research communications
of 1-ferrocenyl-2-(4-nitrophenyl)ethyne
aDepartment of Chemistry, University of Puerto Rico at Río Piedras, PO Box 23346, San Juan, PR 00931-3346, Puerto Rico, and bDepartment of Chemistry and the Molecular Sciences Research Center, University of Puerto Rico-Rio Piedras Campus, PO Box 23346, San Juan, 00931-3346, Puerto Rico
*Correspondence e-mail: ingrid.montes2@upr.edu
The title ferrocene derivative, [Fe(C5H5)2(C8NO2)], including an alkyne bonded to a para-nitrophenyl substituent, which was synthesized from a copper-free Sonogashira cross-coupling reaction between ethynylferrocene and 4-bromo-1-nitrobenzene, crystallizes in the P21/n In the ferrocene unit, the pentadienyl (Cps) rings are in an eclipsed conformation. The angle of rotation between the substituted cyclopentadienyl ring and the p-nitrophenyl group is 6.19 (10)°, yielding a quasi-linear extension of the ferrocenyl substitution. Important intermolecular interactions arise from π–π stacking between the Cp rings and the p-nitrophenyl, from corners of the Cp rings that are perpendicularly aligned, and between the O atoms from the nitro substituent and carbons at the corners of the Cp rings, propagating along all three crystallographic axes.
Keywords: ferrocene; 4-nitrophenylethyne; Sonogashira coupling; green chemistry; crystal structure.
CCDC reference: 1991635
1. Chemical context
Recent efforts in the field of medicinal organometallic chemistry have been driven by a high interest in the synthesis of metal ethynyl complexes, particularly because of their biological activity (Görmen et al., 2012). In addition, phenylethyne-derived compounds display active electrochemical properties such as the generation of stable redox forms, regeneration at low potentials and good electrochemical reversibility (Gasser & Metzler-Nolte, 2012). 1-Ferrocenyl-2-(4-nitrophenyl)ethyne has previously been prepared in moderate-to-high yields (52–92%) by applying Sonogashira coupling reactions. However, all of them used 4-iodo-1-nitrobenzene or 4-triflate-1-nitrobenzene and a variety of solvents, catalysts and conditions, under an inert atmosphere. The reaction time varied from 25 min to 4 h (Torres et al., 2002; Shoji et al., 2014; Li et al., 2009; Fu et al., 2008; Coutouli-Argyropoulou et al., 2003). Other approaches involved the use of iodoferrocene and 4-ethynyl-1-nitrobenzene (Kulhánek et al., 2013). Our approach focuses on performing copper-free Sonogashira coupling between ethynylferrocene and 4-bromo-1-nitrobenzene without the need of inert atmosphere protocols and obtaining moderate-to-high yields, by following green chemistry protocols.
2. Structural commentary
Fig. 1 (Mercury; Macrae et al., 2020) shows the molecular structure of the title compound, which crystallizes in P21/n. The substituted ferrocene (Fc) system is linked to a p-nitrobenzene moiety by an acetylenic bridge between C11 and C12 with a bond distance of 1.202 (2) Å, which is comparable to those in similar complexes, e.g. 1.202 (2) Å (Misra et al. 2014), 1.197 (3) Å (Fu et al., 2008), and 1.193 (2) Å (Zora et al. 2006). The is comprised of four molecules with one molecule present per The substituted Cp and phenyl rings are almost parallel to each other, subtending a dihedral angle of 6.19 (10)°, in contrast to (phenyl-ethynyl)ferrocene (Zora et al., 2006), which has no substituent in the para position and exhibits a nearly perpendicular dihedral angle of 89.06 (3)°. The distances of the Fe1 atom from the centroids of the substituted and unsubstituted Cp rings are 1.6461 (8) and 1.6584 (8) Å, respectively. The Cg1—Fe1—Cg2 angle is 179.27°, where Cg1 and Cg2 are the centroids of substituted and unsubstituted Cp rings, respectively. The Cp rings in the ferrocene system are thus almost parallel, since the angle between the Cp ring planes is 1.03 (13)°. In addition, the Cp rings display a nearly eclipsed conformation with a slight deviation, as demonstrated by the average C—Cg1—Cg2—C torsion angle of 12.26°. The C—C bond distances in the Cp rings range from 1.417 (2) to 1.436 (2) Å, while the Fe—C bond lengths range between 2.038 (2) and 2.055 (2) Å.
3. Supramolecular features
The title compound exhibits π–π stacking interactions between one of the Cp rings from the Fc moiety and the p-nitrophenyl substituent, allowing the formation of a zigzag structure; atom pairs involved relate C6(Cp) and C7(Cp) to C17(p-nitrophenyl) and C18(p-nitrophenyl) of a neighboring molecule, with short contacts of 3.340 (2) and 3.397 (2) Å, respectively. This interaction can be described as pairs of molecules being interrupted by two C3(Cp)⋯H8—C8(Cp) interactions from a different interconnected pair of perpendicularly oriented Fc moieties with short contact distances of 2.83 Å each. Short contacts from neighboring molecules establishing a distinctive interconnected pair between a corner of the Cp ring and one of the oxygen atoms from the p-nitrophenyl substituent yield a closed arrangement of atoms. Short contacts involve H6—C6(Cp)⋯O1(p-nitrophenyl) at a distance of 3.461 (2) Å. Another interconnection is found between adjacent p-nitrophenyl groups, yielding a ring arrangement involving pairs from H17—C17(p-nitrophenyl)⋯O2(p-nitrophenyl) with a distance of 2.727 (2) Å and pairs from O1(p-nitrophenyl)⋯H15—C15(p-nitrophenyl) with a distance of 2.716 (2) Å. In addition, a chain is formed by short contacts from the C17—H17(p-nitrophenyl)⋯O1(p-nitrophenyl) interaction belonging to the p-nitrophenyl substituent with a distance of 3.203 (19) Å. Numerical details of the hydrogen-bonding interactions are given in Table 1 and the packing is shown in Fig. 2.
4. Hirshfeld Surface Analysis
CrystalExplorer17 (Turner et al., 2017) was used to generate the Hirshfeld surface (Spackman & Jayatilaka, 2009) for the title compound mapped over dnorm and the associated two-dimensional fingerprint plots (McKinnon et al., 2007). Fig. 3 shows the molecules involved in the four closest contacts. Red spots on the Hirshfeld surface mapped over dnorm in the color range −0.2315 to 1.1417 arbitrary units confirm the previously mentioned main intermolecular contacts. The fingerprint plots are given for all contacts (Fig. 4a) and those decomposed into nine individual interactions: H⋯H (46.9%; Fig. 4b), C⋯H/ H⋯C (21.9%; Fig. 4c), O⋯H/ H⋯O (18.7%; Fig. 4d), C⋯C (7.5%; Fig. 4e), C⋯O/O⋯C (1.6%; Fig. 4f), C⋯N/N⋯C (1.2%; Fig. 4g), N⋯O/O⋯N (0.9%; Fig. 4h), O⋯O (0.9%; Fig. 4i) and N⋯H/H⋯N (0.5%; Fig. 4j). The Hirshfeld surface analysis for the title compound indicates that the most significant contributions arise from H⋯H and C⋯H contacts (González et al., 2020; McKinnon et al., 2004, 2007; Spackman & McKinnon, 2002).
5. Database survey
A search of the Cambridge Structural Database (Version 5.41, updated November 2019; Groom et al., 2016) revealed 142 related compounds with the 1-ferrocenyl-2-phenylethyne backbone. Of those structures, 41 contain substituents in the para position of the phenyl ring, as in the title compound. One of the reasons for such a high number of reported structures for methynylferrocene and its derived compounds is attributed to their substantial interest as chromophores, mainly because of their electronic communication capacity through the alkyne linkage to the Fe center. When comparing the effect of the substituent on the molecular structure, one of the main features is the dihedral angle that is formed between the substituted Cp ring of the ferrocene group and the phenyl moiety. The orientation can range from almost parallel (1.01°: YOHSIY; Bobula et al., 2008) to completely perpendicular (90.00°: YOHSUK01; Dai et al., 2013). Table 2 gives the dihedral angles for previously reported compounds; our compound having the second lowest dihedral angle and a nearly parallel conformation. Exchanging the hydrogen atoms in the methyl group for fluorine atoms shifts the dihedral angle from 1.01° to 90.00° in the case of methyl and trifluoromethyl substituents, respectively.
6. Synthesis and crystallization
The title compound was prepared by adding ethynylferrocene (1.0 mmol), PdCl2(PPh3)2 (0.01 mmol), Et3N (2 mmol) and 4-bromo-1-nitrobenzene (1.0 mmol) to a 25 mL round-bottom flask, followed by the addition of DMF (1.0 mL) by syringe. The reaction was stirred for 1 h at 353 K. The reaction was stopped and crashed out with 20 mL of cold distilled water, then the solid was vacuum filtrated, and chromatographed [silica (heptane–ethyl acetate/7:3)] to afford the pure compound, 70% yield. Dark-red crystals suitable for X-ray diffraction were obtained by the slow evaporation of CDCl3 solution of the title compound at room temperature. NMR analyses were performed on a Bruker AV-700 spectrometer by using CDCl3 99.9% pure as a solvent and Me4Si as external standard.1H NMR (δ in ppm, CDCl3): 4.26 (s, 5H), 4.32 (s, 2H), 4.55 (s, 2H), 7.59 (d, J = 8.6Hz, 2H), 8.18 (d, J = 8.6Hz, 2H). 13C NMR (δ in ppm, CDCl3): 63.6, 69.6, 70.1, 71.8, 84.5, 95.2, 123.6, 131.1, 131.8, 146.4. IR (νmax, cm−1): 2200 (C≡C). Electrochemistry: (CV200 mv: Eo = 613 mV; ΔE = 90 mV).
7. Refinement
Crystal data, data collection and structure . H atoms were included in geometrically calculated positions, C—H = 0.93 Å, and refined as riding on their parent C atom with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 3
|
Supporting information
CCDC reference: 1991635
https://doi.org/10.1107/S2056989020010336/dj2003sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020010336/dj2003Isup2.hkl
Data collection: CrysAlis PRO (Rigaku OD, 2018); cell
CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[Fe(C5H5)2(C8NO2)] | F(000) = 680 |
Mr = 331.14 | Dx = 1.583 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54184 Å |
a = 5.9573 (1) Å | Cell parameters from 12369 reflections |
b = 29.3810 (3) Å | θ = 3.0–68.8° |
c = 8.0664 (1) Å | µ = 8.75 mm−1 |
β = 100.202 (1)° | T = 100 K |
V = 1389.55 (3) Å3 | Block, dark red |
Z = 4 | 0.20 × 0.07 × 0.04 mm |
Rigaku SuperNova, Single source at offset/far, HyPix3000 diffractometer | 2567 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source | 2410 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.036 |
ω scans | θmax = 68.9°, θmin = 3.0° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2018) | h = −7→7 |
Tmin = 0.642, Tmax = 1.000 | k = −35→35 |
21951 measured reflections | l = −9→9 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.024 | w = 1/[σ2(Fo2) + (0.0305P)2 + 0.6401P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.061 | (Δ/σ)max = 0.003 |
S = 1.07 | Δρmax = 0.23 e Å−3 |
2567 reflections | Δρmin = −0.37 e Å−3 |
200 parameters | Extinction correction: SHELXL-2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.00060 (13) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Fe1 | 0.76257 (4) | 0.67811 (2) | 0.90888 (3) | 0.01397 (9) | |
O1 | −0.49667 (19) | 0.47779 (4) | 0.27187 (15) | 0.0226 (3) | |
O2 | −0.2775 (2) | 0.46760 (4) | 0.08806 (15) | 0.0271 (3) | |
N1 | −0.3245 (2) | 0.48668 (4) | 0.21343 (17) | 0.0167 (3) | |
C1 | 0.5321 (3) | 0.68695 (5) | 0.6915 (2) | 0.0173 (3) | |
C2 | 0.7551 (3) | 0.70112 (5) | 0.6686 (2) | 0.0192 (3) | |
H2 | 0.837507 | 0.689297 | 0.590834 | 0.023* | |
C3 | 0.8274 (3) | 0.73649 (5) | 0.7863 (2) | 0.0208 (3) | |
H3 | 0.965574 | 0.751951 | 0.798205 | 0.025* | |
C4 | 0.6531 (3) | 0.74426 (5) | 0.8827 (2) | 0.0205 (3) | |
H4 | 0.657556 | 0.765623 | 0.968280 | 0.025* | |
C5 | 0.4711 (3) | 0.71379 (5) | 0.8256 (2) | 0.0198 (3) | |
H5 | 0.335922 | 0.711567 | 0.867718 | 0.024* | |
C6 | 0.7951 (3) | 0.60950 (5) | 0.9567 (2) | 0.0221 (4) | |
H6 | 0.732434 | 0.586180 | 0.885223 | 0.026* | |
C7 | 1.0133 (3) | 0.62957 (5) | 0.9617 (2) | 0.0193 (3) | |
H7 | 1.118391 | 0.621784 | 0.893815 | 0.023* | |
C8 | 1.0425 (3) | 0.66366 (5) | 1.0887 (2) | 0.0192 (3) | |
H8 | 1.170282 | 0.682060 | 1.118684 | 0.023* | |
C9 | 0.8431 (3) | 0.66474 (6) | 1.1617 (2) | 0.0212 (4) | |
H9 | 0.817060 | 0.683939 | 1.247992 | 0.025* | |
C10 | 0.6897 (3) | 0.63126 (6) | 1.0798 (2) | 0.0233 (4) | |
H10 | 0.545564 | 0.624788 | 1.103002 | 0.028* | |
C11 | 0.3932 (3) | 0.65207 (5) | 0.6029 (2) | 0.0189 (3) | |
C12 | 0.2680 (3) | 0.62353 (6) | 0.5308 (2) | 0.0195 (3) | |
C13 | 0.1182 (3) | 0.58890 (5) | 0.4500 (2) | 0.0170 (3) | |
C14 | −0.0833 (3) | 0.57845 (5) | 0.5091 (2) | 0.0182 (3) | |
H14 | −0.119391 | 0.594223 | 0.600861 | 0.022* | |
C15 | −0.2291 (3) | 0.54491 (5) | 0.43247 (19) | 0.0167 (3) | |
H15 | −0.363101 | 0.537993 | 0.471276 | 0.020* | |
C16 | −0.1700 (3) | 0.52188 (5) | 0.2961 (2) | 0.0153 (3) | |
C17 | 0.0281 (3) | 0.53113 (5) | 0.2348 (2) | 0.0170 (3) | |
H17 | 0.063821 | 0.515003 | 0.143683 | 0.020* | |
C18 | 0.1713 (3) | 0.56480 (5) | 0.3118 (2) | 0.0182 (3) | |
H18 | 0.304440 | 0.571598 | 0.271639 | 0.022* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe1 | 0.01496 (14) | 0.01010 (14) | 0.01622 (15) | −0.00021 (9) | 0.00100 (10) | 0.00119 (9) |
O1 | 0.0200 (6) | 0.0236 (6) | 0.0264 (6) | −0.0064 (5) | 0.0101 (5) | −0.0040 (5) |
O2 | 0.0305 (7) | 0.0265 (7) | 0.0274 (7) | −0.0059 (5) | 0.0137 (6) | −0.0127 (5) |
N1 | 0.0188 (7) | 0.0139 (6) | 0.0179 (7) | 0.0005 (5) | 0.0049 (5) | 0.0000 (5) |
C1 | 0.0184 (8) | 0.0138 (7) | 0.0183 (8) | 0.0005 (6) | −0.0004 (7) | 0.0045 (6) |
C2 | 0.0213 (8) | 0.0158 (8) | 0.0207 (8) | −0.0001 (6) | 0.0039 (7) | 0.0054 (6) |
C3 | 0.0187 (8) | 0.0142 (8) | 0.0278 (9) | −0.0020 (6) | −0.0008 (7) | 0.0071 (7) |
C4 | 0.0233 (9) | 0.0117 (7) | 0.0243 (9) | 0.0027 (6) | −0.0015 (7) | 0.0004 (6) |
C5 | 0.0180 (8) | 0.0163 (8) | 0.0244 (9) | 0.0023 (6) | 0.0020 (7) | 0.0025 (6) |
C6 | 0.0282 (9) | 0.0111 (8) | 0.0236 (9) | −0.0010 (6) | −0.0047 (7) | 0.0037 (6) |
C7 | 0.0216 (8) | 0.0149 (8) | 0.0205 (8) | 0.0050 (6) | 0.0011 (7) | 0.0021 (6) |
C8 | 0.0201 (8) | 0.0151 (8) | 0.0201 (8) | −0.0003 (6) | −0.0024 (7) | 0.0021 (6) |
C9 | 0.0274 (9) | 0.0200 (8) | 0.0161 (8) | 0.0035 (7) | 0.0030 (7) | 0.0022 (6) |
C10 | 0.0203 (8) | 0.0229 (9) | 0.0262 (9) | −0.0016 (7) | 0.0026 (7) | 0.0106 (7) |
C11 | 0.0200 (8) | 0.0165 (8) | 0.0196 (8) | 0.0012 (6) | 0.0014 (7) | 0.0032 (6) |
C12 | 0.0203 (8) | 0.0177 (8) | 0.0200 (8) | 0.0017 (7) | 0.0026 (7) | 0.0037 (7) |
C13 | 0.0190 (8) | 0.0131 (7) | 0.0176 (8) | 0.0007 (6) | −0.0005 (6) | 0.0041 (6) |
C14 | 0.0225 (8) | 0.0166 (8) | 0.0155 (8) | 0.0018 (6) | 0.0032 (6) | −0.0001 (6) |
C15 | 0.0176 (8) | 0.0164 (8) | 0.0165 (8) | 0.0010 (6) | 0.0045 (6) | 0.0022 (6) |
C16 | 0.0175 (8) | 0.0123 (7) | 0.0159 (8) | −0.0002 (6) | 0.0019 (6) | 0.0011 (6) |
C17 | 0.0183 (8) | 0.0162 (8) | 0.0169 (8) | 0.0023 (6) | 0.0048 (6) | 0.0006 (6) |
C18 | 0.0172 (8) | 0.0177 (8) | 0.0200 (8) | 0.0007 (6) | 0.0038 (6) | 0.0045 (6) |
Fe1—C1 | 2.0431 (17) | C6—H6 | 0.9300 |
Fe1—C2 | 2.0454 (16) | C6—C7 | 1.422 (2) |
Fe1—C3 | 2.0505 (16) | C6—C10 | 1.418 (3) |
Fe1—C4 | 2.0491 (16) | C7—H7 | 0.9300 |
Fe1—C5 | 2.0375 (16) | C7—C8 | 1.421 (2) |
Fe1—C6 | 2.0552 (16) | C8—H8 | 0.9300 |
Fe1—C7 | 2.0546 (16) | C8—C9 | 1.417 (2) |
Fe1—C8 | 2.0515 (17) | C9—H9 | 0.9300 |
Fe1—C9 | 2.0489 (17) | C9—C10 | 1.423 (3) |
Fe1—C10 | 2.0488 (16) | C10—H10 | 0.9300 |
O1—N1 | 1.2301 (17) | C11—C12 | 1.202 (2) |
O2—N1 | 1.2312 (17) | C12—C13 | 1.432 (2) |
N1—C16 | 1.464 (2) | C13—C14 | 1.402 (2) |
C1—C2 | 1.435 (2) | C13—C18 | 1.403 (2) |
C1—C5 | 1.437 (2) | C14—H14 | 0.9300 |
C1—C11 | 1.427 (2) | C14—C15 | 1.385 (2) |
C2—H2 | 0.9300 | C15—H15 | 0.9300 |
C2—C3 | 1.422 (2) | C15—C16 | 1.389 (2) |
C3—H3 | 0.9300 | C16—C17 | 1.385 (2) |
C3—C4 | 1.422 (2) | C17—H17 | 0.9300 |
C4—H4 | 0.9300 | C17—C18 | 1.380 (2) |
C4—C5 | 1.418 (2) | C18—H18 | 0.9300 |
C5—H5 | 0.9300 | ||
C1—Fe1—C2 | 41.09 (6) | C4—C3—C2 | 108.54 (14) |
C1—Fe1—C3 | 68.60 (6) | C4—C3—H3 | 125.7 |
C1—Fe1—C4 | 68.76 (6) | Fe1—C4—H4 | 126.6 |
C1—Fe1—C6 | 108.20 (7) | C3—C4—Fe1 | 69.76 (9) |
C1—Fe1—C7 | 128.28 (7) | C3—C4—H4 | 125.9 |
C1—Fe1—C8 | 166.33 (7) | C5—C4—Fe1 | 69.25 (9) |
C1—Fe1—C9 | 151.89 (7) | C5—C4—C3 | 108.16 (15) |
C1—Fe1—C10 | 118.21 (7) | C5—C4—H4 | 125.9 |
C2—Fe1—C3 | 40.62 (7) | Fe1—C5—H5 | 125.9 |
C2—Fe1—C4 | 68.63 (7) | C1—C5—Fe1 | 69.60 (9) |
C2—Fe1—C6 | 119.18 (7) | C1—C5—H5 | 126.0 |
C2—Fe1—C7 | 108.59 (7) | C4—C5—Fe1 | 70.13 (9) |
C2—Fe1—C8 | 128.09 (7) | C4—C5—C1 | 108.06 (15) |
C2—Fe1—C9 | 165.58 (7) | C4—C5—H5 | 126.0 |
C2—Fe1—C10 | 152.64 (7) | Fe1—C6—H6 | 126.3 |
C3—Fe1—C6 | 153.07 (7) | C7—C6—Fe1 | 69.74 (9) |
C3—Fe1—C7 | 119.24 (7) | C7—C6—H6 | 126.0 |
C3—Fe1—C8 | 108.37 (7) | C10—C6—Fe1 | 69.55 (9) |
C4—Fe1—C3 | 40.58 (7) | C10—C6—H6 | 126.0 |
C4—Fe1—C6 | 165.33 (7) | C10—C6—C7 | 108.03 (15) |
C4—Fe1—C7 | 152.40 (7) | Fe1—C7—H7 | 126.1 |
C4—Fe1—C8 | 118.25 (7) | C6—C7—Fe1 | 69.78 (9) |
C5—Fe1—C1 | 41.23 (7) | C6—C7—H7 | 126.1 |
C5—Fe1—C2 | 69.11 (7) | C8—C7—Fe1 | 69.63 (9) |
C5—Fe1—C3 | 68.47 (7) | C8—C7—C6 | 107.88 (15) |
C5—Fe1—C4 | 40.62 (7) | C8—C7—H7 | 126.1 |
C5—Fe1—C6 | 127.80 (7) | Fe1—C8—H8 | 126.1 |
C5—Fe1—C7 | 166.23 (7) | C7—C8—Fe1 | 69.87 (9) |
C5—Fe1—C8 | 151.41 (7) | C7—C8—H8 | 125.9 |
C5—Fe1—C9 | 117.54 (7) | C9—C8—Fe1 | 69.69 (9) |
C5—Fe1—C10 | 107.31 (7) | C9—C8—C7 | 108.12 (15) |
C7—Fe1—C6 | 40.48 (7) | C9—C8—H8 | 125.9 |
C8—Fe1—C6 | 68.07 (7) | Fe1—C9—H9 | 126.0 |
C8—Fe1—C7 | 40.50 (6) | C8—C9—Fe1 | 69.89 (9) |
C9—Fe1—C3 | 127.56 (7) | C8—C9—H9 | 126.0 |
C9—Fe1—C4 | 107.38 (7) | C8—C9—C10 | 107.97 (15) |
C9—Fe1—C6 | 68.12 (7) | C10—C9—Fe1 | 69.67 (9) |
C9—Fe1—C7 | 68.10 (7) | C10—C9—H9 | 126.0 |
C9—Fe1—C8 | 40.42 (7) | Fe1—C10—H10 | 125.9 |
C10—Fe1—C3 | 165.28 (7) | C6—C10—Fe1 | 70.03 (9) |
C10—Fe1—C4 | 127.24 (7) | C6—C10—C9 | 108.00 (15) |
C10—Fe1—C6 | 40.42 (7) | C6—C10—H10 | 126.0 |
C10—Fe1—C7 | 68.11 (7) | C9—C10—Fe1 | 69.68 (9) |
C10—Fe1—C8 | 68.14 (7) | C9—C10—H10 | 126.0 |
C10—Fe1—C9 | 40.65 (7) | C12—C11—C1 | 177.07 (18) |
O1—N1—O2 | 123.00 (13) | C11—C12—C13 | 178.15 (18) |
O1—N1—C16 | 118.36 (13) | C14—C13—C12 | 120.19 (15) |
O2—N1—C16 | 118.63 (13) | C14—C13—C18 | 119.13 (15) |
C2—C1—Fe1 | 69.54 (9) | C18—C13—C12 | 120.67 (15) |
C2—C1—C5 | 107.51 (14) | C13—C14—H14 | 119.6 |
C5—C1—Fe1 | 69.18 (9) | C15—C14—C13 | 120.74 (15) |
C11—C1—Fe1 | 125.49 (11) | C15—C14—H14 | 119.6 |
C11—C1—C2 | 127.74 (15) | C14—C15—H15 | 120.9 |
C11—C1—C5 | 124.74 (15) | C14—C15—C16 | 118.24 (14) |
Fe1—C2—H2 | 126.2 | C16—C15—H15 | 120.9 |
C1—C2—Fe1 | 69.37 (9) | C15—C16—N1 | 118.51 (14) |
C1—C2—H2 | 126.1 | C17—C16—N1 | 118.86 (14) |
C3—C2—Fe1 | 69.88 (9) | C17—C16—C15 | 122.62 (15) |
C3—C2—C1 | 107.72 (14) | C16—C17—H17 | 120.7 |
C3—C2—H2 | 126.1 | C18—C17—C16 | 118.53 (15) |
Fe1—C3—H3 | 126.7 | C18—C17—H17 | 120.7 |
C2—C3—Fe1 | 69.50 (9) | C13—C18—H18 | 119.6 |
C2—C3—H3 | 125.7 | C17—C18—C13 | 120.73 (15) |
C4—C3—Fe1 | 69.66 (9) | C17—C18—H18 | 119.6 |
Fe1—C1—C2—C3 | −59.59 (11) | C5—C1—C2—C3 | −0.63 (18) |
Fe1—C1—C5—C4 | 59.82 (11) | C6—C7—C8—Fe1 | −59.53 (11) |
Fe1—C2—C3—C4 | −58.88 (11) | C6—C7—C8—C9 | −0.12 (18) |
Fe1—C3—C4—C5 | −58.78 (11) | C7—C6—C10—Fe1 | 59.33 (11) |
Fe1—C4—C5—C1 | −59.48 (11) | C7—C6—C10—C9 | −0.24 (18) |
Fe1—C6—C7—C8 | 59.43 (11) | C7—C8—C9—Fe1 | −59.51 (11) |
Fe1—C6—C10—C9 | −59.57 (12) | C7—C8—C9—C10 | −0.02 (18) |
Fe1—C7—C8—C9 | 59.40 (11) | C8—C9—C10—Fe1 | −59.63 (11) |
Fe1—C8—C9—C10 | 59.49 (11) | C8—C9—C10—C6 | 0.16 (19) |
Fe1—C9—C10—C6 | 59.79 (11) | C10—C6—C7—Fe1 | −59.21 (11) |
O1—N1—C16—C15 | −2.5 (2) | C10—C6—C7—C8 | 0.22 (18) |
O1—N1—C16—C17 | 177.91 (14) | C11—C1—C2—Fe1 | −119.65 (17) |
O2—N1—C16—C15 | 176.88 (14) | C11—C1—C2—C3 | −179.24 (15) |
O2—N1—C16—C17 | −2.7 (2) | C11—C1—C5—Fe1 | 119.48 (16) |
N1—C16—C17—C18 | 179.07 (14) | C11—C1—C5—C4 | 179.29 (15) |
C1—C2—C3—Fe1 | 59.27 (11) | C12—C13—C14—C15 | −179.76 (15) |
C1—C2—C3—C4 | 0.39 (18) | C12—C13—C18—C17 | 179.41 (15) |
C2—C1—C5—Fe1 | −59.19 (11) | C13—C14—C15—C16 | 0.2 (2) |
C2—C1—C5—C4 | 0.62 (18) | C14—C13—C18—C17 | −0.2 (2) |
C2—C3—C4—Fe1 | 58.78 (11) | C14—C15—C16—N1 | −179.41 (14) |
C2—C3—C4—C5 | −0.01 (18) | C14—C15—C16—C17 | 0.1 (2) |
C3—C4—C5—Fe1 | 59.10 (11) | C15—C16—C17—C18 | −0.4 (2) |
C3—C4—C5—C1 | −0.38 (18) | C16—C17—C18—C13 | 0.5 (2) |
C5—C1—C2—Fe1 | 58.96 (11) | C18—C13—C14—C15 | −0.2 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6···O1i | 0.93 | 2.55 | 3.461 (2) | 168 |
C15—H15···O1ii | 0.93 | 2.41 | 3.1909 (19) | 141 |
C17—H17···O2iii | 0.93 | 2.49 | 3.2187 (19) | 135 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x−1, −y+1, −z+1; (iii) −x, −y+1, −z. |
Substituent | Dihedral angle | Refcode |
Methyl (CH3) | 1.01 (9) | YOHSIY (Bobula et al., 2008) |
Nitro (NO2) | 6.61 (9) | This work |
Amino (NH2) | 8.05 (9) | YONFEN (Siemeling et al., 2008) |
Ethynyl (C≡CH) | 8.61 (9) | RARNED (Lin et al., 1996) |
Iodo (I) | 37.25 (9) | GIZTOA (Misra et al., 2014) |
Cyano (C≡N) | 69.58 (9) | MIJLAS01 (Bobula et al., 2008) |
Hydrogen (H) | 89.06 (9) | KELTIF (Zora et al., 2006) |
Trifluoromethyl (CF3) | 90.00 (9) | YOKSUK01 (Dai et al., 2013) |
Funding information
The authors acknowledge financial support under the NIH–RISE program, grant No. 2 R25 GM061151, and the NSF–CREST Center for Innovation, Research and Education in Environmental Nanotechnology, grant No. HRD-1736093. The single-crystal X-ray micro focus diffractometer was acquired through the support of the National Science Foundation under the Major Research Instrumentation Award No. CHE-1626103.
References
Bobula, T., Hudlický, J., Novák, P., Gyepes, R., Císařová, I., Štěpnička, P. & Kotora, M. (2008). Eur. J. Inorg. Chem. pp. 3911–3920. CSD CrossRef Google Scholar
Coutouli-Argyropoulou, E., Tsitabani, M., Petrantonakis, G., Terzis, A. & Raptopoulou, C. (2003). Org. Biomol. Chem. 1, 1382–1388. PubMed CAS Google Scholar
Dai, J.-J., Fang, C., Xiao, B., Yi, J., Xu, J., Liu, Z.-J., Lu, X., Liu, L. & Fu, Y. (2013). J. Am. Chem. Soc. 135, 8436–8439. CSD CrossRef CAS PubMed Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fu, N., Zhang, Y., Yang, D., Chen, B. & Wu, X. (2008). Catal. Commun. 9, 976–979. CrossRef CAS Google Scholar
Gasser, G. & Metzler-Nolte, N. (2012). Curr. Opin. Chem. Biol. 16, 84–91. CrossRef CAS PubMed Google Scholar
González Espiet, J. C., Cintrón Cruz, J. A. & Piñero Cruz, D. M. (2020). Acta Cryst. E76, 231–234. CSD CrossRef IUCr Journals Google Scholar
Görmen, M., Pigeon, P., Hillard, E., Vessières, A., Huché, M., Richard, M., McGlinchey, M., Top, S. & Jaouen, G. (2012). Organometallics, 31, 5856–5866. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Kulhánek, J., Bureš, F., Opršal, J., Kuznik, W., Mikysek, T. & Růžička, A. (2013). Asia. J. Org. Chem. 2, 422–431. Google Scholar
Li, C., Zhang, C., Zhang, W., Zhu, Q., Cheng, H. & Chen, B. (2009). Catal. Commun. 10, 1006–1009. CrossRef CAS Google Scholar
Lin, J. T., Wu, J. J., Li, C., Wen, Y. S. & Lin, K. (1996). Organometallics, 15, 5028–5034. CSD CrossRef CAS Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816. Google Scholar
McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668. Web of Science CrossRef CAS IUCr Journals Google Scholar
Misra, R., Maragani, R., Jadhav, T. & Mobin, S. M. (2014). New J. Chem. 38, 1446–1450. CSD CrossRef CAS Google Scholar
Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shoji, T., Maruyama, A., Yaku, C., Kamata, N., Ito, S., Okujima, T. & Toyota, K. (2014). Chem. Eur. J. 20, 1–9. CrossRef CAS Google Scholar
Siemeling, U., Bruhn, C., Meier, M. & Schirrmacher, C. (2008). Z. Naturforsch. B: Chem. Sci. 63, 1395–1401. Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392. Web of Science CrossRef CAS Google Scholar
Torres, J. C., Pilli, R. A., Vargas, M. D., Violante, F. A., Garden, S. J. & Pinto, A. C. (2002). Tetrahedron, 58, 4487–4492. Web of Science CrossRef CAS Google Scholar
Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Zora, M., Açıkgöz, C., Tumay, T. A., Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. C62, m327–m330. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.