research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of the [(THF)Cs(μ-η5:η5-Cp′)3Yb]n oligomer

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of California, Irvine, California, 92697, USA
*Correspondence e-mail: wevans@uci.edu

Edited by M. Zeller, Purdue University, USA (Received 29 May 2020; accepted 16 June 2020; online 23 June 2020)

The green compound poly[(tetra­hydro­furan)­tris­[μ-η5:η5-1-(tri­methyl­sil­yl)cyclo­penta­dien­yl]caesium(I)ytterbium(II)], [CsYb(C8H13Si)3(C4H8O)]n or [(THF)Cs(μ-η5:η5-Cp′)3YbII]n was synthesized by reduction of a red THF solution of (C5H4SiMe3)3YbIII with excess Cs metal and identified by X-ray diffraction. The compound crystallizes as a two-dimensional array of hexa­gons with alternating CsI and YbII ions at the vertices and cyclo­penta­dienyl groups bridging each edge. This, based off the six-electron cyclo­penta­dienyl rings occupying three coordination positions, gives a formally nine-coordinate tris­(cyclo­penta­dien­yl) coordination environment to Yb and the Cs is ten-coordinate due to the three cyclo­penta­dienyl rings and a coordinated mol­ecule of THF. The complex comprises layers of Cs3Yb3 hexa­gons with THF ligands and Me3Si groups in between the layers. The Yb—C metrical parameters are consistent with a 4f14 YbII electron configuration.

1. Chemical context

The new +2 oxidation states for the rare-earth metals Y, La, Ce, Pr, Gd, Tb, Ho, Er, and Lu were recently discovered by reduction of Cpx3Ln (Cpx = C5H4SiMe3, C5H3(SiMe3)2; Ln = rare-earth metal) using alkali metal reductants Li, Na, K, and KC8 (Fig. 1[link]) (Hitchcock et al., 2008[Hitchcock, P. B., Lappert, M. F., Maron, L. & Protchenko, A. V. (2008). Angew. Chem. Int. Ed. 47, 1488-1491.]; MacDonald et al., 2013[MacDonald, M. R., Bates, J. E., Ziller, J. W., Furche, F. & Evans, W. J. (2013). J. Am. Chem. Soc. 135, 9857-9868.]; Fieser et al., 2015[Fieser, M. E., MacDonald, M. R., Krull, B. T., Bates, J. E., Ziller, J. W., Furche, F. & Evans, W. J. (2015). J. Am. Chem. Soc. 137, 369-382.]; Evans, 2016[Evans, W. J. (2016). Organometallics, 35, 3088-3100.]; Palumbo et al., 2018[Palumbo, C. T., Darago, L. E., Windorff, C. J., Ziller, J. W. & Evans, W. J. (2018). Organometallics, 37, 900-905.]). In each of these cases, 2.2.2-cryptand was added in these reactions to encapsulate the alkali metal. It was thought that chelating agents were necessary to sequester the alkali metal to prevent inter­actions with cyclo­penta­dienide ligands and subsequent ligand dissociation leading to product decomposition. This idea was challenged by examining reduction reactions of Cp′′3M (Cp′′ = C5H3(SiMe3)2; M = La, Ce, U) with Li and Cs in the absence of chelating agents (Huh et al., 2018[Huh, D. N., Ziller, J. W. & Evans, W. J. (2018). Inorg. Chem. 57, 11809-11814.]). The reaction resulted in the isolation of the first chelate-free synthesis of LaII, CeII, and UII complexes. The [Li(THF)4]1+ cation of the Li salts in these chelate-free MII complexes were well-separated from the (Cp′′3M)1− anion. However, the Cs reductions yielded polymeric complexes of general formula [Cp′′M(μ-Cp′′)2Cs(THF)2]n where the Cs cation has coord­in­ated THF and cyclo­penta­dienide ligands. Attempts to extend this chemistry to smaller rare-earth metals by reduction of Cp′3Ln (Cp′ = C5H4SiMe3; Ln = Y, Tb, Dy) showed evidence of LnII in solution; however, the reduction products were highly unstable and decomposed even at 238 K.

[Scheme 1]
[Figure 1]
Figure 1
Synthesis of (Cpx3LnII)1− complexes by alkali metal reduction of Cpx3LnIII precursors; Cpx = C5H4SiMe3, C5H3(SiMe3)2.

In this study, we were inter­ested in examining the reduction of Cp′3YbIII with Cs metal. Unlike YII, TbII, and DyII ions, YbII complexes are more easily obtainable, as reflected by their less negative reduction potentials (Morss, 1976[Morss, L. R. (1976). Chem. Rev. 76, 827-841.]). A crystal containing the oligomeric compound; [(THF)Cs(μ-η5:η5-Cp′)3Yb]n, 1 (Cp′ = C5H4SiMe3) was isolated by reduction of the Cp′3YbIII complex (Fieser et al., 2015[Fieser, M. E., MacDonald, M. R., Krull, B. T., Bates, J. E., Ziller, J. W., Furche, F. & Evans, W. J. (2015). J. Am. Chem. Soc. 137, 369-382.]) in THF using Cs metal (Figs. 2[link] and 3[link]).

[Figure 2]
Figure 2
Synthesis of [(THF)Cs(μ-η5:η5-Cp′)3YbII]n, 1, by caesium metal reduction of the Cp′3YbIII precursor.
[Figure 3]
Figure 3
ORTEP representation of an asymmetric unit of [(THF)Cs(μ-η5:η5-Cp′)3Yb]n, 1, with probability ellipsoids drawn at the 50% probability level. Hydrogen atoms were omitted for clarity.

2. Structural commentary

All three Cp′ rings remain coordinated to the Yb metal center after reduction and are coordinated in a trigonal–planar fashion. The Yb atom is within 0.107 Å of the plane of the three ring centroids. Each ring bridges Yb to Cs, which also is surrounded by three cyclo­penta­dienyl ligands as well as a coordinated mol­ecule of THF. The three ring centroids and the oxygen of THF are arranged in a pseudo-tetra­hedral geometry around Cs with a calculated four-coordinate Cs τ4 value of 0.76 (τ4 = 1 for tetra­hedral; τ4 = 0 for square planar; Rosiak et al., 2018[Rosiak, D., Okuniewski, A. & Chojnacki, J. (2018). Polyhedron, 146, 35-41.]). The Cs metal center has a pseudo-tetra­hedral geometry with Cp′(centroid)⋯Cs⋯Cp′(centroid) angles of 109.0, 114.3, and 121.4° and Cp′(centroid)⋯Cs⋯O(THF) angles of 88.8, 94.1, and 127.8°.

The bond distances and angles in 1 are summarized in Table 1[link]. The range of 2.504 (1)–2.513 (2) Å Cp′(centroid)⋯Yb bond distances in 1 is the same as that in the complex [K(crypt)][Cp′3YbII] (crypt = 2.2.2-cryptand), which was fully characterized as a 4f14 YbII complex, Table 2[link] and Fig. 4[link]. In Cp3Ln reduction chemistry, the difference in Ln⋯Cp(centroid) distances between the LnIII and LnII complexes provides important information on the electronic configuration of the lanthanide ion (Evans, 2016[Evans, W. J. (2016). Organometallics, 35, 3088-3100.]). Differences in Ln⋯Cp(centroid) distances for reduction of 4fn LnIII ions to 4fn+1 LnII ions range from 0.1 to 0.2 Å (Fieser et al., 2015[Fieser, M. E., MacDonald, M. R., Krull, B. T., Bates, J. E., Ziller, J. W., Furche, F. & Evans, W. J. (2015). J. Am. Chem. Soc. 137, 369-382.]). In this study, the difference of 0.14 Å in the Ln⋯Cp(centroid) distance is characteristic of a 4f13 YbIII reduction to a 4f14 YbII ion. In contrast, LnII ions with 4fn5d1 configurations where the additional electron populates a d-orbital instead of the an f-orbital have differences of only 0.02–0.05 Å (Evans, 2016[Evans, W. J. (2016). Organometallics, 35, 3088-3100.]).

Table 1
Selected bond distances and angles for [(THF)Cs(μ-η5:η5-Cp′)3Yb]n, 1

Centroid1, centroid2, and centroid3 are the centroids of the Cp rings connected to Si1, Si2, and Si3, respectively.

Yb1⋯centroid1 2.510 (1)
Yb1⋯centroid2 2.513 (2)
Yb1⋯centroid3 2.504 (1)
Cs1⋯centroid1 3.197 (1)
Cs1⋯centroid2 3.268 (2)
Cs1⋯centroid3 3.159 (1)
Cs1—O1 3.095 (3)
   
centroid1—Yb1⋯centroid2 120.1
centroid1—Yb1⋯centroid3 116.6
centroid2—Yb1⋯centroid3 122.8
centroid1—Cs1⋯centroid2 121.4
centroid1—Cs1⋯centroid3 109.0
centroid2—Cs1⋯centroid3 114.3
Yb1⋯centroid1⋯Cs1 175.3
Yb1⋯centroid2⋯Cs1 172.3
Yb1⋯centroid3⋯Cs1 176.7
centroid1⋯Cs1⋯O1 88.8
centroid2⋯Cs1⋯O1 94.1
centroid3⋯Cs1⋯O1 127.8

Table 2
Bond distance (Å) ranges for Yb⋯Cp′(centroid) and bond angle (°) ranges for Cp′(centroid)⋯Yb⋯Cp′(centroid) in Cp′3Yb (Fieser et al., 2015[Fieser, M. E., MacDonald, M. R., Krull, B. T., Bates, J. E., Ziller, J. W., Furche, F. & Evans, W. J. (2015). J. Am. Chem. Soc. 137, 369-382.]), [K(crypt)][Cp′3Yb] (Fieser et al., 2015[Fieser, M. E., MacDonald, M. R., Krull, B. T., Bates, J. E., Ziller, J. W., Furche, F. & Evans, W. J. (2015). J. Am. Chem. Soc. 137, 369-382.]), and [(THF)Cs(μ-η55-Cp′)3Yb]n

  Cp′3Yb [K(crypt)][Cp′3Yb] 1
Yb⋯Cp′(centroid) 2.363–2.368 2.503–2.513 2.504 (1)–2.513 (2)
Cs⋯Cp′(centroid)     3.159 (1)–3.268 (2)
Cp′⋯Yb⋯Cp′ 118.85–120.55 118.10–122.93 116.64–122.76
Cp′⋯Cs⋯Cp′     109.0–121.4
[Figure 4]
Figure 4
CHEMDRAW (Mills, 2006[Mills, N. (2006). J. Am. Chem. Soc. 128, 13649-13650.]) representation of [K(2.2.2-cryptand)][Cp′3YbII] (left) and [(THF)Cs(μ-η5:η5-Cp′)3YbII]n, 1, (right).

3. Supra­molecular features

In 1, all of the cyclo­penta­dienyl ligands are bridging. The threefold symmetry of three bridging Cp′ ligands on each metal generates a hexa­gonal pattern as shown in Fig. 5[link]. The Yb⋯Cp′(centroid)⋯Cs angles are 172.5–176.7° such that each side of the hexa­gon is nearly linear. The 112.4–117.3° Yb⋯Cs⋯Yb angles are smaller than the 120.8–125.6° Cs⋯Yb⋯Cs angles, which makes the hexa­gon slightly irregular. This could be of inter­est to quantum scientists trying to make thin-film layers of magnetic materials since the hexa­gonal pattern could lead to spin frustration with a paramagnetic lanthanide.

[Figure 5]
Figure 5
Top view of the extended structure of [(THF)Cs(μ-η5:η5-Cp′)3Yb]n, 1, with the SiMe3 substituent of the C5H4SiMe3 group and the THF attached to Cs removed for clarity.

The side view of these layers in Fig. 6[link] shows how the space in between them is filled with THF and Me3Si substituent groups. The 116.6–122.8° Cp′(centroid)⋯Yb⋯Cp′(centroid) and 109.0–121.4° Cp′(centroid)⋯Cs⋯Cp′(centroid) angles generate the undulation of the hexa­gons shown in Fig. 6[link].

[Figure 6]
Figure 6
Side view of the extended structure of [(THF)Cs(μ-η5:η5-Cp′)3Yb]n, 1. Magenta, Yb; brown, Cs; green, Si; red, O.

4. Database survey

The 3.159 (1), 3.197 (1), and 3.268 (2) Å Cs⋯Cp′(centroid) distances in 1 are shorter than the 3.278 and 3.435 Å Cs⋯Cp′′(centroid) distances in [(THF)2Cs][(μ-η5:η5-Cp′′)2UII(η5-Cp′′)]n, (Huh et al., 2018[Huh, D. N., Ziller, J. W. & Evans, W. J. (2018). Inorg. Chem. 57, 11809-11814.]), the 3.396 Å Cs⋯C5H5(centroid) distances in {[(Me3Si)2NCs]2·[(C5H5)2Fe)] 0.5·(C6H5Me)}n, (Morris et al., 2007[Morris, J. J., Noll, B. C., Honeyman, G. W., O'Hara, C. T., Kennedy, A. R., Mulvey, R. E. & Henderson, K. W. (2007). Chem. Eur. J. 13, 4418-4432.]) and the 3.337 Å Cs⋯C5Me5(centroid) distances in [(THF)2Cs(μ3-O)3{[Ti(C5Me5)]3-(μ3-CCH2)}] (González-del Moral et al., 2005[González-del Moral, O., Martín, A., Mena, M., Morales-Varela, M. del C. & Santamaría, C. (2005). Chem. Commun. pp. 3682-3684.]). The 3.095 (3) Å Cs—O(THF) bond distance is consistent with the Cs—O(THF) distances of 3.081 (7) to 3.119 (8) Å in [(THF)2Cs][(μ-η5:η5-Cp′′)2UII(η5-Cp′′)]n (Huh et al., 2018[Huh, D. N., Ziller, J. W. & Evans, W. J. (2018). Inorg. Chem. 57, 11809-11814.]) and 3.034 (9)–3.06 (1) Å in [(THF)2Cs(μ3-O)3{[Ti(C5Me5)]3(μ3-CCH2)}] (González-del Moral et al., 2005[González-del Moral, O., Martín, A., Mena, M., Morales-Varela, M. del C. & Santamaría, C. (2005). Chem. Commun. pp. 3682-3684.]).

The extended structure of 1 differs from that of the [(THF)2Cs][(μ-η5:η5-Cp′′)2MII(η5-Cp′′)]n, complexes (M = La, U), which comprise zigzag chains of –M–(μ-Cp′′)–Cs–(μ-Cp′′)– repeat units with a terminal Cp′′ attached to M and two terminal THF ligands attached to Cs (Huh et al., 2018[Huh, D. N., Ziller, J. W. & Evans, W. J. (2018). Inorg. Chem. 57, 11809-11814.]). These were obtained by reduction of Cp′′3MIII compounds with Cs in THF. In those structures, La and U have a trigonal–planar tris­(cyclo­penta­dien­yl) coordination like Yb in 1, but the Cs is coordinated by only two cyclo­penta­dienyl ligands to give a bent metallocene Cp′′2Cs(THF)2 sub-structure with these larger rings.

A survey of the Cambridge Structural Database (CSD, version 5.41, March 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) also revealed four oligomeric complexes containing Yb–Cpx moieties with various types of cyclo­penta­dienyl rings (Cpx): [Na(μ-η5:η5-C5H5)3YbII]n (Apostolidis et al., 1997[Apostolidis, C. B., Deacon, G., Dornberger, E. T., Edelmann, F., Kanellakopulos, B., MacKinnon, P. & Stalke, D. (1997). Chem. Commun. pp. 1047-1048.]), [Na(μ-η5:η5-Cp′′)2YbII2(μ-η5:η5-Cp′′)2]n (Voskoboynikov et al., 1997[Voskoboynikov, A. Z., Argarkov, A. Y., Shestakova, A. K., Beletskaya, I. P., Kuz'mina, L. O. & Howard, J. A. K. (1997). J. Organomet. Chem. 544, 65-68.]), [(C5Me5)Yb(μ-I)(μ-η5:η5-C5Me5)Yb(C5Me5)]n (Evans et al., 2006[Evans, W. J., Champagne, T. M., Davis, B. L., Allen, N. T., Nyce, G. W., Johnston, M. A., Lin, Y.-C., Khvostov, A. & Ziller, J. W. (2006). J. Coord. Chem. 59, 1069-1087.]) and [Yb(μ-η5:η5-C5H5)(Ph2Pz)(THF)]n (Ph2Pz = 3,5–di­phenyl­pyrazolate) (Ali et al., 2018[Ali, S. H., Deacon, G. B., Junk, P. C., Hamidi, S., Wiecko, M. & Wang, J. (2018). Chem. Eur. J. 24, 230-242.]). The [Na(μ-η5:η5-C5H5)3YbII]n (Apostolidis et al., 1997[Apostolidis, C. B., Deacon, G., Dornberger, E. T., Edelmann, F., Kanellakopulos, B., MacKinnon, P. & Stalke, D. (1997). Chem. Commun. pp. 1047-1048.]) complex adopts a hexa­gonal net extended structure similar to that in 1 except the alkali metal does not have a coordinated solvent. The structure of [Na(μ-η5:η5-CptBu)3SmII] is similar (Bel'sky et al., 1990[Bel'sky, V. K., Gunko, Y. K., Bulychev, B. M., Sizov, A. I. & Soloveichik, G. L. (1990). J. Organomet. Chem. 390, 35-44.]). Three oligomeric complexes containing Cs–cyclo­penta­dienyl moieties have previously been reported: [(THF)2Cs][(μ-η5:η5-Cp′′)2UII(η5-Cp′′)]n (Huh et al., 2018[Huh, D. N., Ziller, J. W. & Evans, W. J. (2018). Inorg. Chem. 57, 11809-11814.]), {[(Me3Si)2NCs]2[(C5H5)2Fe)]·0.5(C6H5Me)}n (Morris et al., 2007[Morris, J. J., Noll, B. C., Honeyman, G. W., O'Hara, C. T., Kennedy, A. R., Mulvey, R. E. & Henderson, K. W. (2007). Chem. Eur. J. 13, 4418-4432.]) and [(THF)2Cs(μ3-O)3{[Ti(C5Me5)]3(μ3-CCH2)}] (Gon­zález-del Moral et al., 2005[González-del Moral, O., Martín, A., Mena, M., Morales-Varela, M. del C. & Santamaría, C. (2005). Chem. Commun. pp. 3682-3684.]). An oligomeric, base-free Li–Cp′ compound was also previously reported in the literature, [(μ-η5:η5-Cp′)Li]n (Evans et al., 1992[Evans, W. J., Boyle, T. J. & Ziller, J. W. (1992). Organometallics, 11, 3903-3907.]).

5. Synthesis and crystallization

In an argon-filled glovebox, addition of a red solution of Cp′3Yb (50 mg, 0.085 mmol) in THF (2 mL) to excess Cs as a smear produced a green solution. This was stirred for 15 min at room temperature and then layered at the bottom of a vial below an Et2O (10 mL) layer for crystallization at −35°C. After 1 d, X-ray quality dark-green crystals of [(THF)Cs(μ-η5:η5-Cp′)3YbII]n were isolated. A small number of crystals were obtained and used for crystallographic analysis. Too little sample was available for other characterization.

6. Refinement

Crystal data and structure refinement for [(THF)Cs(μ-η5:η5-Cp′)3YbII]n, 1 are summarized in Table 3[link]. Hydrogen atoms were included using a riding model with Uiso(H) values of 1.2Ueq(C) for CH2 and aromatic hydrogens and 1.5Ueq(C) for CH3 hydrogens with C—H distances of 0.99 (CH2), 0.95 (aromatic), and 0.98 Å (CH3).

Table 3
Experimental details

Crystal data
Chemical formula [CsYb(C8H13Si)3(C4H8O)]
Mr 789.87
Crystal system, space group Monoclinic, P21/n
Temperature (K) 88
a, b, c (Å) 9.4401 (4), 16.8718 (8), 21.0246 (10)
β (°) 92.0668 (6)
V3) 3346.4 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.99
Crystal size (mm) 0.15 × 0.09 × 0.08
 
Data collection
Diffractometer Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.374, 0.432
No. of measured, independent and observed [I > 2σ(I)] reflections 40586, 8223, 6580
Rint 0.055
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.056, 1.02
No. of reflections 8223
No. of parameters 316
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.14, −0.62
Computer programs: APEX2 (Bruker, 2014[Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/4 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT2014/4 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Poly[(tetrahydrofuran)tris[µ-η5:η5-1-(trimethylsilyl)cyclopentadienyl]caesium(I)ytterbium(II)] top
Crystal data top
[CsYb(C8H13Si)3(C4H8O)]F(000) = 1560
Mr = 789.87Dx = 1.568 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.4401 (4) ÅCell parameters from 9869 reflections
b = 16.8718 (8) Åθ = 2.3–28.5°
c = 21.0246 (10) ŵ = 3.99 mm1
β = 92.0668 (6)°T = 88 K
V = 3346.4 (3) Å3Prism, green
Z = 40.15 × 0.09 × 0.08 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
6580 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.055
φ and ω scansθmax = 28.3°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 1212
Tmin = 0.374, Tmax = 0.432k = 2222
40586 measured reflectionsl = 2727
8223 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0229P)2 + 0.1327P]
where P = (Fo2 + 2Fc2)/3
8223 reflections(Δ/σ)max = 0.001
316 parametersΔρmax = 1.14 e Å3
0 restraintsΔρmin = 0.62 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. A green crystal of approximate dimensions 0.079 x 0.086 x 0.148 mm was mounted in a cryoloop and transferred to a Bruker SMART APEX II diffractometer. The APEX2 program package was used to determine the unit-cell parameters and for data collection (90 sec/frame scan time for a sphere of diffraction data). The raw frame data was processed using SAINT and SADABS to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL program. The diffraction symmetry was 2/m and the systematic absences were consistent with the monoclinic space group P21/n that was later determined to be correct.

The structure was solved by dual space methods and refined on F2 by full-matrix least-squares techniques. The analytical scattering factors for neutral atoms were used throughout the analysis. Hydrogen atoms were included using a riding model. The structure is polymeric.

Least-squares analysis yielded wR2 = 0.0562 and Goof = 1.017 for 316 variables refined against 8223 data (0.75 Å), R1 = 0.0315 for those 6580 data with I > 2.0sigma(I).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Yb10.48657 (2)0.44122 (2)0.25290 (2)0.01341 (4)
Cs10.99437 (2)0.27157 (2)0.31696 (2)0.01493 (5)
Si10.69834 (10)0.29048 (6)0.15029 (5)0.0184 (2)
Si20.23952 (11)0.57037 (6)0.11663 (5)0.0204 (2)
Si30.25791 (10)0.45182 (6)0.40988 (5)0.0187 (2)
O10.8795 (3)0.24593 (16)0.45145 (12)0.0285 (6)
C10.7108 (3)0.33895 (19)0.22942 (16)0.0161 (7)
C20.6551 (3)0.3115 (2)0.28743 (17)0.0174 (8)
H2A0.60700.26260.29290.021*
C30.6826 (3)0.3680 (2)0.33517 (17)0.0196 (8)
H3A0.65540.36430.37810.024*
C40.7575 (4)0.4310 (2)0.30831 (17)0.0194 (8)
H4A0.79020.47740.32980.023*
C50.7751 (3)0.4129 (2)0.24430 (17)0.0184 (8)
H5A0.82310.44530.21500.022*
C60.6270 (4)0.1878 (2)0.15741 (18)0.0257 (9)
H6A0.68480.15820.18900.039*
H6B0.62990.16110.11610.039*
H6C0.52880.19020.17090.039*
C70.5764 (4)0.3487 (2)0.09635 (17)0.0276 (9)
H7A0.61590.40170.09000.041*
H7B0.48360.35330.11550.041*
H7C0.56560.32160.05520.041*
C80.8767 (4)0.2878 (2)0.11484 (18)0.0263 (9)
H8A0.94350.26010.14380.039*
H8B0.90990.34210.10810.039*
H8C0.87020.25990.07400.039*
C90.3846 (3)0.57009 (19)0.17806 (16)0.0162 (7)
C100.5320 (4)0.56244 (19)0.16482 (17)0.0173 (7)
H10A0.56790.54620.12530.021*
C110.6148 (4)0.58254 (19)0.21886 (17)0.0171 (8)
H11A0.71540.58330.22200.021*
C120.5224 (4)0.60152 (19)0.26788 (17)0.0190 (8)
H12A0.54970.61630.31020.023*
C130.3823 (4)0.59465 (19)0.24280 (16)0.0180 (8)
H13A0.29920.60480.26560.022*
C140.2553 (5)0.4858 (2)0.0598 (2)0.0380 (11)
H14A0.23940.43580.08220.057*
H14B0.35030.48560.04250.057*
H14C0.18430.49160.02490.057*
C150.0612 (4)0.5700 (3)0.1518 (2)0.0379 (11)
H15A0.04330.51780.17050.057*
H15B0.01130.58110.11850.057*
H15C0.05770.61070.18490.057*
C160.2543 (4)0.6620 (2)0.06760 (17)0.0230 (8)
H16A0.35090.66650.05240.034*
H16B0.23290.70850.09360.034*
H16C0.18690.65930.03110.034*
C170.2651 (3)0.4025 (2)0.33118 (16)0.0151 (7)
C180.1959 (3)0.42821 (19)0.27347 (17)0.0169 (7)
H18A0.14080.47510.26860.020*
C190.2216 (3)0.3741 (2)0.22535 (17)0.0187 (8)
H19A0.18790.37800.18230.022*
C200.3061 (4)0.3127 (2)0.25131 (17)0.0206 (8)
H20A0.33950.26780.22910.025*
C210.3320 (3)0.3300 (2)0.31617 (17)0.0173 (8)
H21A0.38580.29810.34530.021*
C220.2748 (5)0.3775 (2)0.47533 (18)0.0346 (10)
H22A0.19560.34000.47180.052*
H22B0.27320.40470.51650.052*
H22C0.36440.34870.47210.052*
C230.4026 (4)0.5264 (2)0.42253 (18)0.0280 (9)
H23A0.38840.57020.39230.042*
H23B0.49440.50120.41580.042*
H23C0.40080.54690.46610.042*
C240.0843 (4)0.5039 (3)0.4147 (2)0.0399 (11)
H24A0.00710.46520.41060.060*
H24B0.07480.54290.38030.060*
H24C0.07980.53090.45590.060*
C250.8427 (4)0.3003 (2)0.50059 (19)0.0306 (9)
H25A0.80930.35120.48200.037*
H25B0.92550.31080.52960.037*
C260.7248 (4)0.2603 (2)0.53629 (19)0.0338 (10)
H26A0.76340.22460.57000.041*
H26B0.66150.29980.55550.041*
C270.6489 (4)0.2145 (2)0.4835 (2)0.0315 (10)
H27A0.59590.16900.50050.038*
H27B0.58270.24890.45850.038*
C280.7700 (4)0.1873 (2)0.44422 (18)0.0278 (9)
H28A0.80520.13510.45930.033*
H28B0.73880.18230.39890.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Yb10.01020 (7)0.01233 (7)0.01766 (8)0.00136 (6)0.00014 (6)0.00251 (6)
Cs10.01034 (10)0.01249 (10)0.02208 (12)0.00018 (8)0.00232 (8)0.00028 (9)
Si10.0150 (5)0.0213 (5)0.0190 (5)0.0031 (4)0.0009 (4)0.0011 (4)
Si20.0214 (5)0.0157 (5)0.0236 (6)0.0009 (4)0.0052 (4)0.0028 (4)
Si30.0177 (5)0.0192 (5)0.0191 (5)0.0009 (4)0.0012 (4)0.0017 (4)
O10.0207 (14)0.0355 (16)0.0295 (16)0.0014 (12)0.0062 (12)0.0009 (13)
C10.0112 (16)0.0161 (17)0.0209 (19)0.0018 (14)0.0018 (14)0.0027 (15)
C20.0130 (17)0.0140 (17)0.025 (2)0.0030 (14)0.0021 (15)0.0029 (15)
C30.0184 (18)0.024 (2)0.0162 (19)0.0082 (15)0.0003 (15)0.0016 (15)
C40.0151 (17)0.0177 (19)0.025 (2)0.0022 (14)0.0071 (15)0.0016 (16)
C50.0083 (16)0.0175 (18)0.030 (2)0.0002 (13)0.0033 (15)0.0049 (16)
C60.027 (2)0.023 (2)0.027 (2)0.0011 (16)0.0006 (17)0.0044 (17)
C70.029 (2)0.033 (2)0.021 (2)0.0055 (18)0.0059 (17)0.0013 (17)
C80.023 (2)0.031 (2)0.024 (2)0.0038 (17)0.0045 (17)0.0018 (17)
C90.0162 (17)0.0111 (17)0.0212 (19)0.0006 (13)0.0003 (14)0.0012 (14)
C100.0208 (18)0.0103 (16)0.0210 (19)0.0006 (14)0.0037 (15)0.0040 (15)
C110.0133 (17)0.0139 (17)0.024 (2)0.0047 (13)0.0014 (15)0.0047 (15)
C120.0241 (19)0.0118 (17)0.021 (2)0.0067 (15)0.0054 (15)0.0020 (15)
C130.0208 (18)0.0118 (17)0.022 (2)0.0011 (14)0.0012 (15)0.0009 (15)
C140.056 (3)0.020 (2)0.037 (3)0.004 (2)0.023 (2)0.0014 (19)
C150.022 (2)0.049 (3)0.043 (3)0.0003 (19)0.0048 (19)0.024 (2)
C160.028 (2)0.0204 (19)0.021 (2)0.0025 (16)0.0007 (16)0.0022 (16)
C170.0097 (16)0.0196 (18)0.0162 (19)0.0037 (14)0.0024 (14)0.0003 (15)
C180.0099 (16)0.0156 (18)0.025 (2)0.0029 (13)0.0026 (14)0.0024 (15)
C190.0129 (17)0.028 (2)0.0149 (19)0.0086 (15)0.0025 (14)0.0029 (15)
C200.0165 (18)0.0192 (19)0.027 (2)0.0062 (15)0.0096 (16)0.0061 (16)
C210.0124 (17)0.0176 (18)0.022 (2)0.0025 (14)0.0044 (14)0.0051 (15)
C220.056 (3)0.026 (2)0.023 (2)0.009 (2)0.006 (2)0.0032 (18)
C230.031 (2)0.029 (2)0.024 (2)0.0056 (18)0.0015 (18)0.0038 (17)
C240.028 (2)0.044 (3)0.048 (3)0.008 (2)0.002 (2)0.020 (2)
C250.034 (2)0.030 (2)0.028 (2)0.0032 (18)0.0060 (19)0.0018 (18)
C260.042 (3)0.032 (2)0.028 (2)0.006 (2)0.012 (2)0.0031 (19)
C270.024 (2)0.026 (2)0.044 (3)0.0008 (17)0.0085 (19)0.0089 (19)
C280.033 (2)0.025 (2)0.026 (2)0.0010 (17)0.0071 (18)0.0006 (17)
Geometric parameters (Å, º) top
Yb1—Cnt12.510C7—H7B0.9800
Yb1—Cnt22.513C7—H7C0.9800
Yb1—Cnt32.504C8—H8A0.9800
Cs1—Cnt13.197C8—H8B0.9800
Cs1—Cnt23.268C8—H8C0.9800
Cs1—Cnt33.159C9—C131.424 (5)
Yb1—C122.742 (3)C9—C101.434 (5)
Yb1—C212.750 (3)C9—Cs1iii3.587 (3)
Yb1—C202.757 (3)C10—C111.398 (5)
Yb1—C132.775 (3)C10—Cs1iii3.559 (3)
Yb1—C32.777 (3)C10—H10A0.9500
Yb1—C42.778 (3)C11—C121.410 (5)
Yb1—C52.778 (3)C11—Cs1iii3.427 (3)
Yb1—C112.779 (3)C11—H11A0.9500
Yb1—C172.785 (3)C12—C131.411 (5)
Yb1—C22.787 (3)C12—Cs1iii3.379 (3)
Yb1—C192.787 (3)C12—H12A0.9500
Yb1—C12.788 (3)C13—Cs1iii3.457 (3)
Yb1—C182.802 (3)C13—H13A0.9500
Yb1—C102.802 (3)C14—H14A0.9800
Yb1—C92.832 (3)C14—H14B0.9800
Cs1—O13.095 (3)C14—H14C0.9800
Cs1—C23.309 (3)C15—H15A0.9800
Cs1—C21i3.337 (3)C15—H15B0.9800
Cs1—C20i3.367 (3)C15—H15C0.9800
Cs1—C12ii3.379 (3)C16—Cs1iii3.810 (4)
Cs1—C17i3.383 (3)C16—H16A0.9800
Cs1—C13.390 (3)C16—H16B0.9800
Cs1—C33.396 (3)C16—H16C0.9800
Cs1—C18i3.401 (3)C17—C211.417 (5)
Cs1—C19i3.407 (3)C17—C181.425 (5)
Cs1—C11ii3.427 (3)C17—Cs1iv3.383 (3)
Cs1—C13ii3.457 (3)C18—C191.390 (5)
Cs1—C53.475 (3)C18—Cs1iv3.401 (3)
Cs1—C43.499 (3)C18—H18A0.9500
Cs1—C10ii3.559 (3)C19—C201.406 (5)
Cs1—C9ii3.587 (3)C19—Cs1iv3.407 (3)
Si1—C11.854 (4)C19—H19A0.9500
Si1—C81.866 (4)C20—C211.407 (5)
Si1—C71.866 (4)C20—Cs1iv3.367 (3)
Si1—C61.867 (4)C20—H20A0.9500
Si2—C91.848 (4)C21—Cs1iv3.337 (3)
Si2—C151.863 (4)C21—H21A0.9500
Si2—C161.867 (3)C22—H22A0.9800
Si2—C141.871 (4)C22—H22B0.9800
Si3—C171.856 (3)C22—H22C0.9800
Si3—C221.864 (4)C23—H23A0.9800
Si3—C241.865 (4)C23—H23B0.9800
Si3—C231.869 (4)C23—H23C0.9800
O1—C251.434 (5)C24—H24A0.9800
O1—C281.435 (4)C24—H24B0.9800
C1—C51.418 (5)C24—H24C0.9800
C1—C21.423 (5)C25—C261.522 (5)
C2—C31.402 (5)C25—H25A0.9900
C2—H2A0.9500C25—H25B0.9900
C3—C41.407 (5)C26—C271.511 (6)
C3—H3A0.9500C26—H26A0.9900
C4—C51.396 (5)C26—H26B0.9900
C4—H4A0.9500C27—C281.507 (5)
C5—H5A0.9500C27—H27A0.9900
C6—H6A0.9800C27—H27B0.9900
C6—H6B0.9800C28—H28A0.9900
C6—H6C0.9800C28—H28B0.9900
C7—H7A0.9800
Cnt1—Yb1—Cnt2120.1C15—Si2—C14110.1 (2)
Cnt1—Yb1—Cnt3116.6C16—Si2—C14105.67 (18)
Cnt2—Yb1—Cnt3122.8C17—Si3—C22110.60 (16)
Cnt1—Cs1—O188.8C17—Si3—C24108.68 (17)
Cnt2—Cs1—O194.1C22—Si3—C24109.2 (2)
Cnt3—Cs1—O1127.8C17—Si3—C23112.26 (16)
Cnt1—Cs1—Cnt3109.0C22—Si3—C23107.77 (19)
Cnt1—Cs1—Cnt2121.4C24—Si3—C23108.32 (19)
Cnt2—Cs1—Cnt3114.3C25—O1—C28109.0 (3)
Yb1—Cnt1—Cs1175.3C25—O1—Cs1132.2 (2)
Yb1—Cnt2—Cs1172.5C28—O1—Cs1105.9 (2)
Yb1—Cnt3—Cs1176.7C5—C1—C2105.4 (3)
C12—Yb1—C21133.07 (10)C5—C1—Si1126.8 (3)
C12—Yb1—C20148.28 (10)C2—C1—Si1127.7 (3)
C21—Yb1—C2029.62 (10)C5—C1—Yb174.82 (18)
C12—Yb1—C1329.63 (10)C2—C1—Yb175.16 (18)
C21—Yb1—C13118.73 (10)Si1—C1—Yb1114.08 (15)
C20—Yb1—C13121.02 (10)C5—C1—Cs181.47 (19)
C12—Yb1—C3106.89 (10)C2—C1—Cs174.58 (18)
C21—Yb1—C375.43 (10)Si1—C1—Cs1111.25 (13)
C20—Yb1—C393.17 (11)Yb1—C1—Cs1134.51 (12)
C13—Yb1—C3133.57 (10)C3—C2—C1109.1 (3)
C12—Yb1—C484.54 (10)C3—C2—Yb175.02 (19)
C21—Yb1—C4104.58 (10)C1—C2—Yb175.27 (19)
C20—Yb1—C4121.05 (10)C3—C2—Cs181.44 (19)
C13—Yb1—C4114.11 (10)C1—C2—Cs180.94 (19)
C3—Yb1—C429.34 (10)Yb1—C2—Cs1138.44 (12)
C12—Yb1—C593.42 (10)C3—C2—H2A125.4
C21—Yb1—C5116.94 (10)C1—C2—H2A125.4
C20—Yb1—C5118.11 (10)Yb1—C2—H2A116.2
C13—Yb1—C5120.08 (10)Cs1—C2—H2A105.3
C3—Yb1—C548.02 (10)C2—C3—C4108.0 (3)
C4—Yb1—C529.10 (10)C2—C3—Yb175.79 (19)
C12—Yb1—C1129.58 (10)C4—C3—Yb175.34 (19)
C21—Yb1—C11162.49 (10)C2—C3—Cs174.48 (18)
C20—Yb1—C11161.12 (11)C4—C3—Cs182.34 (19)
C13—Yb1—C1148.43 (10)Yb1—C3—Cs1134.71 (12)
C3—Yb1—C11104.80 (10)C2—C3—H3A126.0
C4—Yb1—C1176.00 (10)C4—C3—H3A126.0
C5—Yb1—C1172.15 (10)Yb1—C3—H3A115.1
C12—Yb1—C17104.81 (10)Cs1—C3—H3A110.0
C21—Yb1—C1729.67 (9)C5—C4—C3107.5 (3)
C20—Yb1—C1749.15 (10)C5—C4—Yb175.45 (19)
C13—Yb1—C1789.55 (10)C3—C4—Yb175.31 (19)
C3—Yb1—C1791.45 (10)C5—C4—Cs177.52 (19)
C4—Yb1—C17115.93 (10)C3—C4—Cs174.17 (18)
C5—Yb1—C17139.21 (10)Yb1—C4—Cs1130.28 (12)
C11—Yb1—C17134.15 (10)C5—C4—H4A126.3
C12—Yb1—C2132.66 (10)C3—C4—H4A126.3
C21—Yb1—C269.27 (10)Yb1—C4—H4A115.3
C20—Yb1—C274.47 (10)Cs1—C4—H4A114.4
C13—Yb1—C2161.85 (10)C4—C5—C1109.9 (3)
C3—Yb1—C229.18 (10)C4—C5—Yb175.44 (19)
C4—Yb1—C248.21 (10)C1—C5—Yb175.66 (18)
C5—Yb1—C247.93 (10)C4—C5—Cs179.4 (2)
C11—Yb1—C2119.41 (10)C1—C5—Cs174.73 (19)
C17—Yb1—C295.49 (10)Yb1—C5—Cs1131.24 (12)
C12—Yb1—C19122.04 (10)C4—C5—H5A125.0
C21—Yb1—C1948.35 (10)C1—C5—H5A125.0
C20—Yb1—C1929.37 (10)Yb1—C5—H5A115.8
C13—Yb1—C1992.85 (10)Cs1—C5—H5A112.9
C3—Yb1—C19121.44 (10)Si1—C6—H6A109.5
C4—Yb1—C19150.23 (10)Si1—C6—H6B109.5
C5—Yb1—C19142.33 (10)H6A—C6—H6B109.5
C11—Yb1—C19133.69 (10)Si1—C6—H6C109.5
C17—Yb1—C1948.72 (10)H6A—C6—H6C109.5
C2—Yb1—C19103.58 (10)H6B—C6—H6C109.5
C12—Yb1—C1122.63 (10)Si1—C7—H7A109.5
C21—Yb1—C194.75 (10)Si1—C7—H7B109.5
C20—Yb1—C189.08 (10)H7A—C7—H7B109.5
C13—Yb1—C1146.41 (10)Si1—C7—H7C109.5
C3—Yb1—C148.85 (10)H7A—C7—H7C109.5
C4—Yb1—C148.90 (10)H7B—C7—H7C109.5
C5—Yb1—C129.52 (9)Si1—C8—H8A109.5
C11—Yb1—C198.33 (10)Si1—C8—H8B109.5
C17—Yb1—C1123.39 (10)H8A—C8—H8B109.5
C2—Yb1—C129.57 (9)Si1—C8—H8C109.5
C19—Yb1—C1113.15 (10)H8A—C8—H8C109.5
C12—Yb1—C18100.20 (10)H8B—C8—H8C109.5
C21—Yb1—C1848.09 (10)C13—C9—C10105.1 (3)
C20—Yb1—C1848.09 (10)C13—C9—Si2129.1 (3)
C13—Yb1—C1874.83 (10)C10—C9—Si2124.3 (3)
C3—Yb1—C18120.22 (10)C13—C9—Yb173.08 (19)
C4—Yb1—C18145.35 (10)C10—C9—Yb174.11 (18)
C5—Yb1—C18164.74 (10)Si2—C9—Yb1128.22 (15)
C11—Yb1—C18123.02 (10)C13—C9—Cs1iii73.26 (18)
C17—Yb1—C1829.55 (9)C10—C9—Cs1iii77.33 (18)
C2—Yb1—C18116.83 (10)Si2—C9—Cs1iii104.19 (12)
C19—Yb1—C1828.80 (10)Yb1—C9—Cs1iii127.59 (11)
C1—Yb1—C18137.11 (10)C11—C10—C9109.8 (3)
C12—Yb1—C1048.31 (10)C11—C10—Yb174.58 (19)
C21—Yb1—C10156.10 (10)C9—C10—Yb176.40 (19)
C20—Yb1—C10132.46 (11)C11—C10—Cs1iii73.21 (18)
C13—Yb1—C1048.00 (10)C9—C10—Cs1iii79.51 (18)
C3—Yb1—C10128.46 (10)Yb1—C10—Cs1iii129.76 (12)
C4—Yb1—C1099.32 (10)C11—C10—H10A125.1
C5—Yb1—C1084.76 (10)C9—C10—H10A125.1
C11—Yb1—C1029.00 (10)Yb1—C10—H10A115.8
C17—Yb1—C10134.24 (10)Cs1iii—C10—H10A114.2
C2—Yb1—C10130.23 (10)C10—C11—C12107.9 (3)
C19—Yb1—C10108.45 (10)C10—C11—Yb176.42 (18)
C1—Yb1—C10101.51 (10)C12—C11—Yb173.76 (18)
C18—Yb1—C10109.46 (10)C10—C11—Cs1iii83.81 (19)
C12—Yb1—C949.06 (10)C12—C11—Cs1iii76.14 (19)
C21—Yb1—C9128.10 (10)Yb1—C11—Cs1iii136.45 (12)
C20—Yb1—C9113.55 (10)C10—C11—H11A126.1
C13—Yb1—C929.39 (9)C12—C11—H11A126.1
C3—Yb1—C9153.27 (10)Yb1—C11—H11A115.9
C4—Yb1—C9124.75 (10)Cs1iii—C11—H11A107.2
C5—Yb1—C9114.22 (10)C11—C12—C13107.7 (3)
C11—Yb1—C948.76 (10)C11—C12—Yb176.66 (19)
C17—Yb1—C9105.13 (10)C13—C12—Yb176.46 (19)
C2—Yb1—C9158.00 (10)C11—C12—Cs1iii79.95 (19)
C19—Yb1—C984.94 (10)C13—C12—Cs1iii81.20 (19)
C1—Yb1—C9128.44 (10)Yb1—C12—Cs1iii140.67 (13)
C18—Yb1—C980.25 (10)C11—C12—H12A126.1
C10—Yb1—C929.49 (9)C13—C12—H12A126.1
O1—Cs1—C280.28 (8)Yb1—C12—H12A113.2
O1—Cs1—C21i114.33 (8)Cs1iii—C12—H12A106.1
C2—Cs1—C21i148.98 (8)C12—C13—C9109.6 (3)
O1—Cs1—C20i138.03 (8)C12—C13—Yb173.92 (19)
C2—Cs1—C20i137.32 (9)C9—C13—Yb177.53 (19)
C21i—Cs1—C20i24.23 (8)C12—C13—Cs1iii75.02 (18)
O1—Cs1—C12ii110.63 (8)C9—C13—Cs1iii83.51 (19)
C2—Cs1—C12ii92.69 (8)Yb1—C13—Cs1iii135.26 (12)
C21i—Cs1—C12ii105.96 (8)C12—C13—H13A125.2
C20i—Cs1—C12ii89.07 (8)C9—C13—H13A125.2
O1—Cs1—C17i107.40 (7)Yb1—C13—H13A115.3
C2—Cs1—C17i127.34 (8)Cs1iii—C13—H13A108.8
C21i—Cs1—C17i24.34 (8)Si2—C14—H14A109.5
C20i—Cs1—C17i39.93 (8)Si2—C14—H14B109.5
C12ii—Cs1—C17i128.47 (8)H14A—C14—H14B109.5
O1—Cs1—C1104.30 (7)Si2—C14—H14C109.5
C2—Cs1—C124.49 (8)H14A—C14—H14C109.5
C21i—Cs1—C1129.35 (8)H14B—C14—H14C109.5
C20i—Cs1—C1113.14 (8)Si2—C15—H15A109.5
C12ii—Cs1—C188.68 (8)Si2—C15—H15B109.5
C17i—Cs1—C1114.09 (8)H15A—C15—H15B109.5
O1—Cs1—C368.30 (8)Si2—C15—H15C109.5
C2—Cs1—C324.09 (8)H15A—C15—H15C109.5
C21i—Cs1—C3133.69 (8)H15B—C15—H15C109.5
C20i—Cs1—C3136.14 (9)Si2—C16—Cs1iii96.16 (13)
C12ii—Cs1—C3116.22 (8)Si2—C16—H16A109.5
C17i—Cs1—C3109.40 (8)Cs1iii—C16—H16A66.8
C1—Cs1—C339.65 (8)Si2—C16—H16B109.5
O1—Cs1—C18i124.90 (8)Cs1iii—C16—H16B52.7
C2—Cs1—C18i109.78 (8)H16A—C16—H16B109.5
C21i—Cs1—C18i39.23 (8)Si2—C16—H16C109.5
C20i—Cs1—C18i39.10 (8)Cs1iii—C16—H16C153.3
C12ii—Cs1—C18i122.27 (8)H16A—C16—H16C109.5
C17i—Cs1—C18i24.24 (8)H16B—C16—H16C109.5
C1—Cs1—C18i91.83 (8)C21—C17—C18105.5 (3)
C3—Cs1—C18i98.84 (8)C21—C17—Si3128.0 (3)
O1—Cs1—C19i146.73 (8)C18—C17—Si3126.4 (3)
C2—Cs1—C19i114.55 (8)C21—C17—Yb173.79 (18)
C21i—Cs1—C19i39.29 (8)C18—C17—Yb175.89 (18)
C20i—Cs1—C19i23.95 (8)Si3—C17—Yb1118.31 (14)
C12ii—Cs1—C19i98.71 (9)C21—C17—Cs1iv75.99 (18)
C17i—Cs1—C19i39.57 (8)C18—C17—Cs1iv78.58 (18)
C1—Cs1—C19i91.36 (8)Si3—C17—Cs1iv108.65 (13)
C3—Cs1—C19i112.73 (8)Yb1—C17—Cs1iv132.98 (11)
C18i—Cs1—C19i23.56 (8)C19—C18—C17109.5 (3)
O1—Cs1—C11ii87.61 (8)C19—C18—Yb175.02 (19)
C2—Cs1—C11ii82.35 (8)C17—C18—Yb174.57 (18)
C21i—Cs1—C11ii123.61 (8)C19—C18—Cs1iv78.45 (19)
C20i—Cs1—C11ii111.22 (8)C17—C18—Cs1iv77.18 (18)
C12ii—Cs1—C11ii23.90 (8)Yb1—C18—Cs1iv131.52 (11)
C17i—Cs1—C11ii147.92 (8)C19—C18—H18A125.3
C1—Cs1—C11ii88.14 (8)C17—C18—H18A125.3
C3—Cs1—C11ii102.45 (8)Yb1—C18—H18A117.0
C18i—Cs1—C11ii146.18 (8)Cs1iv—C18—H18A111.4
C19i—Cs1—C11ii122.61 (8)C18—C19—C20108.2 (3)
O1—Cs1—C13ii110.19 (8)C18—C19—Yb176.18 (19)
C2—Cs1—C13ii116.34 (8)C20—C19—Yb174.12 (19)
C21i—Cs1—C13ii85.36 (8)C18—C19—Cs1iv77.99 (19)
C20i—Cs1—C13ii73.64 (8)C20—C19—Cs1iv76.46 (19)
C12ii—Cs1—C13ii23.79 (8)Yb1—C19—Cs1iv131.87 (12)
C17i—Cs1—C13ii109.44 (8)C18—C19—H19A125.9
C1—Cs1—C13ii111.22 (8)C20—C19—H19A125.9
C3—Cs1—C13ii139.38 (8)Yb1—C19—H19A115.9
C18i—Cs1—C13ii111.98 (8)Cs1iv—C19—H19A112.2
C19i—Cs1—C13ii90.34 (8)C19—C20—C21107.4 (3)
C11ii—Cs1—C13ii38.65 (8)C19—C20—Yb176.50 (19)
O1—Cs1—C5105.94 (7)C21—C20—Yb174.91 (19)
C2—Cs1—C538.83 (8)C19—C20—Cs1iv79.59 (19)
C21i—Cs1—C5110.42 (8)C21—C20—Cs1iv76.66 (18)
C20i—Cs1—C5101.17 (8)Yb1—C20—Cs1iv134.91 (12)
C12ii—Cs1—C5109.56 (8)C19—C20—H20A126.3
C17i—Cs1—C591.53 (8)C21—C20—H20A126.3
C1—Cs1—C523.80 (8)Yb1—C20—H20A114.7
C3—Cs1—C538.38 (8)Cs1iv—C20—H20A110.3
C18i—Cs1—C571.25 (8)C20—C21—C17109.3 (3)
C19i—Cs1—C577.29 (8)C20—C21—Yb175.48 (19)
C11ii—Cs1—C5111.87 (8)C17—C21—Yb176.54 (18)
C13ii—Cs1—C5129.48 (8)C20—C21—Cs1iv79.11 (19)
O1—Cs1—C484.87 (8)C17—C21—Cs1iv79.67 (18)
C2—Cs1—C438.88 (8)Yb1—C21—Cs1iv136.70 (12)
C21i—Cs1—C4112.41 (8)C20—C21—H21A125.3
C20i—Cs1—C4112.73 (8)C17—C21—H21A125.3
C12ii—Cs1—C4127.43 (8)Yb1—C21—H21A114.7
C17i—Cs1—C488.95 (8)Cs1iv—C21—H21A108.6
C1—Cs1—C439.03 (8)Si3—C22—H22A109.5
C3—Cs1—C423.49 (8)Si3—C22—H22B109.5
C18i—Cs1—C475.59 (8)H22A—C22—H22B109.5
C19i—Cs1—C489.67 (8)Si3—C22—H22C109.5
C11ii—Cs1—C4121.18 (8)H22A—C22—H22C109.5
C13ii—Cs1—C4150.24 (8)H22B—C22—H22C109.5
C5—Cs1—C423.09 (8)Si3—C23—H23A109.5
O1—Cs1—C10ii74.63 (7)Si3—C23—H23B109.5
C2—Cs1—C10ii98.69 (8)H23A—C23—H23B109.5
C21i—Cs1—C10ii111.34 (8)Si3—C23—H23C109.5
C20i—Cs1—C10ii108.30 (8)H23A—C23—H23C109.5
C12ii—Cs1—C10ii38.08 (8)H23B—C23—H23C109.5
C17i—Cs1—C10ii133.90 (8)Si3—C24—H24A109.5
C1—Cs1—C10ii109.52 (8)Si3—C24—H24B109.5
C3—Cs1—C10ii113.49 (8)H24A—C24—H24B109.5
C18i—Cs1—C10ii147.28 (8)Si3—C24—H24C109.5
C19i—Cs1—C10ii127.76 (8)H24A—C24—H24C109.5
C11ii—Cs1—C10ii22.98 (8)H24B—C24—H24C109.5
C13ii—Cs1—C10ii37.70 (8)O1—C25—C26105.8 (3)
C5—Cs1—C10ii133.23 (8)O1—C25—H25A110.6
C4—Cs1—C10ii136.14 (8)C26—C25—H25A110.6
O1—Cs1—C9ii87.86 (7)O1—C25—H25B110.6
C2—Cs1—C9ii120.23 (8)C26—C25—H25B110.6
C21i—Cs1—C9ii88.67 (8)H25A—C25—H25B108.7
C20i—Cs1—C9ii85.71 (8)C27—C26—C25101.6 (3)
C12ii—Cs1—C9ii38.69 (8)C27—C26—H26A111.5
C17i—Cs1—C9ii112.18 (8)C25—C26—H26A111.5
C1—Cs1—C9ii125.32 (8)C27—C26—H26B111.5
C3—Cs1—C9ii136.64 (8)C25—C26—H26B111.5
C18i—Cs1—C9ii124.31 (8)H26A—C26—H26B109.3
C19i—Cs1—C9ii106.95 (8)C28—C27—C26102.1 (3)
C11ii—Cs1—C9ii38.49 (8)C28—C27—H27A111.3
C13ii—Cs1—C9ii23.23 (8)C26—C27—H27A111.3
C5—Cs1—C9ii147.92 (8)C28—C27—H27B111.3
C4—Cs1—C9ii158.85 (8)C26—C27—H27B111.3
C10ii—Cs1—C9ii23.16 (7)H27A—C27—H27B109.2
C1—Si1—C8109.90 (16)O1—C28—C27106.8 (3)
C1—Si1—C7109.33 (16)O1—C28—Cs152.50 (16)
C8—Si1—C7108.40 (17)C27—C28—Cs1137.3 (2)
C1—Si1—C6110.42 (16)O1—C28—H28A110.4
C8—Si1—C6110.06 (17)C27—C28—H28A110.4
C7—Si1—C6108.70 (18)Cs1—C28—H28A112.0
C9—Si2—C15112.34 (18)O1—C28—H28B110.4
C9—Si2—C16108.64 (16)C27—C28—H28B110.4
C15—Si2—C16107.99 (17)Cs1—C28—H28B60.1
C9—Si2—C14111.75 (17)H28A—C28—H28B108.6
Symmetry codes: (i) x+1, y, z; (ii) x+3/2, y1/2, z+1/2; (iii) x+3/2, y+1/2, z+1/2; (iv) x1, y, z.
Selected bond distances and angles for [(THF)Cs(µ-η5:η5-Cp')3Yb]n, 1 top
Yb1···centroid12.510
Yb1···centroid22.513
Yb1···centroid32.504
Cs1···centroid13.197
Cs1···centroid23.268
Cs1···centroid33.159
Cs1—O13.095 (3)
centroid1—Yb1···centroid2120.1
centroid1—Yb1···centroid3116.6
centroid2—Yb1···centroid3122.8
centroid1—Cs1···centroid2121.4
centroid1—Cs1···centroid3109.0
centroid2—Cs1···centroid3114.3
Yb1···centroid1···Cs1175.3
Yb1···centroid2···Cs1172.3
Yb1···centroid3···Cs1176.7
centroid1···Cs1···O188.8
centroid2···Cs1···O194.1
centroid3···Cs1···O1127.8
Bond distance (Å) ranges for Yb···Cp'(centroid) and bond angle (°) ranges for Cp'(centroid)···Yb···Cp'(centroid) in Cp'3Yb (Fieser et al., 2015), [K(crypt)][Cp'3Yb] (Fieser et al., 2015), and [(THF)Cs(µ-η5:η5-Cp')3Yb]n top
Cp'3Yb[K(crypt)][Cp'3Yb]1
Yb···Cp'(centroid)2.363–2.3682.503–2.5132.504–2.513
Cs···Cp'(centroid)3.159–3.268
Cp'···Yb···Cp'118.85–120.55118.10–122.93116.64–122.76
Cp'···Cs···Cp'109.0–121.4
 

Acknowledgements

WJE would like to acknowledge the National Science Foundation for continued support.

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (grant No. CHE-1855328 to William J. Evans).

References

First citationAli, S. H., Deacon, G. B., Junk, P. C., Hamidi, S., Wiecko, M. & Wang, J. (2018). Chem. Eur. J. 24, 230–242.  CSD CrossRef CAS PubMed Google Scholar
First citationApostolidis, C. B., Deacon, G., Dornberger, E. T., Edelmann, F., Kanellakopulos, B., MacKinnon, P. & Stalke, D. (1997). Chem. Commun. pp. 1047–1048.  CSD CrossRef Google Scholar
First citationBel'sky, V. K., Gunko, Y. K., Bulychev, B. M., Sizov, A. I. & Soloveichik, G. L. (1990). J. Organomet. Chem. 390, 35–44.  Google Scholar
First citationBruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEvans, W. J. (2016). Organometallics, 35, 3088–3100.  CrossRef CAS Google Scholar
First citationEvans, W. J., Boyle, T. J. & Ziller, J. W. (1992). Organometallics, 11, 3903–3907.  CSD CrossRef CAS Web of Science Google Scholar
First citationEvans, W. J., Champagne, T. M., Davis, B. L., Allen, N. T., Nyce, G. W., Johnston, M. A., Lin, Y.-C., Khvostov, A. & Ziller, J. W. (2006). J. Coord. Chem. 59, 1069–1087.  CSD CrossRef Google Scholar
First citationFieser, M. E., MacDonald, M. R., Krull, B. T., Bates, J. E., Ziller, J. W., Furche, F. & Evans, W. J. (2015). J. Am. Chem. Soc. 137, 369–382.  CSD CrossRef CAS PubMed Google Scholar
First citationGonzález-del Moral, O., Martín, A., Mena, M., Morales-Varela, M. del C. & Santamaría, C. (2005). Chem. Commun. pp. 3682–3684.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHitchcock, P. B., Lappert, M. F., Maron, L. & Protchenko, A. V. (2008). Angew. Chem. Int. Ed. 47, 1488–1491.  CSD CrossRef CAS Google Scholar
First citationHuh, D. N., Ziller, J. W. & Evans, W. J. (2018). Inorg. Chem. 57, 11809–11814.  CSD CrossRef CAS PubMed Google Scholar
First citationMacDonald, M. R., Bates, J. E., Ziller, J. W., Furche, F. & Evans, W. J. (2013). J. Am. Chem. Soc. 135, 9857–9868.  CSD CrossRef CAS PubMed Google Scholar
First citationMills, N. (2006). J. Am. Chem. Soc. 128, 13649–13650.  Web of Science CrossRef CAS Google Scholar
First citationMorris, J. J., Noll, B. C., Honeyman, G. W., O'Hara, C. T., Kennedy, A. R., Mulvey, R. E. & Henderson, K. W. (2007). Chem. Eur. J. 13, 4418–4432.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMorss, L. R. (1976). Chem. Rev. 76, 827–841.  CrossRef CAS Google Scholar
First citationPalumbo, C. T., Darago, L. E., Windorff, C. J., Ziller, J. W. & Evans, W. J. (2018). Organometallics, 37, 900–905.  CSD CrossRef CAS Google Scholar
First citationRosiak, D., Okuniewski, A. & Chojnacki, J. (2018). Polyhedron, 146, 35–41.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVoskoboynikov, A. Z., Argarkov, A. Y., Shestakova, A. K., Beletskaya, I. P., Kuz'mina, L. O. & Howard, J. A. K. (1997). J. Organomet. Chem. 544, 65–68.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds