ii | 109.52 (8) | Si3—C24—H24B | 109.5 |
C3—Cs1—C10ii | 113.49 (8) | H24A—C24—H24B | 109.5 |
C18i—Cs1—C10ii | 147.28 (8) | Si3—C24—H24C | 109.5 |
C19i—Cs1—C10ii | 127.76 (8) | H24A—C24—H24C | 109.5 |
C11ii—Cs1—C10ii | 22.98 (8) | H24B—C24—H24C | 109.5 |
C13ii—Cs1—C10ii | 37.70 (8) | O1—C25—C26 | 105.8 (3) |
C5—Cs1—C10ii | 133.23 (8) | O1—C25—H25A | 110.6 |
C4—Cs1—C10ii | 136.14 (8) | C26—C25—H25A | 110.6 |
O1—Cs1—C9ii | 87.86 (7) | O1—C25—H25B | 110.6 |
C2—Cs1—C9ii | 120.23 (8) | C26—C25—H25B | 110.6 |
C21i—Cs1—C9ii | 88.67 (8) | H25A—C25—H25B | 108.7 |
C20i—Cs1—C9ii | 85.71 (8) | C27—C26—C25 | 101.6 (3) |
C12ii—Cs1—C9ii | 38.69 (8) | C27—C26—H26A | 111.5 |
C17i—Cs1—C9ii | 112.18 (8) | C25—C26—H26A | 111.5 |
C1—Cs1—C9ii | 125.32 (8) | C27—C26—H26B | 111.5 |
C3—Cs1—C9ii | 136.64 (8) | C25—C26—H26B | 111.5 |
C18i—Cs1—C9ii | 124.31 (8) | H26A—C26—H26B | 109.3 |
C19i—Cs1—C9ii | 106.95 (8) | C28—C27—C26 | 102.1 (3) |
C11ii—Cs1—C9ii | 38.49 (8) | C28—C27—H27A | 111.3 |
C13ii—Cs1—C9ii | 23.23 (8) | C26—C27—H27A | 111.3 |
C5—Cs1—C9ii | 147.92 (8) | C28—C27—H27B | 111.3 |
C4—Cs1—C9ii | 158.85 (8) | C26—C27—H27B | 111.3 |
C10ii—Cs1—C9ii | 23.16 (7) | H27A—C27—H27B | 109.2 |
C1—Si1—C8 | 109.90 (16) | O1—C28—C27 | 106.8 (3) |
C1—Si1—C7 | 109.33 (16) | O1—C28—Cs1 | 52.50 (16) |
C8—Si1—C7 | 108.40 (17) | C27—C28—Cs1 | 137.3 (2) |
C1—Si1—C6 | 110.42 (16) | O1—C28—H28A | 110.4 |
C8—Si1—C6 | 110.06 (17) | C27—C28—H28A | 110.4 |
C7—Si1—C6 | 108.70 (18) | Cs1—C28—H28A | 112.0 |
C9—Si2—C15 | 112.34 (18) | O1—C28—H28B | 110.4 |
C9—Si2—C16 | 108.64 (16) | C27—C28—H28B | 110.4 |
C15—Si2—C16 | 107.99 (17) | Cs1—C28—H28B | 60.1 |
C9—Si2—C14 | 111.75 (17) | H28A—C28—H28B | 108.6 |
Symmetry codes: (i) x+1, y, z; (ii) −x+3/2, y−1/2, −z+1/2; (iii) −x+3/2, y+1/2, −z+1/2; (iv) x−1, y, z. |
Yb1···centroid1 | 2.510 |
Yb1···centroid2 | 2.513 |
Yb1···centroid3 | 2.504 |
Cs1···centroid1 | 3.197 |
Cs1···centroid2 | 3.268 |
Cs1···centroid3 | 3.159 |
Cs1—O1 | 3.095 (3) |
centroid1—Yb1···centroid2 | 120.1 |
centroid1—Yb1···centroid3 | 116.6 |
centroid2—Yb1···centroid3 | 122.8 |
centroid1—Cs1···centroid2 | 121.4 |
centroid1—Cs1···centroid3 | 109.0 |
centroid2—Cs1···centroid3 | 114.3 |
Yb1···centroid1···Cs1 | 175.3 |
Yb1···centroid2···Cs1 | 172.3 |
Yb1···centroid3···Cs1 | 176.7 |
centroid1···Cs1···O1 | 88.8 |
centroid2···Cs1···O1 | 94.1 |
centroid3···Cs1···O1 | 127.8 |
Cp'3Yb | [K(crypt)][Cp'3Yb] | 1 | |
Yb···Cp'(centroid) | 2.363–2.368 | 2.503–2.513 | 2.504–2.513 |
Cs···Cp'(centroid) | 3.159–3.268 | ||
Cp'···Yb···Cp' | 118.85–120.55 | 118.10–122.93 | 116.64–122.76 |
Cp'···Cs···Cp' | 109.0–121.4 |
Acknowledgements
WJE would like to acknowledge the National Science Foundation for continued support.
Funding information
Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (grant No. CHE-1855328 to William J. Evans).
References
Ali, S. H., Deacon, G. B., Junk, P. C., Hamidi, S., Wiecko, M. & Wang, J. (2018). Chem. Eur. J. 24, 230–242. CSD CrossRef CAS PubMed Google Scholar
Apostolidis, C. B., Deacon, G., Dornberger, E. T., Edelmann, F., Kanellakopulos, B., MacKinnon, P. & Stalke, D. (1997). Chem. Commun. pp. 1047–1048. CSD CrossRef Google Scholar
Bel'sky, V. K., Gunko, Y. K., Bulychev, B. M., Sizov, A. I. & Soloveichik, G. L. (1990). J. Organomet. Chem. 390, 35–44. Google Scholar
Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Evans, W. J. (2016). Organometallics, 35, 3088–3100. CrossRef CAS Google Scholar
Evans, W. J., Boyle, T. J. & Ziller, J. W. (1992). Organometallics, 11, 3903–3907. CSD CrossRef CAS Web of Science Google Scholar
Evans, W. J., Champagne, T. M., Davis, B. L., Allen, N. T., Nyce, G. W., Johnston, M. A., Lin, Y.-C., Khvostov, A. & Ziller, J. W. (2006). J. Coord. Chem. 59, 1069–1087. CSD CrossRef Google Scholar
Fieser, M. E., MacDonald, M. R., Krull, B. T., Bates, J. E., Ziller, J. W., Furche, F. & Evans, W. J. (2015). J. Am. Chem. Soc. 137, 369–382. CSD CrossRef CAS PubMed Google Scholar
González-del Moral, O., Martín, A., Mena, M., Morales-Varela, M. del C. & Santamaría, C. (2005). Chem. Commun. pp. 3682–3684. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hitchcock, P. B., Lappert, M. F., Maron, L. & Protchenko, A. V. (2008). Angew. Chem. Int. Ed. 47, 1488–1491. CSD CrossRef CAS Google Scholar
Huh, D. N., Ziller, J. W. & Evans, W. J. (2018). Inorg. Chem. 57, 11809–11814. CSD CrossRef CAS PubMed Google Scholar
MacDonald, M. R., Bates, J. E., Ziller, J. W., Furche, F. & Evans, W. J. (2013). J. Am. Chem. Soc. 135, 9857–9868. CSD CrossRef CAS PubMed Google Scholar
Mills, N. (2006). J. Am. Chem. Soc. 128, 13649–13650. Web of Science CrossRef CAS Google Scholar
Morris, J. J., Noll, B. C., Honeyman, G. W., O'Hara, C. T., Kennedy, A. R., Mulvey, R. E. & Henderson, K. W. (2007). Chem. Eur. J. 13, 4418–4432. Web of Science CSD CrossRef PubMed CAS Google Scholar
Morss, L. R. (1976). Chem. Rev. 76, 827–841. CrossRef CAS Google Scholar
Palumbo, C. T., Darago, L. E., Windorff, C. J., Ziller, J. W. & Evans, W. J. (2018). Organometallics, 37, 900–905. CSD CrossRef CAS Google Scholar
Rosiak, D., Okuniewski, A. & Chojnacki, J. (2018). Polyhedron, 146, 35–41. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Voskoboynikov, A. Z., Argarkov, A. Y., Shestakova, A. K., Beletskaya, I. P., Kuz'mina, L. O. & Howard, J. A. K. (1997). J. Organomet. Chem. 544, 65–68. CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.