research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

DMT analogues: N-ethyl-N-propyl­tryptamine and N-allyl-N-methytryptamine as their hydro­fumarate salts

CROSSMARK_Color_square_no_text.svg

aCaaMTech, LLC, 58 East Sunset Way, Suite 209, Issaquah, WA 98027, USA, and bUniversity of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
*Correspondence e-mail: andrew@caam.tech

Edited by D. Chopra, Indian Institute of Science Education and Research Bhopal, India (Received 4 May 2020; accepted 26 June 2020; online 3 July 2020)

The solid-state structures of the hydro­fumarate salts of two N,N-di­alkyl­tryptamines, namely N-ethyl-N-propyl­tryptammonium (EPT) hydro­fumarate {systematic name: [2-(1H-indol-3-yl)eth­yl](meth­yl)propyl­aza­nium 3-carb­oxy­prop-2-enoate}, C15H23N2+·C4H3O4, and N-allyl-N-methyl­tryptammonium (MALT) hydro­fumarate {systematic name: [2-(1H-indol-3-yl)eth­yl](meth­yl)(prop-2-en-1-yl)aza­nium 3-carb­oxy­prop-2-enoate}, C14H19N2+·C4H3O4, are reported. Both compounds possess a protonated tryptammonium cation, and a hydro­fumarate anion in the asymmetric unit. The ethyl group of the EPT cation is modeled as a two-component disorder with 50% occupancy for each component. In the extended structure, N—H⋯O and O—H⋯O hydrogen bonds generate infinite two-dimensional networks parallel to the (001) plane for both compounds.

1. Chemical context

Ayahuasca is the traditional spiritual medicine of the indigenous people of the Amazon basin, and has a history of use in religious ceremonies dating back to the 1400′s or earlier. It is an herbal tea that is made by boiling a mixture of leaves and bark. The leaves of the Psychotria viridis plant contain about 0.3% of N,N-di­methyl­tryptamine (DMT) by mass, which is the primary psychoactive in ayahuasca. The bark of the Banisteriopsis caapi vine contains many different β-carbolines; these β-carbolines function as mono­amine oxidase (MAO) inhibitors, which prevent the degradation of DMT in the human gut. Without the inhibition of mono­amine oxidase, DMT is not orally active (Cameron & Olson, 2018[Cameron, L. P. & Olson, D. E. (2018). ACS Chem. Neurosci. 9, 2344-2357.]).

In a report earlier this year, β-carboline MAO inhibitors were identified in species of `magic mushrooms', where the primary psychedelic, psilocin, can be similarly degraded by MAO. This is the first instance of a synchronous biosynthesis of an active ingredient and the inhibitor of its degradation in a natural psychedelic species (Blei et al., 2020[Blei, F., Dörner, S., Fricke, J., Baldeweg, F., Trottmann, F., Komor, A., Meyer, F., Hertweck, C. & Hoffmeister, D. (2020). Chem. Eur. J. 26, 729-734.]). Psilocin (4-hy­droxy-N,N-di­methyl­tryptamine) is orally active in the absence of MAO inhibitors, indicating that the 4-hy­droxy substitution makes the compound more resistant to deamination by MAO (Sherwood et al., 2020[Sherwood, A. M., Halberstadt, A. L., Klein, A. K., McCorvy, J. D., Kaylo, K. W., Kargbo, R. B. & Meisenheimer, P. (2020). J. Nat. Prod. 83, 461-467.]). The presence of β-carbolines in `magic mushrooms' and the varied activity of psilocin and DMT bring many questions forward on the nature of cooperative activity among chemicals in psychotropic natural products.

This class of traditional psychedelics, as well as synthetic variants, have started to gain a great deal of inter­est as anti­depressants and anxiolytics (Johnson et al., 2019[Johnson, M. W., Hendricks, P. S., Barrett, F. S. & Griffiths, R. R. (2019). Pharmacol. Ther. 197, 83-102.]; Jiménez-Garrido et al., 2020[Jiménez-Garrido, D. F., Gómez-Sousa, M., Ona, G., Dos Santos, R. G., Hallak, J. E. C., Alcázar-Córcoles, M. A. & Bouso, J. C. (2020). Sci. Rep. 10, 4075.]). Given the renewed inter­est in using psychedelic tryptamines as therapeutics, there is growing urgency to perform fundamental physical and biological characterization on these compounds for the benefit of downstream research. This is particularly true in the examination of structure–activity relationships between compounds and also the examination of their cooperative biological activity. A better understanding of these areas would facilitate the research and development of formulations tailored for specific ailments. Two synthetic analogues of DMT are N-ethyl-N-propyl­tryptamine (EPT) and N-methyl-N-allyl­tryptamine (MALT), both of which have very limited reports in literature (Ascic et al., 2012[Ascic, E., Hansen, C. L., Le Quement, S. T. & Nielsen, T. E. (2012). Chem. Commun. 48, 3345-3347.]; Brandt et al., 2005a[Brandt, S. D., Freeman, S., Fleet, I. A., McGagh, P. & Alder, J. F. (2005a). Analyst, 130, 330-344.],b[Brandt, S. D., Freeman, S., Fleet, I. A. & Alder, J. F. (2005b). Analyst, 130, 1258-1262.]). The preparation of pure crystalline forms of these compounds is essential to conducting meaningful biological studies and ultimately developing drug products. Herein, we report the first solid-state structural characterization of EPT and MALT as their hydro­fumarate salts, (I)[link] and (II)[link], including the first reported salt of MALT.

[Scheme 1]

2. Structural commentary

The asymmetric unit of N-ethyl-N-propyl­tryptammonium hydro­fumarate, (I)[link], contains one tryptammonium cation and one hydro­fumarate anion (Fig. 1[link]). The cation possesses a near planar indole, with a mean deviation from planarity of 0.008 Å. The ethyl­amino group is slightly turned away from this plane with a C1—C8—C9—C10 torsion angle of 33.9 (4)°. The ethyl group on the N-ethyl-N-propyl­amine is disordered over two orientations, with a 0.50:0.50 ratio for C14, C15 and C14A, C15A. The hydro­fumarate anion deviates slightly from planarity with an r.m.s. deviation of 0.135 Å, and a carboxyl­ate to carboxyl­ate plane twist angle of 16.63 (14)°.

[Figure 1]
Figure 1
The asymmetric unit of N-ethyl-N-propyl­tryptammonium hydro­fumarate showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level. Dashed bonds indicate the disordered component of the structure. The hydrogen bond is shown by a dashed line.

The asymmetric unit of N-methyl-N-allyl­tryptammonium hydro­fumarate, (II)[link], contains one tryptammonium cation and one hydro­fumarate anion (Fig. 2[link]). The tryptammonium has a near planar indole, with a mean deviation from planarity of 0.007 Å. The ethyl­amino group is turned away from the plane of the indole, with a C1—C8—C9—C10 torsion angle of −105.5 (5)°. The hydro­fumarate is also near planar, with an r.m.s. deviation of 0.055 Å. The carboxyl­ate is partially delocalized, with C—O distances of 1.239 (5) Å and 1.259 (4) Å.

[Figure 2]
Figure 2
The asymmetric unit of N-methyl-N-allyl­tryptammonium hydro­fumarate showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level. The hydrogen bond is shown by a dashed line.

3. Supra­molecular features

The two moieties of the EPT salt, the tryptammonium cation and the hydro­fumarate anion, are held together in the asymmetric unit via N2—H2⋯O1 hydrogen bonds. The indole of another tryptammonium cation inter­acts with a carbonyl oxygen of the hydro­fumarate mol­ecule through an N1—H1⋯O4 hydrogen bond (symmetry operation: 2 − x, [{1\over 2}] + y, 1 − z). The hy­droxy group of the hydro­fumarate inter­acts with a carboxyl­ate oxygen of another hydro­fumarate anion through an O3—H3A⋯O2 hydrogen bond (symmetry operation: 1 + x, y, z). The hydro­fumarate anions are linked together in chains along [100], which are linked together by the tryptammonium cations along [010], joining the ions into infinite two-dimensional networks parallel to the (001) plane (Table 1[link], Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O2i 0.87 (4) 1.65 (4) 2.518 (2) 174 (4)
N1—H1⋯O2ii 0.88 (1) 2.52 (3) 3.053 (3) 119 (2)
N1—H1⋯O4iii 0.88 (1) 2.20 (2) 2.984 (3) 147 (3)
N2—H2⋯O1 0.87 (1) 1.82 (1) 2.682 (2) 169 (2)
Symmetry codes: (i) x+1, y, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+1]; (iii) [-x+2, y+{\script{1\over 2}}, -z+1].
[Figure 3]
Figure 3
The hydrogen bonding of a hydro­fumarate ion in the structure of N-ethyl-N-propyl­tryptammonium hydro­fumarate, with hydrogen bonds shown as dashed lines. Only one component of the disorder is shown, and hydrogen atoms not involved in hydrogen bonding are omitted for clarity. Symmetry codes: (i) 1 + x, y, z; (iv) −1 + x, y, z; (v) 2 − x, −[{1\over 2}] + y, 1 − z.

The two moieties of the MALT salt, the tryptammonium cation and the hydro­fumarate anion, are held together in the asymmetric unit via N2—H2⋯O1 hydrogen bonds. The hy­droxy group of the hydro­fumarate hydrogen bonds to the carboxyl­ate oxygen of another hydro­fumarate anion through O3—H3A⋯O2 hydrogen bonds (symmetry code: −1 + x, y, z). One carbonyl oxygen, O2, of the hydro­fumarate, the indole nitro­gen, N1, of another tryptammonium cation (symmetry code: 1 − x, [{1\over 2}] + y, [{1\over 2}] − z), and a carbonyl oxygen, O4, of a different hydro­fumarate anion (symmetry code: 1 + x, y, z) combine to form a three-centred (bifurcated) N—H⋯(O,O) hydrogen bond. The hydro­fumarate anions are linked tog­ether in chains along [100], and the tryptammonium cations link these chains together along [010]. The net result in an infinite two-dimensional networks parallel to the (001) plane, similar to what was observed for the EPT (Table 2[link], Fig. 4[link]).

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O2i 0.88 (1) 1.63 (2) 2.508 (4) 176 (6)
N1—H1⋯O2ii 0.87 (1) 2.52 (4) 3.203 (5) 137 (4)
N1—H1⋯O4iii 0.87 (1) 2.32 (3) 3.048 (5) 141 (4)
N2—H2⋯O1 0.88 (1) 1.85 (2) 2.695 (4) 163 (4)
Symmetry codes: (i) x-1, y, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 4]
Figure 4
The hydrogen bonding of a hydro­fumarate ion in the structure of N-methyl-N-allyl­tryptammonium hydro­fumarate, with hydrogen bonds shown as dashed lines. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity. Symmetry codes: (i) x − 1, y, z; (iv) 1 + x, y, z; (v) 1 − x, [{1\over 2}] + y, [{1\over 2}] − z; (vi) −x, [{1\over 2}] + y, [{1\over 2}] − z.

4. Database survey

The compound that is the closest structural comparison to those presented here is N-methyl-N-iso­propyl­tryptammonium hydro­fumarate (RONSOF: Chadeayne, Pham et al., 2019a[Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2019a). Acta Cryst. E75, 1316-1320.]), which forms similar two-dimensional networks as the two reported compounds, though parallel to (010) instead. The other unsubstituted N,N-di­alkyl­tryptamines whose structures have been reported are freebase DMT (DMTRYP: Falkenberg, 1972[Falkenberg, G. (1972). Acta Cryst. B28, 3075-3083.]), the bromide salt of DMT (QQQHIM: Falkenberg, 1972[Falkenberg, G. (1972). Acta Cryst. B28, 3075-3083.]), and the freebase of N-methyl-N-propyl­tryptamine (WOHYAW: Chadeayne, Golen & Manke, 2019b[n]). The core structure of the tryptamines in these compounds are similar, but the packing is very different given the lack of a similar counter-ion. The reaction of fumaric acid with the freebase of N-methyl-N-allyl­tryptamine to generate the hydro­fumarate salt is similar to the reactions observed with psilacetin (Nichols & Frescas, 1999[Nichols, D. E. & Frescas, S. (1999). Synthesis, pp. 935-938.]) and norpsilocin (CCDC 1992279: Chadeayne, Pham et al., 2020b[Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020b). Acta Cryst. E76, 589-593.]). The other known tryptammonium fumarate salts are for 4-hy­droxy-N-methyl-N-iso­propyl­tryptamine (RONSUL: Chadeayne, Pham et al., 2019a[Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2019a). Acta Cryst. E75, 1316-1320.]; CCDC 1987588: Chadeayne, Pham et al., 2020a[Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020a). Acta Cryst. E76, 514-517.]), which join together in infinite parallel chains through N—H⋯O and O—H⋯O hydrogen bonds, 4-acet­oxy-N,N-di­methyl­tryptamine (HOCJUH: Chadeayne et al., 2019c[Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2019c). Psychedelic Science Review, https://psychedelicreview.com/the-crystal-structure-of-4-aco-dmt-fumarate/] and XOFDOO: Chadeayne, Golen & Manke, 2019a[Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2019a). Acta Cryst. E75, 900-902.]), which joins together in chains through N—H⋯O and O—H⋯O hydrogen bonds, and 4-hy­droxy-N,N-di­propyl­tryptamine (CCDC 1962339: Chadeayne, Pham et al., 2019b[Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2019b). IUCrData, 4, x191469.]), which forms three-dimensional networks through N—H⋯O and O—H⋯O hydrogen bonds. The only other N-allyl­tryptamine whose structure has been reported is 5-meth­oxy-N,N-di­allyl­tryptamine (Chadeayne, Pham et al., 2020c[Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020c). IUCrData, 5, x200498.]), which is reported as the freebase and has not been reported as a salt.

5. Synthesis and crystallization

Single crystals of N-ethyl-N-propyl­tryptammonium hydro­fumarate suitable for X-ray analysis were obtained from the slow evaporation of an aqueous solution of a commercial sample of EPT fumarate (The Indole Shop).

To prepare N-methyl-N-allyl­tryptammonium hydro­fumar­ate, 134 mg of a commercial sample of N-methyl-N-allyl­tryptamine (The Indole Shop), which is a waxy solid that does not crystallize well, were dissolved in 10 mL of methanol, and 68 mg of fumaric acid were added. The mixture was refluxed for 12 h and solvent was removed in vacuo to obtain a waxy, yellow product. The material was recrystallized from ethanol to yield colorless single crystals suitable for X-ray diffraction. The product was also characterized by nuclear magnetic resonance. 1H NMR (400 MHz, D2O): δ 7.69 (d, J = 7.9 Hz, 1 H, ArH), 7.54 (d, J = 8.2 Hz, 1 H, ArH), 7.34 (s, 1 H, ArH), 7.29 (t, J = 7.1 Hz, 1 H, ArH), 7.21 (t, J = 7.1 Hz, 1 H, ArH), 6.66 (s, 2 H, CH), 5.92–5.82 (m, 1 H, CH), 5.60–5.56 (m, 2 H, CH2), 3.88–3.83 (m, 1 H, CH2), 3.77–3.72 (m, 1 H, CH2), 3.68–3.57 (m, 1 H, CH2), 3.44–3.37 (m, 1 H, CH2), 3.34–3.21 (m, 2 H, CH2), 2.90 (s, 3 H, CH3). 13C NMR (100 MHz, D2O): δ 172.2 (COOH), 137.0 (CH), 135.5 (ArC), 127.3 (ArC), 126.9 (ArC), 126.2 (ArC), 124.8 (ArC), 122.9 (ArC), 120.1 (ArC), 118.9 (ArC), 112.7 (sp2C), 109.0 (sp2C), 58.7 (AkC), 55.6 (AkC), 40.1 (AkC), 20.6 (AkC).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. N and O-bound H atoms were located in difference-Fourier maps and refined with distance restraints of N2—C14 = N2—C14A =1.50 ± (10), C14—C15 = C14A—C15A = 1.54 ± (1), N1—H1 = N2—H2 = 0.87± (1) Å for (I)[link] and C12—C13 = 1.400 ± (5), N1—H1 = N2—H2 = 0.87 ± (1), O3—H3A 0.88 ± (1) Å for (II)[link]. C-bound H atoms were refined as riding with C—H = 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-meth­yl). The ethyl group of the EPT cation was modeled as a two-component disorder with 50% occupancy for each component for both compounds.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C15H23N2+·C4H3O4 C14H19N2+·C4H3O4
Mr 346.42 330.37
Crystal system, space group Monoclinic, P21 Orthorhombic, P212121
Temperature (K) 297 297
a, b, c (Å) 7.4839 (8), 14.1752 (14), 9.6461 (10) 7.9845 (7), 8.5641 (6), 25.649 (2)
α, β, γ (°) 90, 110.537 (3), 90 90, 90, 90
V3) 958.28 (17) 1753.9 (3)
Z 2 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.08 0.09
Crystal size (mm) 0.42 × 0.2 × 0.1 0.42 × 0.24 × 0.15
 
Data collection
Diffractometer Bruker D8 Venture CMOS Bruker D8 Venture CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2018[Bruker (2018). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2018[Bruker (2018). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.703, 0.745 0.681, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 21982, 3570, 3368 49712, 3318, 3036
Rint 0.028 0.046
(sin θ/λ)max−1) 0.611 0.610
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.093, 1.03 0.053, 0.147, 1.10
No. of reflections 3570 3318
No. of parameters 260 228
No. of restraints 7 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.13, −0.14 0.25, −0.17
Absolute structure Flack x determined using 1509 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Flack x determined using 1177 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.1 (2) 0.0 (3)
Computer programs: APEX3 and SAINT (Bruker, 2018[Bruker (2018). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

[2-(1H-Indol-3-yl)ethyl](methyl)propylazanium 3-carboxyprop-2-enoate (I) top
Crystal data top
C15H23N2+·C4H3O4F(000) = 372
Mr = 346.42Dx = 1.201 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 7.4839 (8) ÅCell parameters from 9910 reflections
b = 14.1752 (14) Åθ = 2.7–25.7°
c = 9.6461 (10) ŵ = 0.08 mm1
β = 110.537 (3)°T = 297 K
V = 958.28 (17) Å3PLATE, colourless
Z = 20.42 × 0.2 × 0.1 mm
Data collection top
Bruker D8 Venture CMOS
diffractometer
3368 reflections with I > 2σ(I)
φ and ω scansRint = 0.028
Absorption correction: multi-scan
(SADABS; Bruker, 2018)
θmax = 25.7°, θmin = 2.9°
Tmin = 0.703, Tmax = 0.745h = 99
21982 measured reflectionsk = 1617
3570 independent reflectionsl = 1111
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0553P)2 + 0.1111P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.034(Δ/σ)max < 0.001
wR(F2) = 0.093Δρmax = 0.13 e Å3
S = 1.03Δρmin = 0.13 e Å3
3570 reflectionsExtinction correction: SHELXL2018 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
260 parametersExtinction coefficient: 0.10 (3)
7 restraintsAbsolute structure: Flack x determined using 1509 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Hydrogen site location: mixedAbsolute structure parameter: 0.1 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.3041 (2)0.35379 (16)0.3731 (2)0.0636 (6)
O20.3509 (2)0.30983 (15)0.60295 (19)0.0550 (5)
O30.9978 (2)0.31611 (16)0.55428 (18)0.0536 (5)
H3A1.120 (5)0.310 (3)0.574 (3)0.072 (9)*
O41.0767 (2)0.31972 (18)0.79838 (19)0.0628 (5)
C160.4059 (3)0.32758 (15)0.4973 (2)0.0374 (5)
C170.6144 (3)0.31743 (17)0.5214 (2)0.0398 (5)
H170.6489780.3068530.4390680.048*
C180.7503 (3)0.32251 (17)0.6508 (2)0.0399 (5)
H180.7149090.3287600.7336780.048*
C190.9582 (3)0.31898 (16)0.6750 (2)0.0391 (5)
N10.5831 (3)0.69330 (14)0.1173 (2)0.0475 (5)
H10.651 (4)0.7437 (15)0.155 (3)0.065 (9)*
N20.0093 (3)0.45996 (14)0.2087 (2)0.0419 (5)
H20.094 (3)0.4206 (14)0.265 (2)0.037 (6)*
C10.4632 (4)0.64176 (18)0.1676 (3)0.0482 (5)
H1A0.4398460.6541330.2543800.058*
C20.5831 (3)0.65482 (16)0.0128 (3)0.0432 (5)
C30.6784 (4)0.6830 (2)0.1055 (3)0.0564 (6)
H30.7584170.7353070.0835770.068*
C40.6504 (5)0.6308 (2)0.2307 (3)0.0652 (8)
H40.7119490.6484020.2953380.078*
C50.5309 (4)0.5516 (2)0.2637 (3)0.0608 (7)
H50.5166450.5171500.3490240.073*
C60.4343 (3)0.52355 (17)0.1731 (3)0.0486 (6)
H60.3549630.4709580.1960390.058*
C70.4587 (3)0.57658 (16)0.0449 (2)0.0402 (5)
C80.3830 (3)0.56958 (17)0.0720 (2)0.0426 (5)
C90.2459 (4)0.4953 (2)0.0840 (3)0.0550 (6)
H9A0.3166560.4425610.1414760.066*
H9B0.1715670.4723620.0140580.066*
C100.1139 (4)0.53459 (19)0.1570 (3)0.0558 (6)
H10A0.1876230.5726770.2411520.067*
H10B0.0214660.5755610.0873670.067*
C110.0973 (4)0.5018 (2)0.2997 (3)0.0533 (6)
H11A0.1871310.5481530.2403910.064*
H11B0.1698950.4524300.3253080.064*
C120.0298 (5)0.5481 (2)0.4390 (4)0.0681 (8)
H12A0.1310710.5048820.4925100.082*
H12B0.0879740.6036600.4142040.082*
C130.0794 (7)0.5757 (3)0.5350 (5)0.0955 (12)
H13A0.0057950.6029010.6250920.143*
H13B0.1393690.5209000.5578670.143*
H13C0.1752800.6210190.4841770.143*
C140.108 (2)0.3898 (9)0.0926 (13)0.052 (3)0.5
H14A0.0390290.3759360.0263740.062*0.5
H14B0.2270660.4196430.0343550.062*0.5
C150.1542 (12)0.2941 (8)0.1545 (13)0.080 (3)0.5
H15A0.0384620.2668480.2209820.120*0.5
H15B0.2121820.2514700.0738420.120*0.5
H15C0.2405280.3054770.2064470.120*0.5
C14A0.126 (2)0.4138 (10)0.0749 (14)0.058 (4)0.5
H14C0.0572940.3892630.0141300.070*0.5
H14D0.2184900.4595600.0167750.070*0.5
C15A0.2296 (15)0.3328 (8)0.1217 (12)0.087 (3)0.5
H15D0.1372820.2898460.1845120.131*0.5
H15E0.3099310.2999290.0352530.131*0.5
H15F0.3062610.3580520.1744910.131*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0410 (9)0.0958 (15)0.0500 (10)0.0262 (9)0.0110 (8)0.0180 (10)
O20.0258 (7)0.0854 (12)0.0572 (9)0.0073 (8)0.0187 (7)0.0215 (9)
O30.0252 (7)0.0864 (12)0.0511 (9)0.0040 (8)0.0157 (7)0.0065 (9)
O40.0311 (8)0.1007 (15)0.0512 (10)0.0082 (9)0.0076 (7)0.0015 (10)
C160.0251 (9)0.0410 (11)0.0451 (11)0.0050 (8)0.0112 (8)0.0038 (9)
C170.0281 (9)0.0503 (12)0.0440 (11)0.0047 (9)0.0163 (8)0.0069 (10)
C180.0284 (9)0.0497 (11)0.0445 (10)0.0041 (9)0.0162 (8)0.0038 (10)
C190.0276 (9)0.0425 (11)0.0472 (11)0.0026 (9)0.0131 (9)0.0034 (9)
N10.0426 (10)0.0434 (11)0.0539 (12)0.0040 (8)0.0136 (9)0.0061 (9)
N20.0284 (8)0.0526 (11)0.0423 (10)0.0059 (8)0.0094 (7)0.0081 (8)
C10.0457 (13)0.0521 (13)0.0465 (12)0.0046 (10)0.0160 (10)0.0024 (11)
C20.0353 (11)0.0415 (12)0.0498 (12)0.0047 (8)0.0111 (10)0.0041 (9)
C30.0500 (13)0.0529 (14)0.0715 (17)0.0045 (11)0.0279 (12)0.0084 (13)
C40.0723 (19)0.0686 (18)0.0679 (17)0.0023 (15)0.0410 (16)0.0081 (15)
C50.0687 (17)0.0668 (17)0.0536 (15)0.0047 (13)0.0297 (13)0.0029 (12)
C60.0501 (13)0.0469 (14)0.0487 (12)0.0002 (10)0.0172 (10)0.0036 (10)
C70.0331 (11)0.0407 (11)0.0450 (12)0.0032 (8)0.0115 (9)0.0019 (9)
C80.0388 (11)0.0446 (12)0.0450 (12)0.0005 (9)0.0156 (9)0.0011 (9)
C90.0587 (15)0.0547 (14)0.0618 (15)0.0092 (12)0.0339 (13)0.0066 (12)
C100.0507 (13)0.0509 (14)0.0748 (17)0.0091 (11)0.0332 (12)0.0182 (13)
C110.0426 (12)0.0606 (15)0.0620 (15)0.0133 (11)0.0250 (12)0.0104 (12)
C120.076 (2)0.0633 (18)0.0769 (19)0.0019 (14)0.0421 (16)0.0098 (14)
C130.123 (3)0.081 (2)0.106 (3)0.008 (2)0.069 (3)0.011 (2)
C140.038 (4)0.074 (6)0.033 (4)0.009 (4)0.001 (3)0.000 (4)
C150.046 (4)0.110 (8)0.085 (6)0.027 (4)0.023 (4)0.055 (5)
C14A0.031 (5)0.090 (8)0.048 (5)0.009 (6)0.006 (3)0.008 (4)
C15A0.074 (6)0.115 (9)0.085 (6)0.062 (6)0.042 (6)0.040 (6)
Geometric parameters (Å, º) top
O1—C161.230 (3)C6—C71.403 (3)
O2—C161.251 (3)C7—C81.432 (3)
O3—H3A0.87 (4)C8—C91.503 (3)
O3—C191.299 (3)C9—H9A0.9700
O4—C191.210 (3)C9—H9B0.9700
C16—C171.502 (3)C9—C101.506 (4)
C17—H170.9300C10—H10A0.9700
C17—C181.307 (3)C10—H10B0.9700
C18—H180.9300C11—H11A0.9700
C18—C191.491 (3)C11—H11B0.9700
N1—H10.880 (14)C11—C121.498 (4)
N1—C11.371 (3)C12—H12A0.9700
N1—C21.368 (3)C12—H12B0.9700
N2—H20.873 (13)C12—C131.487 (4)
N2—C101.502 (3)C13—H13A0.9600
N2—C111.500 (3)C13—H13B0.9600
N2—C141.524 (10)C13—H13C0.9600
N2—C14A1.485 (10)C14—H14A0.9700
C1—H1A0.9300C14—H14B0.9700
C1—C81.367 (3)C14—C151.569 (11)
C2—C31.384 (3)C15—H15A0.9600
C2—C71.411 (3)C15—H15B0.9600
C3—H30.9300C15—H15C0.9600
C3—C41.367 (4)C14A—H14C0.9700
C4—H40.9300C14A—H14D0.9700
C4—C51.401 (4)C14A—C15A1.539 (11)
C5—H50.9300C15A—H15D0.9600
C5—C61.375 (4)C15A—H15E0.9600
C6—H60.9300C15A—H15F0.9600
C19—O3—H3A111 (2)H9A—C9—H9B108.1
O1—C16—O2125.89 (18)C10—C9—H9A109.5
O1—C16—C17115.76 (18)C10—C9—H9B109.5
O2—C16—C17118.35 (17)N2—C10—C9113.5 (2)
C16—C17—H17117.9N2—C10—H10A108.9
C18—C17—C16124.14 (19)N2—C10—H10B108.9
C18—C17—H17117.9C9—C10—H10A108.9
C17—C18—H18117.7C9—C10—H10B108.9
C17—C18—C19124.55 (19)H10A—C10—H10B107.7
C19—C18—H18117.7N2—C11—H11A108.9
O3—C19—C18114.52 (18)N2—C11—H11B108.9
O4—C19—O3124.26 (18)H11A—C11—H11B107.7
O4—C19—C18121.21 (19)C12—C11—N2113.4 (2)
C1—N1—H1130 (2)C12—C11—H11A108.9
C2—N1—H1121 (2)C12—C11—H11B108.9
C2—N1—C1108.84 (19)C11—C12—H12A109.4
C10—N2—H2107.8 (16)C11—C12—H12B109.4
C10—N2—C14116.6 (6)H12A—C12—H12B108.0
C11—N2—H2108.1 (16)C13—C12—C11111.1 (3)
C11—N2—C10111.2 (2)C13—C12—H12A109.4
C11—N2—C14113.7 (7)C13—C12—H12B109.4
C14—N2—H298.1 (17)C12—C13—H13A109.5
C14A—N2—H2112.4 (17)C12—C13—H13B109.5
C14A—N2—C10107.3 (5)C12—C13—H13C109.5
C14A—N2—C11110.0 (7)H13A—C13—H13B109.5
N1—C1—H1A124.8H13A—C13—H13C109.5
C8—C1—N1110.3 (2)H13B—C13—H13C109.5
C8—C1—H1A124.8N2—C14—H14A108.4
N1—C2—C3130.1 (2)N2—C14—H14B108.4
N1—C2—C7107.6 (2)N2—C14—C15115.6 (8)
C3—C2—C7122.3 (2)H14A—C14—H14B107.5
C2—C3—H3121.3C15—C14—H14A108.4
C4—C3—C2117.4 (3)C15—C14—H14B108.4
C4—C3—H3121.3C14—C15—H15A109.5
C3—C4—H4119.3C14—C15—H15B109.5
C3—C4—C5121.5 (3)C14—C15—H15C109.5
C5—C4—H4119.3H15A—C15—H15B109.5
C4—C5—H5119.2H15A—C15—H15C109.5
C6—C5—C4121.5 (3)H15B—C15—H15C109.5
C6—C5—H5119.2N2—C14A—H14C109.8
C5—C6—H6121.0N2—C14A—H14D109.8
C5—C6—C7118.1 (2)N2—C14A—C15A109.5 (9)
C7—C6—H6121.0H14C—C14A—H14D108.2
C2—C7—C8107.13 (19)C15A—C14A—H14C109.8
C6—C7—C2119.1 (2)C15A—C14A—H14D109.8
C6—C7—C8133.8 (2)C14A—C15A—H15D109.5
C1—C8—C7106.1 (2)C14A—C15A—H15E109.5
C1—C8—C9128.5 (2)C14A—C15A—H15F109.5
C7—C8—C9125.4 (2)H15D—C15A—H15E109.5
C8—C9—H9A109.5H15D—C15A—H15F109.5
C8—C9—H9B109.5H15E—C15A—H15F109.5
C8—C9—C10110.8 (2)
O1—C16—C17—C18155.5 (3)C3—C4—C5—C61.0 (5)
O2—C16—C17—C1824.0 (4)C4—C5—C6—C70.2 (4)
C16—C17—C18—C19175.7 (2)C5—C6—C7—C21.2 (3)
C17—C18—C19—O34.1 (3)C5—C6—C7—C8179.5 (2)
C17—C18—C19—O4176.6 (3)C6—C7—C8—C1179.2 (2)
N1—C1—C8—C70.3 (3)C6—C7—C8—C90.2 (4)
N1—C1—C8—C9179.2 (2)C7—C2—C3—C41.0 (4)
N1—C2—C3—C4179.5 (3)C7—C8—C9—C10147.4 (2)
N1—C2—C7—C6179.4 (2)C8—C9—C10—N2164.8 (2)
N1—C2—C7—C80.1 (2)C10—N2—C11—C1262.5 (3)
N2—C11—C12—C13171.7 (3)C10—N2—C14—C15159.0 (9)
C1—N1—C2—C3178.7 (2)C10—N2—C14A—C15A176.9 (9)
C1—N1—C2—C70.1 (2)C11—N2—C10—C9171.7 (2)
C1—C8—C9—C1033.9 (4)C11—N2—C14—C1569.5 (13)
C2—N1—C1—C80.2 (3)C11—N2—C14A—C15A61.9 (12)
C2—C3—C4—C50.4 (4)C14—N2—C10—C955.8 (8)
C2—C7—C8—C10.2 (2)C14—N2—C11—C12163.5 (6)
C2—C7—C8—C9179.2 (2)C14A—N2—C10—C968.0 (8)
C3—C2—C7—C61.8 (3)C14A—N2—C11—C12178.7 (6)
C3—C2—C7—C8178.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O2i0.87 (4)1.65 (4)2.518 (2)174 (4)
N1—H1···O2ii0.88 (1)2.52 (3)3.053 (3)119 (2)
N1—H1···O4iii0.88 (1)2.20 (2)2.984 (3)147 (3)
N2—H2···O10.87 (1)1.82 (1)2.682 (2)169 (2)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1/2, z+1; (iii) x+2, y+1/2, z+1.
[2-(1H-Indol-3-yl)ethyl](methyl)(prop-2-en-1-yl)azanium 3-carboxyprop-2-enoate (II) top
Crystal data top
C14H19N2+·C4H3O4Dx = 1.251 Mg m3
Mr = 330.37Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 9827 reflections
a = 7.9845 (7) Åθ = 2.7–25.6°
b = 8.5641 (6) ŵ = 0.09 mm1
c = 25.649 (2) ÅT = 297 K
V = 1753.9 (3) Å3BLOCK, colourless
Z = 40.42 × 0.24 × 0.15 mm
F(000) = 704
Data collection top
Bruker D8 Venture CMOS
diffractometer
3036 reflections with I > 2σ(I)
φ and ω scansRint = 0.046
Absorption correction: multi-scan
(SADABS; Bruker, 2018)
θmax = 25.7°, θmin = 2.7°
Tmin = 0.681, Tmax = 0.745h = 99
49712 measured reflectionsk = 1010
3318 independent reflectionsl = 3131
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0615P)2 + 0.9658P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.053(Δ/σ)max < 0.001
wR(F2) = 0.147Δρmax = 0.25 e Å3
S = 1.10Δρmin = 0.17 e Å3
3318 reflectionsExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
228 parametersExtinction coefficient: 0.035 (7)
4 restraintsAbsolute structure: Flack x determined using 1177 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Hydrogen site location: mixedAbsolute structure parameter: 0.0 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3826 (3)0.6187 (3)0.43011 (14)0.0593 (8)
O20.4928 (3)0.8559 (3)0.42479 (15)0.0601 (9)
O30.2263 (3)0.7304 (3)0.43758 (14)0.0586 (8)
H3A0.323 (4)0.779 (6)0.433 (2)0.088*
O40.1284 (3)0.9688 (3)0.42243 (12)0.0489 (7)
N10.3281 (5)0.4814 (4)0.17877 (14)0.0575 (9)
H10.321 (6)0.465 (6)0.1455 (7)0.069*
N20.5754 (4)0.3846 (4)0.39368 (14)0.0491 (8)
H20.532 (5)0.470 (3)0.4071 (16)0.059*
C10.4682 (6)0.4583 (5)0.20814 (18)0.0567 (10)
H1A0.5671910.4143120.1959240.068*
C20.2087 (6)0.5503 (5)0.20900 (16)0.0503 (10)
C30.0462 (6)0.5976 (5)0.19700 (19)0.0618 (12)
H30.0020550.5840430.1637520.074*
C40.0465 (7)0.6653 (6)0.2362 (2)0.0716 (14)
H40.1547830.6991790.2291320.086*
C50.0179 (7)0.6841 (6)0.2863 (2)0.0680 (13)
H50.0478680.7305350.3118980.082*
C60.1763 (6)0.6355 (5)0.29841 (18)0.0587 (11)
H60.2172400.6465380.3321540.070*
C70.2761 (5)0.5689 (4)0.25947 (15)0.0463 (9)
C80.4428 (5)0.5086 (5)0.25791 (16)0.0497 (9)
C90.5600 (6)0.4988 (6)0.30303 (18)0.0603 (11)
H9A0.5630400.5984160.3210040.072*
H9B0.6720960.4759650.2905810.072*
C100.5038 (6)0.3709 (5)0.34088 (17)0.0544 (10)
H10A0.3826530.3735990.3435390.065*
H10B0.5348450.2702320.3265130.065*
C110.5071 (7)0.2583 (5)0.42859 (19)0.0636 (12)
H11A0.3876000.2485360.4225820.076*
H11B0.5588530.1597440.4192760.076*
C120.5358 (6)0.2881 (6)0.48389 (18)0.0646 (12)
H120.5063570.3848310.4975560.077*
C130.6037 (7)0.1801 (7)0.5159 (2)0.0822 (16)
H13A0.6339690.0827230.5029600.099*
H13B0.6202320.2031750.5510040.099*
C140.7626 (5)0.3814 (6)0.3950 (2)0.0652 (12)
H14A0.8004160.3940520.4302340.098*
H14B0.8057930.4648050.3738890.098*
H14C0.8016620.2832510.3815840.098*
C150.3711 (4)0.7629 (4)0.42824 (14)0.0380 (8)
C160.2018 (4)0.8376 (4)0.42840 (15)0.0397 (8)
H160.1954010.9451770.4239520.048*
C170.0620 (4)0.7596 (4)0.43446 (15)0.0419 (8)
H170.0687250.6528920.4408230.050*
C180.1070 (4)0.8323 (4)0.43174 (14)0.0367 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0322 (14)0.0410 (15)0.105 (2)0.0101 (11)0.0061 (15)0.0037 (16)
O20.0208 (13)0.0509 (16)0.109 (2)0.0011 (11)0.0006 (14)0.0053 (16)
O30.0214 (13)0.0513 (16)0.103 (2)0.0010 (11)0.0052 (14)0.0062 (16)
O40.0249 (12)0.0432 (14)0.0785 (19)0.0046 (10)0.0010 (12)0.0031 (13)
N10.063 (2)0.054 (2)0.055 (2)0.0092 (19)0.0009 (18)0.0011 (17)
N20.0420 (18)0.0395 (17)0.066 (2)0.0072 (14)0.0031 (16)0.0080 (15)
C10.050 (2)0.049 (2)0.071 (3)0.0025 (19)0.013 (2)0.001 (2)
C20.056 (2)0.040 (2)0.055 (2)0.0089 (18)0.001 (2)0.0034 (17)
C30.059 (3)0.059 (3)0.067 (3)0.011 (2)0.014 (2)0.010 (2)
C40.054 (3)0.067 (3)0.094 (4)0.009 (2)0.006 (3)0.012 (3)
C50.059 (3)0.065 (3)0.080 (3)0.020 (2)0.007 (2)0.003 (2)
C60.061 (3)0.058 (3)0.058 (2)0.002 (2)0.002 (2)0.004 (2)
C70.046 (2)0.0356 (18)0.057 (2)0.0016 (16)0.0011 (18)0.0038 (16)
C80.049 (2)0.044 (2)0.056 (2)0.0004 (19)0.0021 (18)0.0045 (17)
C90.046 (2)0.064 (3)0.070 (3)0.001 (2)0.001 (2)0.003 (2)
C100.050 (2)0.049 (2)0.064 (3)0.0029 (19)0.0073 (19)0.0018 (18)
C110.071 (3)0.051 (2)0.068 (3)0.003 (2)0.003 (2)0.001 (2)
C120.056 (3)0.068 (3)0.070 (3)0.011 (2)0.001 (2)0.006 (2)
C130.062 (3)0.101 (4)0.083 (4)0.004 (3)0.007 (3)0.020 (3)
C140.041 (2)0.071 (3)0.084 (3)0.005 (2)0.008 (2)0.009 (3)
C150.0235 (16)0.0409 (18)0.050 (2)0.0058 (14)0.0009 (15)0.0017 (16)
C160.0231 (16)0.0400 (18)0.056 (2)0.0058 (13)0.0015 (15)0.0002 (16)
C170.0247 (16)0.0411 (17)0.060 (2)0.0039 (14)0.0020 (15)0.0024 (16)
C180.0203 (15)0.0443 (19)0.0455 (18)0.0015 (13)0.0026 (14)0.0019 (16)
Geometric parameters (Å, º) top
O1—C151.239 (5)C6—C71.399 (6)
O2—C151.259 (4)C7—C81.428 (6)
O3—H3A0.884 (14)C8—C91.491 (6)
O3—C181.301 (4)C9—H9A0.9700
O4—C181.205 (4)C9—H9B0.9700
N1—H10.868 (13)C9—C101.531 (6)
N1—C11.363 (6)C10—H10A0.9700
N1—C21.363 (6)C10—H10B0.9700
N2—H20.877 (13)C11—H11A0.9700
N2—C101.475 (5)C11—H11B0.9700
N2—C111.506 (6)C11—C121.459 (7)
N2—C141.495 (5)C12—H120.9300
C1—H1A0.9300C12—C131.351 (5)
C1—C81.362 (6)C13—H13A0.9300
C2—C31.394 (6)C13—H13B0.9300
C2—C71.411 (6)C14—H14A0.9600
C3—H30.9300C14—H14B0.9600
C3—C41.377 (8)C14—H14C0.9600
C4—H40.9300C15—C161.495 (4)
C4—C51.393 (7)C16—H160.9300
C5—H50.9300C16—C171.310 (5)
C5—C61.367 (7)C17—H170.9300
C6—H60.9300C17—C181.488 (5)
C18—O3—H3A108 (4)C10—C9—H9A109.6
C1—N1—H1125 (3)C10—C9—H9B109.6
C2—N1—H1126 (3)N2—C10—C9114.3 (4)
C2—N1—C1108.8 (4)N2—C10—H10A108.7
C10—N2—H2106 (3)N2—C10—H10B108.7
C10—N2—C11110.4 (3)C9—C10—H10A108.7
C10—N2—C14114.0 (4)C9—C10—H10B108.7
C11—N2—H2103 (3)H10A—C10—H10B107.6
C14—N2—H2114 (3)N2—C11—H11A108.9
C14—N2—C11109.6 (4)N2—C11—H11B108.9
N1—C1—H1A124.8H11A—C11—H11B107.7
C8—C1—N1110.5 (4)C12—C11—N2113.3 (4)
C8—C1—H1A124.8C12—C11—H11A108.9
N1—C2—C3130.6 (4)C12—C11—H11B108.9
N1—C2—C7107.7 (4)C11—C12—H12118.8
C3—C2—C7121.7 (4)C13—C12—C11122.4 (5)
C2—C3—H3121.3C13—C12—H12118.8
C4—C3—C2117.5 (4)C12—C13—H13A120.0
C4—C3—H3121.3C12—C13—H13B120.0
C3—C4—H4119.2H13A—C13—H13B120.0
C3—C4—C5121.6 (5)N2—C14—H14A109.5
C5—C4—H4119.2N2—C14—H14B109.5
C4—C5—H5119.5N2—C14—H14C109.5
C6—C5—C4121.1 (5)H14A—C14—H14B109.5
C6—C5—H5119.5H14A—C14—H14C109.5
C5—C6—H6120.4H14B—C14—H14C109.5
C5—C6—C7119.3 (4)O1—C15—O2125.1 (3)
C7—C6—H6120.4O1—C15—C16119.5 (3)
C2—C7—C8106.8 (4)O2—C15—C16115.3 (3)
C6—C7—C2118.9 (4)C15—C16—H16118.2
C6—C7—C8134.3 (4)C17—C16—C15123.6 (3)
C1—C8—C7106.2 (4)C17—C16—H16118.2
C1—C8—C9128.0 (4)C16—C17—H17118.2
C7—C8—C9125.7 (4)C16—C17—C18123.6 (3)
C8—C9—H9A109.6C18—C17—H17118.2
C8—C9—H9B109.6O3—C18—C17112.2 (3)
C8—C9—C10110.4 (4)O4—C18—O3124.7 (3)
H9A—C9—H9B108.1O4—C18—C17122.9 (3)
O1—C15—C16—C175.5 (6)C3—C4—C5—C60.2 (8)
O2—C15—C16—C17176.3 (4)C4—C5—C6—C71.4 (7)
N1—C1—C8—C70.7 (5)C5—C6—C7—C21.5 (6)
N1—C1—C8—C9177.1 (4)C5—C6—C7—C8179.1 (5)
N1—C2—C3—C4179.9 (4)C6—C7—C8—C1179.5 (4)
N1—C2—C7—C6179.1 (4)C6—C7—C8—C91.7 (7)
N1—C2—C7—C80.4 (4)C7—C2—C3—C40.7 (6)
N2—C11—C12—C13129.7 (5)C7—C8—C9—C1071.9 (5)
C1—N1—C2—C3179.6 (4)C8—C9—C10—N2161.2 (4)
C1—N1—C2—C70.9 (5)C10—N2—C11—C12164.5 (4)
C1—C8—C9—C10105.5 (5)C11—N2—C10—C9177.5 (4)
C2—N1—C1—C81.0 (5)C14—N2—C10—C958.6 (5)
C2—C3—C4—C50.9 (7)C14—N2—C11—C1269.1 (5)
C2—C7—C8—C10.2 (4)C15—C16—C17—C18176.5 (4)
C2—C7—C8—C9177.7 (4)C16—C17—C18—O3178.2 (4)
C3—C2—C7—C60.5 (6)C16—C17—C18—O41.9 (6)
C3—C2—C7—C8180.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O2i0.88 (1)1.63 (2)2.508 (4)176 (6)
N1—H1···O2ii0.87 (1)2.52 (4)3.203 (5)137 (4)
N1—H1···O4iii0.87 (1)2.32 (3)3.048 (5)141 (4)
N2—H2···O10.88 (1)1.85 (2)2.695 (4)163 (4)
Symmetry codes: (i) x1, y, z; (ii) x+1, y1/2, z+1/2; (iii) x, y1/2, z+1/2.
 

Acknowledgements

Financial statements and conflict of inter­est: This study was funded by CaaMTech, Inc. ARC reports an ownership inter­est in CaaMTech, Inc., which owns US and worldwide patent applications, covering new tryptamine compounds, compositions, formulations, novel crystalline forms, and methods of making the same.

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (grant No. CHE-1429086).

References

First citationAscic, E., Hansen, C. L., Le Quement, S. T. & Nielsen, T. E. (2012). Chem. Commun. 48, 3345–3347.  Web of Science CrossRef CAS Google Scholar
First citationBlei, F., Dörner, S., Fricke, J., Baldeweg, F., Trottmann, F., Komor, A., Meyer, F., Hertweck, C. & Hoffmeister, D. (2020). Chem. Eur. J. 26, 729–734.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBrandt, S. D., Freeman, S., Fleet, I. A. & Alder, J. F. (2005b). Analyst, 130, 1258–1262.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandt, S. D., Freeman, S., Fleet, I. A., McGagh, P. & Alder, J. F. (2005a). Analyst, 130, 330–344.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2018). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCameron, L. P. & Olson, D. E. (2018). ACS Chem. Neurosci. 9, 2344–2357.  Web of Science CrossRef CAS PubMed Google Scholar
First citationChadeayne, A. R., Golen, J. A. & Manke, D. R. (2019a). Acta Cryst. E75, 900–902.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGoogle Scholar
First citationChadeayne, A. R., Golen, J. A. & Manke, D. R. (2019c). Psychedelic Science Review, https://psychedelicreview.com/the-crystal-structure-of-4-aco-dmt-fumarate/  Google Scholar
First citationChadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2019a). Acta Cryst. E75, 1316–1320.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2019b). IUCrData, 4, x191469.  Google Scholar
First citationChadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020a). Acta Cryst. E76, 514–517.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020b). Acta Cryst. E76, 589–593.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020c). IUCrData, 5, x200498.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFalkenberg, G. (1972). Acta Cryst. B28, 3075–3083.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationJiménez-Garrido, D. F., Gómez-Sousa, M., Ona, G., Dos Santos, R. G., Hallak, J. E. C., Alcázar-Córcoles, M. A. & Bouso, J. C. (2020). Sci. Rep. 10, 4075.  PubMed Google Scholar
First citationJohnson, M. W., Hendricks, P. S., Barrett, F. S. & Griffiths, R. R. (2019). Pharmacol. Ther. 197, 83–102.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNichols, D. E. & Frescas, S. (1999). Synthesis, pp. 935–938.  CrossRef Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSherwood, A. M., Halberstadt, A. L., Klein, A. K., McCorvy, J. D., Kaylo, K. W., Kargbo, R. B. & Meisenheimer, P. (2020). J. Nat. Prod. 83, 461–467.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds