research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Caesium propano­ate monohydrate

CROSSMARK_Color_square_no_text.svg

aInst. of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Praha 8, Czech Republic
*Correspondence e-mail: fabry@fzu.cz

Edited by G. Diaz de Delgado, Universidad de Los Andes, Venezuela (Received 15 May 2020; accepted 15 July 2020; online 17 July 2020)

Caesium propano­ate monohydrate, Cs+·C3H5O2·H2O, is composed of two symmetry-independent Cs+ cations, which are situated on the special position 4e of space group P[\overline4]21m, one symmetry-independent propano­ate mol­ecule in a general position and a pair of water mol­ecules also situated on special position 4e. Two pairs of these symmetry-independent cations, four propano­ate mol­ecules and two pairs of symmetry-independent water mol­ecules form a repeat unit. These units form columns that are directed along the c axis and possess symmetry mm2. There are four such columns passing through each unit cell. Each column is inter­connected to its neighbours by four bifurcated three-centred Ow—H⋯Op (w = water, p = propano­ate) hydrogen bonds of moderate strength. There are also four intra­molecular Ow—H⋯Op hydrogen bonds of moderate strength within each column. One Cs+ cation is coordinated by six oxygen atoms (two water and four carboxyl­ate) in a trigonal–prismatic geometry, while the other Cs+ cation is coordinated by four water and four carboxyl­ate O atoms in a tetra­gonal–prismatic arrangement.

1. Chemical context

No structure of a simple hydrated alkali propano­ate has been determined until now. (`Simple' means a structure where the constituting cation belongs just to one chemical species.) This is in contrast to alkali formates and acetates where water-free alkali salts and complexes with parent acids as well as hydrates are known. These structures show different structural motifs: Some of them are layered, such as lithium acetate dihydrate, LiC2H3O2·2H2O [refcode LIACET06 (Kearley et al., 1996[Kearley, G. J., Nicolai, B., Radaelli, P. G. & Fillaux, F. (1996). J. Solid State Chem. 126, 184-188.]) in the Cambridge Structural Database, version 5.41, update of November 2019 (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.])], some are columnar including sodium di­hydrogen tri­acetate, NaC2H3O2·2C2H4O2 (NADHAC; Perotti & Tazzoli, 1981[Perotti, A. & Tazzoli, V. (1981). J. Chem. Soc. Dalton Trans. pp. 1768-1769.]) while the cations and anions surround each other in the structure of catena-[bis­(μ4-acetato)­tetra­kis­(μ3-acetato)­bis­(μ2-acetato)­octa­aqua­octa­lith­ium] (UVELAJ; Martínez Casado et al., 2011[Martínez Casado, F. J., Ramos Riesco, M., Redondo, M. I., Choquesillo-Lazarte, D., López-Andrés, S. & Cheda, J. A. R. (2011). Cryst. Growth Des. 11, 1021-1032.]).

[Scheme 1]

In the series of carb­oxy­lic acids with an increasing number of carbon atoms, it is propionic acid where the hydro­phobic properties start to be prominent. Formates and acetates are definitely distinct from propano­ates and other carboxyl­ates related to the acids CnH2n+1CO2 where n > 2. This is due to the longer and more voluminous organic chains in the latter compounds, which need space [cf. Duruz & Ubbelohde (1972[Duruz, J. J. & Ubbelohde, A. R. (1972). Proc. R. Soc. Lond. A330, 1-13.]) and Dumbleton & Lomer, 1965[Dumbleton, J. H. & Lomer, T. R. (1965). Acta Cryst. 19, 301-307.]]. Cohesion is provided by van der Waals forces. Occasionally, positional disorder of these groups may take place. Dicalcium barium hexa­kis­(propano­ate) (Stadnicka & Glazer, 1980[Stadnicka, K. & Glazer, A. M. (1980). Acta Cryst. B36, 2977-2985.]) can serve as an example.

The structural differences between alkali formates and acetates on one hand and simple alkali propano­ates such as Li(C3H5O2) (Martínez Casado et al., 2009[Martínez Casado, F. J., Riesco, M. R., García Pérez, M. V., Redondo, M. I., López-Andrés, S. & Rodríguez Cheda, J. A. (2009). J. Phys. Chem. B, 113, 12896-12902.]) and M(C3H5O2); M = Na, K, Rb, Cs (Fábry & Samolová, 2020[Fábry, J. & Samolová, E. (2020). Acta Cryst. E76. In preparation.]) on the other reflect the chemical differences between these two groups of compounds. The latter structures are characterized by stacking of layers that are composed of a metal–oxygen bilayer surrounded by hydro­phobic layers comprising the ethyl groups. The cohesion forces between the hydro­phobic layers hold these structures together. The structure of the chemically related compound Tl(C3H5O2) (refcode WEWKAM; Martínez Casado et al., 2010[Martínez Casado, F. J., Ramos Riesco, M., da Silva, I., Labrador, A., Redondo, M. I., García Pérez, M. V., López-Andrés, S. & Rodríguez Cheda, J. A. (2010). J. Phys. Chem. B, 114, 10075-10085.]) is also a layered structure with three symmetry-independent cations.

Mirnaya et al. (1991[Mirnaya, T. A., Polishchuk, A. P., Molochaeva, V. I. & Tolochko, A. S. (1991). Kristallografiya, 36, 377-383.]) pointed out the tendency for various alkanoates to form hydrates. Such a case is reported in this study – see the Synthesis and crystallization section. It is of inter­est how strikingly different the title structure Cs(C3H5O2)·H2O is from Cs(C3H5O2) (Fábry & Samolová, 2020[Fábry, J. & Samolová, E. (2020). Acta Cryst. E76. In preparation.]), despite the chemical similarity.

2. Structural commentary

The title structure confirms the tendency for various alkanoates to form hydrates, as noted by Mirnaya et al. (1991[Mirnaya, T. A., Polishchuk, A. P., Molochaeva, V. I. & Tolochko, A. S. (1991). Kristallografiya, 36, 377-383.]). Caesium propano­ate monohydrate is composed of two symmetry-independent Cs+ cations, which are situated on the special position 4e, i.e. on a symmetry plane, one symmetry-independent propano­ate mol­ecule in a general position and a pair of water mol­ecules also situated on special position 4e of space group P[\overline4]21m. Two pairs of these symmetry-independent cations, four propano­ate mol­ecules and two pairs of symmetry-independent water mol­ecules form a repeat unit. These units form columns along the c-axis direction (Fig. 1[link]a). The length of the repeat unit along the c axis corresponds to this unit-axis length. Each column has mm2 symmetry (Fig. 1[link]b). There are four such columns passing through each unit cell (Fig. 2[link]). The columns are inter­connected by bifurcated three-centered Ow—H⋯Op (w = water, p = propano­ate) hydrogen bonds (Jeffrey, 1995[Jeffrey, G. A. (1995). Crystallogr. Rev. 4, 213-254.]), whose lengths and angles are quite different, but which are still of moderate strength (Gilli & Gilli, 2009[Gilli, G. & Gilli, P. (2009). The Nature of the Hydrogen Bond, p. 61. New York: Oxford University Press Inc.]); the donor is O4 and the donated hydrogen is H1o4 (Table 1[link]). Each column thus donates four three-centered bifurcated hydrogen bonds (Jeffrey, 1995[Jeffrey, G. A. (1995). Crystallogr. Rev. 4, 213-254.]) to its neighbours (Fig. 2[link]). There are also intra­molecular two-centered Ow—H⋯Op hydrogen bonds of moderate strength within each column in the structure; the donor is O3 and the donated atom is H1o3.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1o3⋯O2i 0.820 (9) 1.988 (7) 2.783 (2) 163.3 (19)
O4—H1o4⋯O1ii 0.820 (7) 1.941 (6) 2.748 (2) 168.0 (5)
O4—H1o4⋯O2ii 0.820 (7) 2.646 (5) 3.293 (2) 137.0 (5)
O3—H1o3iii⋯O2iv 0.820 (9) 1.988 (7) 2.783 (2) 163.3 (19)
O4—H1o4iii⋯O1v 0.820 (7) 1.941 (6) 2.748 (2) 168.0 (5)
O4—H1o4iii⋯O2v 0.820 (7) 2.646 (5) 3.293 (2) 137.0 (5)
Symmetry codes: (i) -y+1, x, -z+2; (ii) x, y, z-1; (iii) [y+{\script{1\over 2}}, x-{\script{1\over 2}}, z]; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2]; (v) [y+{\script{1\over 2}}, x-{\script{1\over 2}}, z-1].
[Figure 1]
Figure 1
View (DIAMOND; Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact, Bonn, Germany.]) of the title motif along (a) the c axis and (b) the b axis. Displacement ellipsoids are shown at the 30% probability level: the cations and the O and C atoms are shown in green, red and grey, respectively. H atoms are shown as small light-grey spheres. The covalent bonds are represented by solid lines, Cs—O bonds by dashed black lines and hydrogen bonds by yellow dashed lines.
[Figure 2]
Figure 2
Packing of the title mol­ecules in the unit cell (DIAMOND; Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact, Bonn, Germany.]). Displacement ellipsoids are shown at the 30% probability level: the cations and the O and C atoms are shown in green, red and grey, respectively. H atoms are shown as small light-grey spheres. The covalent bonds are represented by solid lines, Cs—O bonds by dashed black lines and hydrogen bonds by yellow dashed lines.

Cs1 is coordinated by six oxygen atoms (two of them are water O atoms and four are carboxyl­ate O atoms) in a trigonal–prismatic geometry, while Cs2 is in a less regular tetra­gonal–prismatic coordination environment (by four water and four carboxyl­ate oxygen atoms) (Fig. 2[link]). The bond-valence sums (Brese & O'Keeffe, 1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]) of Cs1 and Cs2 are 0.902 (3) and 0.997 (2) v.u., respectively. The fact that the cation with a smaller number of ligands that exhibits a regular coordination environment has a smaller bond-valence sum than that with the larger number of surrounding cations seems to be a peculiarity of the present structure, for example compared to β-K2SO4 compounds with two symmetry-independent cations (Fábry & Pérez-Mato, 1994[Fábry, J. & Pérez-Mato, J. M. (1994). Phase Transit. 49, 193-229.]). One has eleven ligands while the other has nine. The former has a more irregular coordination compared to the latter and its bond-valence sum is also lower than that of the latter cation. This example is a specific case that has been considered by Brown (1992[Brown, I. D. (1992). Acta Cryst. B48, 553-572.]): The larger coordination number usually results in the formation of a larger cavity around the cation. Stabilization of the cation causes the cation to shift towards some ligand. Such a shift contributes to irregularity of the coordination polyhedron with large numbers of ligands. Despite this stabilization, the bonding of a cation with a high coordination number tends to be lower than that of a cation with a low coordination number.

In contrast to the alkali propano­ates, M(CnH2n+1COO), the methyl­ene–methyl­ene, meth­yl–methyl carbon atoms are not in close contact in the title structure. The closest contact C2⋯C3vi, i.e. a methyl­ene–methyl contact is 3.961 (4) Å; symmetry code: (vi) −y + 1, x, −z + 1. This is related to the fact that no disorder of the ethyl groups is observed in the studied structure. At the same time, there are elongated voids in the c-axis direction that run parallel through the 4d positions and which are surrounded by the ethyl groups. The radius of the void is 1.381 Å while its height nearly corresponds to the c axis. The voids were calculated and depicted (see the supporting information) using Mercury 4.0 (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

3. Synthesis and crystallization

The crystals formed spontaneously in a droplet from dissolved deliquescent crystals of Cs(C3H5O2) that otherwise have been grown from an aqueous solution of Cs2CO3 with a little excess of propionic acid (Fábry & Samolová, 2020[Fábry, J. & Samolová, E. (2020). Acta Cryst. E76. In preparation.]).

4. Structure determination and refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The non-hydrogen atoms were determined by a charge-flipping method (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]). The positions of the methyl­ene hydrogen atoms were calculated and refined under the following constraints: C—H = 0.97 Å with Uiso(H) = 1.2Ueq(C). The methyl hydrogen atoms were found in the difference electron-density maps and refined under the constraints C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C). The water hydrogen atoms were also found in the difference electron density maps. The O—H distances were restrained to 0.820 (1) Å with Uiso(H) = 1.5Ueq(O). When the water H atoms were refined, the O—Hwater distances converged to values of ∼0.78 Å. The structure was treated as an inversion twin. The Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) parameter is 0.03 (3).

Table 2
Experimental details

Crystal data
Chemical formula Cs+·C3H5O2·H2O
Mr 224
Crystal system, space group Tetragonal, P[\overline{4}]21m
Temperature (K) 230
a, c (Å) 17.7764 (3), 4.2223 (1)
V3) 1334.25 (4)
Z 8
Radiation type Mo Kα
μ (mm−1) 5.47
Crystal size (mm) 0.46 × 0.04 × 0.03
 
Data collection
Diffractometer Bruker D8 VENTURE Kappa Duo PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2017[Bruker (2017). Instrument Service, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.190, 0.866
No. of measured, independent and observed [I > 3σ(I)] reflections 12844, 2019, 1872
Rint 0.021
(sin θ/λ)max−1) 0.703
 
Refinement
R[F > 3σ(F)], wR(F), S 0.014, 0.037, 1.10
No. of reflections 2019
No. of parameters 78
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.24, −0.33
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 831 Friedel pairs
Absolute structure parameter 0.03 (3)
Computer programs: Instrument Service and SAINT (Bruker, 2017[Bruker (2017). Instrument Service, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]) and JANA2006 (Petříček et al., 2014[Petříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345-352.]), DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact, Bonn, Germany.]); extinction correction according to Becker & Coppens (1974[Becker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 129-147.]).

Supporting information


Computing details top

Data collection: Instrument Service (Bruker, 2017); cell refinement: SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: JANA2006 (Petříček et al., 2014); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: JANA2006 (Petříček et al., 2014).

Caesium propanoate monohydrate top
Crystal data top
Cs+·C3H5O2·H2OThere have been used diffractions with I/σ(I)>20 for the unit cell determination.
Mr = 224Dx = 2.230 Mg m3
Tetragonal, P421mMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -4 2abCell parameters from 9815 reflections
a = 17.7764 (3) Åθ = 2.3–30.0°
c = 4.2223 (1) ŵ = 5.47 mm1
V = 1334.25 (4) Å3T = 230 K
Z = 8Needle, colourless
F(000) = 8320.46 × 0.04 × 0.03 mm
Data collection top
Bruker D8 VENTURE Kappa Duo PHOTON 100 CMOS
diffractometer
2019 independent reflections
Radiation source: IµS micro-focus sealed tube1872 reflections with I > 3σ(I)
Quazar Mo multilayer optic monochromatorRint = 0.021
φ and ω scansθmax = 30.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2017)
h = 2424
Tmin = 0.190, Tmax = 0.866k = 1924
12844 measured reflectionsl = 54
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
R[F > 3σ(F)] = 0.014Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2)
wR(F) = 0.037(Δ/σ)max = 0.042
S = 1.10Δρmax = 0.24 e Å3
2019 reflectionsΔρmin = 0.33 e Å3
78 parametersExtinction correction: B-C type 1 Lorentzian isotropic (Becker & Coppens, 1974)
4 restraintsExtinction coefficient: 330 (110)
22 constraintsAbsolute structure: Flack (1983), 831 Friedel pairs
Primary atom site location: charge flippingAbsolute structure parameter: 0.03 (3)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cs10.695062 (6)0.195062 (6)0.48412 (6)0.03299 (4)
Cs20.420270 (6)0.079730 (6)0.51015 (5)0.03461 (4)
O10.56778 (8)0.21997 (9)0.9877 (8)0.0493 (5)
O20.44454 (7)0.20549 (7)1.0090 (6)0.0395 (4)
O30.78820 (8)0.28820 (8)0.9682 (10)0.0442 (7)
O40.56624 (9)0.06624 (9)0.0554 (10)0.0534 (9)
C10.50192 (12)0.24285 (12)0.9444 (5)0.0310 (6)
C20.49413 (16)0.32018 (16)0.7976 (7)0.0549 (9)
C30.41676 (19)0.34209 (18)0.6915 (8)0.0631 (11)
H1c20.5133020.357750.9433910.0658*
H2c20.5288870.3248750.6216290.0658*
H1c30.3839440.3446950.8717740.0947*
H2c30.4186840.3903430.5897720.0947*
H3c30.3980580.3052620.5450340.0947*
H1o30.7817 (4)0.3335 (4)0.994 (9)0.0662*
H1o40.5599 (3)0.1117 (3)0.035 (8)0.0801*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cs10.03383 (7)0.03383 (7)0.03130 (9)0.00310 (6)0.00090 (7)0.00090 (7)
Cs20.03802 (7)0.03802 (7)0.02778 (8)0.00027 (6)0.00236 (8)0.00236 (8)
O10.0321 (7)0.0484 (8)0.0675 (11)0.0054 (6)0.0002 (13)0.0072 (13)
O20.0324 (6)0.0340 (7)0.0520 (9)0.0018 (5)0.0050 (10)0.0042 (11)
O30.0348 (6)0.0348 (6)0.0629 (18)0.0038 (8)0.0063 (12)0.0063 (12)
O40.0372 (7)0.0372 (7)0.086 (2)0.0007 (9)0.0092 (11)0.0092 (11)
C10.0314 (9)0.0300 (9)0.0316 (12)0.0010 (8)0.0005 (9)0.0018 (9)
C20.0470 (15)0.0427 (15)0.0749 (18)0.0065 (12)0.0065 (14)0.0230 (14)
C30.070 (2)0.0518 (18)0.067 (2)0.0210 (16)0.0106 (17)0.0148 (15)
Geometric parameters (Å, º) top
O1—C11.253 (3)Cs1—O33.108 (3)
O2—C11.247 (3)Cs2—O23.102 (2)
C1—C21.514 (4)Cs2—O2iv3.108 (2)
C2—C31.498 (4)Cs2—O2v3.102 (2)
C2—H1c20.97Cs2—O3vi3.886 (3)
C2—H2c20.97Cs2—O3vii3.984 (3)
C3—H1c30.96Cs2—O43.237 (3)
C3—H2c30.96Cs2—O4viii3.477 (3)
C3—H3c30.96Cs2—O4ix3.237 (3)
Cs1—O1i3.116 (2)Cs2—O4x3.477 (3)
Cs1—O13.136 (2)O3—H1o30.820 (9)
Cs1—O1ii3.116 (2)O3—H1o3iii0.820 (9)
Cs1—O1iii3.136 (2)O4—H1o40.820 (7)
Cs1—O3i3.198 (3)O4—H1o4iii0.820 (7)
O1i—Cs1—O184.96 (7)O2v—Cs2—O4x59.75 (5)
O1i—Cs1—O1ii75.75 (6)O3vi—Cs2—O3vii64.87 (8)
O1i—Cs1—O1iii131.38 (5)O3vi—Cs2—O4102.75 (7)
O1i—Cs1—O3i81.03 (6)O3vi—Cs2—O4viii146.78 (4)
O1i—Cs1—O3138.89 (5)O3vi—Cs2—O4ix102.75 (7)
O1i—Cs1—O446.47 (5)O3vi—Cs2—O4x146.78 (4)
O1—Cs1—O1ii131.38 (5)O3vii—Cs2—O4147.56 (4)
O1—Cs1—O1iii75.17 (6)O3vii—Cs2—O4viii96.57 (7)
O1—Cs1—O3i139.66 (4)O3vii—Cs2—O4ix147.56 (4)
O1—Cs1—O382.14 (7)O3vii—Cs2—O4x96.57 (7)
O1—Cs1—O488.43 (6)O4—Cs2—O4viii77.84 (8)
O1ii—Cs1—O1iii84.96 (7)O4—Cs2—O4ix61.92 (5)
O1ii—Cs1—O3i81.03 (6)O4—Cs2—O4x106.39 (6)
O1ii—Cs1—O3138.89 (5)O4viii—Cs2—O4ix106.39 (6)
O1ii—Cs1—O446.47 (5)O4viii—Cs2—O4x57.23 (5)
O1iii—Cs1—O3i139.66 (4)O4ix—Cs2—O4x77.84 (8)
O1iii—Cs1—O382.14 (7)Cs1—O1—Cs1viii84.96 (4)
O1iii—Cs1—O488.43 (6)Cs2—O2—Cs2viii85.68 (3)
O3i—Cs1—O384.05 (8)Cs1—O3—Cs1viii84.05 (4)
O3i—Cs1—O4107.86 (8)Cs1—O3—Cs2xi107.57 (11)
O3—Cs1—O4168.08 (8)Cs1—O3—Cs2xii172.44 (11)
O2i—Cs2—O285.68 (6)Cs1viii—O3—Cs2xi168.38 (11)
O2i—Cs2—O2iv74.70 (5)Cs1viii—O3—Cs2xii103.51 (11)
O2i—Cs2—O2v131.48 (4)H1o3—O3—H1o3iii105.0 (10)
O2i—Cs2—O3vi45.21 (4)Cs1—O4—Cs2i137.82 (6)
O2i—Cs2—O3vii91.97 (5)Cs1—O4—Cs299.19 (9)
O2i—Cs2—O462.50 (5)Cs1—O4—Cs2xiii137.82 (6)
O2i—Cs2—O4viii113.38 (5)Cs1—O4—Cs2ix99.19 (9)
O2i—Cs2—O4ix99.35 (7)Cs2i—O4—Cs277.84 (4)
O2i—Cs2—O4x167.93 (4)Cs2i—O4—Cs2xiii70.40 (6)
O2—Cs2—O2iv131.48 (4)Cs2i—O4—Cs2ix120.22 (5)
O2—Cs2—O2v74.89 (5)Cs2—O4—Cs2xiii120.22 (5)
O2—Cs2—O3vi90.09 (6)Cs2—O4—Cs2ix76.52 (7)
O2—Cs2—O3vii44.10 (4)Cs2xiii—O4—Cs2ix77.84 (4)
O2—Cs2—O4110.17 (5)H1o4—O4—H1o4iii105.0 (7)
O2—Cs2—O4viii59.75 (5)O1—C1—O2124.0 (2)
O2—Cs2—O4ix166.01 (5)O1—C1—C2116.1 (2)
O2—Cs2—O4x94.51 (7)O2—C1—C2119.9 (2)
O2iv—Cs2—O2v85.68 (6)C1—C2—C3116.3 (2)
O2iv—Cs2—O3vi45.21 (4)C1—C2—H1c2109.47
O2iv—Cs2—O3vii91.97 (5)C1—C2—H2c2109.47
O2iv—Cs2—O499.35 (7)C3—C2—H1c2109.47
O2iv—Cs2—O4viii167.93 (4)C3—C2—H2c2109.47
O2iv—Cs2—O4ix62.50 (5)H1c2—C2—H2c2101.72
O2iv—Cs2—O4x113.38 (5)C2—C3—H1c3109.47
O2v—Cs2—O3vi90.09 (6)C2—C3—H2c3109.47
O2v—Cs2—O3vii44.10 (4)C2—C3—H3c3109.47
O2v—Cs2—O4166.01 (5)H1c3—C3—H2c3109.47
O2v—Cs2—O4viii94.51 (7)H1c3—C3—H3c3109.47
O2v—Cs2—O4ix110.17 (5)H2c3—C3—H3c3109.47
Symmetry codes: (i) x, y, z1; (ii) y+1/2, x1/2, z1; (iii) y+1/2, x1/2, z; (iv) y+1/2, x+1/2, z1; (v) y+1/2, x+1/2, z; (vi) y, x+1, z+1; (vii) y, x+1, z+2; (viii) x, y, z+1; (ix) x+1, y, z; (x) x+1, y, z+1; (xi) y+1, x, z+1; (xii) y+1, x, z+2; (xiii) x+1, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1o3···O2xii0.820 (9)1.988 (7)2.783 (2)163.3 (19)
O4—H1o4···O1i0.820 (7)1.941 (6)2.748 (2)168.0 (5)
O4—H1o4···O2i0.820 (7)2.646 (5)3.293 (2)137.0 (5)
O3—H1o3iii···O2xiv0.820 (9)1.988 (7)2.783 (2)163.3 (19)
O4—H1o4iii···O1ii0.820 (7)1.941 (6)2.748 (2)168.0 (5)
O4—H1o4iii···O2ii0.820 (7)2.646 (5)3.293 (2)137.0 (5)
Symmetry codes: (i) x, y, z1; (ii) y+1/2, x1/2, z1; (iii) y+1/2, x1/2, z; (xii) y+1, x, z+2; (xiv) x+1/2, y+1/2, z+2.
 

Funding information

Funding for this research was provided by: Ministry of Education of the Czech Republic (grant No. NPU I–LO1603 to Institute of Physics of the Academy of Sciences of the Czech Republic).

References

First citationBecker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 129–147.  CrossRef IUCr Journals Web of Science Google Scholar
First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrown, I. D. (1992). Acta Cryst. B48, 553–572.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2017). Instrument Service, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDumbleton, J. H. & Lomer, T. R. (1965). Acta Cryst. 19, 301–307.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationDuruz, J. J. & Ubbelohde, A. R. (1972). Proc. R. Soc. Lond. A330, 1-13.  Google Scholar
First citationFábry, J. & Pérez-Mato, J. M. (1994). Phase Transit. 49, 193–229.  CAS Google Scholar
First citationFábry, J. & Samolová, E. (2020). Acta Cryst. E76. In preparation.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGilli, G. & Gilli, P. (2009). The Nature of the Hydrogen Bond, p. 61. New York: Oxford University Press Inc.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJeffrey, G. A. (1995). Crystallogr. Rev. 4, 213–254.  CrossRef CAS Google Scholar
First citationKearley, G. J., Nicolai, B., Radaelli, P. G. & Fillaux, F. (1996). J. Solid State Chem. 126, 184–188.  CSD CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMartínez Casado, F. J., Ramos Riesco, M., da Silva, I., Labrador, A., Redondo, M. I., García Pérez, M. V., López-Andrés, S. & Rodríguez Cheda, J. A. (2010). J. Phys. Chem. B, 114, 10075–10085.  Web of Science PubMed Google Scholar
First citationMartínez Casado, F. J., Ramos Riesco, M., Redondo, M. I., Choquesillo-Lazarte, D., López-Andrés, S. & Cheda, J. A. R. (2011). Cryst. Growth Des. 11, 1021–1032.  Google Scholar
First citationMartínez Casado, F. J., Riesco, M. R., García Pérez, M. V., Redondo, M. I., López-Andrés, S. & Rodríguez Cheda, J. A. (2009). J. Phys. Chem. B, 113, 12896–12902.  Web of Science PubMed Google Scholar
First citationMirnaya, T. A., Polishchuk, A. P., Molochaeva, V. I. & Tolochko, A. S. (1991). Kristallografiya, 36, 377-383.  CAS Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPerotti, A. & Tazzoli, V. (1981). J. Chem. Soc. Dalton Trans. pp. 1768–1769.  CSD CrossRef Web of Science Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345-352.  Google Scholar
First citationStadnicka, K. & Glazer, A. M. (1980). Acta Cryst. B36, 2977–2985.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds