research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 2,6-di­iodo-4-nitro­toluene and 2,4,6-tri­bromo­toluene

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Cristallographie, Département de Physique, Université Mentouri-Constantine, 25000 Constantine, Algeria, and bUMR 6226 CNRS–Université Rennes 1 `Sciences Chimiques de Rennes', Equipe `Matière Condensée et Systèmes Electroactifs', Bâtiment 10C Campus de Beaulieu, 263 Avenue du Général Leclerc, F-35042 Rennes, France
*Correspondence e-mail: medjroubi-m@umc.edu.dz

Edited by G. Diaz de Delgado, Universidad de Los Andes, Venezuela (Received 16 June 2020; accepted 23 July 2020; online 31 July 2020)

The title compounds, 2,6-di­iodo-4-nitro­toluene (DINT, C7H5I2NO2) and 2,4,6-tri­bromo­toluene (TBT, C7H5Br3,), are tris­ubstituted toluene mol­ecules. Both mol­ecules are planar, only the H atoms of the methyl group, and the nitro group in DINT, deviate significantly from the plane of the benzene ring. In the crystals of both compounds, mol­ecules stack in columns up the shortest crystallographic axis, viz. the a axis in DINT and the b axis in TBT. In the crystal of DINT, mol­ecules are linked via short N—O⋯I contacts, forming chains along [100]. In TBT, mol­ecules are linked by C—H⋯Br hydrogen bonds, forming chains along [010]. Hirshfeld surface analysis was used to explore the inter­molecular contacts in the crystals of both DINT and TBT.

1. Chemical context

In order to understand the methyl radical behaviour of benzene mol­ecules substituted by halogens and methyl groups, we have studied a number of halogenomesitylenes, such as tri­iodo­mesitylene (TIM; Boudjada et al., 2001[Boudjada, A., Hernandez, O., Meinnel, J., Mani, M. & Paulus, W. (2001). Acta Cryst. C57, 1106-1108.]), tri­chloro­mesitylene (TCM; Tazi et al., 1995[Tazi, M., Meinnel, J., Sanquer, M., Nusimovici, M., Tonnard, F. & Carrie, R. (1995). Acta Cryst. B51, 838-847.]), tri­bromo­mesitylene (TBM; Boudjada et al., 1999[Boudjada, F., Meinnel, J., Cousson, A., Paulus, W., Mani, M. & Sanquer, M. (1999). AIP Conf. Proc. pp. 217-222.]) and di­bromo­mesitylene (DBM; Hernandez et al., 2003[Hernandez, O., Cousson, A., Plazanet, M., Nierlich, M. & Meinnel, J. (2003). Acta Cryst. C59, o445-o450.]). In the solid state of these halogeno-methyl-benzene (HMB) compounds, the steric hindrance between the methyl group and the halogen atoms results in small out-of -plane deformations of the heavy atoms. In spite of the small amplitudes of the deformation, the impact on the rotational potential of the methyl group is considerable because of the contribution of the neighbouring halogen atoms on the methyl groups as observed in these planar structures. This study has now been extended to understand and identify the methyl-group behaviour of halogeno-toluene mol­ecules, and we report herein on the crystal and mol­ecular structures of the title compounds, 2,6-di­iodo-4-nitro­toluene (DINT; systematic name: 1,3-di­iodo-2-methyl-5-nitro­benzene) and 2,4,6-tri­bromo­toluene (TBT; systematic name: 1,3,5-tri­bromo-2-methyl-benzene). Hirshfeld surface analysis was used to explore the inter­molecular contacts in the crystals of both compounds.

2. Structural commentary

The mol­ecular structure of DINT is illustrated in Fig. 1[link], and that of TBT in Fig. 2[link]. The structures of the title compounds are compared with those of the di­chloro­nitro­toluene (DCNT; Medjroubi et al., 2017[Medjroubi, M. L., Boudjada, A., Hamdouni, N., Jeannin, O. & Meinnel, J. (2017). IUCrData, 2, x170672.]) and di­bromo­nitro­toluene (DBNT; Medjroubi et al., 2016[Medjroubi, M. L., Jeannin, O., Fourmigué, M., Boudjada, A. & Meinnel, J. (2016). IUCrData, 1, x160621.]) analogues, illustrated in Fig. 3[link].

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of DINT with the atom labelling and displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of TBT with the atom labelling and displacement ellipsoids drawn at the 50% probability level.
[Figure 3]
Figure 3
The mol­ecular structures of DCNT and DBNT, with displacement ellipsoids drawn at the 50% probability level.

In DBNT, the methyl group exhibits rotational disorder about the Car—Cme axis. As in DCNT, the methyl group of DINT does not present any disorder. Hence, no significant steric hindrance of the methyl group by the ortho halogen atoms is observed. The longest bond lengths Car—Car are adjacent to the Car—Cme bond with an average value of 1.405 (4) Å. The bond-length values are close to those found in the literature. Moreover, in the crystal structure of DINT, the methyl group has a C—H bond perpendicular to the mean plane with a torsion angle C2—C1—C7—H7A = 90.0°, which has already previously been reported in the literature. The inter­molecular N1—O⋯I [3.115 (3) Å] inter­actions are competing to ensure cohesion in the crystal, see Fig. 4[link]. Atom I2 bonded to the atom C6, with the C1—C6—I2 angle of 121.7 (3)° being greater than the angle C5—C6—I2 [116.1 (2)°] located on the other side of the C6—I2 bond (Fig. 1[link]). The aromatic ring is planar in DINT. The methyl C atom, the I atoms and the N atom of the nitro substituent, lie extremely close to the plane of the benzene ring; the deviations are 0.001 (1) Å for the methyl C atom, 0.097 (3) and −0.097 (3) Å for the two I atoms, −0.011 (2) Å for the nitro N atom, whereas for the oxygen atoms, which are located on either side of the mean plane, the deviations are 0.293 (3) and −0.283 (3) Å. In the crystal of DCNT, mol­ecules are linked by weak C—H⋯O and C—H⋯Cl hydrogen bonds, forming layers parallel to the ab plane Fig. 5[link] (Medjroubi et al., 2017[Medjroubi, M. L., Boudjada, A., Hamdouni, N., Jeannin, O. & Meinnel, J. (2017). IUCrData, 2, x170672.]).

[Figure 4]
Figure 4
A view along the a and b axes of the crystal packing of DINT.
[Figure 5]
Figure 5
A view along the a axes of the crystal packing of 2,6-di­chloro-4-nitro­toluene, DCNT.

The mol­ecular structure of TBT is illustrated in Fig. 2[link]. The structural study did not reveal any disorder and the intra­molecular inter­action ensuring the cohesion in the crystal is C—Br⋯ H7B (2.61 Å) as seen in Fig. 6[link] and Table 1[link]. This conformation produces a significant steric effect between the hydrogen atoms of the methyl group and atom Br2 bonded to atom C6 with an angle C1—C6—Br3 = 119.8 (2)°, which is clearly greater than the angle C5—C6—Br3 = 116.5 (2)° located on the other side of the C6—Br1 bond. This is the same case for the exocyclic angles C6—C1—C7 = 121.9 (3)° and C2—C1—C7 = 123.6 (3)° located on either side of the C1—C7 bond. As found in DINT and DCNT, the longest Car—Car bond lengths are adjacent to the Car–Cme bond (Fig. 2[link]). The methyl C atom C7 is displaced from the benzene ring by −0.005 (1) Å, while the Br atoms lie almost in the plane of the benzene ring [deviations are 0.003 (3) Å for atoms Br1 and Br3 and −0.012 (3)  Å for atom Br2]. The CH3 group presents an eclipsed C—H bond with the mean plane of the mol­ecule. A difference of 2° is found between the exocyclic angles Car— Car—Cme, which explains the importance of the inter­action of this eclipsed bond with atom Br3. The endocyclic angle in front of the methyl group is equal to 116.6 (3)° for DINT, 115.7 (2)° for DCNT (Medjroubi et al., 2017[Medjroubi, M. L., Boudjada, A., Hamdouni, N., Jeannin, O. & Meinnel, J. (2017). IUCrData, 2, x170672.]), 114.7 (3)° for DBNT (Medjroubi et al., 2016[Medjroubi, M. L., Jeannin, O., Fourmigué, M., Boudjada, A. & Meinnel, J. (2016). IUCrData, 1, x160621.]) and 114.5 (3)° for TBT. The variation of this angle is very sensitive to the substitution of the halogen atoms surrounding the methyl groups of these different compounds.

Table 1
Hydrogen bonds (Å, °) for (I) and (II)

Compound D—H⋯A D—H H⋯A DA D—H⋯A
(I) C7—H7B⋯I1 0.98 2.82 3.333 (4) 113
  C7—H7C⋯I2 0.98 2.84 3.331 (4) 112
(II) C7—H7B⋯Br1 0.98 2.61 3.199 (3) 118
[Figure 6]
Figure 6
A view along the b axes of the crystal packing of 2,4,6-tri­bromo­toluene, DBNT.

3. Supra­molecular features

In the crystal of DINT, the mol­ecules are assembled into columns along the a-axis direction, the shortest crystallographic axis. Mol­ecules are linked by O⋯I inter­molecular inter­actions, with distance I2⋯O1i = 3.12 (1) Å [symmetry code (i): x − 1, −y + [{1\over 2}], z + [{1\over 2}]], leading to the formation of chains along the [20[\overline{1}]] direction, see Fig. 4[link].

In the crystal of TBT, mol­ecules stack in columns along the b-axis direction, again the shortest crystallographic axis. Mol­ecules are linked by weak Br⋯Br inter­actions [Br1⋯Br3ii = 3.5921 (5) Å; symmetry code (ii): x + [{1\over 2}], −y + [{3\over 2}], z + [{1\over 2}]], forming chains along the [101] direction. Br⋯H short contacts are also present in the crystal of TBT [Br1⋯H7Cii = 3.5921 (5) Å; symmetry code (iii): x, −1 + y, z].

4. Analysis of the Hirshfeld surfaces of DINT and TBT

Additional insight into the inter­molecular inter­actions was obtained from analysis of the Hirshfeld surface (HS) (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814.]). The program CrystalExplorer (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net.]) was used to generate Hirshfeld surfaces mapped over dnorm and the electrostatic potential for compounds TBT and DINT. The function dnorm is a ratio enclosing the distances of any surface point to the nearest interior (di) and exterior (de) atom and the van der Waals (vdW) radii of the atoms. The electrostatic potentials were calculated using TONTO (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) integrated into CrystalExplorer, using the crystal structure as the starting geometry. Short contacts and contributions to the Hirshfeld surface for DINT, DCNT (Medjroubi et al., 2017[Medjroubi, M. L., Boudjada, A., Hamdouni, N., Jeannin, O. & Meinnel, J. (2017). IUCrData, 2, x170672.]) and TBT are given in Table 2[link]. The Hirshfeld surface (HS) mapped over the electrostatic potential for DINT in the range [−0.071 to +0.041], is shown in Fig. 7[link]a where the red and blue regions represent negative and positive electrostatic potentials respectively. The Hirshfeld surface mapped over dnorm is depicted in Fig. 7[link]b. The HS mapped over shape-index and curvedness are shown in Fig. 7[link]c and 7d, respectively.

Table 2
Short contacts and contributions (%) to the Hirshfeld surface for DINT, DCNT and TBT

DINT   DCNT   TBT  
Contact % Contact % Contact %
I⋯H/H⋯I 25.7 Cl⋯H/H⋯Cl 26.8 Br⋯H/H⋯Br 42.7
I⋯O/O⋯I 16.0        
O⋯H/H⋯O 15.6 O⋯H/H⋯O 26.1    
H⋯H 12.7 H⋯H 9.1 H⋯H 18.2
C⋯H/H⋯C 11.1 C⋯H/H⋯C 6.9 C⋯H/H⋯C 8.0
O⋯C/C⋯O 5.3        
I⋯I 4.8 Cl⋯Cl 5.9 Br⋯Br 17.4
C⋯C 3.4 C⋯C 7.4 C⋯C 7.3
    Cl⋯O/O⋯Cl 5.0    
    Cl⋯C/C⋯Cl 5.1 Br⋯C/C⋯Br 6.4
[Figure 7]
Figure 7
Hirshfeld surface for DINT mapped over (a) calculated electrostatic potential, (b) dnorm, (c) shape-index and (d) curvedness.

The crystal environment about a DINT mol­ecule is illus­trated in Fig. 8[link]: the inter­actions are shown on the Hirshfeld surfaces with short contacts indicated in red. The two-dimensional fingerprint plots for all contacts are illustrated in Fig. 9[link]a. The I⋯O/O⋯I inter­action ensures the cohesion of the crystal with a contribution of 16% of all the inter­actions appearing in bright-red spots on the Hirshfeld surfaces mapped over dnorm. The fingerprint consists of two spikes with the ends at de + di ≃ 3.1 Å, Fig. 9[link]c. The fingerprint of the C⋯H/H⋯C inter­action consists of two symmetrical peaks with a de + di ≃ 2.8 Å, Fig. 9[link]f and almost equal to the sum of van der Waals radii. It is represented on the HS mapped with the shape-index property in the form of a pale-red spot, Fig. 7[link]c. The I⋯I inter­action is less important than O⋯I/I⋯O; however, it does contribute 4.8% to the total inter­actions, illustrating the equality of the I⋯I distance to the sum of van der Waals radii. The fingerprint is composed of a single peak in the form of a needle with de + di ≃ 3.8 Å, Fig. 9[link]h. The absence of ππ stacking inter­actions is consistent with the low contributions of C⋯C contacts to the Hirshfeld surface (Table 2[link]). The Hirshfeld surface analysis (Fig. 10[link]b) and electrostatic potential surface (Fig. 10[link]a) show the inter­molecular inter­actions between different units in the crystalline environment of DCNT. The HS mapped over shape-index and curvedness are shown in Fig. 10[link]c and d, respectively. The two-dimensional fingerprint plots for all contacts are illustrated in Fig. 11[link]. The contributions of the major inter­molecular contacts in the title compound are Cl⋯H/H⋯Cl (26.8%), O⋯H/H⋯O (26.1%), and H⋯H (10.6%) (Fig. 11[link]a). Other contacts (e.g. C⋯C, H⋯C/C⋯H, Cl⋯Cl, Cl⋯C/C⋯Cl, Cl⋯O/O⋯Cl) make contributions of less than 7.5% to the HS. The graph shown in Fig. 11[link]b represents the one-third of all the inter­molecular contacts. All fingerprint points are located at distances with di equal to or greater than van der Waals distances, de + di ≃ 1.27 Å, reflecting a zero tendency to form this inter­molecular contact (Cl⋯H). The graph shown in Fig. 11[link]c (O⋯H/H⋯O) shows the contact between the oxygen atoms inside the surface and the hydrogen atoms outside the surface, de + di ≃ 2.35 Å, and has two symmetrical points at the top, bottom left and right. The graph shown in Fig. 11[link]d (H⋯H; 10.6%) shows the two-dimensional fingerprint of the (di, de) points associated with hydrogen atoms, which has two symmetrical wings on the left and right with de + di ≃ 2.3 Å.

[Figure 8]
Figure 8
A view of the Hirshfeld surface of DINT mapped over dnorm, with inter­actions shown as dashed lines.
[Figure 9]
Figure 9
(a) The full two-dimensional fingerprint plot calculated for DINT and those delineated into (b) I⋯H/H⋯I contacts, (c) I⋯O/O⋯I contacts, (d) O⋯H/H⋯O contacts, (e) H⋯H contacts, (f) C⋯H/H⋯C contacts, (g) O⋯C/C⋯O contacts and (h) I⋯I contacts.
[Figure 10]
Figure 10
Hirshfeld surface for DCNT mapped over (a) calculated electrostatic potential, (b) dnorm, (c) shape-index and (d) curvedness.
[Figure 11]
Figure 11
(a) The full two-dimensional fingerprint plot calculated for DCNT and those delineated into (b) Cl⋯H/H⋯Cl contacts, (c) O⋯H/H⋯O contacts, (d) H⋯H contacts, (e) C⋯C contacts, (f) C⋯H/H⋯C contacts, (g) Cl⋯Cl contacts, (h) Cl⋯C/C⋯Cl contacts and (i) Cl⋯O/O⋯Cl contacts.

The electrostatic potentials were mapped on the Hirshfeld surface using the STO-3G basis/Hartree–Fock level of theory over the range [−0.016, 0.036] for TBT (Fig. 12[link]). Atoms H7A, H7B and H7C of the methyl group and H3, H5 as donors, and the bromine atom acceptors, are also evident in Fig. 12[link]a. The Hirshfeld surface mapped over dnorm is depicted in Fig. 12[link]b. The overall 2D fingerprint plot is presented in Fig. 13[link]a. The halogen–halogen (Br⋯Br) inter­action contributes 17.4% to the HS and ensures the cohesion of the crystal and dictates the inter­molecular stacking. The short intra­molecular H⋯Br/Br⋯H contact between C3—H7B and Br1 (H7B⋯Br1 = 2.6 Å) can be recognized from the two neighbouring blue regions on the surface mapped with electrostatic potential in Fig. 14[link]c,d. The two-dimensional fingerprint plot delineated into Br⋯H/H⋯Br has two peaks pointing to the pairs de + di ≃ 3.0 Å, slightly lower than or equal to the sum of van der Waals radii, Fig. 14[link]b. These correspond to a 42.7% contribution to the Hirshfeld surface, and reflect the presence of inter­molecular C7—H7C⋯Br3 inter­actions. The inter­atomic H⋯H contacts at distances greater than their van der Waals separation appear as scattered points in the greater part of the fingerprint plot Fig. 14[link]c. The presence of C—H⋯π and H—C⋯π stacking inter­actions between the TBT rings is also apparent from the appearance of red and blue triangle pairs on the Hirshfeld surface mapped with shape-index property identified with arrows in Fig. 12[link]c. The immediate environment about each mol­ecule highlighting close contacts to the Hirshfeld surface by neighboring mol­ecules is shown in Fig. 13[link]. The relative contributions to the overall surface are given in Table 2[link].

[Figure 12]
Figure 12
Hirshfeld surface for TBT mapped over (a) calculated electrostatic potential, (b) dnorm, (c) shape-index and (d) curvedness.
[Figure 13]
Figure 13
A view of the Hirshfeld surface of TBT mapped over dnorm, with inter­actions shown as dashed lines.
[Figure 14]
Figure 14
(a) The full two-dimensional fingerprint plot calculated for TBT and those delineated into (b) Br⋯H/H⋯Br contacts, (c) H⋯H contacts, (d) Br⋯Br contacts, (e) C⋯H/H⋯C contacts, (f) C⋯C contacts and (g) Br⋯C/C⋯Br contacts.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.40, last update May 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for 2,6-di­iodo-4-nitro­toluene (DINT) and 2,4,6-tri­bromo­toluene (TBT) gave five hits: 2,6-di­chloro-4-nitro­toluene (DCNT; Medjroubi et al., 2017[Medjroubi, M. L., Boudjada, A., Hamdouni, N., Jeannin, O. & Meinnel, J. (2017). IUCrData, 2, x170672.]), di­bromo­nitro­toluene (DBNT; Medjroubi et al., 2016[Medjroubi, M. L., Jeannin, O., Fourmigué, M., Boudjada, A. & Meinnel, J. (2016). IUCrData, 1, x160621.]), tri­iodo­mesitylene (TIM) (Boudjada et al., 2001[Boudjada, A., Hernandez, O., Meinnel, J., Mani, M. & Paulus, W. (2001). Acta Cryst. C57, 1106-1108.]), tri­bromo­mesitylene (TBM; Boudjada et al., 1999[Boudjada, F., Meinnel, J., Cousson, A., Paulus, W., Mani, M. & Sanquer, M. (1999). AIP Conf. Proc. pp. 217-222.]) and di­bromo­mesitylene (DBM; Hernandez et al., 2003[Hernandez, O., Cousson, A., Plazanet, M., Nierlich, M. & Meinnel, J. (2003). Acta Cryst. C59, o445-o450.]). In DBNT (Medjroubi et al., 2016[Medjroubi, M. L., Jeannin, O., Fourmigué, M., Boudjada, A. & Meinnel, J. (2016). IUCrData, 1, x160621.]), there are two independent mol­ecules per asymmetric unit and the methyl group H atoms are positionally disordered, as found for DBM (Hernandez et al., 2003[Hernandez, O., Cousson, A., Plazanet, M., Nierlich, M. & Meinnel, J. (2003). Acta Cryst. C59, o445-o450.]). While in the compounds DINT and DCNT (Medjroubi et al., 2017[Medjroubi, M. L., Boudjada, A., Hamdouni, N., Jeannin, O. & Meinnel, J. (2017). IUCrData, 2, x170672.]), there is only one mol­ecule in the asymmetric unit and no disorder is observed for the methyl group H atoms. In the mol­ecule of DINT, a Cm—H (m = meth­yl) bond is perpendicular to the mean plane of the mol­ecule, as found for tri­iodo­mesitylene (TIM; Boudjada et al., 2001[Boudjada, A., Hernandez, O., Meinnel, J., Mani, M. & Paulus, W. (2001). Acta Cryst. C57, 1106-1108.]). The nitro group is inclined to the benzene ring by 16.72 (1)° in DINT, compared with 9.8 (3)° in DCNT, and 2.5 (5)° and 5.9 (4)° in DBNT. In the mol­ecule of TBT, the CH3 group presents an eclipsed C—H bond with the mean plane of the mol­ecule. This also applies to DCNT (Medjroubi et al., 2017[Medjroubi, M. L., Boudjada, A., Hamdouni, N., Jeannin, O. & Meinnel, J. (2017). IUCrData, 2, x170672.]), which does not present any disorder, as was also found in the case of tri­bromo­mesitylene TBM (Boudjada et al., 1999[Boudjada, F., Meinnel, J., Cousson, A., Paulus, W., Mani, M. & Sanquer, M. (1999). AIP Conf. Proc. pp. 217-222.]). In 2,6-dihalogeno-4-nitro­toluene, as in the title compounds, the cohesion of the crystal is ensured by inter­actions of the type C—H⋯halogen and C—halogen⋯halogen.

6. Synthesis and crystallization

2,6-Di­iodo-4-nitro­toluene (DINT): 4-nitro­toluene (0.68g, 5 mmol) was suspended in 90% (v/v) conc. H2SO4 (10 ml) at 298–303 K. While keeping the same temperature, the iodinating solution containing the I+ inter­mediate in ca 50% excess was added dropwise under stirring over 45 min. The stirring was continued at 298–303 K for a further 75 min. The final reaction mixture was poured, with stirring, into ice–water (300 g). The crude solid obtained was recrystallized from ethanol (27 ml). On slow evaporation of the solvent, colourless prismatic crystals of DINT were obtained (yield 77%, 1.5 g).

2,4,6-Tri­bromo­toluene (TBT) is commercially available (Sigma–Aldrich). It was recrystallized from ethanol solution, giving large colourless needle-like crystals, many of which were twinned.

7. Refinement details

Crystal data, data collection and structure refinement details for DINT and TBT are summarized in Table 3[link]. The H atoms were included in calculated positions and refined as riding: C—H = 0.95–0.98 Å with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms.

Table 3
Experimental details

  DINT TBT
Crystal data
Chemical formula C7H5I2NO2 C7H5Br3
Mr 388.92 328.84
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/n
Temperature (K) 150 150
a, b, c (Å) 4.3815 (2), 15.3348 (6), 14.5894 (6) 14.3484 (11), 3.9955 (3), 15.6975 (12)
β (°) 96.588 (1) 110.519 (2)
V3) 973.78 (7) 842.83 (11)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 6.42 14.28
Crystal size (mm) 0.29 × 0.13 × 0.06 0.34 × 0.21 × 0.12
 
Data collection
Diffractometer Bruker APEXII Bruker APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.382, 0.680 0.496, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 4104, 2244, 1850 6197, 1928, 1657
Rint 0.022 0.027
(sin θ/λ)max−1) 0.651 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.046, 0.98 0.025, 0.049, 1.08
No. of reflections 2244 1928
No. of parameters 110 93
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.65, −0.55 0.70, −0.68
Computer programs: APEX2 and SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX publication routines (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR2004 (Burla et al., 2005). Program(s) used to refine structure: SHELXL97 (Sheldrick, 2015) for DINT; SHELXL2018/3 (Sheldrick, 2015) for TBT. For both structures, molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2020); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012).

2,6-Diiodo-4-nitrotoluene (DINT) top
Crystal data top
C7H5I2NO2F(000) = 704
Mr = 388.92Dx = 2.653 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3615 reflections
a = 4.3815 (2) Åθ = 2.8–27.4°
b = 15.3348 (6) ŵ = 6.42 mm1
c = 14.5894 (6) ÅT = 150 K
β = 96.588 (1)°Prism, colourless
V = 973.78 (7) Å30.29 × 0.13 × 0.06 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
1850 reflections with I > 2σ(I)
CCD rotation images, thin slices scansRint = 0.022
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
θmax = 27.5°, θmin = 2.7°
Tmin = 0.382, Tmax = 0.680h = 55
4104 measured reflectionsk = 1919
2244 independent reflectionsl = 018
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.046H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0064P)2]
where P = (Fo2 + 2Fc2)/3
2244 reflections(Δ/σ)max = 0.001
110 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = 0.55 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I20.49927 (5)0.16308 (2)0.43507 (2)0.02865 (8)
I10.61809 (6)0.09049 (2)0.11508 (2)0.03239 (8)
O21.0610 (7)0.31383 (17)0.16120 (19)0.0439 (7)
O11.2265 (6)0.21412 (17)0.07502 (18)0.0383 (6)
N11.0741 (6)0.2380 (2)0.1357 (2)0.0270 (7)
C40.9021 (7)0.1719 (2)0.1809 (2)0.0213 (7)
C50.7967 (7)0.1926 (2)0.2637 (2)0.0226 (7)
C70.4089 (8)0.0220 (2)0.3155 (3)0.0311 (8)
C30.8521 (7)0.0917 (2)0.1389 (2)0.0248 (8)
C60.6400 (7)0.1288 (2)0.3069 (2)0.0223 (7)
C10.5769 (7)0.0462 (2)0.2676 (2)0.0238 (8)
C20.6870 (7)0.0302 (2)0.1830 (2)0.0243 (8)
H50.8303220.2487720.2903000.027*
H30.9278960.0789170.0819540.030*
H7A0.5561530.0561390.3565370.047*
H7B0.2989260.0607320.2694450.047*
H7C0.2614940.0060760.3516810.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I20.02982 (13)0.03671 (15)0.02075 (13)0.00201 (11)0.00862 (10)0.00039 (10)
I10.03450 (14)0.02883 (14)0.03341 (16)0.00032 (11)0.00206 (11)0.00721 (11)
O20.0607 (19)0.0330 (15)0.0414 (18)0.0150 (14)0.0212 (15)0.0067 (13)
O10.0426 (16)0.0438 (16)0.0318 (16)0.0010 (13)0.0189 (13)0.0059 (13)
N10.0268 (15)0.0334 (17)0.0210 (16)0.0023 (14)0.0039 (13)0.0026 (14)
C40.0170 (16)0.0263 (18)0.0206 (18)0.0018 (14)0.0014 (13)0.0045 (14)
C50.0216 (17)0.0259 (18)0.0200 (18)0.0007 (14)0.0009 (14)0.0011 (15)
C70.0290 (19)0.030 (2)0.035 (2)0.0010 (17)0.0083 (16)0.0031 (17)
C30.0226 (17)0.0310 (19)0.0204 (19)0.0045 (15)0.0010 (14)0.0018 (15)
C60.0185 (16)0.0330 (19)0.0148 (18)0.0066 (15)0.0007 (14)0.0009 (15)
C10.0200 (16)0.0279 (19)0.0229 (19)0.0055 (15)0.0003 (14)0.0034 (15)
C20.0224 (17)0.0233 (18)0.026 (2)0.0011 (15)0.0015 (15)0.0029 (15)
Geometric parameters (Å, º) top
I2—C62.101 (3)C7—C11.497 (5)
I1—C22.105 (3)C7—H7A0.9800
O2—N11.224 (4)C7—H7B0.9800
O1—N11.224 (4)C7—H7C0.9800
N1—C41.464 (4)C3—C21.389 (5)
C4—C51.378 (5)C3—H30.9500
C4—C31.381 (5)C6—C11.404 (5)
C5—C61.388 (5)C1—C21.398 (5)
C5—H50.9500
O2—N1—O1123.5 (3)H7B—C7—H7C109.5
O2—N1—C4118.4 (3)C4—C3—C2117.6 (3)
O1—N1—C4118.0 (3)C4—C3—H3121.2
C5—C4—C3122.8 (3)C2—C3—H3121.2
C5—C4—N1118.5 (3)C5—C6—C1122.3 (3)
C3—C4—N1118.7 (3)C5—C6—I2116.1 (2)
C4—C5—C6118.0 (3)C1—C6—I2121.7 (3)
C4—C5—H5121.0C2—C1—C6116.5 (3)
C6—C5—H5121.0C2—C1—C7121.8 (3)
C1—C7—H7A109.5C6—C1—C7121.6 (3)
C1—C7—H7B109.5C3—C2—C1122.7 (3)
H7A—C7—H7B109.5C3—C2—I1115.7 (3)
C1—C7—H7C109.5C1—C2—I1121.6 (3)
H7A—C7—H7C109.5
O2—N1—C4—C515.8 (4)C5—C6—C1—C21.5 (5)
O1—N1—C4—C5163.4 (3)I2—C6—C1—C2178.8 (2)
O2—N1—C4—C3164.2 (3)C5—C6—C1—C7179.7 (3)
O1—N1—C4—C316.7 (4)I2—C6—C1—C70.6 (4)
C3—C4—C5—C61.5 (5)C4—C3—C2—C11.2 (5)
N1—C4—C5—C6178.6 (3)C4—C3—C2—I1179.8 (2)
C5—C4—C3—C20.3 (5)C6—C1—C2—C30.3 (5)
N1—C4—C3—C2179.7 (3)C7—C1—C2—C3177.8 (3)
C4—C5—C6—C12.4 (5)C6—C1—C2—I1179.2 (2)
C4—C5—C6—I2177.9 (2)C7—C1—C2—I11.1 (4)
2,4,6-Tribromotoluene (TBT) top
Crystal data top
C7H5Br3F(000) = 608
Mr = 328.84Dx = 2.592 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 14.3484 (11) ÅCell parameters from 2989 reflections
b = 3.9955 (3) Åθ = 2.4–27.5°
c = 15.6975 (12) ŵ = 14.28 mm1
β = 110.519 (2)°T = 150 K
V = 842.83 (11) Å3Prism, colourless
Z = 40.34 × 0.21 × 0.12 mm
Data collection top
Bruker APEXII
diffractometer
1657 reflections with I > 2σ(I)
CCD rotation images, thin slices scansRint = 0.027
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
θmax = 27.5°, θmin = 2.4°
Tmin = 0.496, Tmax = 0.746h = 1818
6197 measured reflectionsk = 45
1928 independent reflectionsl = 1820
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.049 w = 1/[σ2(Fo2) + (0.0154P)2 + 1.1776P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
1928 reflectionsΔρmax = 0.70 e Å3
93 parametersΔρmin = 0.68 e Å3
0 restraintsExtinction correction: SHELXL-2018/3 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00060 (17)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.68701 (2)1.18762 (9)0.84471 (2)0.02351 (10)
Br20.36077 (2)0.60522 (9)0.90955 (2)0.02044 (10)
Br30.35213 (2)0.68698 (9)0.55023 (2)0.02088 (10)
C10.5156 (2)0.9306 (8)0.7029 (2)0.0151 (7)
C20.5592 (2)0.9823 (8)0.7965 (2)0.0165 (7)
C30.5158 (2)0.8920 (8)0.8588 (2)0.0167 (7)
H30.5482140.9345070.9219020.020*
C40.4234 (2)0.7369 (8)0.8266 (2)0.0154 (7)
C50.3755 (2)0.6790 (8)0.7351 (2)0.0148 (7)
H50.3120620.5745160.7135400.018*
C60.4217 (2)0.7759 (8)0.6756 (2)0.0156 (7)
C70.5638 (2)1.0280 (9)0.6357 (2)0.0219 (8)
H7A0.5766500.8268050.6058780.033*
H7B0.6267641.1429880.6675000.033*
H7C0.5194041.1779070.5898870.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01425 (15)0.0243 (2)0.02664 (18)0.00447 (13)0.00050 (13)0.00205 (15)
Br20.02155 (16)0.0246 (2)0.01674 (16)0.00194 (14)0.00871 (12)0.00230 (14)
Br30.02070 (16)0.0273 (2)0.01272 (15)0.00059 (14)0.00346 (12)0.00326 (14)
C10.0149 (14)0.0130 (17)0.0176 (15)0.0034 (13)0.0058 (12)0.0028 (13)
C20.0139 (14)0.0131 (17)0.0191 (15)0.0009 (12)0.0016 (12)0.0024 (13)
C30.0176 (15)0.0133 (17)0.0146 (15)0.0003 (13)0.0002 (12)0.0026 (13)
C40.0166 (14)0.0153 (18)0.0161 (15)0.0033 (13)0.0081 (12)0.0007 (13)
C50.0123 (14)0.0148 (17)0.0163 (15)0.0015 (12)0.0039 (12)0.0013 (13)
C60.0173 (14)0.0134 (17)0.0133 (14)0.0030 (13)0.0017 (12)0.0041 (13)
C70.0162 (15)0.029 (2)0.0213 (17)0.0023 (14)0.0074 (13)0.0042 (15)
Geometric parameters (Å, º) top
Br1—C21.907 (3)C3—H30.9500
Br2—C41.898 (3)C4—C51.377 (4)
Br3—C61.903 (3)C5—C61.376 (5)
C1—C21.396 (4)C5—H50.9500
C1—C61.405 (4)C7—H7A0.9800
C1—C71.502 (4)C7—H7B0.9800
C2—C31.379 (5)C7—H7C0.9800
C3—C41.389 (4)
C2—C1—C6114.5 (3)C6—C5—C4118.5 (3)
C2—C1—C7123.6 (3)C6—C5—H5120.8
C6—C1—C7121.9 (3)C4—C5—H5120.7
C3—C2—C1124.1 (3)C5—C6—C1123.7 (3)
C3—C2—Br1116.2 (2)C5—C6—Br3116.5 (2)
C1—C2—Br1119.7 (2)C1—C6—Br3119.8 (2)
C2—C3—C4118.0 (3)C1—C7—H7A109.5
C2—C3—H3121.0C1—C7—H7B109.5
C4—C3—H3121.0H7A—C7—H7B109.5
C5—C4—C3121.2 (3)C1—C7—H7C109.5
C5—C4—Br2119.1 (2)H7A—C7—H7C109.5
C3—C4—Br2119.7 (2)H7B—C7—H7C109.5
C6—C1—C2—C30.0 (5)C3—C4—C5—C60.5 (5)
C7—C1—C2—C3179.6 (3)Br2—C4—C5—C6179.9 (2)
C6—C1—C2—Br1179.7 (2)C4—C5—C6—C10.2 (5)
C7—C1—C2—Br10.1 (5)C4—C5—C6—Br3179.7 (2)
C1—C2—C3—C40.7 (5)C2—C1—C6—C50.5 (5)
Br1—C2—C3—C4179.0 (2)C7—C1—C6—C5179.2 (3)
C2—C3—C4—C50.9 (5)C2—C1—C6—Br3179.9 (2)
C2—C3—C4—Br2179.7 (2)C7—C1—C6—Br30.3 (4)
Hydrogen bonds (Å, °) for (I) and (II) top
CompoundD—H···AD—HH···AD···AD—H···A
(I)C7—H7B···I10.982.823.333 (4)113
C7—H7C···I20.982.843.331 (4)112
(II)C7—H7B···Br10.982.613.199 (3)118
Short contacts and contributions (%) to the Hirshfeld surface for DINT, DCNT and TBT top
DINTDCNTTBT
Contact%Contact%Contact%
I···H/H···I25.7Cl···H/H···Cl26.8Br···H/H···Br42.7
I···O/O···I16.0
O···H/H···O15.6O···H/H···O26.1
H···H12.7H···H9.1H···H18.2
C···H/H···C11.1C···H/H···C6.9C···H/H···C8.0
O···C/C···O5.3
I···I4.8Cl···Cl5.9Br···Br17.4
C···C3.4C···C7.4C···C7.3
Cl···O/O···Cl5.0
Cl···C/C···Cl5.1Br···C/C···Br6.4
 

Acknowledgements

We would like to thank the Centre de Diffractométrie de l'Université de Rennes 1 for the data collection.

References

First citationBoudjada, A., Hernandez, O., Meinnel, J., Mani, M. & Paulus, W. (2001). Acta Cryst. C57, 1106–1108.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBoudjada, F., Meinnel, J., Cousson, A., Paulus, W., Mani, M. & Sanquer, M. (1999). AIP Conf. Proc. pp. 217–222.  CrossRef Google Scholar
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHernandez, O., Cousson, A., Plazanet, M., Nierlich, M. & Meinnel, J. (2003). Acta Cryst. C59, o445–o450.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814.  Google Scholar
First citationMedjroubi, M. L., Boudjada, A., Hamdouni, N., Jeannin, O. & Meinnel, J. (2017). IUCrData, 2, x170672.  Google Scholar
First citationMedjroubi, M. L., Jeannin, O., Fourmigué, M., Boudjada, A. & Meinnel, J. (2016). IUCrData, 1, x160621.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTazi, M., Meinnel, J., Sanquer, M., Nusimovici, M., Tonnard, F. & Carrie, R. (1995). Acta Cryst. B51, 838–847.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds