research communications
DMT analogues: N-ethyl-N-propyltryptamine and N-allyl-N-methytryptamine as their hydrofumarate salts
aCaaMTech, LLC, 58 East Sunset Way, Suite 209, Issaquah, WA 98027, USA, and bUniversity of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
*Correspondence e-mail: andrew@caam.tech
The solid-state structures of the hydrofumarate salts of two N,N-dialkyltryptamines, namely N-ethyl-N-propyltryptammonium (EPT) hydrofumarate {systematic name: [2-(1H-indol-3-yl)ethyl](methyl)propylazanium 3-carboxyprop-2-enoate}, C15H23N2+·C4H3O4−, and N-allyl-N-methyltryptammonium (MALT) hydrofumarate {systematic name: [2-(1H-indol-3-yl)ethyl](methyl)(prop-2-en-1-yl)azanium 3-carboxyprop-2-enoate}, C14H19N2+·C4H3O4−, are reported. Both compounds possess a protonated tryptammonium cation, and a hydrofumarate anion in the The ethyl group of the EPT cation is modeled as a two-component disorder with 50% occupancy for each component. In the extended structure, N—H⋯O and O—H⋯O hydrogen bonds generate infinite two-dimensional networks parallel to the (001) plane for both compounds.
Keywords: crystal structure; indoles; tryptamines; hydrogen bonds.
1. Chemical context
Ayahuasca is the traditional spiritual medicine of the indigenous people of the Amazon basin, and has a history of use in religious ceremonies dating back to the 1400′s or earlier. It is an herbal tea that is made by boiling a mixture of leaves and bark. The leaves of the Psychotria viridis plant contain about 0.3% of N,N-dimethyltryptamine (DMT) by mass, which is the primary psychoactive in ayahuasca. The bark of the Banisteriopsis caapi vine contains many different β-carbolines; these β-carbolines function as monoamine oxidase (MAO) inhibitors, which prevent the degradation of DMT in the human gut. Without the inhibition of monoamine oxidase, DMT is not orally active (Cameron & Olson, 2018).
In a report earlier this year, β-carboline MAO inhibitors were identified in species of `magic mushrooms', where the primary psychedelic, psilocin, can be similarly degraded by MAO. This is the first instance of a synchronous biosynthesis of an active ingredient and the inhibitor of its degradation in a natural psychedelic species (Blei et al., 2020). Psilocin (4-hydroxy-N,N-dimethyltryptamine) is orally active in the absence of MAO inhibitors, indicating that the 4-hydroxy substitution makes the compound more resistant to deamination by MAO (Sherwood et al., 2020). The presence of β-carbolines in `magic mushrooms' and the varied activity of psilocin and DMT bring many questions forward on the nature of cooperative activity among chemicals in psychotropic natural products.
This class of traditional psychedelics, as well as synthetic variants, have started to gain a great deal of interest as antidepressants and anxiolytics (Johnson et al., 2019; Jiménez-Garrido et al., 2020). Given the renewed interest in using psychedelic tryptamines as therapeutics, there is growing urgency to perform fundamental physical and biological characterization on these compounds for the benefit of downstream research. This is particularly true in the examination of structure–activity relationships between compounds and also the examination of their cooperative biological activity. A better understanding of these areas would facilitate the research and development of formulations tailored for specific ailments. Two synthetic analogues of DMT are N-ethyl-N-propyltryptamine (EPT) and N-methyl-N-allyltryptamine (MALT), both of which have very limited reports in literature (Ascic et al., 2012; Brandt et al., 2005a,b). The preparation of pure crystalline forms of these compounds is essential to conducting meaningful biological studies and ultimately developing drug products. Herein, we report the first solid-state structural characterization of EPT and MALT as their hydrofumarate salts, (I) and (II), including the first reported salt of MALT.
2. Structural commentary
The N-ethyl-N-propyltryptammonium hydrofumarate, (I), contains one tryptammonium cation and one hydrofumarate anion (Fig. 1). The cation possesses a near planar indole, with a mean deviation from planarity of 0.008 Å. The ethylamino group is slightly turned away from this plane with a C1—C8—C9—C10 torsion angle of 33.9 (4)°. The ethyl group on the N-ethyl-N-propylamine is disordered over two orientations, with a 0.50:0.50 ratio for C14, C15 and C14A, C15A. The hydrofumarate anion deviates slightly from planarity with an r.m.s. deviation of 0.135 Å, and a carboxylate to carboxylate plane twist angle of 16.63 (14)°.
ofThe N-methyl-N-allyltryptammonium hydrofumarate, (II), contains one tryptammonium cation and one hydrofumarate anion (Fig. 2). The tryptammonium has a near planar indole, with a mean deviation from planarity of 0.007 Å. The ethylamino group is turned away from the plane of the indole, with a C1—C8—C9—C10 torsion angle of −105.5 (5)°. The hydrofumarate is also near planar, with an r.m.s. deviation of 0.055 Å. The carboxylate is partially delocalized, with C—O distances of 1.239 (5) Å and 1.259 (4) Å.
of3. Supramolecular features
The two moieties of the EPT salt, the tryptammonium cation and the hydrofumarate anion, are held together in the x, + y, 1 − z). The hydroxy group of the hydrofumarate interacts with a carboxylate oxygen of another hydrofumarate anion through an O3—H3A⋯O2 hydrogen bond (symmetry operation: 1 + x, y, z). The hydrofumarate anions are linked together in chains along [100], which are linked together by the tryptammonium cations along [010], joining the ions into infinite two-dimensional networks parallel to the (001) plane (Table 1, Fig. 3).
via N2—H2⋯O1 hydrogen bonds. The indole of another tryptammonium cation interacts with a carbonyl oxygen of the hydrofumarate molecule through an N1—H1⋯O4 hydrogen bond (symmetry operation: 2 −The two moieties of the MALT salt, the tryptammonium cation and the hydrofumarate anion, are held together in the via N2—H2⋯O1 hydrogen bonds. The hydroxy group of the hydrofumarate hydrogen bonds to the carboxylate oxygen of another hydrofumarate anion through O3—H3A⋯O2 hydrogen bonds (symmetry code: −1 + x, y, z). One carbonyl oxygen, O2, of the hydrofumarate, the indole nitrogen, N1, of another tryptammonium cation (symmetry code: 1 − x, + y, − z), and a carbonyl oxygen, O4, of a different hydrofumarate anion (symmetry code: 1 + x, y, z) combine to form a three-centred (bifurcated) N—H⋯(O,O) hydrogen bond. The hydrofumarate anions are linked together in chains along [100], and the tryptammonium cations link these chains together along [010]. The net result in an infinite two-dimensional networks parallel to the (001) plane, similar to what was observed for the EPT (Table 2, Fig. 4).
4. Database survey
The compound that is the closest structural comparison to those presented here is N-methyl-N-isopropyltryptammonium hydrofumarate (RONSOF: Chadeayne, Pham et al., 2019a), which forms similar two-dimensional networks as the two reported compounds, though parallel to (010) instead. The other unsubstituted N,N-dialkyltryptamines whose structures have been reported are freebase DMT (DMTRYP: Falkenberg, 1972), the bromide salt of DMT (QQQHIM: Falkenberg, 1972), and the freebase of N-methyl-N-propyltryptamine (WOHYAW: Chadeayne, Golen & Manke, 2019b). The core structure of the tryptamines in these compounds are similar, but the packing is very different given the lack of a similar counter-ion. The reaction of fumaric acid with the freebase of N-methyl-N-allyltryptamine to generate the hydrofumarate salt is similar to the reactions observed with psilacetin (Nichols & Frescas, 1999) and norpsilocin (CCDC 1992279: Chadeayne, Pham et al., 2020b). The other known tryptammonium fumarate salts are for 4-hydroxy-N-methyl-N-isopropyltryptamine (RONSUL: Chadeayne, Pham et al., 2019a; CCDC 1987588: Chadeayne, Pham et al., 2020a), which join together in infinite parallel chains through N—H⋯O and O—H⋯O hydrogen bonds, 4-acetoxy-N,N-dimethyltryptamine (HOCJUH: Chadeayne et al., 2019c and XOFDOO: Chadeayne, Golen & Manke, 2019a), which joins together in chains through N—H⋯O and O—H⋯O hydrogen bonds, and 4-hydroxy-N,N-dipropyltryptamine (CCDC 1962339: Chadeayne, Pham et al., 2019b), which forms three-dimensional networks through N—H⋯O and O—H⋯O hydrogen bonds. The only other N-allyltryptamine whose structure has been reported is 5-methoxy-N,N-diallyltryptamine (Chadeayne, Pham et al., 2020c), which is reported as the freebase and has not been reported as a salt.
5. Synthesis and crystallization
Single crystals of N-ethyl-N-propyltryptammonium hydrofumarate suitable for X-ray analysis were obtained from the slow evaporation of an aqueous solution of a commercial sample of EPT fumarate (The Indole Shop).
To prepare N-methyl-N-allyltryptammonium hydrofumarate, 134 mg of a commercial sample of N-methyl-N-allyltryptamine (The Indole Shop), which is a waxy solid that does not crystallize well, were dissolved in 10 mL of methanol, and 68 mg of fumaric acid were added. The mixture was refluxed for 12 h and solvent was removed in vacuo to obtain a waxy, yellow product. The material was recrystallized from ethanol to yield colorless single crystals suitable for X-ray diffraction. The product was also characterized by nuclear magnetic resonance. 1H NMR (400 MHz, D2O): δ 7.69 (d, J = 7.9 Hz, 1 H, ArH), 7.54 (d, J = 8.2 Hz, 1 H, ArH), 7.34 (s, 1 H, ArH), 7.29 (t, J = 7.1 Hz, 1 H, ArH), 7.21 (t, J = 7.1 Hz, 1 H, ArH), 6.66 (s, 2 H, CH), 5.92–5.82 (m, 1 H, CH), 5.60–5.56 (m, 2 H, CH2), 3.88–3.83 (m, 1 H, CH2), 3.77–3.72 (m, 1 H, CH2), 3.68–3.57 (m, 1 H, CH2), 3.44–3.37 (m, 1 H, CH2), 3.34–3.21 (m, 2 H, CH2), 2.90 (s, 3 H, CH3). 13C NMR (100 MHz, D2O): δ 172.2 (COOH), 137.0 (CH), 135.5 (ArC), 127.3 (ArC), 126.9 (ArC), 126.2 (ArC), 124.8 (ArC), 122.9 (ArC), 120.1 (ArC), 118.9 (ArC), 112.7 (sp2C), 109.0 (sp2C), 58.7 (AkC), 55.6 (AkC), 40.1 (AkC), 20.6 (AkC).
6. Refinement
Crystal data, data collection and structure . N and O-bound H atoms were located in difference-Fourier maps and refined with distance restraints of N2—C14 = N2—C14A =1.50 ± (10), C14—C15 = C14A—C15A = 1.54 ± (1), N1—H1 = N2—H2 = 0.87± (1) Å for (I) and C12—C13 = 1.400 ± (5), N1—H1 = N2—H2 = 0.87 ± (1), O3—H3A 0.88 ± (1) Å for (II). C-bound H atoms were refined as riding with C—H = 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-methyl). The ethyl group of the EPT cation was modeled as a two-component disorder with 50% occupancy for each component for both compounds.
details are summarized in Table 3
|
Supporting information
https://doi.org/10.1107/S2056989020008683/dx2028sup1.cif
contains datablocks I, II. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020008683/dx2028Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989020008683/dx2028IIsup3.hkl
For both structures, data collection: APEX3 (Bruker, 2018); cell
SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).C15H23N2+·C4H3O4− | F(000) = 372 |
Mr = 346.42 | Dx = 1.201 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.4839 (8) Å | Cell parameters from 9910 reflections |
b = 14.1752 (14) Å | θ = 2.7–25.7° |
c = 9.6461 (10) Å | µ = 0.08 mm−1 |
β = 110.537 (3)° | T = 297 K |
V = 958.28 (17) Å3 | PLATE, colourless |
Z = 2 | 0.42 × 0.2 × 0.1 mm |
Bruker D8 Venture CMOS diffractometer | 3368 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.028 |
Absorption correction: multi-scan (SADABS; Bruker, 2018) | θmax = 25.7°, θmin = 2.9° |
Tmin = 0.703, Tmax = 0.745 | h = −9→9 |
21982 measured reflections | k = −16→17 |
3570 independent reflections | l = −11→11 |
Refinement on F2 | H atoms treated by a mixture of independent and constrained refinement |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0553P)2 + 0.1111P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.034 | (Δ/σ)max < 0.001 |
wR(F2) = 0.093 | Δρmax = 0.13 e Å−3 |
S = 1.03 | Δρmin = −0.13 e Å−3 |
3570 reflections | Extinction correction: SHELXL2018 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
260 parameters | Extinction coefficient: 0.10 (3) |
7 restraints | Absolute structure: Flack x determined using 1509 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Hydrogen site location: mixed | Absolute structure parameter: 0.1 (2) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.3041 (2) | 0.35379 (16) | 0.3731 (2) | 0.0636 (6) | |
O2 | 0.3509 (2) | 0.30983 (15) | 0.60295 (19) | 0.0550 (5) | |
O3 | 0.9978 (2) | 0.31611 (16) | 0.55428 (18) | 0.0536 (5) | |
H3A | 1.120 (5) | 0.310 (3) | 0.574 (3) | 0.072 (9)* | |
O4 | 1.0767 (2) | 0.31972 (18) | 0.79838 (19) | 0.0628 (5) | |
C16 | 0.4059 (3) | 0.32758 (15) | 0.4973 (2) | 0.0374 (5) | |
C17 | 0.6144 (3) | 0.31743 (17) | 0.5214 (2) | 0.0398 (5) | |
H17 | 0.648978 | 0.306853 | 0.439068 | 0.048* | |
C18 | 0.7503 (3) | 0.32251 (17) | 0.6508 (2) | 0.0399 (5) | |
H18 | 0.714909 | 0.328760 | 0.733678 | 0.048* | |
C19 | 0.9582 (3) | 0.31898 (16) | 0.6750 (2) | 0.0391 (5) | |
N1 | 0.5831 (3) | 0.69330 (14) | 0.1173 (2) | 0.0475 (5) | |
H1 | 0.651 (4) | 0.7437 (15) | 0.155 (3) | 0.065 (9)* | |
N2 | 0.0093 (3) | 0.45996 (14) | 0.2087 (2) | 0.0419 (5) | |
H2 | 0.094 (3) | 0.4206 (14) | 0.265 (2) | 0.037 (6)* | |
C1 | 0.4632 (4) | 0.64176 (18) | 0.1676 (3) | 0.0482 (5) | |
H1A | 0.439846 | 0.654133 | 0.254380 | 0.058* | |
C2 | 0.5831 (3) | 0.65482 (16) | −0.0128 (3) | 0.0432 (5) | |
C3 | 0.6784 (4) | 0.6830 (2) | −0.1055 (3) | 0.0564 (6) | |
H3 | 0.758417 | 0.735307 | −0.083577 | 0.068* | |
C4 | 0.6504 (5) | 0.6308 (2) | −0.2307 (3) | 0.0652 (8) | |
H4 | 0.711949 | 0.648402 | −0.295338 | 0.078* | |
C5 | 0.5309 (4) | 0.5516 (2) | −0.2637 (3) | 0.0608 (7) | |
H5 | 0.516645 | 0.517150 | −0.349024 | 0.073* | |
C6 | 0.4343 (3) | 0.52355 (17) | −0.1731 (3) | 0.0486 (6) | |
H6 | 0.354963 | 0.470958 | −0.196039 | 0.058* | |
C7 | 0.4587 (3) | 0.57658 (16) | −0.0449 (2) | 0.0402 (5) | |
C8 | 0.3830 (3) | 0.56958 (17) | 0.0720 (2) | 0.0426 (5) | |
C9 | 0.2459 (4) | 0.4953 (2) | 0.0840 (3) | 0.0550 (6) | |
H9A | 0.316656 | 0.442561 | 0.141476 | 0.066* | |
H9B | 0.171567 | 0.472362 | −0.014058 | 0.066* | |
C10 | 0.1139 (4) | 0.53459 (19) | 0.1570 (3) | 0.0558 (6) | |
H10A | 0.187623 | 0.572677 | 0.241152 | 0.067* | |
H10B | 0.021466 | 0.575561 | 0.087367 | 0.067* | |
C11 | −0.0973 (4) | 0.5018 (2) | 0.2997 (3) | 0.0533 (6) | |
H11A | −0.187131 | 0.548153 | 0.240391 | 0.064* | |
H11B | −0.169895 | 0.452430 | 0.325308 | 0.064* | |
C12 | 0.0298 (5) | 0.5481 (2) | 0.4390 (4) | 0.0681 (8) | |
H12A | 0.131071 | 0.504882 | 0.492510 | 0.082* | |
H12B | 0.087974 | 0.603660 | 0.414204 | 0.082* | |
C13 | −0.0794 (7) | 0.5757 (3) | 0.5350 (5) | 0.0955 (12) | |
H13A | 0.005795 | 0.602901 | 0.625092 | 0.143* | |
H13B | −0.139369 | 0.520900 | 0.557867 | 0.143* | |
H13C | −0.175280 | 0.621019 | 0.484177 | 0.143* | |
C14 | −0.108 (2) | 0.3898 (9) | 0.0926 (13) | 0.052 (3) | 0.5 |
H14A | −0.039029 | 0.375936 | 0.026374 | 0.062* | 0.5 |
H14B | −0.227066 | 0.419643 | 0.034355 | 0.062* | 0.5 |
C15 | −0.1542 (12) | 0.2941 (8) | 0.1545 (13) | 0.080 (3) | 0.5 |
H15A | −0.038462 | 0.266848 | 0.220982 | 0.120* | 0.5 |
H15B | −0.212182 | 0.251470 | 0.073842 | 0.120* | 0.5 |
H15C | −0.240528 | 0.305477 | 0.206447 | 0.120* | 0.5 |
C14A | −0.126 (2) | 0.4138 (10) | 0.0749 (14) | 0.058 (4) | 0.5 |
H14C | −0.057294 | 0.389263 | 0.014130 | 0.070* | 0.5 |
H14D | −0.218490 | 0.459560 | 0.016775 | 0.070* | 0.5 |
C15A | −0.2296 (15) | 0.3328 (8) | 0.1217 (12) | 0.087 (3) | 0.5 |
H15D | −0.137282 | 0.289846 | 0.184512 | 0.131* | 0.5 |
H15E | −0.309931 | 0.299929 | 0.035253 | 0.131* | 0.5 |
H15F | −0.306261 | 0.358052 | 0.174491 | 0.131* | 0.5 |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0410 (9) | 0.0958 (15) | 0.0500 (10) | 0.0262 (9) | 0.0110 (8) | 0.0180 (10) |
O2 | 0.0258 (7) | 0.0854 (12) | 0.0572 (9) | 0.0073 (8) | 0.0187 (7) | 0.0215 (9) |
O3 | 0.0252 (7) | 0.0864 (12) | 0.0511 (9) | 0.0040 (8) | 0.0157 (7) | 0.0065 (9) |
O4 | 0.0311 (8) | 0.1007 (15) | 0.0512 (10) | 0.0082 (9) | 0.0076 (7) | 0.0015 (10) |
C16 | 0.0251 (9) | 0.0410 (11) | 0.0451 (11) | 0.0050 (8) | 0.0112 (8) | 0.0038 (9) |
C17 | 0.0281 (9) | 0.0503 (12) | 0.0440 (11) | 0.0047 (9) | 0.0163 (8) | 0.0069 (10) |
C18 | 0.0284 (9) | 0.0497 (11) | 0.0445 (10) | 0.0041 (9) | 0.0162 (8) | 0.0038 (10) |
C19 | 0.0276 (9) | 0.0425 (11) | 0.0472 (11) | 0.0026 (9) | 0.0131 (9) | 0.0034 (9) |
N1 | 0.0426 (10) | 0.0434 (11) | 0.0539 (12) | −0.0040 (8) | 0.0136 (9) | −0.0061 (9) |
N2 | 0.0284 (8) | 0.0526 (11) | 0.0423 (10) | 0.0059 (8) | 0.0094 (7) | 0.0081 (8) |
C1 | 0.0457 (13) | 0.0521 (13) | 0.0465 (12) | 0.0046 (10) | 0.0160 (10) | −0.0024 (11) |
C2 | 0.0353 (11) | 0.0415 (12) | 0.0498 (12) | 0.0047 (8) | 0.0111 (10) | 0.0041 (9) |
C3 | 0.0500 (13) | 0.0529 (14) | 0.0715 (17) | −0.0045 (11) | 0.0279 (12) | 0.0084 (13) |
C4 | 0.0723 (19) | 0.0686 (18) | 0.0679 (17) | 0.0023 (15) | 0.0410 (16) | 0.0081 (15) |
C5 | 0.0687 (17) | 0.0668 (17) | 0.0536 (15) | 0.0047 (13) | 0.0297 (13) | −0.0029 (12) |
C6 | 0.0501 (13) | 0.0469 (14) | 0.0487 (12) | −0.0002 (10) | 0.0172 (10) | −0.0036 (10) |
C7 | 0.0331 (11) | 0.0407 (11) | 0.0450 (12) | 0.0032 (8) | 0.0115 (9) | 0.0019 (9) |
C8 | 0.0388 (11) | 0.0446 (12) | 0.0450 (12) | 0.0005 (9) | 0.0156 (9) | −0.0011 (9) |
C9 | 0.0587 (15) | 0.0547 (14) | 0.0618 (15) | −0.0092 (12) | 0.0339 (13) | −0.0066 (12) |
C10 | 0.0507 (13) | 0.0509 (14) | 0.0748 (17) | 0.0091 (11) | 0.0332 (12) | 0.0182 (13) |
C11 | 0.0426 (12) | 0.0606 (15) | 0.0620 (15) | 0.0133 (11) | 0.0250 (12) | 0.0104 (12) |
C12 | 0.076 (2) | 0.0633 (18) | 0.0769 (19) | −0.0019 (14) | 0.0421 (16) | −0.0098 (14) |
C13 | 0.123 (3) | 0.081 (2) | 0.106 (3) | 0.008 (2) | 0.069 (3) | −0.011 (2) |
C14 | 0.038 (4) | 0.074 (6) | 0.033 (4) | 0.009 (4) | −0.001 (3) | 0.000 (4) |
C15 | 0.046 (4) | 0.110 (8) | 0.085 (6) | −0.027 (4) | 0.023 (4) | −0.055 (5) |
C14A | 0.031 (5) | 0.090 (8) | 0.048 (5) | −0.009 (6) | 0.006 (3) | 0.008 (4) |
C15A | 0.074 (6) | 0.115 (9) | 0.085 (6) | −0.062 (6) | 0.042 (6) | −0.040 (6) |
O1—C16 | 1.230 (3) | C6—C7 | 1.403 (3) |
O2—C16 | 1.251 (3) | C7—C8 | 1.432 (3) |
O3—H3A | 0.87 (4) | C8—C9 | 1.503 (3) |
O3—C19 | 1.299 (3) | C9—H9A | 0.9700 |
O4—C19 | 1.210 (3) | C9—H9B | 0.9700 |
C16—C17 | 1.502 (3) | C9—C10 | 1.506 (4) |
C17—H17 | 0.9300 | C10—H10A | 0.9700 |
C17—C18 | 1.307 (3) | C10—H10B | 0.9700 |
C18—H18 | 0.9300 | C11—H11A | 0.9700 |
C18—C19 | 1.491 (3) | C11—H11B | 0.9700 |
N1—H1 | 0.880 (14) | C11—C12 | 1.498 (4) |
N1—C1 | 1.371 (3) | C12—H12A | 0.9700 |
N1—C2 | 1.368 (3) | C12—H12B | 0.9700 |
N2—H2 | 0.873 (13) | C12—C13 | 1.487 (4) |
N2—C10 | 1.502 (3) | C13—H13A | 0.9600 |
N2—C11 | 1.500 (3) | C13—H13B | 0.9600 |
N2—C14 | 1.524 (10) | C13—H13C | 0.9600 |
N2—C14A | 1.485 (10) | C14—H14A | 0.9700 |
C1—H1A | 0.9300 | C14—H14B | 0.9700 |
C1—C8 | 1.367 (3) | C14—C15 | 1.569 (11) |
C2—C3 | 1.384 (3) | C15—H15A | 0.9600 |
C2—C7 | 1.411 (3) | C15—H15B | 0.9600 |
C3—H3 | 0.9300 | C15—H15C | 0.9600 |
C3—C4 | 1.367 (4) | C14A—H14C | 0.9700 |
C4—H4 | 0.9300 | C14A—H14D | 0.9700 |
C4—C5 | 1.401 (4) | C14A—C15A | 1.539 (11) |
C5—H5 | 0.9300 | C15A—H15D | 0.9600 |
C5—C6 | 1.375 (4) | C15A—H15E | 0.9600 |
C6—H6 | 0.9300 | C15A—H15F | 0.9600 |
C19—O3—H3A | 111 (2) | H9A—C9—H9B | 108.1 |
O1—C16—O2 | 125.89 (18) | C10—C9—H9A | 109.5 |
O1—C16—C17 | 115.76 (18) | C10—C9—H9B | 109.5 |
O2—C16—C17 | 118.35 (17) | N2—C10—C9 | 113.5 (2) |
C16—C17—H17 | 117.9 | N2—C10—H10A | 108.9 |
C18—C17—C16 | 124.14 (19) | N2—C10—H10B | 108.9 |
C18—C17—H17 | 117.9 | C9—C10—H10A | 108.9 |
C17—C18—H18 | 117.7 | C9—C10—H10B | 108.9 |
C17—C18—C19 | 124.55 (19) | H10A—C10—H10B | 107.7 |
C19—C18—H18 | 117.7 | N2—C11—H11A | 108.9 |
O3—C19—C18 | 114.52 (18) | N2—C11—H11B | 108.9 |
O4—C19—O3 | 124.26 (18) | H11A—C11—H11B | 107.7 |
O4—C19—C18 | 121.21 (19) | C12—C11—N2 | 113.4 (2) |
C1—N1—H1 | 130 (2) | C12—C11—H11A | 108.9 |
C2—N1—H1 | 121 (2) | C12—C11—H11B | 108.9 |
C2—N1—C1 | 108.84 (19) | C11—C12—H12A | 109.4 |
C10—N2—H2 | 107.8 (16) | C11—C12—H12B | 109.4 |
C10—N2—C14 | 116.6 (6) | H12A—C12—H12B | 108.0 |
C11—N2—H2 | 108.1 (16) | C13—C12—C11 | 111.1 (3) |
C11—N2—C10 | 111.2 (2) | C13—C12—H12A | 109.4 |
C11—N2—C14 | 113.7 (7) | C13—C12—H12B | 109.4 |
C14—N2—H2 | 98.1 (17) | C12—C13—H13A | 109.5 |
C14A—N2—H2 | 112.4 (17) | C12—C13—H13B | 109.5 |
C14A—N2—C10 | 107.3 (5) | C12—C13—H13C | 109.5 |
C14A—N2—C11 | 110.0 (7) | H13A—C13—H13B | 109.5 |
N1—C1—H1A | 124.8 | H13A—C13—H13C | 109.5 |
C8—C1—N1 | 110.3 (2) | H13B—C13—H13C | 109.5 |
C8—C1—H1A | 124.8 | N2—C14—H14A | 108.4 |
N1—C2—C3 | 130.1 (2) | N2—C14—H14B | 108.4 |
N1—C2—C7 | 107.6 (2) | N2—C14—C15 | 115.6 (8) |
C3—C2—C7 | 122.3 (2) | H14A—C14—H14B | 107.5 |
C2—C3—H3 | 121.3 | C15—C14—H14A | 108.4 |
C4—C3—C2 | 117.4 (3) | C15—C14—H14B | 108.4 |
C4—C3—H3 | 121.3 | C14—C15—H15A | 109.5 |
C3—C4—H4 | 119.3 | C14—C15—H15B | 109.5 |
C3—C4—C5 | 121.5 (3) | C14—C15—H15C | 109.5 |
C5—C4—H4 | 119.3 | H15A—C15—H15B | 109.5 |
C4—C5—H5 | 119.2 | H15A—C15—H15C | 109.5 |
C6—C5—C4 | 121.5 (3) | H15B—C15—H15C | 109.5 |
C6—C5—H5 | 119.2 | N2—C14A—H14C | 109.8 |
C5—C6—H6 | 121.0 | N2—C14A—H14D | 109.8 |
C5—C6—C7 | 118.1 (2) | N2—C14A—C15A | 109.5 (9) |
C7—C6—H6 | 121.0 | H14C—C14A—H14D | 108.2 |
C2—C7—C8 | 107.13 (19) | C15A—C14A—H14C | 109.8 |
C6—C7—C2 | 119.1 (2) | C15A—C14A—H14D | 109.8 |
C6—C7—C8 | 133.8 (2) | C14A—C15A—H15D | 109.5 |
C1—C8—C7 | 106.1 (2) | C14A—C15A—H15E | 109.5 |
C1—C8—C9 | 128.5 (2) | C14A—C15A—H15F | 109.5 |
C7—C8—C9 | 125.4 (2) | H15D—C15A—H15E | 109.5 |
C8—C9—H9A | 109.5 | H15D—C15A—H15F | 109.5 |
C8—C9—H9B | 109.5 | H15E—C15A—H15F | 109.5 |
C8—C9—C10 | 110.8 (2) | ||
O1—C16—C17—C18 | 155.5 (3) | C3—C4—C5—C6 | 1.0 (5) |
O2—C16—C17—C18 | −24.0 (4) | C4—C5—C6—C7 | −0.2 (4) |
C16—C17—C18—C19 | −175.7 (2) | C5—C6—C7—C2 | −1.2 (3) |
C17—C18—C19—O3 | 4.1 (3) | C5—C6—C7—C8 | 179.5 (2) |
C17—C18—C19—O4 | −176.6 (3) | C6—C7—C8—C1 | 179.2 (2) |
N1—C1—C8—C7 | 0.3 (3) | C6—C7—C8—C9 | 0.2 (4) |
N1—C1—C8—C9 | 179.2 (2) | C7—C2—C3—C4 | −1.0 (4) |
N1—C2—C3—C4 | −179.5 (3) | C7—C8—C9—C10 | −147.4 (2) |
N1—C2—C7—C6 | −179.4 (2) | C8—C9—C10—N2 | −164.8 (2) |
N1—C2—C7—C8 | 0.1 (2) | C10—N2—C11—C12 | −62.5 (3) |
N2—C11—C12—C13 | −171.7 (3) | C10—N2—C14—C15 | 159.0 (9) |
C1—N1—C2—C3 | 178.7 (2) | C10—N2—C14A—C15A | 176.9 (9) |
C1—N1—C2—C7 | 0.1 (2) | C11—N2—C10—C9 | 171.7 (2) |
C1—C8—C9—C10 | 33.9 (4) | C11—N2—C14—C15 | −69.5 (13) |
C2—N1—C1—C8 | −0.2 (3) | C11—N2—C14A—C15A | −61.9 (12) |
C2—C3—C4—C5 | −0.4 (4) | C14—N2—C10—C9 | −55.8 (8) |
C2—C7—C8—C1 | −0.2 (2) | C14—N2—C11—C12 | 163.5 (6) |
C2—C7—C8—C9 | −179.2 (2) | C14A—N2—C10—C9 | −68.0 (8) |
C3—C2—C7—C6 | 1.8 (3) | C14A—N2—C11—C12 | 178.7 (6) |
C3—C2—C7—C8 | −178.7 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3A···O2i | 0.87 (4) | 1.65 (4) | 2.518 (2) | 174 (4) |
N1—H1···O2ii | 0.88 (1) | 2.52 (3) | 3.053 (3) | 119 (2) |
N1—H1···O4iii | 0.88 (1) | 2.20 (2) | 2.984 (3) | 147 (3) |
N2—H2···O1 | 0.87 (1) | 1.82 (1) | 2.682 (2) | 169 (2) |
Symmetry codes: (i) x+1, y, z; (ii) −x+1, y+1/2, −z+1; (iii) −x+2, y+1/2, −z+1. |
C14H19N2+·C4H3O4− | Dx = 1.251 Mg m−3 |
Mr = 330.37 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 9827 reflections |
a = 7.9845 (7) Å | θ = 2.7–25.6° |
b = 8.5641 (6) Å | µ = 0.09 mm−1 |
c = 25.649 (2) Å | T = 297 K |
V = 1753.9 (3) Å3 | BLOCK, colourless |
Z = 4 | 0.42 × 0.24 × 0.15 mm |
F(000) = 704 |
Bruker D8 Venture CMOS diffractometer | 3036 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.046 |
Absorption correction: multi-scan (SADABS; Bruker, 2018) | θmax = 25.7°, θmin = 2.7° |
Tmin = 0.681, Tmax = 0.745 | h = −9→9 |
49712 measured reflections | k = −10→10 |
3318 independent reflections | l = −31→31 |
Refinement on F2 | H atoms treated by a mixture of independent and constrained refinement |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0615P)2 + 0.9658P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.053 | (Δ/σ)max < 0.001 |
wR(F2) = 0.147 | Δρmax = 0.25 e Å−3 |
S = 1.10 | Δρmin = −0.17 e Å−3 |
3318 reflections | Extinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
228 parameters | Extinction coefficient: 0.035 (7) |
4 restraints | Absolute structure: Flack x determined using 1177 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Hydrogen site location: mixed | Absolute structure parameter: 0.0 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.3826 (3) | 0.6187 (3) | 0.43011 (14) | 0.0593 (8) | |
O2 | 0.4928 (3) | 0.8559 (3) | 0.42479 (15) | 0.0601 (9) | |
O3 | −0.2263 (3) | 0.7304 (3) | 0.43758 (14) | 0.0586 (8) | |
H3A | −0.323 (4) | 0.779 (6) | 0.433 (2) | 0.088* | |
O4 | −0.1284 (3) | 0.9688 (3) | 0.42243 (12) | 0.0489 (7) | |
N1 | 0.3281 (5) | 0.4814 (4) | 0.17877 (14) | 0.0575 (9) | |
H1 | 0.321 (6) | 0.465 (6) | 0.1455 (7) | 0.069* | |
N2 | 0.5754 (4) | 0.3846 (4) | 0.39368 (14) | 0.0491 (8) | |
H2 | 0.532 (5) | 0.470 (3) | 0.4071 (16) | 0.059* | |
C1 | 0.4682 (6) | 0.4583 (5) | 0.20814 (18) | 0.0567 (10) | |
H1A | 0.567191 | 0.414312 | 0.195924 | 0.068* | |
C2 | 0.2087 (6) | 0.5503 (5) | 0.20900 (16) | 0.0503 (10) | |
C3 | 0.0462 (6) | 0.5976 (5) | 0.19700 (19) | 0.0618 (12) | |
H3 | 0.002055 | 0.584043 | 0.163752 | 0.074* | |
C4 | −0.0465 (7) | 0.6653 (6) | 0.2362 (2) | 0.0716 (14) | |
H4 | −0.154783 | 0.699179 | 0.229132 | 0.086* | |
C5 | 0.0179 (7) | 0.6841 (6) | 0.2863 (2) | 0.0680 (13) | |
H5 | −0.047868 | 0.730535 | 0.311898 | 0.082* | |
C6 | 0.1763 (6) | 0.6355 (5) | 0.29841 (18) | 0.0587 (11) | |
H6 | 0.217240 | 0.646538 | 0.332154 | 0.070* | |
C7 | 0.2761 (5) | 0.5689 (4) | 0.25947 (15) | 0.0463 (9) | |
C8 | 0.4428 (5) | 0.5086 (5) | 0.25791 (16) | 0.0497 (9) | |
C9 | 0.5600 (6) | 0.4988 (6) | 0.30303 (18) | 0.0603 (11) | |
H9A | 0.563040 | 0.598416 | 0.321004 | 0.072* | |
H9B | 0.672096 | 0.475965 | 0.290581 | 0.072* | |
C10 | 0.5038 (6) | 0.3709 (5) | 0.34088 (17) | 0.0544 (10) | |
H10A | 0.382653 | 0.373599 | 0.343539 | 0.065* | |
H10B | 0.534845 | 0.270232 | 0.326513 | 0.065* | |
C11 | 0.5071 (7) | 0.2583 (5) | 0.42859 (19) | 0.0636 (12) | |
H11A | 0.387600 | 0.248536 | 0.422582 | 0.076* | |
H11B | 0.558853 | 0.159744 | 0.419276 | 0.076* | |
C12 | 0.5358 (6) | 0.2881 (6) | 0.48389 (18) | 0.0646 (12) | |
H12 | 0.506357 | 0.384831 | 0.497556 | 0.077* | |
C13 | 0.6037 (7) | 0.1801 (7) | 0.5159 (2) | 0.0822 (16) | |
H13A | 0.633969 | 0.082723 | 0.502960 | 0.099* | |
H13B | 0.620232 | 0.203175 | 0.551004 | 0.099* | |
C14 | 0.7626 (5) | 0.3814 (6) | 0.3950 (2) | 0.0652 (12) | |
H14A | 0.800416 | 0.394052 | 0.430234 | 0.098* | |
H14B | 0.805793 | 0.464805 | 0.373889 | 0.098* | |
H14C | 0.801662 | 0.283251 | 0.381584 | 0.098* | |
C15 | 0.3711 (4) | 0.7629 (4) | 0.42824 (14) | 0.0380 (8) | |
C16 | 0.2018 (4) | 0.8376 (4) | 0.42840 (15) | 0.0397 (8) | |
H16 | 0.195401 | 0.945177 | 0.423952 | 0.048* | |
C17 | 0.0620 (4) | 0.7596 (4) | 0.43446 (15) | 0.0419 (8) | |
H17 | 0.068725 | 0.652892 | 0.440823 | 0.050* | |
C18 | −0.1070 (4) | 0.8323 (4) | 0.43174 (14) | 0.0367 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0322 (14) | 0.0410 (15) | 0.105 (2) | 0.0101 (11) | 0.0061 (15) | −0.0037 (16) |
O2 | 0.0208 (13) | 0.0509 (16) | 0.109 (2) | 0.0011 (11) | 0.0006 (14) | 0.0053 (16) |
O3 | 0.0214 (13) | 0.0513 (16) | 0.103 (2) | −0.0010 (11) | 0.0052 (14) | 0.0062 (16) |
O4 | 0.0249 (12) | 0.0432 (14) | 0.0785 (19) | 0.0046 (10) | −0.0010 (12) | 0.0031 (13) |
N1 | 0.063 (2) | 0.054 (2) | 0.055 (2) | −0.0092 (19) | 0.0009 (18) | −0.0011 (17) |
N2 | 0.0420 (18) | 0.0395 (17) | 0.066 (2) | 0.0072 (14) | −0.0031 (16) | −0.0080 (15) |
C1 | 0.050 (2) | 0.049 (2) | 0.071 (3) | −0.0025 (19) | 0.013 (2) | 0.001 (2) |
C2 | 0.056 (2) | 0.040 (2) | 0.055 (2) | −0.0089 (18) | 0.001 (2) | 0.0034 (17) |
C3 | 0.059 (3) | 0.059 (3) | 0.067 (3) | −0.011 (2) | −0.014 (2) | 0.010 (2) |
C4 | 0.054 (3) | 0.067 (3) | 0.094 (4) | 0.009 (2) | −0.006 (3) | 0.012 (3) |
C5 | 0.059 (3) | 0.065 (3) | 0.080 (3) | 0.020 (2) | 0.007 (2) | −0.003 (2) |
C6 | 0.061 (3) | 0.058 (3) | 0.058 (2) | 0.002 (2) | 0.002 (2) | −0.004 (2) |
C7 | 0.046 (2) | 0.0356 (18) | 0.057 (2) | −0.0016 (16) | 0.0011 (18) | 0.0038 (16) |
C8 | 0.049 (2) | 0.044 (2) | 0.056 (2) | −0.0004 (19) | 0.0021 (18) | 0.0045 (17) |
C9 | 0.046 (2) | 0.064 (3) | 0.070 (3) | −0.001 (2) | 0.001 (2) | 0.003 (2) |
C10 | 0.050 (2) | 0.049 (2) | 0.064 (3) | 0.0029 (19) | −0.0073 (19) | −0.0018 (18) |
C11 | 0.071 (3) | 0.051 (2) | 0.068 (3) | 0.003 (2) | 0.003 (2) | 0.001 (2) |
C12 | 0.056 (3) | 0.068 (3) | 0.070 (3) | 0.011 (2) | 0.001 (2) | −0.006 (2) |
C13 | 0.062 (3) | 0.101 (4) | 0.083 (4) | −0.004 (3) | 0.007 (3) | 0.020 (3) |
C14 | 0.041 (2) | 0.071 (3) | 0.084 (3) | 0.005 (2) | −0.008 (2) | −0.009 (3) |
C15 | 0.0235 (16) | 0.0409 (18) | 0.050 (2) | 0.0058 (14) | 0.0009 (15) | −0.0017 (16) |
C16 | 0.0231 (16) | 0.0400 (18) | 0.056 (2) | 0.0058 (13) | −0.0015 (15) | −0.0002 (16) |
C17 | 0.0247 (16) | 0.0411 (17) | 0.060 (2) | 0.0039 (14) | 0.0020 (15) | 0.0024 (16) |
C18 | 0.0203 (15) | 0.0443 (19) | 0.0455 (18) | 0.0015 (13) | 0.0026 (14) | −0.0019 (16) |
O1—C15 | 1.239 (5) | C6—C7 | 1.399 (6) |
O2—C15 | 1.259 (4) | C7—C8 | 1.428 (6) |
O3—H3A | 0.884 (14) | C8—C9 | 1.491 (6) |
O3—C18 | 1.301 (4) | C9—H9A | 0.9700 |
O4—C18 | 1.205 (4) | C9—H9B | 0.9700 |
N1—H1 | 0.868 (13) | C9—C10 | 1.531 (6) |
N1—C1 | 1.363 (6) | C10—H10A | 0.9700 |
N1—C2 | 1.363 (6) | C10—H10B | 0.9700 |
N2—H2 | 0.877 (13) | C11—H11A | 0.9700 |
N2—C10 | 1.475 (5) | C11—H11B | 0.9700 |
N2—C11 | 1.506 (6) | C11—C12 | 1.459 (7) |
N2—C14 | 1.495 (5) | C12—H12 | 0.9300 |
C1—H1A | 0.9300 | C12—C13 | 1.351 (5) |
C1—C8 | 1.362 (6) | C13—H13A | 0.9300 |
C2—C3 | 1.394 (6) | C13—H13B | 0.9300 |
C2—C7 | 1.411 (6) | C14—H14A | 0.9600 |
C3—H3 | 0.9300 | C14—H14B | 0.9600 |
C3—C4 | 1.377 (8) | C14—H14C | 0.9600 |
C4—H4 | 0.9300 | C15—C16 | 1.495 (4) |
C4—C5 | 1.393 (7) | C16—H16 | 0.9300 |
C5—H5 | 0.9300 | C16—C17 | 1.310 (5) |
C5—C6 | 1.367 (7) | C17—H17 | 0.9300 |
C6—H6 | 0.9300 | C17—C18 | 1.488 (5) |
C18—O3—H3A | 108 (4) | C10—C9—H9A | 109.6 |
C1—N1—H1 | 125 (3) | C10—C9—H9B | 109.6 |
C2—N1—H1 | 126 (3) | N2—C10—C9 | 114.3 (4) |
C2—N1—C1 | 108.8 (4) | N2—C10—H10A | 108.7 |
C10—N2—H2 | 106 (3) | N2—C10—H10B | 108.7 |
C10—N2—C11 | 110.4 (3) | C9—C10—H10A | 108.7 |
C10—N2—C14 | 114.0 (4) | C9—C10—H10B | 108.7 |
C11—N2—H2 | 103 (3) | H10A—C10—H10B | 107.6 |
C14—N2—H2 | 114 (3) | N2—C11—H11A | 108.9 |
C14—N2—C11 | 109.6 (4) | N2—C11—H11B | 108.9 |
N1—C1—H1A | 124.8 | H11A—C11—H11B | 107.7 |
C8—C1—N1 | 110.5 (4) | C12—C11—N2 | 113.3 (4) |
C8—C1—H1A | 124.8 | C12—C11—H11A | 108.9 |
N1—C2—C3 | 130.6 (4) | C12—C11—H11B | 108.9 |
N1—C2—C7 | 107.7 (4) | C11—C12—H12 | 118.8 |
C3—C2—C7 | 121.7 (4) | C13—C12—C11 | 122.4 (5) |
C2—C3—H3 | 121.3 | C13—C12—H12 | 118.8 |
C4—C3—C2 | 117.5 (4) | C12—C13—H13A | 120.0 |
C4—C3—H3 | 121.3 | C12—C13—H13B | 120.0 |
C3—C4—H4 | 119.2 | H13A—C13—H13B | 120.0 |
C3—C4—C5 | 121.6 (5) | N2—C14—H14A | 109.5 |
C5—C4—H4 | 119.2 | N2—C14—H14B | 109.5 |
C4—C5—H5 | 119.5 | N2—C14—H14C | 109.5 |
C6—C5—C4 | 121.1 (5) | H14A—C14—H14B | 109.5 |
C6—C5—H5 | 119.5 | H14A—C14—H14C | 109.5 |
C5—C6—H6 | 120.4 | H14B—C14—H14C | 109.5 |
C5—C6—C7 | 119.3 (4) | O1—C15—O2 | 125.1 (3) |
C7—C6—H6 | 120.4 | O1—C15—C16 | 119.5 (3) |
C2—C7—C8 | 106.8 (4) | O2—C15—C16 | 115.3 (3) |
C6—C7—C2 | 118.9 (4) | C15—C16—H16 | 118.2 |
C6—C7—C8 | 134.3 (4) | C17—C16—C15 | 123.6 (3) |
C1—C8—C7 | 106.2 (4) | C17—C16—H16 | 118.2 |
C1—C8—C9 | 128.0 (4) | C16—C17—H17 | 118.2 |
C7—C8—C9 | 125.7 (4) | C16—C17—C18 | 123.6 (3) |
C8—C9—H9A | 109.6 | C18—C17—H17 | 118.2 |
C8—C9—H9B | 109.6 | O3—C18—C17 | 112.2 (3) |
C8—C9—C10 | 110.4 (4) | O4—C18—O3 | 124.7 (3) |
H9A—C9—H9B | 108.1 | O4—C18—C17 | 122.9 (3) |
O1—C15—C16—C17 | 5.5 (6) | C3—C4—C5—C6 | −0.2 (8) |
O2—C15—C16—C17 | −176.3 (4) | C4—C5—C6—C7 | 1.4 (7) |
N1—C1—C8—C7 | −0.7 (5) | C5—C6—C7—C2 | −1.5 (6) |
N1—C1—C8—C9 | 177.1 (4) | C5—C6—C7—C8 | 179.1 (5) |
N1—C2—C3—C4 | −179.9 (4) | C6—C7—C8—C1 | 179.5 (4) |
N1—C2—C7—C6 | −179.1 (4) | C6—C7—C8—C9 | 1.7 (7) |
N1—C2—C7—C8 | 0.4 (4) | C7—C2—C3—C4 | 0.7 (6) |
N2—C11—C12—C13 | −129.7 (5) | C7—C8—C9—C10 | 71.9 (5) |
C1—N1—C2—C3 | 179.6 (4) | C8—C9—C10—N2 | −161.2 (4) |
C1—N1—C2—C7 | −0.9 (5) | C10—N2—C11—C12 | −164.5 (4) |
C1—C8—C9—C10 | −105.5 (5) | C11—N2—C10—C9 | 177.5 (4) |
C2—N1—C1—C8 | 1.0 (5) | C14—N2—C10—C9 | −58.6 (5) |
C2—C3—C4—C5 | −0.9 (7) | C14—N2—C11—C12 | 69.1 (5) |
C2—C7—C8—C1 | 0.2 (4) | C15—C16—C17—C18 | −176.5 (4) |
C2—C7—C8—C9 | −177.7 (4) | C16—C17—C18—O3 | 178.2 (4) |
C3—C2—C7—C6 | 0.5 (6) | C16—C17—C18—O4 | 1.9 (6) |
C3—C2—C7—C8 | 180.0 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3A···O2i | 0.88 (1) | 1.63 (2) | 2.508 (4) | 176 (6) |
N1—H1···O2ii | 0.87 (1) | 2.52 (4) | 3.203 (5) | 137 (4) |
N1—H1···O4iii | 0.87 (1) | 2.32 (3) | 3.048 (5) | 141 (4) |
N2—H2···O1 | 0.88 (1) | 1.85 (2) | 2.695 (4) | 163 (4) |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, y−1/2, −z+1/2; (iii) −x, y−1/2, −z+1/2. |
Acknowledgements
Financial statements and conflict of interest: This study was funded by CaaMTech, Inc. ARC reports an ownership interest in CaaMTech, Inc., which owns US and worldwide patent applications, covering new tryptamine compounds, compositions, formulations, novel crystalline forms, and methods of making the same.
Funding information
Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (grant No. CHE-1429086).
References
Ascic, E., Hansen, C. L., Le Quement, S. T. & Nielsen, T. E. (2012). Chem. Commun. 48, 3345–3347. Web of Science CrossRef CAS Google Scholar
Blei, F., Dörner, S., Fricke, J., Baldeweg, F., Trottmann, F., Komor, A., Meyer, F., Hertweck, C. & Hoffmeister, D. (2020). Chem. Eur. J. 26, 729–734. Web of Science CrossRef CAS PubMed Google Scholar
Brandt, S. D., Freeman, S., Fleet, I. A. & Alder, J. F. (2005b). Analyst, 130, 1258–1262. Web of Science CrossRef PubMed CAS Google Scholar
Brandt, S. D., Freeman, S., Fleet, I. A., McGagh, P. & Alder, J. F. (2005a). Analyst, 130, 330–344. Web of Science CrossRef PubMed CAS Google Scholar
Bruker (2018). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cameron, L. P. & Olson, D. E. (2018). ACS Chem. Neurosci. 9, 2344–2357. Web of Science CrossRef CAS PubMed Google Scholar
Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2019a). Acta Cryst. E75, 900–902. Web of Science CSD CrossRef IUCr Journals Google Scholar
n Google Scholar
Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2019c). Psychedelic Science Review, https://psychedelicreview.com/the-crystal-structure-of-4-aco-dmt-fumarate/ Google Scholar
Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2019a). Acta Cryst. E75, 1316–1320. Web of Science CSD CrossRef IUCr Journals Google Scholar
Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2019b). IUCrData, 4, x191469. Google Scholar
Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020a). Acta Cryst. E76, 514–517. Web of Science CSD CrossRef IUCr Journals Google Scholar
Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020b). Acta Cryst. E76, 589–593. Web of Science CSD CrossRef IUCr Journals Google Scholar
Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020c). IUCrData, 5, x200498. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Falkenberg, G. (1972). Acta Cryst. B28, 3075–3083. CSD CrossRef IUCr Journals Web of Science Google Scholar
Jiménez-Garrido, D. F., Gómez-Sousa, M., Ona, G., Dos Santos, R. G., Hallak, J. E. C., Alcázar-Córcoles, M. A. & Bouso, J. C. (2020). Sci. Rep. 10, 4075. PubMed Google Scholar
Johnson, M. W., Hendricks, P. S., Barrett, F. S. & Griffiths, R. R. (2019). Pharmacol. Ther. 197, 83–102. Web of Science CrossRef CAS PubMed Google Scholar
Nichols, D. E. & Frescas, S. (1999). Synthesis, pp. 935–938. CrossRef Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sherwood, A. M., Halberstadt, A. L., Klein, A. K., McCorvy, J. D., Kaylo, K. W., Kargbo, R. B. & Meisenheimer, P. (2020). J. Nat. Prod. 83, 461–467. Web of Science CrossRef CAS PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.