research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure analysis of ethyl 6-(4-meth­­oxy­phen­yl)-1-methyl-4-methyl­sulfanyl-3-phenyl-1H-pyrazolo­[3,4-b]pyridine-5-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry and Biochemistry, School of Basic Sciences and Research, Sharda University, Greater Noida 201306, India, bDepartment of Chemistry, Pondicherry University, Puducherry 605 014, India, and cDepartment of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201306, India
*Correspondence e-mail: hsp.rao@sharda.ac.in

Edited by D. Chopra, Indian Institute of Science Education and Research Bhopal, India (Received 4 June 2020; accepted 30 June 2020; online 7 July 2020)

In the title compound, C24H23N3O3S, the dihedral angle between the fused pyrazole and pyridine rings is 1.76 (7)°. The benzene and meth­oxy phenyl rings make dihedral angles of 44.8 (5) and 63.86 (5)°, respectively, with the pyrazolo­[3,4-b] pyridine moiety. An intra­molecular short S⋯O contact [3.215 (2) Å] is observed. The crystal packing features C—H⋯π inter­actions.

1. Chemical context

Pyrazolo­pyridines, in which a group of three nitro­gen atoms is incorporated into a bicyclic heterocycle, are privileged medicinal scaffolds, often utilized in drug design and discovery regimes (Kumar et al., 2019[Kumar, S. V., Muthusubramanian, S. & Perumal, S. (2019). Org. Prep. Proced. Int. 51, 1-89.]). Owing to the possibilities of the easy synthesis of a literally unlimited number of a combinatorial library of small organic mol­ecules with a pyrazolo­pyridine scaffold, there has been enormous inter­est in these mol­ecules among medicinal chemists (Kumar et al. 2019[Kumar, S. V., Muthusubramanian, S. & Perumal, S. (2019). Org. Prep. Proced. Int. 51, 1-89.]; Pinheiro et al. 2019[Pinheiro, L. C. S., Feitosa, L. M., Gandi, M. O., Silveira, F. F. & Boechat, N. (2019). Molecules, 24, 4095.]; Hardy, 1984[Hardy, C. R. (1984). In Advances in Heterocyclic Chemistry, Vol. 36, pp. 343-409. New York: Academic Press.]). Indeed, mol­ecules with pyrazolo­pyridine in the core structure exhibit multifaceted medicinal properties such as anti-microbial, anti-viral, anti-fungal, anti-hypertensive, analgesic, anti­quorum-sensing, anti-cancer, anti-inflammatory, anti-Alzheimer's, anti-diabetic, anti-nociceptive, anti-tuberculosis and anti-leishmanial activities (Hardy, 1984[Hardy, C. R. (1984). In Advances in Heterocyclic Chemistry, Vol. 36, pp. 343-409. New York: Academic Press.]; Hawas et al., 2019[Hawas, S. S., El-Gohary, N. S., Gabr, M. T., Shaaban, M. I. & El-Ashmawy, M. B. (2019). Synth. Commun. 49, 2466-2487.]; de Mello et al., 2004[Mello, H. de, Echevarria, A., Bernardino, A. M., Canto-Cavalheiro, M. & Leon, L. L. (2004). J. Med. Chem. 47, 5427-5432.]; El-Gohary et al., 2019[El-Gohary, N. S., Gabr, M. T. & Shaaban, M. I. (2019). Bioorg. Chem. 89, 1-13.]; El-Gohary & Shaaban, 2018[El-Gohary, N. S. & Shaaban, M. I. (2018). Eur. J. Med. Chem. 152, 126-136.]). Moreover, pyrazolo­pyridine-derived drug mol­ecules exhibit anti-cancer properties (Huang et al., 2007[Huang, S., Lin, R., Yu, Y., Lu, Y., Connolly, P. J., Chiu, G., Li, S., Emanuel, S. L. & Middleton, S. A. (2007). Bioorg. Med. Chem. Lett. 17, 1243-1245.]; Ye et al., 2009[Ye, Q., Cao, J., Zhou, X., Lv, D., He, Q., Yang, B. & Hu, Y. (2009). Bioorg. Med. Chem. 17, 4763-4772.]). They are inhibitors of several important proteins, namely cycline-dependent kinase1, HIV reverse transcriptase, leucine zipper kinase, protein kinase, xanthine oxidase, inter­leukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), phospho­diesterase-4, NAD(P)H oxidases (Kumar et al., 2019[Kumar, S. V., Muthusubramanian, S. & Perumal, S. (2019). Org. Prep. Proced. Int. 51, 1-89.]; Gökhan-Kelekçi et al., 2007[Gökhan-Kelekçi, N., Yabanoğlu, S., Küpeli, E., Salgin, U., Ozgen, O., Uçar, G., Yeşilada, E., Kendi, E., Yeşilada, A. & Bilgin, A. A. A. (2007). Bioorg. Med. Chem. 15, 5775-5786.]; Fathy et al., 2015[Fathy, U., Younis, A. & Awad, H. M. (2015). J. Chem. Pharm. Res. 7, 4-12.]; Park et al., 2017[Park, C. M., Jadhav, V. B., Song, J. H., Lee, S., Won, H. Y., Choi, S. U. & Son, Y. H. (2017). Bull. Korean Chem. Soc. 38, 595-602.]). A recent study reported that they could be promising inhibitors against the enzyme pantothenate synthetase from Mycobacterium tuberculosis (Amaroju et al., 2017[Amaroju, S., Kalaga, M. N., Srinivasarao, S., Napiórkowska, A., Augustynowicz-Kopeć, E., Murugesan, S., Chander, S., Krishnan, R. & Chandra Sekhar, K. V. G. (2017). New J. Chem. 41, 347-357.]). FDA-approved drugs incorporating the pyrazolo­pyridine scaffold include cartazolate, tracazolate and etazolate (Hawas et al., 2019[Hawas, S. S., El-Gohary, N. S., Gabr, M. T., Shaaban, M. I. & El-Ashmawy, M. B. (2019). Synth. Commun. 49, 2466-2487.]). Among pyrazolo­pyridines, pyrazolo­[3,4-b]pyridines are medicinally important because of the ease of combinatorial library synthesis, adherence to the Lipinski rule and favourable ADMET properties. (Chauhan & Kumar, 2013[Chauhan, M. & Kumar, R. (2013). Bioorg. Med. Chem. 21, 5657-5668.]; Zhai et al., 2019[Zhai, M., Liu, S., Gao, M., Wang, L., Sun, J., Du, J., Guan, Q., Bao, K., Zuo, D., Wu, Y. & Zhang, W. (2019). Eur. J. Med. Chem. 168, 426-435.]). Based on the importance of pyrazolo­[3,4-b]pyridine-containing mol­ecules, we have undertaken a single-crystal X-ray diffraction study of the title compound. We have recently analyzed the solid-state structure of a pyrazolo­[3,4-b]pyridine-containing mol­ecule, ethyl 3-(4-chloro­phen­yl)-1,6-di­methyl-4-meth­ylsulfanyl-1H-pyrazolo­[3,4-b]pyridine-5-carb­ox­ylate (NUDWOB; Rao et al. 2020[Rao, H. S. P., Gunasundari, R. & Muthukumaran, J. (2020). Acta Cryst. E76, 443-445.]), but the title compound exhibits a very different conformational structure of the substituents and supra­molecular structure, as discussed here.

[Scheme 1]

2. Structural commentary

In the title compound (Fig. 1[link]), the phenyl (–C6H5) group attached to the pyrazolo­pyridine moiety exhibits a (+)anti-periplanar conformation [C12—C4—N1—N2 = 178.47 (14)°] whereas the meth­oxy­phenyl (H3COC6H4–) group exhibits a (−)anti-clinal conformation [C3—C5—C18—C23 = −114.30 (19)°]. The thio­methyl (–SCH3) group fused to the pyrazolo­pyridine unit exhibits a (+)anti-periplanar conformation [C8—S1—C7—C6 = 175.47 (15)°]. The torsion angles involving the –SCH3 group differ from those for NUDWOB (Rao et al. 2020[Rao, H. S. P., Gunasundari, R. & Muthukumaran, J. (2020). Acta Cryst. E76, 443-445.]) because of the presence of the meth­oxy­phenyl (H3COC6H4–) group. The –COOC2H5 group attached to the pyrazolo­pyridine moiety has a (+)anti-periplanar conformation [N3—C7—C6—C9 = 176.44 (16)°]. Further, the methyl group attached to the pyrazole subunit is (+)anti-periplanar [C1—N2—N1—C4 = 178.78 (17)°] and it is attached to the pyridine ring showing a (+)syn-periplanar conformation [C1—N2—C2—N3 = 1.3 (3)°]. The fused pyrazole and pyridine rings in the title compound are not exactly planar, as in NUDWOB (Rao et al. 2020[Rao, H. S. P., Gunasundari, R. & Muthukumaran, J. (2020). Acta Cryst. E76, 443-445.]), subtending a dihedral angle of 1.76 (7)°. The dihedral angle between the planes of the benzene and pyrazolo­[3,4-b]pyridine rings is 44.8 (5)° and that between the meth­oxy­phenyl and pyrazolo­[3,4-b]pyridine rings is 63.86 (5)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level. The short intra­molecular S⋯O inter­action is indicated by a dashed line.

3. Supra­molecular features

The cohesion of the crystal packing is influenced by two weak C—H⋯π (C13—H13⋯Cg and C23—H23⋯Cg) inter­actions (Table 1[link], Fig. 2[link]) with distances of 2.86 and 3.02 Å, respectively. These distances agree with those described by Nishio (2011[Nishio, M. (2011). Phys. Chem. Chem. Phys. 13, 13878-13900.]). A short inter­molecular C⋯O carbon=bonding stabilizing inter­action [C1⋯O1(x + 1, y, z) = 3.291 (2) Å] may also exist (Fig. 2[link]) between the electrophilic carbon atom of the methyl group connected to the electronegative nitro­gen atom of the pyrazolo ring and the nucleophilic oxygen atom of the ester group of a neighbouring mol­ecule. However, the distance between C1 and O1 is marginally higher than the carbon-bonding distances (less than 3.22 Å, the sum of the van der Waals radii of carbon and oxygen atoms) proposed by Guru Row and co-workers (Thomas et al., 2014[Thomas, S. P., Pavan, M. S. & Guru Row, T. N. (2014). Chem. Commun. 50, 49-51.]). The distances between the methyl hydrogen atoms and the acceptor oxygen atom are C—H1A⋯O1 = 3.06, C—H1B⋯O1 = 3.04 and C—H1C⋯O1 = 3.22 Å, much longer than the hydrogen-bonding inter­actions (C—H⋯O = 2.90, 2.84 and 2.86 Å) noted by Thomas et al. (2014[Thomas, S. P., Pavan, M. S. & Guru Row, T. N. (2014). Chem. Commun. 50, 49-51.]). Based on these observations, in addition to the C—H⋯π inter­actions, the short inter­molecular C⋯O carbon-bonding inter­action may also contribute to the cohesion of the title compound in the solid state.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N1/N2/C2–C4 and the N3/C2/C3/C5–C7 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯Cg1i 0.93 2.85 3.455 (2) 124
C23—H23⋯Cg2ii 0.93 3.02 3.738 (2) 136
Symmetry codes: (i) -x+1, -y, -z; (ii) -x+1, -y+1, -z.
[Figure 2]
Figure 2
A view of the weak inter­molecular C13—H13⋯Cg(N1/N2/C2–C4), C23—H13⋯Cg(N3/C2/C3/C5–C7) and C1⋯O1 inter­actions in the title compound.

4. Database survey

A similarity search of the Cambridge Structural Database (CSD, Version 5.40, update of March 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) was performed. The title compound, along with related structures obtained from the database search could be used for further structure-based virtual screening, ligand-based virtual screening, pharmacophore-based virtual screening and drug repurposing against various drug target proteins. The mol­ecules showing strong binding affinity towards drug target proteins might be considered potential lead candidates. In this study, the CSD search found five mol­ecules that are similar to title compound, namely FIZLEI (ethyl 2,7-di­amino-3,4-di­cyano-5-phenyl­pyrazolo­[1,5-a]pyridine-6-carboxyl­ate; Naik et al., 2019[Naik, N. S., Shastri, L. A., Shastri, S. L., Chougala, B. M., Shaikh, F., Madar, J. M., Kulkarni, R. C., Dodamani, S., Jalalpure, S., Joshi, S. D. & Sunagar, V. (2019). Chemistry Select, 4, 285-297.]), ALAFID [7-(2-meth­oxy­phen­yl)-2-phenyl­pyrazolo[1,5-a]pyridine; Wu et al., 2016[Wu, H.-C., Chu, J.-H., Li, C.-W., Hwang, L.-C. & Wu, M.-J. (2016). Organometallics, 35, 288-300.]], DAWKAQ [2-(4-chloro­phen­yl)pyrazolo­[1,5-a]pyridin-3-yl(phen­yl)methanone; Ravi et al., 2017[Ravi, C., Samanta, S., Mohan, D. C., Reddy, N. N. K. & Adimurthy, S. (2017). Synthesis, 49, 2513-2522.]], NADPIU [3-(4-chloro­phen­yl)pyrazolo­[1,5-a]pyridine; Wu et al., 2016[Wu, H.-C., Chu, J.-H., Li, C.-W., Hwang, L.-C. & Wu, M.-J. (2016). Organometallics, 35, 288-300.]] and NUDWOB [ethyl 3-(4-chloro­phen­yl)-1,6-dimethyl-4-(methyl­sulfan­yl)-1H-pyrazolo­[3,4-b]pyridine-5-carboxyl­ate; Rao et al., 2020[Rao, H. S. P., Gunasundari, R. & Muthukumaran, J. (2020). Acta Cryst. E76, 443-445.]]. The geometrical parameters of the –COOCH2CH3 substituent in the title compound are comparable with those reported for FIZLEI and NUDWOB. The bond distances for the thio­methyl and aryl moieties in the title compound are comparable with those of NUDWOB. Moreover, the bond lengths in the pyrazolo[3,4-b]pyridine unit of the title compound are comparable with those in NUDWOB, FIZLEI, ALAFID, DAWKAQ and NADPIU. The pyrazolo­[3,4-b]pyridine moiety (N1–N3/C2–C4/C5–C7) of the title compound is approximately planar, as is also observed for NUDWOB, FIZLEI, ALAFID, DAWKAQ and NADPIU. In the title compound, a short intra­molecular S⋯O contact of 3.215 (2) Å occurs, but this is not observed in FIZLEI, ALAFID, DAWKAQ, NADPIU and NUDWOB. Moreover, the inter­action distance [3.291 (2) Å] of the short inter­molecular C⋯O contact in the title compound is comparable with the C⋯O inter­action [3.424 (2) Å] in the structure of NUDWOB. Furthermore, as in the title compound, C—H⋯π inter­actions are observed in the crystal structures of ALAFID, DAWKAQ and NADPIU. The inter­action distance of these related structures ranges from 2.89 to 3.23 Å, comparable with the C—H⋯π inter­actions observed in the title compound.

5. Synthesis and crystallization

To a solution of 1-methyl-3-phenyl-1H-pyrazol-5-amine (100 mg, 0.57 mmol) and ethyl 2-(4-meth­oxy­benzo­yl)-3,3-bis­(methyl­thio)­acrylate (188 mg, 0.57 mmol) in toluene (3 mL), a catalytic amount of TFA (tri­fluoro­acetic acid) 30 mol % in toluene (3 mL) was added under an N2 atmosphere. The reaction mixture was refluxed for 24 h in an oil bath, the progress of the reaction being monitored by TLC using a mixture of hexane and ethyl acetate (9.9:0.1). After completion of the reaction, the mixture was loaded on a silica gel column (100–200 mesh, 15 cm × 1 cm) and eluted with increasing amounts of ethyl acetate in hexa­nes (1% to 5%) to obtain 186 mg (yield = 75%) of ethyl 6-(4-meth­oxy­phen­yl)-1-methyl-4-(methyl­thio)-3-phenyl-1H-pyrazolo­[3,4-b]pyridine-5-carboxyl­ate as a colourless crystalline solid; m.p. 406 K; Rf = 0.3 cm (hexa­ne: ethyl acetate 9.9:0.1). A sample suitable for single-crystal X-ray analysis was obtained by recrystallization from 2 mL of dry methanol.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The hydrogen atoms were placed in calculated positions, with C—H = 0.93–0.97 Å and included in the final cycles of refinement using a riding model with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-meth­yl).

Table 2
Experimental details

Crystal data
Chemical formula C24H23N3O3S
Mr 433.51
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 298
a, b, c (Å) 10.1911 (4), 10.7274 (6), 11.7692 (6)
α, β, γ (°) 98.550 (5), 105.632 (4), 111.015 (4)
V3) 1112.75 (10)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.18
Crystal size (mm) 0.75 × 0.44 × 0.42
 
Data collection
Diffractometer Agilent Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.])
Tmin, Tmax 0.959, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 13297, 5161, 3672
Rint 0.026
(sin θ/λ)max−1) 0.686
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.168, 1.06
No. of reflections 5161
No. of parameters 284
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.20, −0.26
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), SHELXT (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2020) and Mercury (Macrae et al., 2020); software used to prepare material for publication: ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2020) and Mercury (Macrae et al., 2020).

Ethyl 6-(4-methoxyphenyl)-1-methyl-4-methylsulfanyl-3-phenyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylate top
Crystal data top
C24H23N3O3SZ = 2
Mr = 433.51F(000) = 456
Triclinic, P1Dx = 1.294 Mg m3
a = 10.1911 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.7274 (6) ÅCell parameters from 3586 reflections
c = 11.7692 (6) Åθ = 3.8–29.1°
α = 98.550 (5)°µ = 0.18 mm1
β = 105.632 (4)°T = 298 K
γ = 111.015 (4)°Block, colorless
V = 1112.75 (10) Å30.75 × 0.44 × 0.42 mm
Data collection top
Agilent Xcalibur, Eos
diffractometer
5161 independent reflections
Radiation source: Enhance (Mo) X-ray Source3672 reflections with I > 2σ(I)
Detector resolution: 15.9821 pixels mm-1Rint = 0.026
ω scansθmax = 29.2°, θmin = 3.8°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 1312
Tmin = 0.959, Tmax = 1.000k = 1314
13297 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
5161 reflections(Δ/σ)max < 0.001
284 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.26 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.67085 (6)0.56012 (6)0.41095 (5)0.0647 (2)
O20.38290 (15)0.56954 (14)0.22189 (15)0.0618 (4)
N30.72006 (14)0.40967 (14)0.23884 (14)0.0456 (4)
O30.16778 (14)0.10375 (17)0.27340 (14)0.0716 (4)
O10.26375 (16)0.36781 (15)0.25921 (15)0.0716 (4)
N20.74888 (15)0.26571 (16)0.08007 (15)0.0507 (4)
N10.66463 (15)0.17775 (16)0.03455 (15)0.0524 (4)
C60.46748 (17)0.39796 (17)0.18528 (16)0.0426 (4)
C180.25937 (17)0.25136 (17)0.01408 (15)0.0403 (4)
C50.41691 (17)0.30623 (16)0.07038 (15)0.0397 (4)
C230.2031 (2)0.33918 (19)0.06467 (18)0.0509 (4)
H230.2621690.4342770.0404670.061*
C190.16737 (17)0.11066 (18)0.05037 (16)0.0450 (4)
H190.2036160.0507940.0175720.054*
C40.52914 (18)0.17844 (18)0.06206 (17)0.0440 (4)
C30.52331 (17)0.26645 (16)0.03830 (16)0.0403 (4)
C120.41458 (18)0.09398 (18)0.18366 (16)0.0443 (4)
C210.02998 (18)0.1451 (2)0.18636 (17)0.0507 (4)
C200.02258 (18)0.05683 (19)0.13439 (16)0.0491 (4)
H200.0386260.0375810.1556300.059*
C70.61907 (18)0.44751 (18)0.26597 (17)0.0451 (4)
C170.3250 (2)0.1467 (2)0.25396 (17)0.0518 (4)
H170.3353470.2361580.2237650.062*
C220.0606 (2)0.2860 (2)0.15032 (19)0.0575 (5)
H220.0248190.3454840.1843330.069*
C10.9027 (2)0.2863 (3)0.1384 (2)0.0737 (6)
H1A0.9542700.3704490.2040790.110*
H1B0.9521020.2929190.0792180.110*
H1C0.9035030.2092970.1704620.110*
C20.66831 (17)0.32140 (18)0.12734 (17)0.0435 (4)
C160.2213 (2)0.0669 (2)0.36804 (19)0.0632 (5)
H160.1616310.1025960.4144230.076*
C130.3980 (2)0.0386 (2)0.23167 (19)0.0583 (5)
H130.4586110.0745520.1868020.070*
C90.35959 (19)0.44074 (19)0.22766 (17)0.0477 (4)
C100.2937 (3)0.6327 (2)0.2651 (3)0.0740 (7)
H10A0.2024280.5604920.2641820.089*
H10B0.2658060.6855590.2105020.089*
C150.2054 (3)0.0656 (2)0.4137 (2)0.0716 (6)
H150.1355370.1190910.4908580.086*
C80.8584 (2)0.5829 (3)0.4825 (2)0.0821 (7)
H8A0.8590590.4951910.4898170.123*
H8B0.9003770.6468680.5625410.123*
H8C0.9170430.6190090.4337100.123*
C110.3801 (3)0.7253 (3)0.3911 (3)0.0868 (8)
H11A0.4028290.6718470.4458270.130*
H11B0.3217250.7690220.4169000.130*
H11C0.4718120.7950510.3923040.130*
C240.2684 (2)0.0390 (3)0.3089 (3)0.0881 (8)
H24A0.2282840.0935590.3486760.132*
H24B0.3637540.0524740.3643640.132*
H24C0.2809790.0674550.2374650.132*
C140.2926 (3)0.1182 (2)0.3453 (2)0.0756 (7)
H140.2808660.2082320.3755640.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0602 (3)0.0687 (4)0.0507 (3)0.0333 (3)0.0005 (2)0.0037 (3)
O20.0566 (7)0.0531 (8)0.0840 (11)0.0294 (6)0.0309 (7)0.0137 (7)
N30.0379 (7)0.0429 (8)0.0482 (9)0.0157 (6)0.0063 (6)0.0105 (7)
O30.0436 (7)0.0890 (11)0.0611 (10)0.0256 (7)0.0054 (7)0.0109 (8)
O10.0659 (9)0.0703 (10)0.0955 (12)0.0307 (7)0.0459 (9)0.0313 (9)
N20.0348 (7)0.0594 (9)0.0538 (10)0.0211 (6)0.0110 (7)0.0093 (8)
N10.0436 (8)0.0610 (10)0.0527 (10)0.0239 (7)0.0166 (7)0.0112 (8)
C60.0380 (8)0.0409 (9)0.0459 (10)0.0173 (7)0.0096 (7)0.0109 (8)
C180.0347 (8)0.0456 (9)0.0397 (9)0.0177 (7)0.0101 (7)0.0123 (7)
C50.0366 (8)0.0395 (8)0.0419 (9)0.0163 (6)0.0099 (7)0.0144 (7)
C230.0478 (9)0.0459 (10)0.0541 (11)0.0218 (8)0.0078 (8)0.0129 (8)
C190.0405 (9)0.0471 (9)0.0474 (10)0.0181 (7)0.0137 (8)0.0167 (8)
C40.0400 (8)0.0466 (9)0.0459 (10)0.0178 (7)0.0155 (7)0.0141 (8)
C30.0359 (8)0.0391 (8)0.0440 (10)0.0155 (6)0.0101 (7)0.0137 (7)
C120.0414 (8)0.0489 (10)0.0404 (10)0.0150 (7)0.0174 (7)0.0098 (8)
C210.0370 (9)0.0682 (12)0.0419 (10)0.0220 (8)0.0081 (8)0.0120 (9)
C200.0388 (9)0.0520 (10)0.0486 (11)0.0124 (7)0.0131 (8)0.0130 (8)
C70.0411 (8)0.0406 (9)0.0452 (10)0.0154 (7)0.0059 (7)0.0097 (7)
C170.0512 (10)0.0547 (11)0.0459 (11)0.0210 (8)0.0145 (8)0.0111 (9)
C220.0532 (10)0.0623 (12)0.0574 (12)0.0329 (9)0.0073 (9)0.0182 (10)
C10.0404 (10)0.0916 (16)0.0792 (16)0.0328 (10)0.0088 (10)0.0052 (13)
C20.0370 (8)0.0442 (9)0.0484 (10)0.0180 (7)0.0112 (7)0.0149 (8)
C160.0566 (11)0.0755 (14)0.0472 (12)0.0219 (10)0.0108 (9)0.0167 (11)
C130.0737 (12)0.0529 (11)0.0523 (12)0.0292 (9)0.0241 (10)0.0152 (9)
C90.0413 (9)0.0508 (10)0.0460 (10)0.0199 (7)0.0098 (8)0.0077 (8)
C100.0638 (13)0.0697 (14)0.1010 (19)0.0400 (11)0.0353 (13)0.0147 (13)
C150.0773 (14)0.0637 (14)0.0447 (12)0.0073 (11)0.0135 (11)0.0049 (10)
C80.0566 (12)0.0955 (18)0.0603 (15)0.0251 (12)0.0075 (11)0.0043 (13)
C110.1061 (19)0.0984 (19)0.0812 (19)0.0613 (16)0.0479 (16)0.0204 (16)
C240.0442 (11)0.1039 (19)0.0718 (17)0.0056 (11)0.0057 (11)0.0133 (15)
C140.1098 (18)0.0521 (12)0.0520 (13)0.0261 (12)0.0237 (13)0.0066 (10)
Geometric parameters (Å, º) top
S1—C71.7590 (19)C12—C171.392 (3)
S1—C81.777 (2)C21—C221.383 (3)
O2—C91.331 (2)C21—C201.385 (3)
O2—C101.460 (2)C20—H200.9300
N3—C71.328 (2)C17—C161.378 (3)
N3—C21.340 (2)C17—H170.9300
O3—C211.364 (2)C22—H220.9300
O3—C241.423 (3)C1—H1A0.9600
O1—O10.000 (4)C1—H1B0.9600
O1—C91.199 (2)C1—H1C0.9600
N2—C21.356 (2)C16—C151.377 (3)
N2—N11.365 (2)C16—H160.9300
N2—C11.450 (2)C13—C141.378 (3)
N1—C41.334 (2)C13—H130.9300
C6—C51.388 (2)C10—C111.481 (3)
C6—C71.429 (2)C10—H10A0.9700
C6—C91.503 (2)C10—H10B0.9700
C18—C191.385 (2)C15—C141.366 (4)
C18—C231.393 (2)C15—H150.9300
C18—C51.483 (2)C8—H8A0.9600
C5—C31.416 (2)C8—H8B0.9600
C23—C221.377 (3)C8—H8C0.9600
C23—H230.9300C11—H11A0.9600
C19—C201.386 (2)C11—H11B0.9600
C19—H190.9300C11—H11C0.9600
C4—C31.427 (2)C24—H24A0.9600
C4—C121.479 (2)C24—H24B0.9600
C3—C21.409 (2)C24—H24C0.9600
C12—C131.381 (3)C14—H140.9300
C7—S1—C8102.08 (11)H1A—C1—H1B109.5
C9—O2—C10118.64 (16)N2—C1—H1C109.5
C7—N3—C2114.13 (14)H1A—C1—H1C109.5
C21—O3—C24117.99 (17)H1B—C1—H1C109.5
C2—N2—N1111.38 (13)N3—C2—N2125.09 (15)
C2—N2—C1127.81 (17)N3—C2—C3128.10 (15)
N1—N2—C1120.77 (16)N2—C2—C3106.80 (15)
C4—N1—N2106.91 (14)C15—C16—C17120.3 (2)
C5—C6—C7120.93 (15)C15—C16—H16119.9
C5—C6—C9119.54 (14)C17—C16—H16119.9
C7—C6—C9119.47 (16)C14—C13—C12120.77 (19)
C19—C18—C23118.28 (15)C14—C13—H13119.6
C19—C18—C5120.91 (14)C12—C13—H13119.6
C23—C18—C5120.70 (15)O1—C9—O2124.91 (16)
C6—C5—C3116.49 (14)O1—C9—O2124.91 (16)
C6—C5—C18121.92 (14)O1—C9—C6124.73 (17)
C3—C5—C18121.59 (15)O1—C9—C6124.73 (17)
C22—C23—C18120.38 (17)O2—C9—C6110.33 (15)
C22—C23—H23119.8O2—C10—C11110.43 (19)
C18—C23—H23119.8O2—C10—H10A109.6
C18—C19—C20121.62 (15)C11—C10—H10A109.6
C18—C19—H19119.2O2—C10—H10B109.6
C20—C19—H19119.2C11—C10—H10B109.6
N1—C4—C3110.06 (15)H10A—C10—H10B108.1
N1—C4—C12118.69 (16)C14—C15—C16119.8 (2)
C3—C4—C12131.25 (14)C14—C15—H15120.1
C2—C3—C5116.67 (15)C16—C15—H15120.1
C2—C3—C4104.82 (14)S1—C8—H8A109.5
C5—C3—C4138.47 (15)S1—C8—H8B109.5
C13—C12—C17118.49 (17)H8A—C8—H8B109.5
C13—C12—C4120.04 (16)S1—C8—H8C109.5
C17—C12—C4121.44 (16)H8A—C8—H8C109.5
O3—C21—C22115.77 (17)H8B—C8—H8C109.5
O3—C21—C20124.66 (17)C10—C11—H11A109.5
C22—C21—C20119.56 (16)C10—C11—H11B109.5
C21—C20—C19119.30 (17)H11A—C11—H11B109.5
C21—C20—H20120.4C10—C11—H11C109.5
C19—C20—H20120.4H11A—C11—H11C109.5
N3—C7—C6123.66 (17)H11B—C11—H11C109.5
N3—C7—S1118.89 (13)O3—C24—H24A109.5
C6—C7—S1117.42 (13)O3—C24—H24B109.5
C16—C17—C12120.30 (19)H24A—C24—H24B109.5
C16—C17—H17119.9O3—C24—H24C109.5
C12—C17—H17119.9H24A—C24—H24C109.5
C23—C22—C21120.80 (17)H24B—C24—H24C109.5
C23—C22—H22119.6C15—C14—C13120.3 (2)
C21—C22—H22119.6C15—C14—H14119.8
N2—C1—H1A109.5C13—C14—H14119.8
N2—C1—H1B109.5
C2—N2—N1—C40.92 (19)C5—C6—C7—S1178.50 (13)
C1—N2—N1—C4178.78 (17)C9—C6—C7—S11.3 (2)
C7—C6—C5—C30.5 (2)C8—S1—C7—N32.36 (18)
C9—C6—C5—C3177.72 (15)C8—S1—C7—C6175.47 (15)
C7—C6—C5—C18178.87 (14)C13—C12—C17—C160.8 (3)
C9—C6—C5—C181.6 (2)C4—C12—C17—C16178.66 (16)
C19—C18—C5—C6117.54 (18)C18—C23—C22—C210.9 (3)
C23—C18—C5—C666.4 (2)O3—C21—C22—C23178.79 (18)
C19—C18—C5—C361.8 (2)C20—C21—C22—C230.9 (3)
C23—C18—C5—C3114.30 (19)C7—N3—C2—N2178.44 (16)
C19—C18—C23—C221.3 (3)C7—N3—C2—C30.3 (2)
C5—C18—C23—C22174.93 (17)N1—N2—C2—N3178.93 (15)
C23—C18—C19—C200.2 (3)C1—N2—C2—N31.3 (3)
C5—C18—C19—C20176.43 (16)N1—N2—C2—C30.00 (19)
N2—N1—C4—C31.47 (18)C1—N2—C2—C3177.67 (18)
N2—N1—C4—C12178.47 (14)C5—C3—C2—N31.5 (3)
C6—C5—C3—C21.5 (2)C4—C3—C2—N3179.75 (16)
C18—C5—C3—C2177.89 (14)C5—C3—C2—N2177.41 (14)
C6—C5—C3—C4178.94 (18)C4—C3—C2—N20.86 (17)
C18—C5—C3—C40.4 (3)C12—C17—C16—C150.2 (3)
N1—C4—C3—C21.46 (18)C17—C12—C13—C141.6 (3)
C12—C4—C3—C2178.47 (17)C4—C12—C13—C14179.45 (18)
N1—C4—C3—C5176.19 (19)O1—O1—C9—O20.00 (13)
C12—C4—C3—C53.9 (3)O1—O1—C9—C60.00 (9)
N1—C4—C12—C1342.4 (2)C10—O2—C9—O14.7 (3)
C3—C4—C12—C13137.69 (19)C10—O2—C9—O14.7 (3)
N1—C4—C12—C17135.43 (18)C10—O2—C9—C6177.05 (17)
C3—C4—C12—C1744.5 (3)C5—C6—C9—O173.3 (2)
C24—O3—C21—C22176.7 (2)C7—C6—C9—O1104.0 (2)
C24—O3—C21—C203.6 (3)C5—C6—C9—O173.3 (2)
O3—C21—C20—C19177.29 (17)C7—C6—C9—O1104.0 (2)
C22—C21—C20—C192.4 (3)C5—C6—C9—O2104.97 (18)
C18—C19—C20—C212.1 (3)C7—C6—C9—O277.8 (2)
C2—N3—C7—C60.9 (2)C9—O2—C10—C1199.1 (2)
C2—N3—C7—S1178.58 (12)C17—C16—C15—C140.3 (3)
C5—C6—C7—N30.8 (3)C16—C15—C14—C131.0 (4)
C9—C6—C7—N3176.44 (16)C12—C13—C14—C151.7 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N1/N2/C2–C4 and the N3/C2/C3/C5–C7 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C13—H13···Cg1i0.932.853.455 (2)124
C23—H23···Cg2ii0.933.023.738 (2)136
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z.
 

Footnotes

Additional correspondence author, e-mail: j.muthukumaran@sharda.ac.in.

Acknowledgements

HSPRao thanks DST–FIST Single Crystal XRD facility at Department of Chemistry, Pondicherry University for the diffraction data. RG thanks the Department of Chemistry for facilities, and the UGC and CSIR for a fellowship. JM thanks Dr Clara Gomes (FCT–UNL, Portugal) for the CSD database survey and Dr Amit Kumar Singh (Sharda University, India) for support.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationAmaroju, S., Kalaga, M. N., Srinivasarao, S., Napiórkowska, A., Augustynowicz-Kopeć, E., Murugesan, S., Chander, S., Krishnan, R. & Chandra Sekhar, K. V. G. (2017). New J. Chem. 41, 347–357.  Web of Science CSD CrossRef CAS Google Scholar
First citationChauhan, M. & Kumar, R. (2013). Bioorg. Med. Chem. 21, 5657–5668.  Web of Science CrossRef CAS PubMed Google Scholar
First citationEl-Gohary, N. S., Gabr, M. T. & Shaaban, M. I. (2019). Bioorg. Chem. 89, 1–13.  Google Scholar
First citationEl-Gohary, N. S. & Shaaban, M. I. (2018). Eur. J. Med. Chem. 152, 126–136.  Web of Science CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFathy, U., Younis, A. & Awad, H. M. (2015). J. Chem. Pharm. Res. 7, 4–12.  CAS Google Scholar
First citationGökhan-Kelekçi, N., Yabanoğlu, S., Küpeli, E., Salgin, U., Ozgen, O., Uçar, G., Yeşilada, E., Kendi, E., Yeşilada, A. & Bilgin, A. A. A. (2007). Bioorg. Med. Chem. 15, 5775–5786.  Web of Science PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHardy, C. R. (1984). In Advances in Heterocyclic Chemistry, Vol. 36, pp. 343–409. New York: Academic Press.  Google Scholar
First citationHawas, S. S., El-Gohary, N. S., Gabr, M. T., Shaaban, M. I. & El-Ashmawy, M. B. (2019). Synth. Commun. 49, 2466–2487.  Web of Science CrossRef CAS Google Scholar
First citationHuang, S., Lin, R., Yu, Y., Lu, Y., Connolly, P. J., Chiu, G., Li, S., Emanuel, S. L. & Middleton, S. A. (2007). Bioorg. Med. Chem. Lett. 17, 1243–1245.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKumar, S. V., Muthusubramanian, S. & Perumal, S. (2019). Org. Prep. Proced. Int. 51, 1–89.  Web of Science CrossRef Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMello, H. de, Echevarria, A., Bernardino, A. M., Canto-Cavalheiro, M. & Leon, L. L. (2004). J. Med. Chem. 47, 5427–5432.  Web of Science PubMed Google Scholar
First citationNaik, N. S., Shastri, L. A., Shastri, S. L., Chougala, B. M., Shaikh, F., Madar, J. M., Kulkarni, R. C., Dodamani, S., Jalalpure, S., Joshi, S. D. & Sunagar, V. (2019). Chemistry Select, 4, 285–297.  CAS Google Scholar
First citationNishio, M. (2011). Phys. Chem. Chem. Phys. 13, 13878–13900.  Web of Science CrossRef Google Scholar
First citationPark, C. M., Jadhav, V. B., Song, J. H., Lee, S., Won, H. Y., Choi, S. U. & Son, Y. H. (2017). Bull. Korean Chem. Soc. 38, 595–602.  Web of Science CrossRef CAS Google Scholar
First citationPinheiro, L. C. S., Feitosa, L. M., Gandi, M. O., Silveira, F. F. & Boechat, N. (2019). Molecules, 24, 4095.  Web of Science CrossRef Google Scholar
First citationRao, H. S. P., Gunasundari, R. & Muthukumaran, J. (2020). Acta Cryst. E76, 443–445.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRavi, C., Samanta, S., Mohan, D. C., Reddy, N. N. K. & Adimurthy, S. (2017). Synthesis, 49, 2513–2522.  CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThomas, S. P., Pavan, M. S. & Guru Row, T. N. (2014). Chem. Commun. 50, 49–51.  Web of Science CSD CrossRef CAS Google Scholar
First citationWu, H.-C., Chu, J.-H., Li, C.-W., Hwang, L.-C. & Wu, M.-J. (2016). Organometallics, 35, 288–300.  Web of Science CSD CrossRef CAS Google Scholar
First citationYe, Q., Cao, J., Zhou, X., Lv, D., He, Q., Yang, B. & Hu, Y. (2009). Bioorg. Med. Chem. 17, 4763–4772.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhai, M., Liu, S., Gao, M., Wang, L., Sun, J., Du, J., Guan, Q., Bao, K., Zuo, D., Wu, Y. & Zhang, W. (2019). Eur. J. Med. Chem. 168, 426–435.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds