research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of an ordered [WOF5] salt: (1,10-phen-H)[WOF5] (1,10-phen = 1,10-phenanthroline)

CROSSMARK_Color_square_no_text.svg

aCanadian Centre for Research in Advanced Fluorine Technologies, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada, T1K 3M4
*Correspondence e-mail: michael.gerken@uleth.ca

Edited by A. M. Chippindale, University of Reading, England (Received 9 July 2020; accepted 16 July 2020; online 24 July 2020)

Crystals of 1,10-phenanthrolinium penta­fluorido­oxidotungstate(VI), (1,10-phen-H)[WOF5] (1,10-phen = 1,10-phenanthroline, C12H8N2), were obtained upon hydrolysis of WF6(1,10-phen) in CH3CN at 193 K. The (1,10-phen-H)[WOF5] salt contains a rare example of a [WOF5] anion in which the oxygen and fluorine atoms are ordered. This ordering was verified by bond-valence determinations and structural comparisons with [Xe2F11][WOF5] and Lewis acid-base adducts of WOF4 with main-group donor ligands. The crystal packing is controlled by N—H⋯F hydrogen bonding that is directed exclusively to the axial F atom as a result of its increased basicity caused by the trans influence of the oxido ligand.

1. Chemical context

The crystal structure of tetra­meric, fluorine-bridged WOF4 (Edwards & Jones, 1968[Edwards, A. J. & Jones, G. R. (1968). J. Chem. Soc. A, pp. 2074-2078.]), as well as those of various fluorido-oxidotungstates(VI) of the form [WOnF6–n]n (n = 1–3), are characterized by extensive disorder between the oxido and fluorido ligands (Voit et al., 2006[Voit, E. I., Voit, A. V., Mashkovskii, A. A., Laptash, N. M. & Kavun, V. Y. (2006). J. Struct. Chem. 47, 642-650.]). Such disorder complications originally led to the incorrect assumption that WOF4 existed as an oxygen-bridged species. This was later disproved by vibrational spectroscopic studies of WOF4 that revealed exclusively terminal W=O bonds (Bennett et al., 1972[Bennett, M. J., Haas, T. E. & Purdham, J. T. (1972). Inorg. Chem. 11, 207-208.]; Asprey et al., 1972[Asprey, L. B., Ryan, R. R. & Fukushima, E. (1972). Inorg. Chem. 11, 3122-3122.]). In [WOnF6–n]n anions, the nature of the O/F disorder can be controlled by the properties of the counter-cations. For example, Na[WO2F4] is ordered (Vlasse et al., 1982[Vlasse, M., Moutou, J., Cervera-Marzal, M., Chaminade, J. & Hagenmuller, P. (1982). Rev. Chim. Miner. 19, 58-64.]; Chaminade et al., 1986[Chaminade, J. P., Moutou, J. M., Villeneuve, G., Couzi, M., Pouchard, M. & Hagenmuller, P. (1986). J. Solid State Chem. 65, 27-39.]), whereas Rb[WO2F4] (Udovenko & Laptash, 2008a[Udovenko, A. A. & Laptash, N. M. (2008a). Acta Cryst. B64, 645-651.]) and Cs[WO2F4] (Srivastava et al., 1992[Srivastava, A. M. & Ackerman, J. F. (1992). J. Solid State Chem. 98, 144-150.]) are statically disordered, and [NH4]2[WO2F4] exhibits simultaneous static and dynamic disorder, both of which are quenched below 201 K to reveal an ordered structure (Udovenko & Laptash, 2008b[Udovenko, A. A. & Laptash, N. M. (2008b). Acta Cryst. B64, 305-311.]). In addition, the double salt, [HNC6H6OH]2[Cu(NC5H5)4][WO2F4]2, exhibits ordered [WO2F4]2− anions at 153 K as a result of H⋯F and Cu⋯O secondary-bonding inter­actions (Welk et al., 2001[Welk, M. E., Norquist, A. J., Stern, C. L. & Poeppelmeier, K. R. (2001). Inorg. Chem. 40, 5479-5480.]). An ordered [WO3F3]3− fragment was identified within Pb5W3O9F10 (Abrahams et al., 1987[Abrahams, S. C., Marsh, P. & Ravez, J. (1987). J. Chem. Phys. 87, 6012-6020.]) and, despite extensive dynamic disorder within [NH4]3[WO3F3] (Voit et al., 2006[Voit, E. I., Voit, A. V., Mashkovskii, A. A., Laptash, N. M. & Kavun, V. Y. (2006). J. Struct. Chem. 47, 642-650.]), the stereochemistry could be resolved from the observed displace­ment of the tungsten atoms from their octa­hedral symmetry centres (Udovenko & Laptash, 2008a[Udovenko, A. A. & Laptash, N. M. (2008a). Acta Cryst. B64, 645-651.]). In all cases, mutual cis arrangements of the oxido ligands are preferred (i.e., cis-[WO2F4]2− and fac-[WO3F3]3−). A trans influence from the oxido ligands results in increased electron density on the effected fluorido ligands, and it is these fluorido ligands that participate in fluorine bridging within multinuclear systems, such as in WOF4 and in various [W2O2F9] salts with different counterions {[H3O]+(Hoskins et al., 1987[Hoskins, B. F., Linden, A. & O'Donnell, T. A. (1987). Inorg. Chem. 26, 2223-2228.]); [WF4(2,2′-bipy)2]2+(Arnaudet et al., 1992[Arnaudet, L., Bougon, R., Ban, B., Lance, M., Navaza, A., Nierlich, M. & Vigner, J. (1992). J. Fluorine Chem. 59, 141-152.]); [Os3(CO)12H]+ (Crossman et al., 1996[Crossman, M. C., Fawcett, J., Hope, E. G. & Russell, D. R. (1996). J. Organomet. Chem. 514, 87-91.]); [XeF5]+(Bortolus et al., 2020[Bortolus, M. R., Mercier, H. P. A. & Schrobilgen, G. J. (2020). Chem. Eur. J. 26, 8935-8950.]); Li–Cs+ (Stene et al., 2020[Stene, R., Scheibe, B., Karttunen, A. J., Petry, W. & Kraus, F. (2020). Eur. J. Inorg. Chem. pp. 2260-2269.])}, and in [W2O4F6]2− (Wollert et al., 1991[Wollert, R., Rentschler, E., Massa, W. & Dehnicke, K. (1991). Z. Anorg. Allg. Chem. 596, 121-132.]).

[Scheme 1]

Crystallographically characterized [WOF5] salts with a range of counterions {[As(C6H5)4]+ (Massa et al., 1982[Massa, W., Hermann, S. & Dehnicke, K. (1982). Z. Anorg. Allg. Chem. 493, 33-40.]); [Cs(15-crown-5)2]+ (Nuszhär et al., 1992[Nuszhär, D., Weller, F., Dehnicke, K. & Hiller, W. (1992). J. Alloys Compd. 183, 30-44.]); Ag2+ (Mazej et al., 2017[Mazej, Z., Gilewski, T., Goreshnik, E. A., Jagličić, Z., Derzsi, M. & Grochala, W. (2017). Inorg. Chem. 56, 224-233.]); [WF4(1,2-{P(CH3)2}2C6H4)]2+ (Levason et al., 2018[Levason, W., Monzittu, F. M., Reid, G. & Zhang, W. (2018). Chem. Commun. 54, 11681-11684.])} have exhibited some degree of O/F disorder in the anion, obfuscating the W=O and W—F bond lengths. Recently, however, [Xe2F11][WOF5] and [XeF5][WOF5]·XeOF4 were reported to contain [WOF5] anions that are ordered as a consequence of multiple Xe⋯F—W inter­actions (Bortolus et al., 2020[Bortolus, M. R., Mercier, H. P. A. & Schrobilgen, G. J. (2020). Chem. Eur. J. 26, 8935-8950.]). Herein, we report a new ordered [WOF5] salt in the form of (1,10-phen-H)[WOF5] (Fig. 1[link]), obtained during an attempted crystallization of WF6(1,10-phen) (Turnbull et al., 2019a[Turnbull, D., Wetmore, S. D. & Gerken, M. (2019a). Angew. Chem. Int. Ed. 58, 13035-13038.]).

[Figure 1]
Figure 1
Displacement ellipsoid plot (50% probability level) of (1,10-phen-H)[WOF5].

2. Structural commentary

The W=O bond length in (1,10-phen-H)[WOF5] [1.698 (2) Å] is indistinguishable from those in [Xe2F11][WOF5] [1.698 (3) Å; Bortolus et al., 2020[Bortolus, M. R., Mercier, H. P. A. & Schrobilgen, G. J. (2020). Chem. Eur. J. 26, 8935-8950.]), WOF4{OP(C6H5)3} [1.682 (5) Å; Levason et al., 2016[Levason, W., Reid, G. & Zhang, W. (2016). J. Fluorine Chem. 184, 50-57.]] and WOF4(NC5H5) [1.690 (3) Å; Turnbull et al., 2019b[Turnbull, D., Wetmore, S. D. & Gerken, M. (2019b). Inorg. Chem. 58, 6363-6375.]]. The W—Feq bond lengths [1.8677 (15)–1.8809 (15) Å] are also insignificantly different from those in WOF4{OP(C6H5)3} [1.857 (3)–1.871 (3) Å; Levason et al., 2016[Levason, W., Reid, G. & Zhang, W. (2016). J. Fluorine Chem. 184, 50-57.]] and WOF4(NC5H5) [1.859 (3)–1.868 (3) Å; Turnbull et al., 2019b[Turnbull, D., Wetmore, S. D. & Gerken, M. (2019b). Inorg. Chem. 58, 6363-6375.]]. The W—Feq bonds in [Xe2F11][WOF5] (Bortolus et al., 2020[Bortolus, M. R., Mercier, H. P. A. & Schrobilgen, G. J. (2020). Chem. Eur. J. 26, 8935-8950.]) are also of similar lengths to those in the title compound, although one terminal W—Feq bond [1.848 (2) Å] is significantly shorter in the [Xe2F11]+ salt, and one bridging bond significantly longer [1.900 (2) Å].

The W—Fax bond length of (1,10-phen-H)[WOF5] [2.0048 (15) Å] is slightly shorter than those in [Xe2F11][WOF5] [2.047 (2) Å; Bortolus et al., 2020[Bortolus, M. R., Mercier, H. P. A. & Schrobilgen, G. J. (2020). Chem. Eur. J. 26, 8935-8950.]] and [C5H5NH][W(NC6F5)F5] [2.0212 (13) Å; Turnbull et al., 2017[Turnbull, D., Wetmore, S. D. & Gerken, M. (2017). Inorg. Chem. 56, 12581-12593.]]. In the latter compound, the N1—H1⋯F1 inter­action resulted in significant elongation of the W—Fax bond with respect to that observed in [N(CH3)4][W(NC6F5)F5] [1.973 (3) Å; Turnbull et al., 2017[Turnbull, D., Wetmore, S. D. & Gerken, M. (2017). Inorg. Chem. 56, 12581-12593.]]. Gas-phase geometry optimizations of the [Xe2F11][WOF5] ion pair and free [WOF5] corroborated a significant elongation of the W—Fax bond in the former anion compared to the latter (2.148 vs 1.972 Å, respectively) arising from cation–anion inter­actions (Bortolus et al., 2020[Bortolus, M. R., Mercier, H. P. A. & Schrobilgen, G. J. (2020). Chem. Eur. J. 26, 8935-8950.]).

The individual bond valences of the [WOF5] anion in (1,10-phen-H)[WOF5] (Table 1[link]) reveal that the W=O bond (ν = 1.81) is approximately double the strength of the W—Feq bonds (ν = 0.87–0.90), indicating complete O/F ordering; in a disordered anion, the W=O bond valence is artificially decreased due to averaging with the W—F single bonds. The F1 atom possesses a valence sum significantly less than unity (V = 0.81) because of the trans influence of the oxido ligand and N1—H1⋯F1 hydrogen-bonding inter­action substanti­ally polarizing that bond.

Table 1
Bond valences and sums of the [WOF5] anion in (1,10-phen-H)[WOF5]

  νia   Vb
    W 5.98
W=O 1.81 O 1.88
W—F1 0.62 F1 0.81
W—F2 0.89 F2 0.95
W—F3 0.88 F3 0.94
W—F4 0.90 F4 0.97
W—F5 0.87 F5 0.95
Notes: (a) Defined as νi = exp [Ro − R/b], where R is the observed bond length (in Å) and Ro and b are empirical parameters (Brown & Altermatt, 1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]; Brese & O'Keeffe, 1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]; Brown, 2002[Brown, I. D. (2002). The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press.]; Adams et al., 2004[Adams, S., Moretzki, O. & Canadell, E. (2004). Solid State Ionics, 168, 281-290.]). (b) Defined as V = Σ(νi). Only secondary contacts within the sum of the van der Waals radii (Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]) were considered.

3. Supra­molecular features

Besides the N1—H1⋯F1 hydrogen-bonding inter­actions, there also exist weak intermolecular C5⋯O [3.163 (3) Å] and C3⋯C10 [3.204 (4) Å] inter­actions that result in the formation of columns of cations and anions running parallel to the a axis (Fig. 2[link]) in the packed crystal. The crystal packing, however, appears to be dominated by the N1—H1⋯F1 hydrogen bonds (Table 2[link]) and other inter­molecular inter­actions, such as ππ stacking inter­actions between cations, are absent.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯F1 0.89 (3) 1.88 (3) 2.704 (3) 154 (3)
[Figure 2]
Figure 2
Crystal packing of (1,10-phen-H)[WOF5] viewed along the a axis.

4. Synthesis and crystallization

In the dry box, a 1/4"-o.d. FEP reactor, equipped with a 316-stainless-steel valve and pre-passivated with F2 (100%, Linde Gas), was charged with WF6(1,10-phen) (ca 0.01 g), prepared as described previously (Turnbull et al., 2019a[Turnbull, D., Wetmore, S. D. & Gerken, M. (2019a). Angew. Chem. Int. Ed. 58, 13035-13038.]). Aceto­nitrile (ca 0.1 mL), dried as previously described (Winfield, 1984[Winfield, J. M. (1984). J. Fluor. Chem. 25, 91-98.]), was distilled into the reactor through a glass vacuum line equipped with grease-free PTFE stopcocks (J. Young). The reactor was heated to 353 K in a hot-water bath and allowed to cool to ambient temperature over 16 h. The reactor was then cooled rapidly to 233 K and the solvent was removed under dynamic vacuum at that temperature, resulting in the formation of colourless needles of (1,10-phen-H)[WOF5], together with an off-white microcrystalline material that was not further characterized, but is presumed to contain WF6(1,10-phen) and (1,10-phen-H)[WOF5].

The reactor was cut open and the crystals transferred onto an aluminium trough cooled to 193 K under a constant stream of liquid-N2-cooled, dry N2. The selected crystal was affixed to a Nylon cryo-loop submerged in perfluorinated polyether oil (Fomblin Z-25) and quickly transferred to the goniometer to minimize exposure to air.

5. Refinement details

Crystallographic data collection and refinement parameters are summarized in Table 3[link]. All the hydrogen atoms were located in difference Fourier maps and were refined using a riding model, with the exception of H1, the position of which was refined freely (Table 2[link]).

Table 3
Experimental details

Crystal data
Chemical formula (C12H9N2)[WOF5]
Mr 476.06
Crystal system, space group Monoclinic, P21/n
Temperature (K) 112
a, b, c (Å) 7.1664 (2), 15.5088 (4), 11.6516 (4)
β (°) 101.202 (3)
V3) 1270.31 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 9.16
Crystal size (mm) 0.27 × 0.12 × 0.06
 
Data collection
Diffractometer Rigaku SuperNova, Dual source (Mo and Cu), Pilatus 200/300K
Absorption correction Analytical [numerical absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.]) implemented in CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Oxford, England.]). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK]
Tmin, Tmax 0.447, 0.645
No. of measured, independent and observed [I > 2σ(I)] reflections 15835, 2908, 2652
Rint 0.033
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.038, 1.06
No. of reflections 2908
No. of parameters 194
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.97, −0.83
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Oxford, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO 1.171.38.43 (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO 1.171.38.43 (Rigaku OD, 2015); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

1,10-Phenanthrolinium pentafluoridooxidotungstate(VI) top
Crystal data top
(C12H9N2)[WOF5]F(000) = 888
Mr = 476.06Dx = 2.489 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.1664 (2) ÅCell parameters from 8493 reflections
b = 15.5088 (4) Åθ = 3.6–31.4°
c = 11.6516 (4) ŵ = 9.15 mm1
β = 101.202 (3)°T = 112 K
V = 1270.31 (7) Å3Needle, clear colourless
Z = 40.27 × 0.12 × 0.06 mm
Data collection top
Rigaku SuperNova, Dual source (Mo and Cu), Pilatus 200/300K
diffractometer
2908 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source2652 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.033
ω scansθmax = 27.5°, θmin = 3.4°
Absorption correction: analytical
[Numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid (1995) implemented in CrysAlisPro (Rigaku OD, 2015). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK]
h = 99
Tmin = 0.447, Tmax = 0.645k = 1920
15835 measured reflectionsl = 1513
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.016H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.038 w = 1/[σ2(Fo2) + (0.0179P)2 + 0.7231P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.002
2908 reflectionsΔρmax = 0.97 e Å3
194 parametersΔρmin = 0.83 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
W10.45262 (2)0.57004 (2)0.26707 (2)0.01171 (4)
F10.4234 (2)0.44319 (10)0.29168 (15)0.0209 (3)
F20.4618 (2)0.57848 (10)0.42837 (14)0.0226 (4)
F30.7145 (2)0.54615 (11)0.29703 (15)0.0222 (3)
F40.4359 (2)0.53785 (11)0.11094 (13)0.0233 (3)
F50.1857 (2)0.56900 (10)0.24578 (15)0.0202 (3)
O10.4729 (3)0.67755 (13)0.24458 (18)0.0242 (4)
N10.1998 (3)0.35275 (14)0.41042 (18)0.0134 (4)
H10.286 (4)0.3659 (19)0.368 (2)0.014 (7)*
N20.4933 (3)0.24312 (14)0.39891 (19)0.0154 (4)
C10.0520 (4)0.40604 (17)0.4040 (2)0.0172 (5)
H1A0.0417180.4551560.3544090.021*
C20.0870 (4)0.39002 (18)0.4694 (2)0.0198 (6)
H20.1955690.4262420.4621550.024*
C30.0649 (4)0.32076 (17)0.5449 (2)0.0170 (5)
H30.1561520.3106020.5925880.020*
C40.0917 (4)0.26498 (17)0.5518 (2)0.0151 (5)
C50.2231 (3)0.28172 (16)0.4800 (2)0.0129 (5)
C60.3802 (3)0.22474 (16)0.4765 (2)0.0133 (5)
C70.4049 (3)0.15380 (17)0.5530 (2)0.0153 (5)
C80.5628 (4)0.10033 (18)0.5500 (2)0.0189 (5)
H80.5889370.0525310.6016020.023*
C90.6790 (4)0.11795 (18)0.4715 (2)0.0204 (6)
H90.7857800.0824570.4678280.024*
C100.6365 (4)0.18924 (17)0.3973 (2)0.0190 (5)
H100.7154700.1997190.3420530.023*
C110.1198 (4)0.19063 (17)0.6274 (2)0.0181 (5)
H110.0327610.1786320.6773190.022*
C120.2702 (4)0.13793 (18)0.6272 (2)0.0187 (5)
H120.2871240.0891450.6774910.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
W10.01223 (6)0.01049 (6)0.01259 (6)0.00060 (3)0.00287 (4)0.00057 (4)
F10.0272 (8)0.0131 (8)0.0256 (8)0.0023 (6)0.0129 (7)0.0004 (6)
F20.0277 (9)0.0254 (9)0.0147 (8)0.0001 (7)0.0044 (7)0.0030 (6)
F30.0153 (8)0.0213 (8)0.0298 (9)0.0018 (6)0.0037 (7)0.0017 (7)
F40.0282 (9)0.0284 (9)0.0145 (7)0.0049 (7)0.0071 (6)0.0014 (7)
F50.0121 (7)0.0233 (9)0.0249 (8)0.0003 (6)0.0027 (6)0.0025 (6)
O10.0249 (10)0.0152 (10)0.0320 (11)0.0003 (8)0.0043 (9)0.0021 (8)
N10.0137 (10)0.0133 (10)0.0140 (10)0.0023 (8)0.0051 (9)0.0005 (8)
N20.0162 (10)0.0131 (11)0.0179 (11)0.0016 (8)0.0058 (9)0.0000 (9)
C10.0209 (13)0.0119 (12)0.0185 (13)0.0018 (10)0.0029 (11)0.0012 (10)
C20.0179 (13)0.0183 (14)0.0238 (14)0.0031 (11)0.0056 (11)0.0047 (11)
C30.0167 (12)0.0166 (12)0.0191 (13)0.0019 (10)0.0065 (10)0.0060 (10)
C40.0151 (12)0.0154 (13)0.0143 (12)0.0044 (10)0.0017 (10)0.0038 (10)
C50.0131 (11)0.0107 (12)0.0142 (11)0.0015 (9)0.0007 (9)0.0036 (10)
C60.0127 (11)0.0126 (12)0.0143 (11)0.0022 (9)0.0018 (9)0.0027 (9)
C70.0158 (12)0.0133 (12)0.0151 (12)0.0025 (10)0.0011 (10)0.0013 (10)
C80.0210 (13)0.0139 (12)0.0189 (13)0.0024 (11)0.0035 (11)0.0010 (11)
C90.0185 (13)0.0168 (14)0.0250 (14)0.0034 (10)0.0023 (11)0.0042 (11)
C100.0152 (12)0.0200 (14)0.0231 (13)0.0010 (10)0.0072 (11)0.0036 (11)
C110.0220 (13)0.0174 (13)0.0167 (12)0.0040 (10)0.0083 (11)0.0001 (10)
C120.0232 (13)0.0176 (13)0.0143 (12)0.0047 (11)0.0008 (10)0.0018 (10)
Geometric parameters (Å, º) top
W1—F12.0048 (15)C3—C41.407 (4)
W1—F21.8724 (16)C4—C51.400 (4)
W1—F31.8779 (15)C4—C111.441 (4)
W1—F41.8677 (15)C5—C61.438 (4)
W1—F51.8809 (15)C6—C71.405 (4)
W1—O11.698 (2)C7—C81.409 (4)
N1—H10.89 (3)C7—C121.437 (4)
N1—C11.334 (3)C8—H80.9500
N1—C51.359 (3)C8—C91.379 (4)
N2—C61.357 (3)C9—H90.9500
N2—C101.326 (3)C9—C101.400 (4)
C1—H1A0.9500C10—H100.9500
C1—C21.389 (4)C11—H110.9500
C2—H20.9500C11—C121.353 (4)
C2—C31.378 (4)C12—H120.9500
C3—H30.9500
F2—W1—F184.80 (7)C3—C4—C11122.8 (2)
F2—W1—F389.33 (7)C5—C4—C3118.3 (2)
F2—W1—F588.24 (7)C5—C4—C11118.9 (2)
F3—W1—F184.73 (7)N1—C5—C4119.2 (2)
F3—W1—F5167.69 (7)N1—C5—C6119.2 (2)
F4—W1—F183.59 (7)C4—C5—C6121.6 (2)
F4—W1—F2168.37 (7)N2—C6—C5117.5 (2)
F4—W1—F390.06 (7)N2—C6—C7124.7 (2)
F4—W1—F589.89 (7)C7—C6—C5117.7 (2)
F5—W1—F183.04 (7)C6—C7—C8116.6 (2)
O1—W1—F1178.86 (8)C6—C7—C12120.0 (2)
O1—W1—F295.67 (8)C8—C7—C12123.5 (2)
O1—W1—F396.31 (8)C7—C8—H8120.3
O1—W1—F495.93 (9)C9—C8—C7119.5 (2)
O1—W1—F595.94 (8)C9—C8—H8120.3
C1—N1—H1117.1 (19)C8—C9—H9120.7
C1—N1—C5122.7 (2)C8—C9—C10118.6 (2)
C5—N1—H1120.1 (19)C10—C9—H9120.7
C10—N2—C6116.2 (2)N2—C10—C9124.4 (2)
N1—C1—H1A119.9N2—C10—H10117.8
N1—C1—C2120.3 (2)C9—C10—H10117.8
C2—C1—H1A119.9C4—C11—H11120.0
C1—C2—H2120.5C12—C11—C4119.9 (2)
C3—C2—C1119.0 (3)C12—C11—H11120.0
C3—C2—H2120.5C7—C12—H12119.1
C2—C3—H3119.8C11—C12—C7121.7 (2)
C2—C3—C4120.5 (2)C11—C12—H12119.1
C4—C3—H3119.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···F10.89 (3)1.88 (3)2.704 (3)154 (3)
Bond valences and sums of the [WOF5]- anion in (1,10-phen-H)[WOF5] top
νiaVb
W5.98
WO1.81O1.88
W—F10.62F10.81
W—F20.89F20.95
W—F30.88F30.94
W—F40.90F40.97
W—F50.87F50.95
Notes: (a) Defined as νi = exp[Ro - R/b], where R is the observed bond length (in Å) and Ro and b are empirical parameters (Brown & Altermatt, 1985; Brese & O'Keeffe, 1991; Brown, 2002; Adams et al., 2004). (b) Defined as V = Σ(νi). Only secondary contacts within the sum of the van der Waals' radii (Bondi, 1964) were considered.
 

Acknowledgements

We thank the Natural Sciences and Engineering Research Council of Canada (NSERC) for awarding a Discovery grant to MG as well as CGS-M and PGS-D scholarships to DT. In addition, we would like to thank the University of Lethbridge for awarding the SGS Dean's Scholarship and Tuition Award to DT and supporting this work.

Funding information

Funding for this research was provided by: Natural Sciences and Engineering Research Council of Canada (grant No. 261340-2013 to Michael Gerken; scholarship to Douglas Turnbull).

References

First citationAbrahams, S. C., Marsh, P. & Ravez, J. (1987). J. Chem. Phys. 87, 6012–6020.  CrossRef ICSD CAS Web of Science Google Scholar
First citationAdams, S., Moretzki, O. & Canadell, E. (2004). Solid State Ionics, 168, 281–290.  Web of Science CrossRef ICSD CAS Google Scholar
First citationArnaudet, L., Bougon, R., Ban, B., Lance, M., Navaza, A., Nierlich, M. & Vigner, J. (1992). J. Fluorine Chem. 59, 141–152.  CSD CrossRef CAS Google Scholar
First citationAsprey, L. B., Ryan, R. R. & Fukushima, E. (1972). Inorg. Chem. 11, 3122–3122.  CrossRef CAS Google Scholar
First citationBennett, M. J., Haas, T. E. & Purdham, J. T. (1972). Inorg. Chem. 11, 207–208.  CrossRef CAS Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBortolus, M. R., Mercier, H. P. A. & Schrobilgen, G. J. (2020). Chem. Eur. J. 26, 8935–8950.  CrossRef ICSD CAS PubMed Google Scholar
First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrown, I. D. (2002). The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press.  Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationChaminade, J. P., Moutou, J. M., Villeneuve, G., Couzi, M., Pouchard, M. & Hagenmuller, P. (1986). J. Solid State Chem. 65, 27–39.  CrossRef CAS Web of Science Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCrossman, M. C., Fawcett, J., Hope, E. G. & Russell, D. R. (1996). J. Organomet. Chem. 514, 87–91.  CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEdwards, A. J. & Jones, G. R. (1968). J. Chem. Soc. A, pp. 2074–2078.  CrossRef ICSD Google Scholar
First citationHoskins, B. F., Linden, A. & O'Donnell, T. A. (1987). Inorg. Chem. 26, 2223–2228.  CrossRef ICSD CAS Web of Science Google Scholar
First citationLevason, W., Monzittu, F. M., Reid, G. & Zhang, W. (2018). Chem. Commun. 54, 11681–11684.  CSD CrossRef CAS Google Scholar
First citationLevason, W., Reid, G. & Zhang, W. (2016). J. Fluorine Chem. 184, 50–57.  CSD CrossRef CAS Google Scholar
First citationMassa, W., Hermann, S. & Dehnicke, K. (1982). Z. Anorg. Allg. Chem. 493, 33–40.  CSD CrossRef CAS Google Scholar
First citationMazej, Z., Gilewski, T., Goreshnik, E. A., Jagličić, Z., Derzsi, M. & Grochala, W. (2017). Inorg. Chem. 56, 224–233.  CrossRef ICSD CAS PubMed Google Scholar
First citationNuszhär, D., Weller, F., Dehnicke, K. & Hiller, W. (1992). J. Alloys Compd. 183, 30–44.  Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Oxford, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSrivastava, A. M. & Ackerman, J. F. (1992). J. Solid State Chem. 98, 144–150.  CrossRef ICSD CAS Web of Science Google Scholar
First citationStene, R., Scheibe, B., Karttunen, A. J., Petry, W. & Kraus, F. (2020). Eur. J. Inorg. Chem. pp. 2260–2269.  CrossRef Google Scholar
First citationTurnbull, D., Wetmore, S. D. & Gerken, M. (2017). Inorg. Chem. 56, 12581–12593.  CSD CrossRef CAS PubMed Google Scholar
First citationTurnbull, D., Wetmore, S. D. & Gerken, M. (2019a). Angew. Chem. Int. Ed. 58, 13035–13038.  CSD CrossRef CAS Google Scholar
First citationTurnbull, D., Wetmore, S. D. & Gerken, M. (2019b). Inorg. Chem. 58, 6363–6375.  CSD CrossRef CAS PubMed Google Scholar
First citationUdovenko, A. A. & Laptash, N. M. (2008a). Acta Cryst. B64, 645–651.  Web of Science CrossRef ICSD IUCr Journals Google Scholar
First citationUdovenko, A. A. & Laptash, N. M. (2008b). Acta Cryst. B64, 305–311.  Web of Science CrossRef ICSD IUCr Journals Google Scholar
First citationVlasse, M., Moutou, J., Cervera-Marzal, M., Chaminade, J. & Hagenmuller, P. (1982). Rev. Chim. Miner. 19, 58–64.  CAS Google Scholar
First citationVoit, E. I., Voit, A. V., Mashkovskii, A. A., Laptash, N. M. & Kavun, V. Y. (2006). J. Struct. Chem. 47, 642–650.  CrossRef CAS Google Scholar
First citationWelk, M. E., Norquist, A. J., Stern, C. L. & Poeppelmeier, K. R. (2001). Inorg. Chem. 40, 5479–5480.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWinfield, J. M. (1984). J. Fluor. Chem. 25, 91–98.  CrossRef CAS Google Scholar
First citationWollert, R., Rentschler, E., Massa, W. & Dehnicke, K. (1991). Z. Anorg. Allg. Chem. 596, 121–132.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds