research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of La24Ru11

CROSSMARK_Color_square_no_text.svg

aSezione di Chimica Inorganica e Metallurgia - Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, Genova, Italy, and bCentrum för Analys och Syntes - Kemicentrum, Lunds Universitet, Lund, Sweden
*Correspondence e-mail: S4207678@studenti.unige.it

Edited by A. M. Chippindale, University of Reading, England (Received 17 June 2020; accepted 27 June 2020; online 3 July 2020)

The compound La24Ru11 (tetra­cosa­lanthanum undeca­ruthenium) crystallizes in a Ce24Co11-type structure. The non-centrosymmetric crystal structure (space group P63mc) contains RuLa6 trigonal prisms, La6 octa­hedra and LaRu4 tetra­hedra and is closely related to that of Ce23Ni7Mg4. This communication highlights the crystal-chemical similarities and points out the differences between the two structures. All of the tested crystals were inversion twins.

1. Chemical context

The La–Ru system has been extensively studied (Palenzona & Cirafici, 1989[Palenzona, A. & Canepa, F. (1990a). J. Less-Common Met. 157, 307-313.]). The phase diagram contains five binary phases: the Laves phase, LaRu2 (Compton & Matthias, 1959[Compton, V. B. & Matthias, B. T. (1959). Acta Cryst. 12, 651-654.]), with the MgCu2-type structure; La5Ru3 (Palenzona & Canepa, 1990a[Palenzona, A. & Canepa, F. (1990a). J. Less-Common Met. 157, 307-313.]); La7Ru3 (Palenzona & Canepa, 1990b[Palenzona, A. & Canepa, F. (1990b). J. Less-Common Met. 162, 267-272.]), with the Sr7Pt3-type structure; La5Ru2 (Palenzona, 1979[Palenzona, A. (1979). J. Less-Common Met. 66, P27-P33.]), with the Mn5C2-type structure and La3Ru (Palenzona, 1979[Palenzona, A. (1979). J. Less-Common Met. 66, P27-P33.]), with the cementite-type structure. According to a recent study (Carlsson, 2015[Carlsson, A. (2015). Ab Initio Structure Evaluation of Aperiodic Structures in the Rare Earth-Ruthenium Systems. Master's Degree Thesis, Lunds Universitet, Lund, Sweden.]), the phase La5Ru3 is believed to be a part of an incommensurate-composite-structure family related to Y44Ru25.

During a systematic search for optimal crystal-growth conditions for La5Ru3, the new compound, La24Ru11, was obtained as a secondary product. It crystallizes with a hexa­gonal unit cell, space group P63mc (186), and with a Ce24Co11 structure type (Larson & Cromer, 1962[Larson, A. C. & Cromer, D. T. (1962). Acta Cryst. 15, 1224-1227.]).

According to the Pearson's Crystal Data (Villars & Cenzual, 2019[Villars, P. & Cenzual, K. (2019). Pearson's Crystal Data - Release 2018/2019, ASM International, Materials Park, Ohio, USA.]), the composition ratio of 24:11 is not common and only a few binary compounds having this composition have been reported (Singh & Raman, 1968[Singh, P. P. & Raman, A. (1968). Mater. Res. Bull. 3, 843-853.]; Raevskaya et al., 1994[Raevskaya, M. V., Avertseva, I. N. & Rusnyak, Y. I. (1994). Russ. Metall. 2, 131-135.]). However, there are several ternary inter­metallics with a rare-earth content higher than 60 at.%, including Yb9CuMg4 (De Negri et al., 2016[De Negri, S., Romaka, V., Solokha, P., Saccone, A., Giester, G., Michor, H. & Rogl, P. F. (2016). Inorg. Chem. 55, 8174-8183.]), La43Ni17Mg5 (Solokha et al., 2009a[Solokha, P., De Negri, S., Pavlyuk, V. & Saccone, A. (2009a). Inorg. Chem. 48, 11586-11593.]) and Ce23Ni7Mg4 (Solokha et al., 2009b[Solokha, P., De Negri, S., Pavlyuk, V. & Saccone, A. (2009b). Chemistry of Metals and Alloys 2, 39-48.]), which share some structural features with the title compound, La24Ru11, described below.

2. Structural commentary

The hexa­gonal primitive structure of La24Ru11, containing 70 atoms per cell, was solved with data acquired by a single-crystal X-ray diffraction measurement using a charge-flipping algorithm (Oszlányi & Süto, 2004[Oszlányi, G. & Sütő, A. (2004). Acta Cryst. A60, 134-141.], 2005[Oszlányi, G. & Sütő, A. (2005). Acta Cryst. A61, 147-152.]) in the SUPERFLIP program (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]) implemented in the JANA2006 package (Petříček et al., 2014[Petříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345-352.]).

The structure is closely related to that of Ce23Ni7Mg4 (Solokha et al., 2009b[Solokha, P., De Negri, S., Pavlyuk, V. & Saccone, A. (2009b). Chemistry of Metals and Alloys 2, 39-48.]) and can be described in terms of stacking along (00z) of the three different slabs A, B and C shown in Fig. 1[link](a), 1(b) and 1(c), respectively.

[Figure 1]
Figure 1
(a),(b) Distribution of triads of RuLa6 trigonal prisms (red) within slab A and slab B, respectively; (c) distribution of RuLa6 trigonal prisms (red), La6 octa­hedra (blue) and LaRu4 tetra­hedra (green) within slab C.

Slabs A and B are formed from trigonal prisms (consisting of six lanthanum atoms coordinated to a central ruthenium atom), three of which are joined together by sharing common edges and a vertex, to form triads. The two slabs are very similar to each other: slab B may be generated simply by rotating slab A by a 60° angle around the sixfold rotation axis of the lattice and translating it by the vector (2/3,2/3,0).

Structures containing only A and B slabs have previously been reported; for example, Ru7B3 (Hyde et al., 1979[Hyde, G. B., Anderson, S., Bakker, M., Plug, C. M. & O'Keeffe, M. (1979). Prog. Solid State Chem. 12, 272-327.]) consists of an infinite packing of ABAB slabs in which the trigonal prisms are formed by ruthenium atoms coordinating to central boron atoms. About 50 isostructural binary compounds with general composition R7T3, formed by a transition metal (T) with a lanthanide/actinide (R), have been discovered up to now and include Th7Fe3, Th7Co3 and Th7Ni3 (Palenzona & Cirafici, 1989[Palenzona, A. & Cirafici, S. (1989). J. Less-Common Met. 154, 61-66.]), Nd7Pd3 (Moreau & Parthé, 1973[Moreau, J. M. & Parthé, E. (1973). J. Less-Common Met. 32, 91-96.]) and Pr7Pd3 (Moreau & Parthé, 1973[Moreau, J. M. & Parthé, E. (1973). J. Less-Common Met. 32, 91-96.]).

Slab C shown in Fig. 1[link](c) consists of three polyhedra: isolated Ru-centred trigonal prisms of lanthanum atoms (red), joining slabs A and B and oriented along the (00z) direction, empty La6 octa­hedra (blue) and La-centred ruthenium tetra­hedra (green). In both La24Ru11 and the related structure, Ce23Ni7Mg4 (Solokha et al., 2009b[Solokha, P., De Negri, S., Pavlyuk, V. & Saccone, A. (2009b). Chemistry of Metals and Alloys 2, 39-48.]), the empty octa­hedra are formed by the rare-earth component. The compositional difference between these two structures arises from the the presence of an additional atom of La inside each ruthenium tetra­hedron in the title compound.

The final stacking sequence is ABCABC′ (Fig. 2[link]) where A′, B′ and C′ are the slabs A, B and C, respectively, rotated by a 60° angle around the sixfold rotation axis of the lattice.

[Figure 2]
Figure 2
ABCABC′ stacking of slabs formed by trigonal prisms (red), octa­hedra (blue) and tetra­hedra (green) in La24Ru11.

3. Synthesis and crystallization

A sample weighing 0.5001 g and with nominal composition La65Ru35 was prepared from powdered metal constituents in stoichiometric amounts (mLa = 0.3593 g and mRu = 0.1408 g). The powders were weighed in a glovebox, mixed together and pressed into a pellet. The pellet was then arc-melted (necessary to obtain total melting, since the Ru–La system contains high-melting inter­metallics) in a low-pressure Ar chamber to prevent oxidation and then annealed for 10 days at 800°C. The alloy was crushed and a number of crystals were extracted and analysed. In addition to the title compound, La24Ru11, a small qu­antity of the phase LaRu2 (cF24-MgCu2) was also present.

4. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. All of the tested crystals were twinnedby inversion, as confirmed by Flack-parameter refinement (Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]). In addition, a weak diffuse scattering in the diffraction pattern (probably due to stacking faults), is clearly visible in the (0kl) layer for fifth-order reflections (Fig. 3[link]), which tend to overlap with their neighbours, forming streaks. This phenomenon is likely to be responsible for the slightly elevated values of residual electron density after the final refinement cycle. A B-C type 1 Gaussian isotropic extinction correction (Becker & Coppens, 1974a[Becker, P. J. & Coppens, P. (1974a). Acta Cryst. A30, 129-147.],b[Becker, P. J. & Coppens, P. (1974b). Acta Cryst. A30, 148-153.]) was applied.

Table 1
Experimental details

Crystal data
Chemical formula La24Ru11
Mr 4445.9
Crystal system, space group Hexagonal, P63mc
Temperature (K) 298
a, c (Å) 10.0627 (18), 22.801 (3)
V3) 1999.5 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 29.00
Crystal size (mm) 0.23 × 0.2 × 0.2
 
Data collection
Diffractometer Rigaku Oxford Diffraction Xcalibur, Eos
Absorption correction Analytical (CrysAlis PRO, Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Rigaku Corporation, Oxford, England.]) [Analytical numeric absorption correction using a multifaceted crystal model based on Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])]
Tmin, Tmax 0.014, 0.059
No. of measured, independent and observed [I > 3σ(I)] reflections 6801, 1699, 1069
Rint 0.094
(sin θ/λ)max−1) 0.646
 
Refinement
R[F2 > 2σ(F2)], wR(F), S 0.057, 0.049, 1.24
No. of reflections 1069
No. of parameters 76
Δρmax, Δρmin (e Å−3) 3.36, −3.12
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 429 Friedel pairs used in the refinement
Absolute structure parameter 0.35 (9)
Computer programs: CrysAlis PRO (Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Rigaku Corporation, Oxford, England.]), JANA2006 (Petříček et al., 2014[Petříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345-352.]) and DIAMOND (Brandenburg & Putz, 2019[Brandenburg, K. & Putz, H. (2019). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).
[Figure 3]
Figure 3
Diffraction pattern of the (0kl) layer showing twinned peaks and weak diffuse scattering, especially for the fifth-order reflections.

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2019); cell refinement: CrysAlis PRO (Rigaku OD, 2019); data reduction: CrysAlis PRO (Rigaku OD, 2019); program(s) used to solve structure: Jana2006 (Petříček et al., 2014); program(s) used to refine structure: Jana2006 (Petříček et al., 2014); molecular graphics: DIAMOND (Brandenburg & Putz, 2019).

Tetracosalanthanum undecaruthenium top
Crystal data top
La24Ru11Dx = 7.385 Mg m3
Mr = 4445.9Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63mcCell parameters from 1576 reflections
Hall symbol: P 6c -2cθ = 4.8–27.3°
a = 10.0627 (18) ŵ = 29.00 mm1
c = 22.801 (3) ÅT = 298 K
V = 1999.5 (8) Å3Hexagonal, grey
Z = 20.23 × 0.2 × 0.2 mm
F(000) = 3704
Data collection top
Rigaku Oxford Diffraction Xcalibur, Eos
diffractometer
1699 independent reflections
Radiation source: X-ray tube1069 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.094
Detector resolution: 8.0683 pixels mm-1θmax = 27.3°, θmin = 4.8°
ω scansh = 611
Absorption correction: analytical
(CrysAlisPro, Rigaku OD, 2019) [Analytical numeric absorption correction using a multifaceted crystal model based on Clark & Reid (1995)]
k = 1310
Tmin = 0.014, Tmax = 0.059l = 2929
6801 measured reflections
Refinement top
Refinement on FWeighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2)
R[F2 > 2σ(F2)] = 0.057(Δ/σ)max = 0.0003
wR(F2) = 0.049Δρmax = 3.36 e Å3
S = 1.24Δρmin = 3.12 e Å3
1069 reflectionsExtinction correction: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974a,b)
76 parametersExtinction coefficient: 100
0 restraintsAbsolute structure: Flack (1983), 429 Friedel pairs used in the refinement
1 constraintAbsolute structure parameter: 0.35 (9)
Special details top

Refinement. Data collection and reduction were performed with CrysAlis PRO (Rigaku OD, 2019) software. Structure solution and refinement were performed with JANA2006 (Petříček et al., 2014). During refinement, site occupation factors were checked, but no hints of disorder were found. In the final refinement cycles, all the atoms were refined with anisotropic thermal parameters. DIAMOND Version 4.6.3 (Brandenburg & Putz, 2019) was used for structure visualization and polyhedra construction.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
La1110.6280 (3)0.0285 (15)
La20.45874 (16)0.9175 (3)0.6059 (3)0.0274 (12)
La30.5908 (4)0.79539 (19)0.4730 (3)0.0270 (13)
La40.87616 (17)0.7523 (3)0.8272 (3)0.0274 (11)
La50.4014 (3)0.20071 (17)0.2379 (3)0.0300 (12)
La60.79826 (19)0.5965 (4)0.5186 (3)0.0262 (13)
La70.20264 (16)0.4053 (3)0.1801 (3)0.0298 (12)
La80.3333330.6666670.3124 (3)0.0260 (15)
La90.9168 (3)0.45838 (17)0.3769 (3)0.0274 (12)
La10110.4706 (3)0.0299 (17)
Ru10.8492 (3)0.6983 (5)0.4062 (3)0.0301 (19)
Ru20.6666670.3333330.5929 (3)0.030 (2)
Ru30.4838 (2)0.5162 (2)0.2522 (3)0.0304 (17)
Ru40.6909 (5)0.8455 (3)0.5825 (3)0.0342 (19)
Ru5110.7487760.039 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.031 (2)0.031 (2)0.0243 (17)0.0153 (10)00
La20.0274 (13)0.0271 (19)0.0276 (10)0.0135 (9)0.0004 (6)0.0007 (12)
La30.029 (2)0.0281 (15)0.0241 (11)0.0145 (10)0.0004 (12)0.0002 (6)
La40.0293 (13)0.0287 (18)0.0240 (9)0.0144 (9)0.0000 (6)0.0000 (12)
La50.0307 (19)0.0300 (13)0.0296 (12)0.0153 (9)0.0067 (12)0.0033 (6)
La60.0249 (15)0.031 (2)0.0245 (11)0.0156 (11)0.0007 (6)0.0013 (11)
La70.0325 (15)0.0271 (19)0.0280 (11)0.0136 (10)0.0016 (6)0.0032 (12)
La80.0189 (19)0.0189 (19)0.040 (2)0.0095 (10)00
La90.0267 (19)0.0272 (14)0.0281 (10)0.0133 (10)0.0018 (12)0.0009 (6)
La100.031 (2)0.031 (2)0.0286 (19)0.0153 (12)00
Ru10.030 (2)0.036 (3)0.0264 (16)0.0181 (15)0.0007 (9)0.0013 (17)
Ru20.030 (3)0.030 (3)0.028 (3)0.0152 (15)00
Ru30.034 (2)0.034 (2)0.0303 (16)0.022 (2)0.0001 (8)0.0001 (8)
Ru40.021 (3)0.033 (3)0.045 (2)0.0104 (13)0.0056 (18)0.0028 (9)
Ru50.046 (3)0.046 (3)0.025 (3)0.0228 (16)00
Geometric parameters (Å, º) top
La1—La7i3.727 (5)La4—La10xii3.918 (8)
La1—La7ii3.727 (5)La4—Ru1viii3.023 (8)
La1—La7iii3.727 (5)La4—Ru1xiii3.023 (7)
La1—La103.587 (11)La4—Ru52.803 (5)
La1—Ru42.886 (6)La5—La73.754 (5)
La1—Ru4iv2.886 (6)La5—La7xiv3.754 (4)
La1—Ru4v2.886 (6)La5—La9x3.885 (8)
La1—Ru52.755 (8)La5—La9xv3.885 (8)
La2—La2vi3.786 (4)La5—Ru32.871 (3)
La2—La2vii3.786 (4)La5—Ru3x2.871 (5)
La2—La33.754 (8)La6—La7i3.683 (9)
La2—La3vi3.754 (8)La6—La93.932 (8)
La2—La5i3.758 (8)La6—La9x3.932 (8)
La2—La5viii3.758 (8)La6—La103.682 (5)
La2—La6vi3.748 (7)La6—Ru12.713 (9)
La2—La6v3.748 (6)La6—Ru22.852 (7)
La2—La7viii3.596 (7)La7—La7vi3.945 (4)
La2—La7iii3.596 (5)La7—La7vii3.945 (4)
La2—Ru42.822 (6)La7—La83.780 (8)
La2—Ru4vi2.822 (4)La7—Ru2xvi3.024 (7)
La3—La3vi3.886 (5)La7—Ru32.965 (6)
La3—La3vii3.886 (4)La7—Ru3vii2.965 (6)
La3—La4ix3.610 (9)La8—La9xvii3.916 (5)
La3—La63.691 (6)La8—La9x3.916 (5)
La3—La6v3.691 (4)La8—La9v3.916 (5)
La3—La9x3.856 (6)La8—Ru32.960 (5)
La3—La9v3.856 (7)La8—Ru3vi2.960 (5)
La3—La103.567 (4)La8—Ru3vii2.960 (5)
La3—Ru42.644 (9)La9—La9x3.775 (5)
La4—La4iv3.738 (4)La9—La9xv3.775 (4)
La4—La4v3.738 (5)La9—Ru12.895 (6)
La4—La5i3.673 (6)La9—Ru1xv2.895 (4)
La4—La5ii3.673 (6)La9—Ru3xv3.016 (9)
La4—La7i3.623 (9)La10—Ru13.012 (6)
La4—La8i3.667 (4)La10—Ru1iv3.012 (6)
La4—La9xi3.813 (5)La10—Ru1v3.012 (7)
La4—La9viii3.813 (4)
La7i—La1—La7ii110.31 (14)La2xviii—La7—La7vi56.73 (9)
La7i—La1—La7iii110.31 (14)La2xviii—La7—La7vii108.92 (11)
La7i—La1—La10108.62 (15)La2xviii—La7—La8107.30 (10)
La7i—La1—Ru470.89 (10)La2xviii—La7—Ru2xvi65.98 (11)
La7i—La1—Ru4iv70.89 (11)La2xviii—La7—Ru363.25 (15)
La7i—La1—Ru4v177.6 (3)La2xviii—La7—Ru3vii152.50 (10)
La7i—La1—Ru571.38 (15)La4xvi—La7—La559.68 (13)
La7ii—La1—La7iii110.31 (14)La4xvi—La7—La5xxi59.68 (12)
La7ii—La1—La10108.62 (15)La4xvi—La7—La6xvi157.48 (12)
La7ii—La1—Ru4177.6 (3)La4xvi—La7—La7vi109.16 (17)
La7ii—La1—Ru4iv70.89 (11)La4xvi—La7—La7vii109.16 (18)
La7ii—La1—Ru4v70.89 (14)La4xvi—La7—La859.33 (13)
La7ii—La1—Ru571.38 (15)La4xvi—La7—Ru2xvi153.4 (2)
La7iii—La1—La10108.62 (15)La4xvi—La7—Ru367.10 (16)
La7iii—La1—Ru470.89 (12)La4xvi—La7—Ru3vii67.10 (17)
La7iii—La1—Ru4iv177.6 (3)La5—La7—La5xxi107.61 (15)
La7iii—La1—Ru4v70.89 (15)La5—La7—La6xvi110.42 (16)
La7iii—La1—Ru571.38 (15)La5—La7—La7vi90.45 (9)
La10—La1—Ru468.94 (19)La5—La7—La7vii144.57 (14)
La10—La1—Ru4iv68.9 (2)La5—La7—La890.35 (15)
La10—La1—Ru4v68.94 (19)La5—La7—Ru2xvi126.05 (10)
La10—La1—Ru5180La5—La7—Ru348.87 (9)
Ru4—La1—Ru4iv107.8 (2)La5—La7—Ru3vii125.3 (2)
Ru4—La1—Ru4v107.8 (2)La5xxi—La7—La6xvi110.42 (14)
Ru4—La1—Ru5111.06 (19)La5xxi—La7—La7vi144.57 (17)
Ru4iv—La1—Ru4v107.8 (2)La5xxi—La7—La7vii90.45 (11)
Ru4iv—La1—Ru5111.1 (2)La5xxi—La7—La890.35 (15)
Ru4v—La1—Ru5111.06 (19)La5xxi—La7—Ru2xvi126.05 (13)
La2vi—La2—La2vii60.00 (9)La5xxi—La7—Ru3125.3 (2)
La2vi—La2—La390.76 (14)La5xxi—La7—Ru3vii48.87 (9)
La2vi—La2—La3vi59.72 (13)La6xvi—La7—La7vi90.21 (14)
La2vi—La2—La5i91.66 (14)La6xvi—La7—La7vii90.21 (16)
La2vi—La2—La5viii59.76 (12)La6xvi—La7—La8143.19 (13)
La2vi—La2—La6vi107.90 (12)La6xvi—La7—Ru2xvi49.12 (15)
La2vi—La2—La6v146.9 (2)La6xvi—La7—Ru3123.75 (16)
La2vi—La2—La7viii108.92 (12)La6xvi—La7—Ru3vii123.75 (18)
La2vi—La2—La7iii150.8 (2)La7vi—La7—La7vii60.00 (9)
La2vi—La2—Ru4106.59 (12)La7vi—La7—La858.54 (12)
La2vi—La2—Ru4vi47.87 (14)La7vi—La7—Ru2xvi49.28 (13)
La2vii—La2—La359.72 (13)La7vi—La7—Ru348.29 (11)
La2vii—La2—La3vi90.76 (15)La7vi—La7—Ru3vii95.77 (13)
La2vii—La2—La5i59.76 (13)La7vii—La7—La858.54 (12)
La2vii—La2—La5viii91.66 (14)La7vii—La7—Ru2xvi49.28 (13)
La2vii—La2—La6vi146.9 (2)La7vii—La7—Ru395.77 (12)
La2vii—La2—La6v107.90 (13)La7vii—La7—Ru3vii48.29 (12)
La2vii—La2—La7viii150.8 (2)La8—La7—Ru2xvi94.06 (15)
La2vii—La2—La7iii108.92 (12)La8—La7—Ru350.31 (12)
La2vii—La2—Ru447.87 (9)La8—La7—Ru3vii50.31 (12)
La2vii—La2—Ru4vi106.59 (14)Ru2xvi—La7—Ru396.82 (12)
La3—La2—La3vi62.33 (14)Ru2xvi—La7—Ru3vii96.82 (15)
La3—La2—La5i107.05 (13)Ru3—La7—Ru3vii100.0 (2)
La3—La2—La5viii147.62 (11)La4xvi—La8—La4ix119.17 (9)
La3—La2—La6vi91.87 (18)La4xvi—La8—La4xxii119.17 (7)
La3—La2—La6v58.94 (11)La4xvi—La8—La758.21 (13)
La3—La2—La7viii149.28 (18)La4xvi—La8—La7vi111.92 (15)
La3—La2—La7iii106.97 (12)La4xvi—La8—La7vii111.92 (14)
La3—La2—Ru444.68 (17)La4xvi—La8—La9xvii60.27 (7)
La3—La2—Ru4vi106.2 (2)La4xvi—La8—La9x60.27 (7)
La3vi—La2—La5i147.62 (11)La4xvi—La8—La9v152.7 (2)
La3vi—La2—La5viii107.05 (10)La4xvi—La8—Ru366.52 (8)
La3vi—La2—La6vi58.94 (13)La4xvi—La8—Ru3vi157.6 (3)
La3vi—La2—La6v91.87 (18)La4xvi—La8—Ru3vii66.52 (9)
La3vi—La2—La7viii106.97 (14)La4ix—La8—La4xxii119.17 (9)
La3vi—La2—La7iii149.28 (18)La4ix—La8—La7111.92 (15)
La3vi—La2—Ru4106.2 (2)La4ix—La8—La7vi58.21 (13)
La3vi—La2—Ru4vi44.68 (17)La4ix—La8—La7vii111.92 (15)
La5i—La2—La5viii64.37 (14)La4ix—La8—La9xvii152.7 (2)
La5i—La2—La6vi152.73 (16)La4ix—La8—La9x60.27 (8)
La5i—La2—La6v108.92 (11)La4ix—La8—La9v60.27 (10)
La5i—La2—La7viii96.02 (19)La4ix—La8—Ru366.52 (10)
La5i—La2—La7iii61.34 (11)La4ix—La8—Ru3vi66.52 (10)
La5i—La2—Ru465.26 (18)La4ix—La8—Ru3vii157.6 (3)
La5i—La2—Ru4vi126.9 (2)La4xxii—La8—La7111.92 (15)
La5viii—La2—La6vi108.92 (13)La4xxii—La8—La7vi111.92 (15)
La5viii—La2—La6v152.73 (16)La4xxii—La8—La7vii58.21 (13)
La5viii—La2—La7viii61.34 (13)La4xxii—La8—La9xvii60.27 (7)
La5viii—La2—La7iii96.02 (19)La4xxii—La8—La9x152.7 (2)
La5viii—La2—Ru4126.9 (2)La4xxii—La8—La9v60.27 (9)
La5viii—La2—Ru4vi65.26 (17)La4xxii—La8—Ru3157.6 (3)
La6vi—La2—La6v64.01 (12)La4xxii—La8—Ru3vi66.52 (9)
La6vi—La2—La7viii60.16 (15)La4xxii—La8—Ru3vii66.52 (10)
La6vi—La2—La7iii94.82 (11)La7—La8—La7vi62.92 (13)
La6vi—La2—Ru4123.6 (2)La7—La8—La7vii62.92 (13)
La6vi—La2—Ru4vi62.57 (15)La7—La8—La9xvii91.15 (10)
La6v—La2—La7viii94.82 (11)La7—La8—La9x91.15 (11)
La6v—La2—La7iii60.16 (13)La7—La8—La9v149.09 (19)
La6v—La2—Ru462.57 (12)La7—La8—Ru350.42 (12)
La6v—La2—Ru4vi123.6 (2)La7—La8—Ru3vi99.4 (2)
La7viii—La2—La7iii66.54 (11)La7—La8—Ru3vii50.42 (13)
La7viii—La2—Ru4140.14 (15)La7vi—La8—La7vii62.92 (14)
La7viii—La2—Ru4vi73.63 (16)La7vi—La8—La9xvii149.09 (19)
La7iii—La2—Ru473.63 (12)La7vi—La8—La9x91.15 (11)
La7iii—La2—Ru4vi140.1 (2)La7vi—La8—La9v91.15 (11)
Ru4—La2—Ru4vi146.0 (2)La7vi—La8—Ru350.42 (13)
La2—La3—La2vii60.56 (13)La7vi—La8—Ru3vi50.42 (14)
La2—La3—La3vi58.83 (13)La7vi—La8—Ru3vii99.4 (2)
La2—La3—La3vii89.24 (13)La7vii—La8—La9xvii91.15 (11)
La2—La3—La4ix149.65 (12)La7vii—La8—La9x149.09 (19)
La2—La3—La6109.8 (2)La7vii—La8—La9v91.15 (10)
La2—La3—La6v60.44 (12)La7vii—La8—Ru399.4 (2)
La2—La3—La9x146.71 (12)La7vii—La8—Ru3vi50.42 (12)
La2—La3—La9v90.79 (13)La7vii—La8—Ru3vii50.42 (12)
La2—La3—La10108.59 (16)La9xvii—La8—La9x106.79 (13)
La2—La3—Ru448.63 (17)La9xvii—La8—La9v106.79 (13)
La2vii—La3—La3vi89.24 (14)La9xvii—La8—Ru3125.78 (6)
La2vii—La3—La3vii58.83 (12)La9xvii—La8—Ru3vi125.78 (8)
La2vii—La3—La4ix149.65 (13)La9xvii—La8—Ru3vii49.67 (15)
La2vii—La3—La660.44 (12)La9x—La8—La9v106.79 (14)
La2vii—La3—La6v109.79 (19)La9x—La8—Ru349.67 (15)
La2vii—La3—La9x90.79 (12)La9x—La8—Ru3vi125.78 (7)
La2vii—La3—La9v146.71 (16)La9x—La8—Ru3vii125.78 (7)
La2vii—La3—La10108.59 (18)La9v—La8—Ru3125.78 (7)
La2vii—La3—Ru448.63 (12)La9v—La8—Ru3vi49.67 (15)
La3vi—La3—La3vii60.00 (10)La9v—La8—Ru3vii125.78 (9)
La3vi—La3—La4ix109.74 (18)Ru3—La8—Ru3vi100.20 (19)
La3vi—La3—La6146.80 (13)Ru3—La8—Ru3vii100.20 (19)
La3vi—La3—La6v90.67 (12)Ru3vi—La8—Ru3vii100.20 (18)
La3vi—La3—La9x108.14 (12)La3iv—La9—La3xv60.51 (11)
La3vi—La3—La9v59.75 (11)La3iv—La9—La4xxiii106.19 (11)
La3vi—La3—La10149.99 (8)La3iv—La9—La4xviii56.16 (12)
La3vi—La3—Ru4106.6 (2)La3iv—La9—La5x153.45 (15)
La3vii—La3—La4ix109.74 (17)La3iv—La9—La5xv112.04 (11)
La3vii—La3—La690.67 (10)La3iv—La9—La656.57 (10)
La3vii—La3—La6v146.80 (17)La3iv—La9—La6xv87.60 (17)
La3vii—La3—La9x59.75 (10)La3iv—La9—La8xxiv67.06 (11)
La3vii—La3—La9v108.14 (14)La3iv—La9—La9x108.14 (13)
La3vii—La3—La10149.99 (12)La3iv—La9—La9xv144.6 (2)
La3vii—La3—Ru4106.61 (18)La3iv—La9—Ru161.43 (12)
La4ix—La3—La693.92 (16)La3iv—La9—Ru1xv118.7 (2)
La4ix—La3—La6v93.92 (13)La3iv—La9—Ru3xv108.56 (12)
La4ix—La3—La9x61.31 (13)La3xv—La9—La4xxiii56.16 (13)
La4ix—La3—La9v61.31 (14)La3xv—La9—La4xviii106.19 (11)
La4ix—La3—La1066.18 (15)La3xv—La9—La5x112.04 (13)
La4ix—La3—Ru4137.77 (17)La3xv—La9—La5xv153.45 (16)
La6—La3—La6v111.18 (14)La3xv—La9—La687.60 (17)
La6—La3—La9x62.74 (12)La3xv—La9—La6xv56.57 (12)
La6—La3—La9v152.51 (17)La3xv—La9—La8xxiv67.06 (12)
La6—La3—La1060.95 (8)La3xv—La9—La9x144.6 (2)
La6—La3—Ru464.68 (17)La3xv—La9—La9xv108.14 (13)
La6v—La3—La9x152.51 (17)La3xv—La9—Ru1118.7 (2)
La6v—La3—La9v62.74 (12)La3xv—La9—Ru1xv61.43 (15)
La6v—La3—La1060.95 (9)La3xv—La9—Ru3xv108.56 (15)
La6v—La3—Ru464.68 (14)La4xxiii—La9—La4xviii112.06 (14)
La9x—La3—La9v109.2 (2)La4xxiii—La9—La5x56.99 (11)
La9x—La3—La1095.88 (13)La4xxiii—La9—La5xv108.06 (19)
La9x—La3—Ru4124.98 (17)La4xxiii—La9—La6141.9 (2)
La9v—La3—La1095.88 (11)La4xxiii—La9—La6xv87.10 (13)
La9v—La3—Ru4124.98 (14)La4xxiii—La9—La8xxiv56.63 (7)
La10—La3—Ru471.60 (18)La4xxiii—La9—La9x145.54 (13)
La3xiii—La4—La4iv109.74 (17)La4xxiii—La9—La9xv89.72 (9)
La3xiii—La4—La4v109.74 (19)La4xxiii—La9—Ru1162.55 (11)
La3xiii—La4—La5i123.63 (14)La4xxiii—La9—Ru1xv51.37 (15)
La3xiii—La4—La5ii123.63 (15)La4xxiii—La9—Ru3xv64.02 (14)
La3xiii—La4—La7i134.77 (12)La4xviii—La9—La5x108.06 (19)
La3xiii—La4—La8i72.32 (14)La4xviii—La9—La5xv56.99 (11)
La3xiii—La4—La9xi62.53 (15)La4xviii—La9—La687.10 (12)
La3xiii—La4—La9viii62.53 (13)La4xviii—La9—La6xv141.95 (19)
La3xiii—La4—La10xii56.38 (13)La4xviii—La9—La8xxiv56.63 (8)
La3xiii—La4—Ru1viii63.92 (19)La4xviii—La9—La9x89.72 (11)
La3xiii—La4—Ru1xiii63.92 (16)La4xviii—La9—La9xv145.54 (16)
La3xiii—La4—Ru5152.59 (18)La4xviii—La9—Ru151.37 (12)
La4iv—La4—La4v60.00 (10)La4xviii—La9—Ru1xv162.55 (18)
La4iv—La4—La5i108.42 (14)La4xviii—La9—Ru3xv64.02 (13)
La4iv—La4—La5ii59.41 (11)La5x—La9—La5xv62.04 (14)
La4iv—La4—La7i109.16 (17)La5x—La9—La6149.48 (9)
La4iv—La4—La8i149.58 (12)La5x—La9—La6xv109.92 (10)
La4iv—La4—La9xi90.28 (9)La5x—La9—La8xxiv86.47 (14)
La4iv—La4—La9viii146.03 (17)La5x—La9—La9x91.69 (14)
La4iv—La4—La10xii61.51 (12)La5x—La9—La9xv60.93 (12)
La4iv—La4—Ru1viii97.75 (15)La5x—La9—Ru1128.7 (2)
La4iv—La4—Ru1xiii51.80 (12)La5x—La9—Ru1xv69.16 (16)
La4iv—La4—Ru548.17 (10)La5x—La9—Ru3xv47.12 (11)
La4v—La4—La5i59.41 (10)La5xv—La9—La6109.92 (13)
La4v—La4—La5ii108.42 (13)La5xv—La9—La6xv149.48 (12)
La4v—La4—La7i109.16 (18)La5xv—La9—La8xxiv86.47 (15)
La4v—La4—La8i149.58 (9)La5xv—La9—La9x60.93 (13)
La4v—La4—La9xi146.03 (13)La5xv—La9—La9xv91.69 (14)
La4v—La4—La9viii90.28 (11)La5xv—La9—Ru169.16 (17)
La4v—La4—La10xii61.51 (13)La5xv—La9—Ru1xv128.7 (2)
La4v—La4—Ru1viii51.80 (15)La5xv—La9—Ru3xv47.12 (13)
La4v—La4—Ru1xiii97.75 (14)La6—La9—La6xv60.69 (13)
La4v—La4—Ru548.17 (11)La6—La9—La8xxiv123.49 (12)
La5i—La4—La5ii111.1 (2)La6—La9—La9x61.31 (13)
La5i—La4—La7i61.92 (13)La6—La9—La9xv91.44 (14)
La5i—La4—La8i93.44 (10)La6—La9—Ru143.62 (16)
La5i—La4—La9xi153.95 (16)La6—La9—Ru1xv103.7 (2)
La5i—La4—La9viii62.49 (11)La6—La9—Ru3xv149.61 (12)
La5i—La4—La10xii113.65 (12)La6xv—La9—La8xxiv123.49 (15)
La5i—La4—Ru1viii71.20 (16)La6xv—La9—La9x91.44 (15)
La5i—La4—Ru1xiii156.97 (13)La6xv—La9—La9xv61.31 (12)
La5i—La4—Ru563.93 (11)La6xv—La9—Ru1103.7 (2)
La5ii—La4—La7i61.92 (13)La6xv—La9—Ru1xv43.62 (16)
La5ii—La4—La8i93.44 (13)La6xv—La9—Ru3xv149.61 (13)
La5ii—La4—La9xi62.49 (12)La8xxiv—La9—La9x143.40 (15)
La5ii—La4—La9viii153.95 (16)La8xxiv—La9—La9xv143.40 (16)
La5ii—La4—La10xii113.65 (10)La8xxiv—La9—Ru1105.97 (8)
La5ii—La4—Ru1viii156.97 (13)La8xxiv—La9—Ru1xv105.97 (16)
La5ii—La4—Ru1xiii71.20 (15)La8xxiv—La9—Ru3xv48.44 (13)
La5ii—La4—Ru563.93 (11)La9x—La9—La9xv60.00 (10)
La7i—La4—La8i62.46 (14)La9x—La9—Ru149.31 (9)
La7i—La4—La9xi95.29 (14)La9x—La9—Ru1xv107.43 (15)
La7i—La4—La9viii95.29 (12)La9x—La9—Ru3xv106.82 (19)
La7i—La4—La10xii168.85 (15)La9xv—La9—Ru1107.43 (13)
La7i—La4—Ru1viii131.07 (16)La9xv—La9—Ru1xv49.31 (14)
La7i—La4—Ru1xiii131.07 (17)La9xv—La9—Ru3xv106.82 (18)
La7i—La4—Ru572.63 (15)Ru1—La9—Ru1xv144.2 (3)
La8i—La4—La9xi63.11 (8)Ru1—La9—Ru3xv106.59 (19)
La8i—La4—La9viii63.11 (8)Ru1xv—La9—Ru3xv106.6 (2)
La8i—La4—La10xii128.7 (2)La1—La10—La389.13 (16)
La8i—La4—Ru1viii109.43 (14)La1—La10—La3iv89.13 (16)
La8i—La4—Ru1xiii109.43 (15)La1—La10—La3v89.13 (16)
La8i—La4—Ru5135.1 (2)La1—La10—La4xxv146.57 (9)
La9xi—La4—La9viii111.09 (14)La1—La10—La4ix146.57 (9)
La9xi—La4—La10xii91.00 (15)La1—La10—La4xviii146.57 (9)
La9xi—La4—Ru1viii125.4 (2)La1—La10—La672.72 (14)
La9xi—La4—Ru1xiii48.44 (11)La1—La10—La6iv72.72 (14)
La9xi—La4—Ru5124.08 (11)La1—La10—La6v72.72 (15)
La9viii—La4—La10xii91.00 (15)La1—La10—Ru1119.21 (17)
La9viii—La4—Ru1viii48.44 (11)La1—La10—Ru1iv119.21 (17)
La9viii—La4—Ru1xiii125.4 (2)La1—La10—Ru1v119.21 (17)
La9viii—La4—Ru5124.08 (13)La3—La10—La3iv119.98 (6)
La10xii—La4—Ru1viii49.39 (13)La3—La10—La3v119.98 (9)
La10xii—La4—Ru1xiii49.39 (14)La3—La10—La4xxv106.74 (16)
La10xii—La4—Ru596.21 (11)La3—La10—La4ix57.45 (14)
Ru1viii—La4—Ru1xiii97.7 (2)La3—La10—La4xviii106.74 (16)
Ru1viii—La4—Ru599.50 (16)La3—La10—La661.19 (7)
Ru1xiii—La4—Ru599.50 (9)La3—La10—La6iv161.8 (3)
La2xvi—La5—La2xviii60.49 (13)La3—La10—La6v61.19 (7)
La2xvi—La5—La4xvi156.03 (16)La3—La10—Ru164.60 (10)
La2xvi—La5—La4xix113.64 (11)La3—La10—Ru1iv151.7 (3)
La2xvi—La5—La7106.2 (2)La3—La10—Ru1v64.60 (11)
La2xvi—La5—La7xiv57.20 (11)La3iv—La10—La3v119.98 (8)
La2xvi—La5—La9x142.72 (10)La3iv—La10—La4xxv106.74 (16)
La2xvi—La5—La9xv107.83 (13)La3iv—La10—La4ix106.74 (17)
La2xvi—La5—Ru3119.61 (19)La3iv—La10—La4xviii57.45 (14)
La2xvi—La5—Ru3x61.67 (17)La3iv—La10—La661.19 (7)
La2xviii—La5—La4xvi113.64 (13)La3iv—La10—La6iv61.19 (9)
La2xviii—La5—La4xix156.03 (17)La3iv—La10—La6v161.8 (3)
La2xviii—La5—La757.20 (12)La3iv—La10—Ru164.60 (11)
La2xviii—La5—La7xiv106.20 (19)La3iv—La10—Ru1iv64.60 (15)
La2xviii—La5—La9x107.83 (10)La3iv—La10—Ru1v151.7 (3)
La2xviii—La5—La9xv142.72 (11)La3v—La10—La4xxv57.45 (14)
La2xviii—La5—Ru361.67 (16)La3v—La10—La4ix106.74 (17)
La2xviii—La5—Ru3x119.6 (2)La3v—La10—La4xviii106.74 (16)
La4xvi—La5—La4xix61.19 (11)La3v—La10—La6161.8 (3)
La4xvi—La5—La758.39 (13)La3v—La10—La6iv61.19 (11)
La4xvi—La5—La7xiv107.78 (11)La3v—La10—La6v61.19 (9)
La4xvi—La5—La9x60.52 (11)La3v—La10—Ru1151.7 (3)
La4xvi—La5—La9xv90.14 (18)La3v—La10—Ru1iv64.60 (15)
La4xvi—La5—Ru367.20 (13)La3v—La10—Ru1v64.60 (11)
La4xvi—La5—Ru3x126.2 (2)La4xxv—La10—La4ix56.99 (12)
La4xix—La5—La7107.78 (12)La4xxv—La10—La4xviii56.99 (13)
La4xix—La5—La7xiv58.39 (12)La4xxv—La10—La6140.7 (2)
La4xix—La5—La9x90.14 (17)La4xxv—La10—La6iv89.14 (12)
La4xix—La5—La9xv60.52 (12)La4xxv—La10—La6v89.14 (12)
La4xix—La5—Ru3126.2 (2)La4xxv—La10—Ru194.2 (2)
La4xix—La5—Ru3x67.20 (12)La4xxv—La10—Ru1iv49.63 (16)
La7—La5—La7xiv109.14 (15)La4xxv—La10—Ru1v49.63 (15)
La7—La5—La9x92.03 (13)La4ix—La10—La4xviii56.99 (14)
La7—La5—La9xv145.8 (2)La4ix—La10—La689.14 (12)
La7—La5—Ru351.08 (11)La4ix—La10—La6iv140.7 (2)
La7—La5—Ru3x159.8 (2)La4ix—La10—La6v89.14 (13)
La7xiv—La5—La9x145.81 (19)La4ix—La10—Ru149.63 (15)
La7xiv—La5—La9xv92.03 (12)La4ix—La10—Ru1iv94.2 (2)
La7xiv—La5—Ru3159.8 (2)La4ix—La10—Ru1v49.63 (14)
La7xiv—La5—Ru3x51.08 (11)La4xviii—La10—La689.14 (12)
La9x—La5—La9xv58.14 (13)La4xviii—La10—La6iv89.14 (13)
La9x—La5—Ru350.33 (16)La4xviii—La10—La6v140.7 (2)
La9x—La5—Ru3x107.2 (2)La4xviii—La10—Ru149.63 (13)
La9xv—La5—Ru3107.2 (2)La4xviii—La10—Ru1iv49.63 (15)
La9xv—La5—Ru3x50.33 (17)La4xviii—La10—Ru1v94.2 (2)
Ru3—La5—Ru3x148.13 (17)La6—La10—La6iv111.57 (14)
La2iv—La6—La2vii113.7 (2)La6—La10—La6v111.57 (13)
La2iv—La6—La3155.60 (17)La6—La10—Ru146.49 (15)
La2iv—La6—La3iv60.62 (12)La6—La10—Ru1iv124.17 (15)
La2iv—La6—La7i57.87 (13)La6—La10—Ru1v124.17 (9)
La2iv—La6—La989.74 (14)La6iv—La10—La6v111.57 (14)
La2iv—La6—La9x143.08 (16)La6iv—La10—Ru1124.17 (12)
La2iv—La6—La10106.29 (9)La6iv—La10—Ru1iv46.49 (15)
La2iv—La6—Ru1122.97 (15)La6iv—La10—Ru1v124.17 (11)
La2iv—La6—Ru265.22 (12)La6v—La10—Ru1124.17 (10)
La2vii—La6—La360.62 (12)La6v—La10—Ru1iv124.17 (14)
La2vii—La6—La3iv155.60 (17)La6v—La10—Ru1v46.49 (16)
La2vii—La6—La7i57.87 (13)Ru1—La10—Ru1iv98.2 (2)
La2vii—La6—La9143.08 (13)Ru1—La10—Ru1v98.2 (2)
La2vii—La6—La9x89.74 (12)Ru1iv—La10—Ru1v98.2 (2)
La2vii—La6—La10106.29 (12)La4ix—Ru1—La4xviii76.40 (18)
La2vii—La6—Ru1122.97 (17)La4ix—Ru1—La6136.9 (2)
La2vii—La6—Ru265.22 (11)La4ix—Ru1—La9129.5 (3)
La3—La6—La3iv113.60 (15)La4ix—Ru1—La9x80.19 (16)
La3—La6—La7i106.48 (16)La4ix—Ru1—La1080.98 (19)
La3—La6—La9108.29 (19)La4xviii—Ru1—La6136.93 (18)
La3—La6—La9x60.69 (12)La4xviii—Ru1—La980.19 (16)
La3—La6—La1057.86 (8)La4xviii—Ru1—La9x129.5 (3)
La3—La6—Ru165.18 (17)La4xviii—Ru1—La1080.98 (15)
La3—La6—Ru2123.03 (11)La6—Ru1—La989.0 (2)
La3iv—La6—La7i106.48 (14)La6—Ru1—La9x88.96 (18)
La3iv—La6—La960.69 (12)La6—Ru1—La1079.9 (2)
La3iv—La6—La9x108.29 (19)La9—Ru1—La9x81.38 (16)
La3iv—La6—La1057.86 (8)La9—Ru1—La10137.99 (16)
La3iv—La6—Ru165.18 (14)La9x—Ru1—La10138.0 (2)
La3iv—La6—Ru2123.03 (14)La6—Ru2—La6x88.3 (2)
La7i—La6—La9145.16 (14)La6—Ru2—La6xv88.3 (2)
La7i—La6—La9x145.16 (9)La6—Ru2—La7i77.58 (15)
La7i—La6—La10107.53 (17)La6—Ru2—La7xxvi133.93 (12)
La7i—La6—Ru1161.16 (17)La6—Ru2—La7xiii133.93 (8)
La7i—La6—Ru253.30 (17)La6x—Ru2—La6xv88.3 (2)
La9—La6—La9x57.38 (12)La6x—Ru2—La7i133.93 (12)
La9—La6—La1092.76 (16)La6x—Ru2—La7xxvi77.58 (15)
La9—La6—Ru147.41 (16)La6x—Ru2—La7xiii133.93 (10)
La9—La6—Ru2104.02 (16)La6xv—Ru2—La7i133.93 (9)
La9x—La6—La1092.76 (17)La6xv—Ru2—La7xxvi133.93 (10)
La9x—La6—Ru147.41 (12)La6xv—Ru2—La7xiii77.58 (16)
La9x—La6—Ru2104.02 (14)La7i—Ru2—La7xxvi81.4 (2)
La10—La6—Ru153.63 (17)La7i—Ru2—La7xiii81.4 (2)
La10—La6—Ru2160.8 (3)La7xxvi—Ru2—La7xiii81.4 (2)
Ru1—La6—Ru2145.5 (2)La5—Ru3—La5xv88.43 (13)
La1xvi—La7—La2xx88.43 (12)La5—Ru3—La780.05 (14)
La1xvi—La7—La2xviii88.43 (12)La5—Ru3—La7vi139.0 (3)
La1xvi—La7—La4xvi86.35 (15)La5—Ru3—La8132.81 (15)
La1xvi—La7—La570.25 (10)La5—Ru3—La9x82.55 (18)
La1xvi—La7—La5xxi70.25 (10)La5xv—Ru3—La7139.0 (3)
La1xvi—La7—La6xvi71.13 (16)La5xv—Ru3—La7vi80.05 (14)
La1xvi—La7—La7vi145.15 (15)La5xv—Ru3—La8132.81 (15)
La1xvi—La7—La7vii145.15 (14)La5xv—Ru3—La9x82.55 (17)
La1xvi—La7—La8145.7 (2)La7—Ru3—La7vi83.41 (17)
La1xvi—La7—Ru2xvi120.3 (2)La7—Ru3—La879.27 (14)
La1xvi—La7—Ru3119.07 (13)La7—Ru3—La9x133.59 (16)
La1xvi—La7—Ru3vii119.07 (9)La7vi—Ru3—La879.27 (15)
La2xx—La7—La2xviii121.6 (2)La7vi—Ru3—La9x133.59 (17)
La2xx—La7—La4xvi118.98 (13)La8—Ru3—La9x81.9 (2)
La2xx—La7—La5158.60 (12)La1—Ru4—La2126.9 (2)
La2xx—La7—La5xxi61.46 (12)La1—Ru4—La2vii126.9 (2)
La2xx—La7—La6xvi61.97 (15)La1—Ru4—La3130.3 (3)
La2xx—La7—La7vi108.92 (13)La2—Ru4—La2vii84.25 (16)
La2xx—La7—La7vii56.73 (10)La2—Ru4—La386.7 (2)
La2xx—La7—La8107.30 (13)La2vii—Ru4—La386.69 (18)
La2xx—La7—Ru2xvi65.98 (12)La1—Ru5—La4129.64 (11)
La2xx—La7—Ru3152.50 (14)La1—Ru5—La4iv129.64 (11)
La2xx—La7—Ru3vii63.25 (15)La1—Ru5—La4v129.64 (11)
La2xviii—La7—La4xvi118.98 (15)La4—Ru5—La4iv83.65 (12)
La2xviii—La7—La561.46 (12)La4—Ru5—La4v83.65 (13)
La2xviii—La7—La5xxi158.60 (14)La4iv—Ru5—La4v83.65 (14)
La2xviii—La7—La6xvi61.97 (14)
Symmetry codes: (i) x+1, y+1, z+1/2; (ii) y+1, x+y+1, z+1/2; (iii) xy+1, x+1, z+1/2; (iv) y+2, xy+1, z; (v) x+y+1, x+2, z; (vi) y+1, xy+1, z; (vii) x+y, x+1, z; (viii) y, x+y+1, z+1/2; (ix) y, x+y+1, z1/2; (x) y+1, xy, z; (xi) x+2, y+1, z+1/2; (xii) x+2, y+2, z+1/2; (xiii) xy+1, x, z+1/2; (xiv) x+y, x, z; (xv) x+y+1, x+1, z; (xvi) x+1, y+1, z1/2; (xvii) x1, y, z; (xviii) xy+1, x, z1/2; (xix) xy, x1, z1/2; (xx) y1, x+y, z1/2; (xxi) y, xy, z; (xxii) xy, x, z1/2; (xxiii) x+2, y+1, z1/2; (xxiv) x+1, y, z; (xxv) x+2, y+2, z1/2; (xxvi) y, x+y, z+1/2.
 

Acknowledgements

The author is grateful to Professors Sven Lidin and Pavlo Solokha for revising the manuscript and giving helpful suggestions. Professor Sven Lidin is also acknowledged for providing materials and instruments for this investigation carried out at Lunds Universitet, in the framework of the Erasmus+ `Outgoing for Traineeship' program.

References

First citationBecker, P. J. & Coppens, P. (1974a). Acta Cryst. A30, 129–147.  CrossRef IUCr Journals Web of Science Google Scholar
First citationBecker, P. J. & Coppens, P. (1974b). Acta Cryst. A30, 148–153.  CrossRef IUCr Journals Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2019). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCarlsson, A. (2015). Ab Initio Structure Evaluation of Aperiodic Structures in the Rare Earth-Ruthenium Systems. Master's Degree Thesis, Lunds Universitet, Lund, Sweden.  Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCompton, V. B. & Matthias, B. T. (1959). Acta Cryst. 12, 651–654.  CrossRef ICSD CAS IUCr Journals Web of Science Google Scholar
First citationDe Negri, S., Romaka, V., Solokha, P., Saccone, A., Giester, G., Michor, H. & Rogl, P. F. (2016). Inorg. Chem. 55, 8174–8183.  Web of Science CrossRef ICSD CAS PubMed Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHyde, G. B., Anderson, S., Bakker, M., Plug, C. M. & O'Keeffe, M. (1979). Prog. Solid State Chem. 12, 272–327.  CrossRef Web of Science Google Scholar
First citationLarson, A. C. & Cromer, D. T. (1962). Acta Cryst. 15, 1224–1227.  CrossRef ICSD IUCr Journals Web of Science Google Scholar
First citationMoreau, J. M. & Parthé, E. (1973). J. Less-Common Met. 32, 91–96.  CrossRef ICSD CAS Web of Science Google Scholar
First citationOszlányi, G. & Sütő, A. (2004). Acta Cryst. A60, 134–141.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOszlányi, G. & Sütő, A. (2005). Acta Cryst. A61, 147–152.  Web of Science CrossRef IUCr Journals Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPalenzona, A. (1979). J. Less-Common Met. 66, P27–P33.  Google Scholar
First citationPalenzona, A. & Canepa, F. (1990a). J. Less-Common Met. 157, 307–313.  CrossRef ICSD CAS Web of Science Google Scholar
First citationPalenzona, A. & Canepa, F. (1990b). J. Less-Common Met. 162, 267–272.  CrossRef ICSD CAS Web of Science Google Scholar
First citationPalenzona, A. & Cirafici, S. (1989). J. Less-Common Met. 154, 61–66.  CrossRef ICSD CAS Web of Science Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345–352.  Google Scholar
First citationRaevskaya, M. V., Avertseva, I. N. & Rusnyak, Y. I. (1994). Russ. Metall. 2, 131–135.  Google Scholar
First citationRigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Rigaku Corporation, Oxford, England.  Google Scholar
First citationSingh, P. P. & Raman, A. (1968). Mater. Res. Bull. 3, 843–853.  CrossRef ICSD CAS Web of Science Google Scholar
First citationSolokha, P., De Negri, S., Pavlyuk, V. & Saccone, A. (2009a). Inorg. Chem. 48, 11586–11593.  Web of Science CrossRef ICSD PubMed CAS Google Scholar
First citationSolokha, P., De Negri, S., Pavlyuk, V. & Saccone, A. (2009b). Chemistry of Metals and Alloys 2, 39–48.  CrossRef Google Scholar
First citationVillars, P. & Cenzual, K. (2019). Pearson's Crystal Data - Release 2018/2019, ASM International, Materials Park, Ohio, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds