research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1-ferrocenyl-2-(4-nitro­phen­yl)ethyne

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Puerto Rico at Río Piedras, PO Box 23346, San Juan, PR 00931-3346, Puerto Rico, and bDepartment of Chemistry and the Molecular Sciences Research Center, University of Puerto Rico-Rio Piedras Campus, PO Box 23346, San Juan, 00931-3346, Puerto Rico
*Correspondence e-mail: ingrid.montes2@upr.edu

Edited by G. Diaz de Delgado, Universidad de Los Andes, Venezuela (Received 23 March 2020; accepted 24 July 2020; online 31 July 2020)

The title ferrocene derivative, [Fe(C5H5)2(C8NO2)], including an alkyne bonded to a para-nitro­phenyl substituent, which was synthesized from a copper-free Sonogashira cross-coupling reaction between ethynylferrocene and 4-bromo-1-nitro­benzene, crystallizes in the P21/n space group. In the ferrocene unit, the penta­dienyl (Cps) rings are in an eclipsed conformation. The angle of rotation between the substituted cyclo­penta­dienyl ring and the p-nitro­phenyl group is 6.19 (10)°, yielding a quasi-linear extension of the ferrocenyl substitution. Important inter­molecular inter­actions arise from ππ stacking between the Cp rings and the p-nitro­phenyl, from corners of the Cp rings that are perpendicularly aligned, and between the O atoms from the nitro substituent and carbons at the corners of the Cp rings, propagating along all three crystallographic axes.

1. Chemical context

Recent efforts in the field of medicinal organometallic chemistry have been driven by a high inter­est in the synthesis of metal ethynyl complexes, particularly because of their biological activity (Görmen et al., 2012[Görmen, M., Pigeon, P., Hillard, E., Vessières, A., Huché, M., Richard, M., McGlinchey, M., Top, S. & Jaouen, G. (2012). Organometallics, 31, 5856-5866.]). In addition, phenyl­ethyne-derived compounds display active electrochemical properties such as the generation of stable redox forms, regeneration at low potentials and good electrochemical reversibility (Gasser & Metzler-Nolte, 2012[Gasser, G. & Metzler-Nolte, N. (2012). Curr. Opin. Chem. Biol. 16, 84-91.]). 1-Ferrocenyl-2-(4-nitro­phen­yl)ethyne has previously been prepared in moderate-to-high yields (52–92%) by applying Sonogashira coupling reactions. However, all of them used 4-iodo-1-nitro­benzene or 4-triflate-1-nitro­benzene and a variety of solvents, catalysts and conditions, under an inert atmosphere. The reaction time varied from 25 min to 4 h (Torres et al., 2002[Torres, J. C., Pilli, R. A., Vargas, M. D., Violante, F. A., Garden, S. J. & Pinto, A. C. (2002). Tetrahedron, 58, 4487-4492.]; Shoji et al., 2014[Shoji, T., Maruyama, A., Yaku, C., Kamata, N., Ito, S., Okujima, T. & Toyota, K. (2014). Chem. Eur. J. 20, 1-9.]; Li et al., 2009[Li, C., Zhang, C., Zhang, W., Zhu, Q., Cheng, H. & Chen, B. (2009). Catal. Commun. 10, 1006-1009.]; Fu et al., 2008[Fu, N., Zhang, Y., Yang, D., Chen, B. & Wu, X. (2008). Catal. Commun. 9, 976-979.]; Coutouli-Argyropoulou et al., 2003[Coutouli-Argyropoulou, E., Tsitabani, M., Petrantonakis, G., Terzis, A. & Raptopoulou, C. (2003). Org. Biomol. Chem. 1, 1382-1388.]). Other approaches involved the use of iodo­ferrocene and 4-ethynyl-1-nitro­benzene (Kulhánek et al., 2013[Kulhánek, J., Bureš, F., Opršal, J., Kuznik, W., Mikysek, T. & Růžička, A. (2013). Asia. J. Org. Chem. 2, 422-431.]). Our approach focuses on performing copper-free Sonogashira coupling between ethynylferrocene and 4-bromo-1-nitro­benzene without the need of inert atmosphere protocols and obtaining moderate-to-high yields, by following green chemistry protocols.

[Scheme 1]

2. Structural commentary

Fig. 1[link] (Mercury; Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) shows the mol­ecular structure of the title compound, which crystallizes in space group P21/n. The substituted ferrocene (Fc) system is linked to a p-nitro­benzene moiety by an acetyl­enic bridge between C11 and C12 with a bond distance of 1.202 (2) Å, which is comparable to those in similar complexes, e.g. 1.202 (2) Å (Misra et al. 2014[Misra, R., Maragani, R., Jadhav, T. & Mobin, S. M. (2014). New J. Chem. 38, 1446-1450.]), 1.197 (3) Å (Fu et al., 2008[Fu, N., Zhang, Y., Yang, D., Chen, B. & Wu, X. (2008). Catal. Commun. 9, 976-979.]), and 1.193 (2) Å (Zora et al. 2006[Zora, M., Açıkgöz, C., Tumay, T. A., Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. C62, m327-m330.]). The unit cell is comprised of four mol­ecules with one mol­ecule present per asymmetric unit. The substituted Cp and phenyl rings are almost parallel to each other, subtending a dihedral angle of 6.19 (10)°, in contrast to (phenyl-ethyn­yl)ferrocene (Zora et al., 2006[Zora, M., Açıkgöz, C., Tumay, T. A., Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. C62, m327-m330.]), which has no substituent in the para position and exhibits a nearly perpendicular dihedral angle of 89.06 (3)°. The distances of the Fe1 atom from the centroids of the substituted and unsubstituted Cp rings are 1.6461 (8) and 1.6584 (8) Å, respectively. The Cg1—Fe1—Cg2 angle is 179.27°, where Cg1 and Cg2 are the centroids of substituted and unsubstituted Cp rings, respectively. The Cp rings in the ferrocene system are thus almost parallel, since the angle between the Cp ring planes is 1.03 (13)°. In addition, the Cp rings display a nearly eclipsed conformation with a slight deviation, as demonstrated by the average C—Cg1—Cg2—C torsion angle of 12.26°. The C—C bond distances in the Cp rings range from 1.417 (2) to 1.436 (2) Å, while the Fe—C bond lengths range between 2.038 (2) and 2.055 (2) Å.

[Figure 1]
Figure 1
Mol­ecular structure of the title compound, including atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

The title compound exhibits ππ stacking inter­actions between one of the Cp rings from the Fc moiety and the p-nitro­phenyl substituent, allowing the formation of a zigzag structure; atom pairs involved relate C6(Cp) and C7(Cp) to C17(p-nitro­phen­yl) and C18(p-nitro­phen­yl) of a neighboring mol­ecule, with short contacts of 3.340 (2) and 3.397 (2) Å, respectively. This inter­action can be described as pairs of mol­ecules being inter­rupted by two C3(Cp)⋯H8—C8(Cp) inter­actions from a different inter­connected pair of perpendicularly oriented Fc moieties with short contact distances of 2.83 Å each. Short contacts from neighboring mol­ecules establishing a distinctive inter­connected pair between a corner of the Cp ring and one of the oxygen atoms from the p-nitro­phenyl substituent yield a closed arrangement of atoms. Short contacts involve H6—C6(Cp)⋯O1(p-nitro­phen­yl) at a distance of 3.461 (2) Å. Another inter­connection is found between adjacent p-nitro­phenyl groups, yielding a ring arrangement involving pairs from H17—C17(p-nitro­phen­yl)⋯O2(p-nitro­phen­yl) with a distance of 2.727 (2) Å and pairs from O1(p-nitro­phen­yl)⋯H15—C15(p-nitro­phen­yl) with a distance of 2.716 (2) Å. In addition, a chain is formed by short contacts from the C17—H17(p-nitro­phen­yl)⋯O1(p-nitro­phen­yl) inter­action belonging to the p-nitro­phenyl substituent with a distance of 3.203 (19) Å. Numerical details of the hydrogen-bonding inter­actions are given in Table 1[link] and the packing is shown in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1i 0.93 2.55 3.461 (2) 168
C15—H15⋯O1ii 0.93 2.41 3.1909 (19) 141
C17—H17⋯O2iii 0.93 2.49 3.2187 (19) 135
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x-1, -y+1, -z+1; (iii) -x, -y+1, -z.
[Figure 2]
Figure 2
Crystal packing of the title compound along the a axis with short-contact inter­actions shown as dashed lines.

4. Hirshfeld Surface Analysis

CrystalExplorer17 (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]) was used to generate the Hirshfeld surface (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) for the title compound mapped over dnorm and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814-3816.]). Fig. 3[link] shows the mol­ecules involved in the four closest contacts. Red spots on the Hirshfeld surface mapped over dnorm in the color range −0.2315 to 1.1417 arbitrary units confirm the previously mentioned main inter­molecular contacts. The fingerprint plots are given for all contacts (Fig. 4[link]a) and those decomposed into nine individual inter­actions: H⋯H (46.9%; Fig. 4[link]b), C⋯H/ H⋯C (21.9%; Fig. 4[link]c), O⋯H/ H⋯O (18.7%; Fig. 4[link]d), C⋯C (7.5%; Fig. 4[link]e), C⋯O/O⋯C (1.6%; Fig. 4[link]f), C⋯N/N⋯C (1.2%; Fig. 4[link]g), N⋯O/O⋯N (0.9%; Fig. 4[link]h), O⋯O (0.9%; Fig. 4[link]i) and N⋯H/H⋯N (0.5%; Fig. 4[link]j). The Hirshfeld surface analysis for the title compound indicates that the most significant contributions arise from H⋯H and C⋯H contacts (González et al., 2020[González Espiet, J. C., Cintrón Cruz, J. A. & Piñero Cruz, D. M. (2020). Acta Cryst. E76, 231-234.]; McKinnon et al., 2004[McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627-668.], 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814-3816.]; Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]).

[Figure 3]
Figure 3
A view of the Hirshfeld surface of the title compound mapped over dnorm with the four main inter­molecular contacts in the crystal lattice.
[Figure 4]
Figure 4
Full (a) and individual (b)–(j) two-dimensional fingerprint plots showing the nine inter­molecular contacts present in the crystal structure.

5. Database survey

A search of the Cambridge Structural Database (Version 5.41, updated November 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed 142 related compounds with the 1-ferrocenyl-2-phenyl­ethyne backbone. Of those structures, 41 contain substituents in the para position of the phenyl ring, as in the title compound. One of the reasons for such a high number of reported structures for methynylferrocene and its derived compounds is attributed to their substantial inter­est as chromophores, mainly because of their electronic communication capacity through the alkyne linkage to the Fe center. When comparing the effect of the substituent on the mol­ecular structure, one of the main features is the dihedral angle that is formed between the substituted Cp ring of the ferrocene group and the phenyl moiety. The orientation can range from almost parallel (1.01°: YOHSIY; Bobula et al., 2008[Bobula, T., Hudlický, J., Novák, P., Gyepes, R., Císařová, I., Štěpnička, P. & Kotora, M. (2008). Eur. J. Inorg. Chem. pp. 3911-3920.]) to completely perpendicular (90.00°: YOHSUK01; Dai et al., 2013[Dai, J.-J., Fang, C., Xiao, B., Yi, J., Xu, J., Liu, Z.-J., Lu, X., Liu, L. & Fu, Y. (2013). J. Am. Chem. Soc. 135, 8436-8439.]). Table 2[link] gives the dihedral angles for previously reported compounds; our compound having the second lowest dihedral angle and a nearly parallel conformation. Exchanging the hydrogen atoms in the methyl group for fluorine atoms shifts the dihedral angle from 1.01° to 90.00° in the case of methyl and tri­fluoro­methyl substituents, respectively.

Table 2
The effect of the substituent on the dihedral angle (°) between the substituted Cp ring and the phenyl ring in compounds containing a 1-ferrocenyl-2-phenyl­ethyne backbone and a para-substituted phenyl ring

Substituent Dihedral angle Refcode
Methyl (CH3) 1.01 (9) YOHSIY (Bobula et al., 2008[Bobula, T., Hudlický, J., Novák, P., Gyepes, R., Císařová, I., Štěpnička, P. & Kotora, M. (2008). Eur. J. Inorg. Chem. pp. 3911-3920.])
Nitro (NO2) 6.61 (9) This work
Amino (NH2) 8.05 (9) YONFEN (Siemeling et al., 2008[Siemeling, U., Bruhn, C., Meier, M. & Schirrmacher, C. (2008). Z. Naturforsch. B: Chem. Sci. 63, 1395-1401.])
Ethynyl (C≡CH) 8.61 (9) RARNED (Lin et al., 1996[Lin, J. T., Wu, J. J., Li, C., Wen, Y. S. & Lin, K. (1996). Organometallics, 15, 5028-5034.])
Iodo (I) 37.25 (9) GIZTOA (Misra et al., 2014[Misra, R., Maragani, R., Jadhav, T. & Mobin, S. M. (2014). New J. Chem. 38, 1446-1450.])
Cyano (C≡N) 69.58 (9) MIJLAS01 (Bobula et al., 2008[Bobula, T., Hudlický, J., Novák, P., Gyepes, R., Císařová, I., Štěpnička, P. & Kotora, M. (2008). Eur. J. Inorg. Chem. pp. 3911-3920.])
Hydrogen (H) 89.06 (9) KELTIF (Zora et al., 2006[Zora, M., Açıkgöz, C., Tumay, T. A., Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. C62, m327-m330.])
Tri­fluoro­methyl (CF3) 90.00 (9) YOKSUK01 (Dai et al., 2013[Dai, J.-J., Fang, C., Xiao, B., Yi, J., Xu, J., Liu, Z.-J., Lu, X., Liu, L. & Fu, Y. (2013). J. Am. Chem. Soc. 135, 8436-8439.])

6. Synthesis and crystallization

The title compound was prepared by adding ethynylferrocene (1.0 mmol), PdCl2(PPh3)2 (0.01 mmol), Et3N (2 mmol) and 4-bromo-1-nitro­benzene (1.0 mmol) to a 25 mL round-bottom flask, followed by the addition of DMF (1.0 mL) by syringe. The reaction was stirred for 1 h at 353 K. The reaction was stopped and crashed out with 20 mL of cold distilled water, then the solid was vacuum filtrated, and chromatographed [silica (hepta­ne–ethyl acetate/7:3)] to afford the pure compound, 70% yield. Dark-red crystals suitable for X-ray diffraction were obtained by the slow evaporation of CDCl3 solution of the title compound at room temperature. NMR analyses were performed on a Bruker AV-700 spectrometer by using CDCl3 99.9% pure as a solvent and Me4Si as external standard.1H NMR (δ in ppm, CDCl3): 4.26 (s, 5H), 4.32 (s, 2H), 4.55 (s, 2H), 7.59 (d, J = 8.6Hz, 2H), 8.18 (d, J = 8.6Hz, 2H). 13C NMR (δ in ppm, CDCl3): 63.6, 69.6, 70.1, 71.8, 84.5, 95.2, 123.6, 131.1, 131.8, 146.4. IR (νmax, cm−1): 2200 (C≡C). Electrochemistry: (CV200 mv: Eo = 613 mV; ΔE = 90 mV).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms were included in geometrically calculated positions, C—H = 0.93 Å, and refined as riding on their parent C atom with Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula [Fe(C5H5)2(C8NO2)]
Mr 331.14
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 5.9573 (1), 29.3810 (3), 8.0664 (1)
β (°) 100.202 (1)
V3) 1389.55 (3)
Z 4
Radiation type Cu Kα
μ (mm−1) 8.75
Crystal size (mm) 0.20 × 0.07 × 0.04
 
Data collection
Diffractometer Rigaku SuperNova, Single source at offset/far, HyPix3000
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.642, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 21951, 2567, 2410
Rint 0.036
(sin θ/λ)max−1) 0.605
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.061, 1.07
No. of reflections 2567
No. of parameters 200
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.23, −0.37
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

1-Ferrocenyl-2-(4-nitrophenyl)ethyne top
Crystal data top
[Fe(C5H5)2(C8NO2)]F(000) = 680
Mr = 331.14Dx = 1.583 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 5.9573 (1) ÅCell parameters from 12369 reflections
b = 29.3810 (3) Åθ = 3.0–68.8°
c = 8.0664 (1) ŵ = 8.75 mm1
β = 100.202 (1)°T = 100 K
V = 1389.55 (3) Å3Block, dark red
Z = 40.20 × 0.07 × 0.04 mm
Data collection top
Rigaku SuperNova, Single source at offset/far, HyPix3000
diffractometer
2567 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source2410 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.036
ω scansθmax = 68.9°, θmin = 3.0°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)
h = 77
Tmin = 0.642, Tmax = 1.000k = 3535
21951 measured reflectionsl = 99
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.024 w = 1/[σ2(Fo2) + (0.0305P)2 + 0.6401P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.061(Δ/σ)max = 0.003
S = 1.07Δρmax = 0.23 e Å3
2567 reflectionsΔρmin = 0.37 e Å3
200 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00060 (13)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.76257 (4)0.67811 (2)0.90888 (3)0.01397 (9)
O10.49667 (19)0.47779 (4)0.27187 (15)0.0226 (3)
O20.2775 (2)0.46760 (4)0.08806 (15)0.0271 (3)
N10.3245 (2)0.48668 (4)0.21343 (17)0.0167 (3)
C10.5321 (3)0.68695 (5)0.6915 (2)0.0173 (3)
C20.7551 (3)0.70112 (5)0.6686 (2)0.0192 (3)
H20.8375070.6892970.5908340.023*
C30.8274 (3)0.73649 (5)0.7863 (2)0.0208 (3)
H30.9655740.7519510.7982050.025*
C40.6531 (3)0.74426 (5)0.8827 (2)0.0205 (3)
H40.6575560.7656230.9682800.025*
C50.4711 (3)0.71379 (5)0.8256 (2)0.0198 (3)
H50.3359220.7115670.8677180.024*
C60.7951 (3)0.60950 (5)0.9567 (2)0.0221 (4)
H60.7324340.5861800.8852230.026*
C71.0133 (3)0.62957 (5)0.9617 (2)0.0193 (3)
H71.1183910.6217840.8938150.023*
C81.0425 (3)0.66366 (5)1.0887 (2)0.0192 (3)
H81.1702820.6820601.1186840.023*
C90.8431 (3)0.66474 (6)1.1617 (2)0.0212 (4)
H90.8170600.6839391.2479920.025*
C100.6897 (3)0.63126 (6)1.0798 (2)0.0233 (4)
H100.5455640.6247881.1030020.028*
C110.3932 (3)0.65207 (5)0.6029 (2)0.0189 (3)
C120.2680 (3)0.62353 (6)0.5308 (2)0.0195 (3)
C130.1182 (3)0.58890 (5)0.4500 (2)0.0170 (3)
C140.0833 (3)0.57845 (5)0.5091 (2)0.0182 (3)
H140.1193910.5942230.6008610.022*
C150.2291 (3)0.54491 (5)0.43247 (19)0.0167 (3)
H150.3631010.5379930.4712760.020*
C160.1700 (3)0.52188 (5)0.2961 (2)0.0153 (3)
C170.0281 (3)0.53113 (5)0.2348 (2)0.0170 (3)
H170.0638210.5150030.1436830.020*
C180.1713 (3)0.56480 (5)0.3118 (2)0.0182 (3)
H180.3044400.5715980.2716390.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01496 (14)0.01010 (14)0.01622 (15)0.00021 (9)0.00100 (10)0.00119 (9)
O10.0200 (6)0.0236 (6)0.0264 (6)0.0064 (5)0.0101 (5)0.0040 (5)
O20.0305 (7)0.0265 (7)0.0274 (7)0.0059 (5)0.0137 (6)0.0127 (5)
N10.0188 (7)0.0139 (6)0.0179 (7)0.0005 (5)0.0049 (5)0.0000 (5)
C10.0184 (8)0.0138 (7)0.0183 (8)0.0005 (6)0.0004 (7)0.0045 (6)
C20.0213 (8)0.0158 (8)0.0207 (8)0.0001 (6)0.0039 (7)0.0054 (6)
C30.0187 (8)0.0142 (8)0.0278 (9)0.0020 (6)0.0008 (7)0.0071 (7)
C40.0233 (9)0.0117 (7)0.0243 (9)0.0027 (6)0.0015 (7)0.0004 (6)
C50.0180 (8)0.0163 (8)0.0244 (9)0.0023 (6)0.0020 (7)0.0025 (6)
C60.0282 (9)0.0111 (8)0.0236 (9)0.0010 (6)0.0047 (7)0.0037 (6)
C70.0216 (8)0.0149 (8)0.0205 (8)0.0050 (6)0.0011 (7)0.0021 (6)
C80.0201 (8)0.0151 (8)0.0201 (8)0.0003 (6)0.0024 (7)0.0021 (6)
C90.0274 (9)0.0200 (8)0.0161 (8)0.0035 (7)0.0030 (7)0.0022 (6)
C100.0203 (8)0.0229 (9)0.0262 (9)0.0016 (7)0.0026 (7)0.0106 (7)
C110.0200 (8)0.0165 (8)0.0196 (8)0.0012 (6)0.0014 (7)0.0032 (6)
C120.0203 (8)0.0177 (8)0.0200 (8)0.0017 (7)0.0026 (7)0.0037 (7)
C130.0190 (8)0.0131 (7)0.0176 (8)0.0007 (6)0.0005 (6)0.0041 (6)
C140.0225 (8)0.0166 (8)0.0155 (8)0.0018 (6)0.0032 (6)0.0001 (6)
C150.0176 (8)0.0164 (8)0.0165 (8)0.0010 (6)0.0045 (6)0.0022 (6)
C160.0175 (8)0.0123 (7)0.0159 (8)0.0002 (6)0.0019 (6)0.0011 (6)
C170.0183 (8)0.0162 (8)0.0169 (8)0.0023 (6)0.0048 (6)0.0006 (6)
C180.0172 (8)0.0177 (8)0.0200 (8)0.0007 (6)0.0038 (6)0.0045 (6)
Geometric parameters (Å, º) top
Fe1—C12.0431 (17)C6—H60.9300
Fe1—C22.0454 (16)C6—C71.422 (2)
Fe1—C32.0505 (16)C6—C101.418 (3)
Fe1—C42.0491 (16)C7—H70.9300
Fe1—C52.0375 (16)C7—C81.421 (2)
Fe1—C62.0552 (16)C8—H80.9300
Fe1—C72.0546 (16)C8—C91.417 (2)
Fe1—C82.0515 (17)C9—H90.9300
Fe1—C92.0489 (17)C9—C101.423 (3)
Fe1—C102.0488 (16)C10—H100.9300
O1—N11.2301 (17)C11—C121.202 (2)
O2—N11.2312 (17)C12—C131.432 (2)
N1—C161.464 (2)C13—C141.402 (2)
C1—C21.435 (2)C13—C181.403 (2)
C1—C51.437 (2)C14—H140.9300
C1—C111.427 (2)C14—C151.385 (2)
C2—H20.9300C15—H150.9300
C2—C31.422 (2)C15—C161.389 (2)
C3—H30.9300C16—C171.385 (2)
C3—C41.422 (2)C17—H170.9300
C4—H40.9300C17—C181.380 (2)
C4—C51.418 (2)C18—H180.9300
C5—H50.9300
C1—Fe1—C241.09 (6)C4—C3—C2108.54 (14)
C1—Fe1—C368.60 (6)C4—C3—H3125.7
C1—Fe1—C468.76 (6)Fe1—C4—H4126.6
C1—Fe1—C6108.20 (7)C3—C4—Fe169.76 (9)
C1—Fe1—C7128.28 (7)C3—C4—H4125.9
C1—Fe1—C8166.33 (7)C5—C4—Fe169.25 (9)
C1—Fe1—C9151.89 (7)C5—C4—C3108.16 (15)
C1—Fe1—C10118.21 (7)C5—C4—H4125.9
C2—Fe1—C340.62 (7)Fe1—C5—H5125.9
C2—Fe1—C468.63 (7)C1—C5—Fe169.60 (9)
C2—Fe1—C6119.18 (7)C1—C5—H5126.0
C2—Fe1—C7108.59 (7)C4—C5—Fe170.13 (9)
C2—Fe1—C8128.09 (7)C4—C5—C1108.06 (15)
C2—Fe1—C9165.58 (7)C4—C5—H5126.0
C2—Fe1—C10152.64 (7)Fe1—C6—H6126.3
C3—Fe1—C6153.07 (7)C7—C6—Fe169.74 (9)
C3—Fe1—C7119.24 (7)C7—C6—H6126.0
C3—Fe1—C8108.37 (7)C10—C6—Fe169.55 (9)
C4—Fe1—C340.58 (7)C10—C6—H6126.0
C4—Fe1—C6165.33 (7)C10—C6—C7108.03 (15)
C4—Fe1—C7152.40 (7)Fe1—C7—H7126.1
C4—Fe1—C8118.25 (7)C6—C7—Fe169.78 (9)
C5—Fe1—C141.23 (7)C6—C7—H7126.1
C5—Fe1—C269.11 (7)C8—C7—Fe169.63 (9)
C5—Fe1—C368.47 (7)C8—C7—C6107.88 (15)
C5—Fe1—C440.62 (7)C8—C7—H7126.1
C5—Fe1—C6127.80 (7)Fe1—C8—H8126.1
C5—Fe1—C7166.23 (7)C7—C8—Fe169.87 (9)
C5—Fe1—C8151.41 (7)C7—C8—H8125.9
C5—Fe1—C9117.54 (7)C9—C8—Fe169.69 (9)
C5—Fe1—C10107.31 (7)C9—C8—C7108.12 (15)
C7—Fe1—C640.48 (7)C9—C8—H8125.9
C8—Fe1—C668.07 (7)Fe1—C9—H9126.0
C8—Fe1—C740.50 (6)C8—C9—Fe169.89 (9)
C9—Fe1—C3127.56 (7)C8—C9—H9126.0
C9—Fe1—C4107.38 (7)C8—C9—C10107.97 (15)
C9—Fe1—C668.12 (7)C10—C9—Fe169.67 (9)
C9—Fe1—C768.10 (7)C10—C9—H9126.0
C9—Fe1—C840.42 (7)Fe1—C10—H10125.9
C10—Fe1—C3165.28 (7)C6—C10—Fe170.03 (9)
C10—Fe1—C4127.24 (7)C6—C10—C9108.00 (15)
C10—Fe1—C640.42 (7)C6—C10—H10126.0
C10—Fe1—C768.11 (7)C9—C10—Fe169.68 (9)
C10—Fe1—C868.14 (7)C9—C10—H10126.0
C10—Fe1—C940.65 (7)C12—C11—C1177.07 (18)
O1—N1—O2123.00 (13)C11—C12—C13178.15 (18)
O1—N1—C16118.36 (13)C14—C13—C12120.19 (15)
O2—N1—C16118.63 (13)C14—C13—C18119.13 (15)
C2—C1—Fe169.54 (9)C18—C13—C12120.67 (15)
C2—C1—C5107.51 (14)C13—C14—H14119.6
C5—C1—Fe169.18 (9)C15—C14—C13120.74 (15)
C11—C1—Fe1125.49 (11)C15—C14—H14119.6
C11—C1—C2127.74 (15)C14—C15—H15120.9
C11—C1—C5124.74 (15)C14—C15—C16118.24 (14)
Fe1—C2—H2126.2C16—C15—H15120.9
C1—C2—Fe169.37 (9)C15—C16—N1118.51 (14)
C1—C2—H2126.1C17—C16—N1118.86 (14)
C3—C2—Fe169.88 (9)C17—C16—C15122.62 (15)
C3—C2—C1107.72 (14)C16—C17—H17120.7
C3—C2—H2126.1C18—C17—C16118.53 (15)
Fe1—C3—H3126.7C18—C17—H17120.7
C2—C3—Fe169.50 (9)C13—C18—H18119.6
C2—C3—H3125.7C17—C18—C13120.73 (15)
C4—C3—Fe169.66 (9)C17—C18—H18119.6
Fe1—C1—C2—C359.59 (11)C5—C1—C2—C30.63 (18)
Fe1—C1—C5—C459.82 (11)C6—C7—C8—Fe159.53 (11)
Fe1—C2—C3—C458.88 (11)C6—C7—C8—C90.12 (18)
Fe1—C3—C4—C558.78 (11)C7—C6—C10—Fe159.33 (11)
Fe1—C4—C5—C159.48 (11)C7—C6—C10—C90.24 (18)
Fe1—C6—C7—C859.43 (11)C7—C8—C9—Fe159.51 (11)
Fe1—C6—C10—C959.57 (12)C7—C8—C9—C100.02 (18)
Fe1—C7—C8—C959.40 (11)C8—C9—C10—Fe159.63 (11)
Fe1—C8—C9—C1059.49 (11)C8—C9—C10—C60.16 (19)
Fe1—C9—C10—C659.79 (11)C10—C6—C7—Fe159.21 (11)
O1—N1—C16—C152.5 (2)C10—C6—C7—C80.22 (18)
O1—N1—C16—C17177.91 (14)C11—C1—C2—Fe1119.65 (17)
O2—N1—C16—C15176.88 (14)C11—C1—C2—C3179.24 (15)
O2—N1—C16—C172.7 (2)C11—C1—C5—Fe1119.48 (16)
N1—C16—C17—C18179.07 (14)C11—C1—C5—C4179.29 (15)
C1—C2—C3—Fe159.27 (11)C12—C13—C14—C15179.76 (15)
C1—C2—C3—C40.39 (18)C12—C13—C18—C17179.41 (15)
C2—C1—C5—Fe159.19 (11)C13—C14—C15—C160.2 (2)
C2—C1—C5—C40.62 (18)C14—C13—C18—C170.2 (2)
C2—C3—C4—Fe158.78 (11)C14—C15—C16—N1179.41 (14)
C2—C3—C4—C50.01 (18)C14—C15—C16—C170.1 (2)
C3—C4—C5—Fe159.10 (11)C15—C16—C17—C180.4 (2)
C3—C4—C5—C10.38 (18)C16—C17—C18—C130.5 (2)
C5—C1—C2—Fe158.96 (11)C18—C13—C14—C150.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.932.553.461 (2)168
C15—H15···O1ii0.932.413.1909 (19)141
C17—H17···O2iii0.932.493.2187 (19)135
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y+1, z+1; (iii) x, y+1, z.
The effect of the substituent on the dihedral angle (°) between the substituted Cp ring and the phenyl ring in compounds containing a 1-ferrocenyl-2-phenylethyne backbone and a para-substituted phenyl ring top
SubstituentDihedral angleRefcode
Methyl (CH3)1.01 (9)YOHSIY (Bobula et al., 2008)
Nitro (NO2)6.61 (9)This work
Amino (NH2)8.05 (9)YONFEN (Siemeling et al., 2008)
Ethynyl (CCH)8.61 (9)RARNED (Lin et al., 1996)
Iodo (I)37.25 (9)GIZTOA (Misra et al., 2014)
Cyano (CN)69.58 (9)MIJLAS01 (Bobula et al., 2008)
Hydrogen (H)89.06 (9)KELTIF (Zora et al., 2006)
Trifluoromethyl (CF3)90.00 (9)YOKSUK01 (Dai et al., 2013)
 

Funding information

The authors acknowledge financial support under the NIH–RISE program, grant No. 2 R25 GM061151, and the NSF–CREST Center for Innovation, Research and Education in Environmental Nanotechnology, grant No. HRD-1736093. The single-crystal X-ray micro focus diffractometer was acquired through the support of the National Science Foundation under the Major Research Instrumentation Award No. CHE-1626103.

References

First citationBobula, T., Hudlický, J., Novák, P., Gyepes, R., Císařová, I., Štěpnička, P. & Kotora, M. (2008). Eur. J. Inorg. Chem. pp. 3911–3920.  CSD CrossRef Google Scholar
First citationCoutouli-Argyropoulou, E., Tsitabani, M., Petrantonakis, G., Terzis, A. & Raptopoulou, C. (2003). Org. Biomol. Chem. 1, 1382–1388.  PubMed CAS Google Scholar
First citationDai, J.-J., Fang, C., Xiao, B., Yi, J., Xu, J., Liu, Z.-J., Lu, X., Liu, L. & Fu, Y. (2013). J. Am. Chem. Soc. 135, 8436–8439.  CSD CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFu, N., Zhang, Y., Yang, D., Chen, B. & Wu, X. (2008). Catal. Commun. 9, 976–979.  CrossRef CAS Google Scholar
First citationGasser, G. & Metzler-Nolte, N. (2012). Curr. Opin. Chem. Biol. 16, 84–91.  CrossRef CAS PubMed Google Scholar
First citationGonzález Espiet, J. C., Cintrón Cruz, J. A. & Piñero Cruz, D. M. (2020). Acta Cryst. E76, 231–234.  CSD CrossRef IUCr Journals Google Scholar
First citationGörmen, M., Pigeon, P., Hillard, E., Vessières, A., Huché, M., Richard, M., McGlinchey, M., Top, S. & Jaouen, G. (2012). Organometallics, 31, 5856–5866.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKulhánek, J., Bureš, F., Opršal, J., Kuznik, W., Mikysek, T. & Růžička, A. (2013). Asia. J. Org. Chem. 2, 422–431.  Google Scholar
First citationLi, C., Zhang, C., Zhang, W., Zhu, Q., Cheng, H. & Chen, B. (2009). Catal. Commun. 10, 1006–1009.  CrossRef CAS Google Scholar
First citationLin, J. T., Wu, J. J., Li, C., Wen, Y. S. & Lin, K. (1996). Organometallics, 15, 5028–5034.  CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816.  Google Scholar
First citationMcKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMisra, R., Maragani, R., Jadhav, T. & Mobin, S. M. (2014). New J. Chem. 38, 1446–1450.  CSD CrossRef CAS Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShoji, T., Maruyama, A., Yaku, C., Kamata, N., Ito, S., Okujima, T. & Toyota, K. (2014). Chem. Eur. J. 20, 1–9.  CrossRef CAS Google Scholar
First citationSiemeling, U., Bruhn, C., Meier, M. & Schirrmacher, C. (2008). Z. Naturforsch. B: Chem. Sci. 63, 1395–1401.  Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationTorres, J. C., Pilli, R. A., Vargas, M. D., Violante, F. A., Garden, S. J. & Pinto, A. C. (2002). Tetrahedron, 58, 4487–4492.  Web of Science CrossRef CAS Google Scholar
First citationTurner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationZora, M., Açıkgöz, C., Tumay, T. A., Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. C62, m327–m330.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds