research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of two isostructural bivalent metal N-benzoyl­glycinates

CROSSMARK_Color_square_no_text.svg

aSchool of Chemical Sciences, Goa University PO, Goa 403206, India
*Correspondence e-mail: srini@unigoa.ac.in

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 15 June 2020; accepted 7 July 2020; online 10 July 2020)

The crystal structures of two coordination compounds of N-benzoyl­glycine, viz. catena-poly[[[di­aqua­bis­(N-benzoyl­glycinato)cobalt(II)]-μ-aqua] dihydrate], {[Co(C9H8NO3)2(H2O)3]·2H2O}n, 1, and catena-poly[[[di­aqua­bis­(N-benzoyl­glycinato)nickel(II)]-μ-aqua] dihydrate], {[Ni(C9H8NO3)2(H2O)3]·2H2O}n, 2, are described. The structures of 1 and 2 were reported previously [Morelock et al. (1979). J. Am. Chem. Soc. 101, 4858–4866] and redetermined in this work to determine the H-atom coordinates. In the isostructural compounds, the central metal is located on an inversion centre and exhibits a distorted octa­hedral geometry. A pair of terminal aqua ligands disposed trans to each other and a pair of monodentate N-benzoyl­glycinate ligands form the square base and account for four of the six vertices of the octa­hedron. A μ2-bridging aqua ligand links the bivalent metals into one-dimensional chains extending along the c-axis direction. The one-dimensional chains stabilized by O—H⋯O hydrogen bonds are inter­linked by N—H⋯O and C—H⋯O hydrogen-bonding inter­actions.

1. Chemical context

Hippuric acid known by other names such as N-benzoyl­glycine or benzoyl­amino­ethanoic acid or N-(benzene­carbon­yl)glycine is a derivative of glycine and is produced in metabolic processes (Pero, 2010[Pero, R. W. (2010). Curr. Clin. Pharmacol. 5, 67-73.]). Hence the benzoyl-substituted glycine, namely N-benzoyl­glycine and its compounds, have been the subject of several investigations. The crystal structures of N-benzoyl­glycine and many of its derivatives are archived in the Cambridge Structural Database (CSD, version 5.40, update of September 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). Unlike N-benzoyl­glycine, which crystallizes in the non-centrosymmetric Sohncke space group P212121, a majority of its deriv­atives are centrosymmetric solids. In most of these compounds, N-benzoyl­glycine functions as a charge-balancing (N-benzoyl­glycinate) anion. In addition, the anion can also coordinate to a metal as observed in the title compounds. The N-benzoyl­glycinates of CoII 1 and NiII 2 are some of the first examples of a series of α-amino acid compounds of the first-row transition-metal ions that exhibit low-dimensional magnetic properties (Morelock et al., 1979[Morelock, M. M., Good, M. L., Trefonas, L. M., Karraker, D., Maleki, L., Eichelberger, H. R., Majeste, R. & Dodge, J. (1979). J. Am. Chem. Soc. 101, 4858-4866.]). Based on a study of the visible spectra and the magnetic properties, compound 1 was shown to be a metamagnet and 2 an anti­ferromagnet.

In the previous report, the title compounds 1 and 2 were prepared in an aqueous ethano­lic medium by the reaction of the sodium salt of hippuric acid with the corresponding bivalent metal perchlorate (Morelock et al. 1979[Morelock, M. M., Good, M. L., Trefonas, L. M., Karraker, D., Maleki, L., Eichelberger, H. R., Majeste, R. & Dodge, J. (1979). J. Am. Chem. Soc. 101, 4858-4866.]). The polymeric structure of 1 and 2 due to aqua bridging was described, but the hydrogen-atom coordinates were not reported. N-Benzoyl­glycinates with a different stoichiometry represented by the formula M(C9H8NO3)2·6H2O (M = Co or Ni) are also known in the literature (Marcotrigiano & Pellacani, 1975[Marcotrigiano, G. & Pellacani, G. C. (1975). Inorg. Nucl. Chem. Lett. 11, 643-648.]). However, these were not structurally characterized. In the present work we have synthesized the title compounds by a direct acid–base reaction of cobalt carbonate (or nickel carbonate) with N-benzoyl­glycine (hippuric acid) to obtain [Co(H2O)3(C9H8NO3)2]·2H2O, 1, and [Ni(H2O)3(C9H8NO3)2]·2H2O, 2, respectively. The infrared spectra of both compounds are nearly identical, indicating similar structures. A comparison of the spectra of 1 and 2 with that of the free ligand (N-benzoyl­glycine) reveals notable changes in the profile of the spectra in the 3700–2750 cm−1 region. This can be explained by the presence of water mol­ecules in 1 and 2, unlike in the free acid. N-Benzoyl­glycine exhibits a strong signal at ∼1743 cm−1 assignable for the –COOH vibration, which is shifted to lower energies in 1 and 2 due to deprotonation (Fig. 1[link]). Despite a slightly different synthetic methodology, the product obtained by us is the same as evidenced by the structural details of 1 and 2, which are in good agreement with the earlier work (Morelock et al. 1979[Morelock, M. M., Good, M. L., Trefonas, L. M., Karraker, D., Maleki, L., Eichelberger, H. R., Majeste, R. & Dodge, J. (1979). J. Am. Chem. Soc. 101, 4858-4866.]) as shown below.

[Scheme 1]
[Figure 1]
Figure 1
Infrared spectra of 1, 2 and N-benzoyl­glycine (bottom). * corresponds to the signal for –COOH.

2. Structural commentary

The mol­ecular structure of the isostructural compounds [M(H2O)3(C9H8NO3)2]·2H2O (M = Co 1, M = Ni 2) is illus­trated in Fig. 2[link]. Compounds 1 and 2 crystallize in the centrosymmetric monoclinic space group C2/c with the central cobalt (or nickel) ion located on an inversion centre. All of the atoms in both structures have been labelled so as to maintain parity for the ligand oxygen atoms and donor hydrogen and acceptor oxygen atoms in the hydrogen-bonding scheme. Other than the central metal, the structure consists of a unique terminal water (O1W), a unique monodentate N-benzoyl­glycinate (O2), a bridging aqua ligand (O2W) with the oxygen situated on a twofold axis and a non-ligated water (O3W), which constitute half of the formula unit of 1 or 2. In view of the special position of the central metal, the other half is generated by the application of inversion symmetry. The geometric parameters of the N-benzoyl­glycinates are in the normal ranges and are in agreement with reported data (Natarajan et al., 2007[Natarajan, S., Dhas, S. A. M. B., Suresh, J. & Krishnakumar, R. V. (2007). Acta Cryst. E63, m1408-m1410.]). The metal–oxygen bond distances (Tables 1[link] and 2[link]) scatter in a very narrow range [2.0563 (15) to 2.1899 (9) Å in 1; 2.029 (2) to 2.1450 (12) Å in 2]. In both compounds, the carboxyl­ate oxygen (O2) of the N-benzoyl­glycinate makes the shortest M—O bond length while the longest M—O bond distance is observed for the bridging aqua ligand (O2W). Both compounds exhibit ideal values for the trans O—M—O bond angles while the cis O—M—O angles show a slight deviation [87.41 (6) to 92.59 (6)° in 1; 87.27 (8) to 92.73 (8)° in 2] indicating a slight distortion of the {MO6} octa­hedron (Tables 1[link] and 2[link]). The difference Δ between the longest and the shortest M—O bonds can be considered as a measure of the distortion from ideal geometry and is 0.1336 (0.18) and 0.114 (0.12) Å for compounds 1 and 2, respectively. The values in brackets are the difference Δ calculated from the reported bond distances of the earlier study. It is inter­esting to note that the same trend is observed with {CoO6} octa­hedron being slightly more distorted. The central metal exhibits hexa coordination and is bonded to two terminal aqua ligands (O1W, O1Wi) [symmetry code: (i) −x + 1, −y + 1, −z + 1] disposed trans to each other and two monodentate N-benzoyl­glycinate (O2, O2i) ligands accounting for the square base of the octa­hedron. The μ2-bridging binding mode of the aqua ligand (O2W) makes two axial bonds trans to each other completing the octa­hedral geometry around the central metal. The bridging binding mode results in the formation of a one-dimensional chain structure extending along the c-axis direction (Fig. 3[link]). In the infinite chain, the observed MM separations of 4.0015 (2) Å or 3.9492 (8) Å in 1 or 2, respectively, are in very good agreement with the earlier work (Morelock et al. 1979[Morelock, M. M., Good, M. L., Trefonas, L. M., Karraker, D., Maleki, L., Eichelberger, H. R., Majeste, R. & Dodge, J. (1979). J. Am. Chem. Soc. 101, 4858-4866.]). The M—O2WMii bond angle θ for 1 [symmetry code: (ii) −x + 1, y, −z + [{3\over 2}]] and 2 [symmetry code: (ii) −x + 1, y, −z + [{1\over 2}]] are 132.03 (11) and 134.02 (15)° for 1 and 2, respectively, which follow the earlier trend with the reported θ values being 128.3 and 137.2° (Morelock et al. 1979[Morelock, M. M., Good, M. L., Trefonas, L. M., Karraker, D., Maleki, L., Eichelberger, H. R., Majeste, R. & Dodge, J. (1979). J. Am. Chem. Soc. 101, 4858-4866.]). The Θ value is marginally higher for 2 and is accompanied by a shorter Ni1—O2W bond distance of 2.1450 (12) Å. The decreasing bond distance is attributed to increasing orbital overlap, explaining the larger superexchange in 2 leading to spin-pairing.

Table 1
Selected geometric parameters (Å, °) for 1[link]

Co1—O2 2.0563 (15) Co1—O1Wi 2.0622 (17)
Co1—O2i 2.0563 (15) Co1—O2Wi 2.1899 (9)
Co1—O1W 2.0622 (17) Co1—O2W 2.1899 (9)
       
O2—Co1—O2i 180.0 O1W—Co1—O2Wi 90.55 (7)
O2—Co1—O1W 89.40 (7) O1Wi—Co1—O2Wi 89.45 (7)
O2i—Co1—O1W 90.60 (7) O2—Co1—O2W 87.41 (6)
O2—Co1—O1Wi 90.60 (7) O2i—Co1—O2W 92.59 (6)
O2i—Co1—O1Wi 89.40 (7) O1W—Co1—O2W 89.45 (7)
O1W—Co1—O1Wi 180.0 O1Wi—Co1—O2W 90.55 (7)
O2—Co1—O2Wi 92.59 (6) O2Wi—Co1—O2W 180.0
O2i—Co1—O2Wi 87.41 (6) Co1ii—O2W—Co1 132.03 (11)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+1, y, -z+{\script{3\over 2}}].

Table 2
Selected geometric parameters (Å, °) for 2[link]

Ni1—O2i 2.029 (2) Ni1—O1W 2.041 (2)
Ni1—O2 2.029 (2) Ni1—O2Wi 2.1450 (12)
Ni1—O1Wi 2.041 (2) Ni1—O2W 2.1450 (12)
       
O2i—Ni1—O2 180.00 (12) O1Wi—Ni1—O2Wi 89.87 (8)
O2i—Ni1—O1Wi 88.72 (10) O1W—Ni1—O2Wi 90.13 (8)
O2—Ni1—O1Wi 91.28 (10) O2i—Ni1—O2W 92.73 (8)
O2i—Ni1—O1W 91.28 (10) O2—Ni1—O2W 87.27 (8)
O2—Ni1—O1W 88.72 (10) O1Wi—Ni1—O2W 90.13 (8)
O1Wi—Ni1—O1W 180.0 O1W—Ni1—O2W 89.87 (8)
O2i—Ni1—O2Wi 87.27 (8) O2Wi—Ni1—O2W 180.0
O2—Ni1—O2Wi 92.73 (8) Ni1—O2W—Ni1ii 134.02 (15)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+1, y, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
The mol­ecular structure of 1 showing the crystallographic labelling with displacement ellipsoids drawn at 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius. Intra­molecular hydrogen bonds are shown as red dotted lines. Symmetry code: (i) 1 − x, 1 − y, 1 − z.
[Figure 3]
Figure 3
A portion of the one-dimensional chain formed by the bridging bidentate water mol­ecules (O2W), which extends the structure of 1 along the c-axis direction. The dotted red lines correspond to O—H⋯O hydrogen bonds.

3. Supra­molecular features

The isostructural compounds 1 and 2 exhibit several non-covalent inter­actions, namely O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds (Tables 3[link] and 4[link]) in their supra­molecular structures. All of the hydrogen atoms attached to the water mol­ecules, the hydrogen atom bonded to nitro­gen N1 and a hydrogen atom attached to the methyl­ene carbon C9 function as hydrogen donors and four of the six oxygen atoms, namely O1, O2, O3 and O3W, function as hydrogen acceptors. All of the O—H⋯O hydrogen bonds are intra­chain inter­actions (Fig. 3[link]). The non-ligated water O3W inter­links adjacent chains with the aid of a single short N1—H1⋯O3W inter­action at H⋯A distances of 2.13 (3) and 2.04 (5) Å in 1 and 2, respectively, accompanied by D—H⋯A angles of 149 (2) and 151 (4)° (Fig. 4[link]). A short C9—H9B⋯O3iv inter­action at a H⋯A distance 2.51 Å in 1 (2.50 Å in 2) accompanied by D—H⋯A angle of 177.9° in 1, (176.4° in 2) links the H9B atom of a methyl­ene group of N-benzoyl­glycinate in one chain with the O3 atom of a symmetry-related N-benzoyl­glycinate in a neighboring chain functioning as a hydrogen acceptor (Fig. 5[link]). These inter­chain hydrogen-bonding inter­actions serve to hold the chains together along the b axis, forming a layer of chains in the bc plane. Thus, the findings of our present study once again support the original findings, namely compounds 1 and 2 are unique examples of psuedo one-dimensional (1D) magnetic materials in which three-dimensional magnetic ordering was predicted not to occur until T → 0 K. In addition to the hydrogen-bonding inter­actions, 1 and 2 exhibit ππ stacking inter­actions (Hunter & Sanders, 1990[Hunter, C. A. & Sanders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5525-5534.]). For the analysis of short ring inter­actions, the program PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) was used. The ring centroid–centroid distances (CgCg) between the adjacent benzene rings in 1 and 2 are found to be 4.0435 (2) and 3.9807 (5) Å, respectively. It has been reported that stacking inter­actions can exist at very long CgCg distances of up to 7 Å (Ninković et al., 2011[Ninković, D. B., Janjić, G. V., Veljković, D. Ž., Sredojević, D. N. & Zarić, S. D. (2011). Chem. Phys. Chem. 12, 351-351.]). Hence, the observed CgCg distances can be attributed to the ππ stacking of the benzene rings.

Table 3
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O2ii 0.78 (3) 1.93 (3) 2.714 (2) 176 (3)
O1W—H1WB⋯O3Wi 0.85 (3) 1.93 (3) 2.780 (3) 178 (3)
O2W—H2W⋯O3iii 0.88 (3) 1.80 (3) 2.6576 (18) 163 (3)
C9—H9B⋯O3iv 0.97 2.51 3.481 (3) 178
N1—H1⋯O3Wv 0.83 (3) 2.13 (3) 2.880 (3) 149 (2)
O3W—H3WA⋯O1 0.83 (4) 1.90 (4) 2.708 (3) 164 (3)
O3W—H3WB⋯O3iii 0.84 (3) 2.12 (3) 2.873 (3) 149 (3)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+1, y, -z+{\script{3\over 2}}]; (iii) [x, -y+1, z+{\script{1\over 2}}]; (iv) [x, -y+2, z+{\script{1\over 2}}]; (v) x, y+1, z.

Table 4
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O2ii 0.90 (5) 1.82 (5) 2.726 (3) 174 (5)
O1W—H1WB⋯O3Wi 0.81 (5) 1.97 (5) 2.783 (4) 176 (5)
O2W—H2W⋯O3i 0.77 (4) 1.88 (4) 2.634 (3) 167 (4)
C9—H9B⋯O3iii 0.97 2.50 3.465 (4) 176
N1—H1⋯O3Wiv 0.93 (5) 2.04 (5) 2.888 (4) 151 (4)
O3W—H3WB⋯O3v 0.86 (6) 2.10 (6) 2.858 (4) 147 (5)
O3W—H3WA⋯O1 0.81 (9) 1.92 (9) 2.697 (4) 159 (8)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+1, y, -z+{\script{1\over 2}}]; (iii) [x, -y+2, z-{\script{1\over 2}}]; (iv) x, y+1, z; (v) [x, -y+1, z-{\script{1\over 2}}].
[Figure 4]
Figure 4
Non-ligated water (O3W) inter­links adjacent chains via N—H⋯O hydrogen bonds (shown as blue dotted lines). Intra­chain O—H⋯O hydrogen bonds are shown as red dotted lines. For clarity, the terminal ligands are displayed only for the metal in the middle of each chain.
[Figure 5]
Figure 5
The C9—H9B⋯O3iv inter­action (shown as black dotted lines) links the H9B atom in one chain with the O3 atom of a neighbouring chain. Intra­chain O—H⋯O hydrogen bonds are shown as red dotted lines. For clarity, only the –CH2—COO group of N-benzoyl­glycinate is displayed. The terminal aqua ligands and the non-ligated water are omitted.

4. Database survey

The Cambridge Structural Database (CSD, version 5.40, update of September 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) lists several structurally characterized organic and metal–organic compounds of N-benzoyl­glycine. Since the first report on the crystal structure of N-benzoyl­glycine (Ringertz, 1971[Ringertz, H. (1971). Acta Cryst. B27, 285-291.]), several compounds of N-benzoyl­glycine have been structurally characterized. Excepting an example of a 1:1 co-crystal of N-benzoyl­glycine, namely glibenclamide hippuric acid (Goyal et al., 2017[Goyal, P., Rani, D. & Chadha, R. (2018). Cryst. Growth Des. 18, 105-118.]), the structures of thirty two compounds containing the monoanionic N-benzoyl­glycinate were retrieved from the CSD (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). Three of these do not contain any metal and are charge-balanced by organic cations (Görbitz & Sagstuen, 2004[Görbitz, C. H. & Sagstuen, E. (2004). Acta Cryst. E60, o1945-o1947.]; Chadha et al., 2016[Chadha, R., Singh, P., Khullar, S. & Mandal, S. K. (2016). Cryst. Growth Des. 16, 4960-4967.]; John et al., 2018[John, J. S., Arumanayagam, T., Murugakoothan, P., Sajan, D., Joy, N. & Philip, R. (2018). CSD Communication (CCDC code 1863868). CCDC, Cambridge, England.]). Of the twenty nine examples of N-benzoyl­glycinates with metal–organic cations, eight contain bivalent metal (Table 5[link]) and aqua ligands. In this work, a comparative study of bivalent metal N-benzoyl­glycinates containing only aqua ligands has been undertaken. It is inter­esting to note that all of these compounds contain coordinated water mol­ecules. In this list of compounds, excepting the N-benzoyl­glycinate of ZnII (Grewe et al., 1982[Grewe, H., Udupa, M. R. & Krebs, B. (1982). Inorg. Chim. Acta, 63, 119-124.]), the rest are all centrosymmetric. In all eight compounds, the N-benzoyl­glycinate coordinates to the metal only through the carboxyl­ate oxygen atoms. In five of these, including the title compounds, N-benzoyl­glycinate functions as a monodentate ligand. The bridging binding mode in the N-benzoyl­glycinates of CaII (Jisha et al., 2010[Jisha, K. R., Suma, S. & Sudarsanakumar, M. R. (2010). Polyhedron, 29, 3164-3169.]), BaII (Natarajan et al. 2007[Natarajan, S., Dhas, S. A. M. B., Suresh, J. & Krishnakumar, R. V. (2007). Acta Cryst. E63, m1408-m1410.]), CuII (Brown & Trefonas, 1973[Brown, J. N. & Trefonas, L. M. (1973). Inorg. Chem. 12, 1730-1733.]) and PbII (Battistuzzi et al., 1996[Battistuzzi, G., Borsari, M., Menabue, L., Saladini, M. & Sola, M. (1996). Inorg. Chem. 35, 4239-4247.]) can explain the polymeric nature of these compounds, excepting the CuII which is a dimer. The structure of the dimeric copper compound (Refcode CUHIPT; Brown & Trefonas, 1973[Brown, J. N. & Trefonas, L. M. (1973). Inorg. Chem. 12, 1730-1733.]) contains both a monodentate as well as a monoatomic bridging N-benzoyl­glycinate. It is inter­esting to note that the dinuclear CuII compound of N-benzoyl­glycine does not adopt the paddle-wheel structure. The N-benzoyl­glycinate of FeII (Morelock et al., 1982[Morelock, M. M., Good, M. L., Trefonas, L. M., Majeste, R. & Karraker, D. G. (1982). Inorg. Chem. 21, 3044-3050.]) is also isostructural with the title compounds and is a 1D polymer. It is inter­esting to note that in the three isostructural N-benzoyl­glycinates of 3d metals, an aqua ligand functions as a bridging ligand to extend the structure, and not the N-benzoyl­glycinate.

Table 5
Comparative structural chemistry of bivalent metal N-benzoyl­glycinates

CN = coordination number of metal, C9H9NO3 = N-benzoyl­glycine, C9H8NO3 = N-benzoyl­glycinate.

Compound Space group CN Binding mode Dimensionality Refcode
C9H9NO3 P212121 - - monomer HIPPAC
[Ca(H2O)2(C9H8NO3)2]·H2O P21/c 8 μ2-tridentate one-dimensional ANEDON
[Ba2(H2O)3(C9H8NO3)4] P[\overline{1}] 9, 10 μ3-tridentate, μ3-tetra­dentate two-dimensional HIFFIM
[Fe(H2O)3(C9H8NO3)2]·2H2O C2/c 6 monodentate one-dimensional BITDAJ
[Co(H2O)3(C9H8NO3)2]·2H2O C2/c 6 monodentate one-dimensional COHIPP10, this work
[Ni(H2O)3(C9H8NO3)2]·2H2O C2/c 6 monodentate one-dimensional ANIHIP, this work
[Cu2(H2O)4(C9H8NO3)4]·2H2O P21/c 5, 5 monodentate, μ2-monoatomic dimer CUHIPT
[Zn(H2O)3(C9H8NO3)2]·2H2O P1 5 monodentate monomer BIZFUL
[Pb(H2O)2(C9H8NO3)2]·2H2O C2/c 8 μ2-tridentate one-dimensional TEZMOA
References: HIPPAC: Ringertz (1971[Ringertz, H. (1971). Acta Cryst. B27, 285-291.]); ANEDON: Jisha et al. (2010[Jisha, K. R., Suma, S. & Sudarsanakumar, M. R. (2010). Polyhedron, 29, 3164-3169.]); HIFFIM: Natarajan et al. (2007[Natarajan, S., Dhas, S. A. M. B., Suresh, J. & Krishnakumar, R. V. (2007). Acta Cryst. E63, m1408-m1410.]); BITDAJ: Morelock et al. (1982[Morelock, M. M., Good, M. L., Trefonas, L. M., Majeste, R. & Karraker, D. G. (1982). Inorg. Chem. 21, 3044-3050.]); COHIPP10: Morelock et al. (1979[Morelock, M. M., Good, M. L., Trefonas, L. M., Karraker, D., Maleki, L., Eichelberger, H. R., Majeste, R. & Dodge, J. (1979). J. Am. Chem. Soc. 101, 4858-4866.]); CUHIPT: Brown & Trefonas (1973[Brown, J. N. & Trefonas, L. M. (1973). Inorg. Chem. 12, 1730-1733.]); BIZFUL: Grewe et al. (1982[Grewe, H., Udupa, M. R. & Krebs, B. (1982). Inorg. Chim. Acta, 63, 119-124.]); TEZMOA: Battistuzzi et al. (1996[Battistuzzi, G., Borsari, M., Menabue, L., Saladini, M. & Sola, M. (1996). Inorg. Chem. 35, 4239-4247.]).

5. Synthesis and crystallization

For the synthesis of 1, N-benzoyl­glycine (1.792 g, 10 mmol) taken in distilled water (50 mL) was heated with stirring to obtain a clear solution. Into this, CoCO3 (0.595 g, 5 mmol) was added in small portions. Brisk effervescence was observed accompanied by the dissolution of the insoluble carbonate, resulting in a pink-coloured solution. When most of the carbonate had dissolved, a small amount (∼25 mg) of the carbonate was added and the heating continued for a further hour. The hot reaction mixture was filtered and the clear pink filtrate was left undisturbed for crystallization. The crystals obtained after a few days were isolated by filtration and dried in air, yield = 90%. A similar procedure was employed for 2 using nickel carbonate instead of cobalt carbonate and the filtrate obtained was light green. Crystals were isolated as before, yield = 80%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 6[link]. O- and N-bound H atoms were freely refined. C-bound hydrogen atoms were placed at calculated positions C—H = 0.93–0.97 Å) and refined isotropically [Uiso(H) = 1.2Ueq(C). using a riding-atom model.

Table 6
Experimental details

  1 2
Crystal data
Chemical formula [Co(C9H8NO3)2(H2O)3]·2H2O [Ni(C9H8NO3)2(H2O)3]·2H2O
Mr 505.34 505.12
Crystal system, space group Monoclinic, C2/c Monoclinic, C2/c
Temperature (K) 293 293
a, b, c (Å) 40.843 (2), 6.9072 (4), 8.0031 (4) 40.884 (4), 6.9438 (8), 7.8983 (8)
β (°) 91.891 (2) 91.900 (2)
V3) 2256.6 (2) 2241.0 (4)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.82 0.93
Crystal size (mm) 0.35 × 0.27 × 0.04 0.29 × 0.24 × 0.05
 
Data collection
Diffractometer Bruker D8 Quest Eco Bruker D8 Quest Eco
Absorption correction Numerical (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Numerical (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.610, 0.746 0.608, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 15061, 2799, 2070 17095, 3392, 2995
Rint 0.046 0.036
(sin θ/λ)max−1) 0.666 0.714
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.086, 1.08 0.056, 0.151, 1.15
No. of reflections 2799 3392
No. of parameters 171 174
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.39, −0.43 1.24, −0.76
Computer programs: APEX3 and SAINT (Bruker, 2019[Bruker (2019). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), shelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: APEX3 (Bruker, 2019); cell refinement: SAINT (Bruker, 2019); data reduction: SAINT (Bruker, 2019); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009), shelXle (Hübschle et al., 2011); software used to prepare material for publication: publCIF (Westrip, 2010).

catena-Poly[[[diaquabis(N-benzoylglycinato)cobalt(II)]-µ-aqua] dihydrate] (1) top
Crystal data top
[Co(C9H8NO3)2(H2O)3]·2H2OF(000) = 1052
Mr = 505.34Dx = 1.487 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 40.843 (2) ÅCell parameters from 4616 reflections
b = 6.9072 (4) Åθ = 3.0–28.0°
c = 8.0031 (4) ŵ = 0.82 mm1
β = 91.891 (2)°T = 293 K
V = 2256.6 (2) Å3Plate, pink
Z = 40.35 × 0.27 × 0.04 mm
Data collection top
Bruker D8 Quest Eco
diffractometer
2070 reflections with I > 2σ(I)
Radiation source: Sealed TubeRint = 0.046
φ and ω scansθmax = 28.3°, θmin = 3.0°
Absorption correction: numerical
(SADABS; Krause et al., 2015)
h = 5454
Tmin = 0.610, Tmax = 0.746k = 99
15061 measured reflectionsl = 1010
2799 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0214P)2 + 3.6234P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2799 reflectionsΔρmax = 0.39 e Å3
171 parametersΔρmin = 0.42 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Suitable single crystals were selected under a polarizing microscope in HR2-643 parabar 10312 oil from Hampton Research. The crystal was mounted on a 20 micron 0.4–0.5 mm HR4-953 Mounted Cryoloops loop from Hampton Research and transferred to the Bruker D8 Quest Eco diffractometer. Reflections harvested from two sets of 12, 0.5ο φ scans were used to determine unit-cell parameters and was used to determine the data-collection strategy. Unit-cell parameters were refined using reflections harvested from the data collection. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a monoclinic unit cell yielded a total of 15061 reflections to a maximum θ angle of 28.26° (0.75 Å resolution) for 1 and 17095 reflections to a maximum θ angle of 30.52° (0.70 Å resolution) for 2. All data were corrected for Lorentz and polarization effects and subsequently scaled. A numerical absorption correction was performed by SADABS (Krause et al., 2015). The space group was determined and the structures were solved using the intrinsic phasing method (Bruker, 2019; Sheldrick, 2008). The structures were refined in APEX3 v2019.1-0 by SHELXL (Sheldrick, 2015).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.5000000.5000000.5000000.02504 (12)
O1W0.53443 (4)0.6984 (3)0.5847 (2)0.0359 (4)
H1WA0.5349 (7)0.699 (4)0.682 (4)0.058 (10)*
H1WB0.5538 (7)0.690 (4)0.550 (3)0.050 (9)*
O2W0.5000000.3711 (3)0.7500000.0274 (5)
H2W0.4817 (7)0.305 (4)0.761 (4)0.072 (10)*
O20.46352 (4)0.6817 (2)0.57632 (18)0.0327 (4)
O30.44216 (4)0.7725 (3)0.32901 (18)0.0397 (4)
C80.44162 (5)0.7613 (3)0.4833 (3)0.0283 (5)
C90.41364 (5)0.8469 (4)0.5790 (3)0.0334 (5)
H9A0.4053960.7482410.6529870.040*
H9B0.4221840.9516770.6483370.040*
N10.38658 (5)0.9200 (3)0.4767 (3)0.0349 (5)
H10.3849 (6)1.039 (4)0.469 (3)0.037 (8)*
O10.36670 (5)0.6242 (3)0.4197 (3)0.0629 (6)
C10.36437 (6)0.8018 (4)0.4068 (3)0.0388 (6)
C20.33558 (6)0.8888 (4)0.3134 (3)0.0385 (6)
C30.31275 (8)0.7639 (5)0.2456 (4)0.0642 (9)
H30.3160510.6310370.2551050.077*
C40.28480 (8)0.8330 (6)0.1628 (4)0.0752 (11)
H40.2693740.7465290.1184000.090*
C50.27986 (7)1.0263 (6)0.1465 (4)0.0667 (10)
H50.2610791.0730720.0914140.080*
C60.30260 (7)1.1508 (5)0.2113 (4)0.0647 (9)
H60.2993291.2833510.1987590.078*
C70.33062 (7)1.0849 (4)0.2959 (4)0.0499 (7)
H70.3458941.1722830.3402500.060*
O3W0.40263 (5)0.3206 (3)0.5364 (2)0.0412 (4)
H3WA0.3916 (8)0.420 (6)0.520 (4)0.081 (13)*
H3WB0.4083 (8)0.319 (5)0.639 (4)0.074 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0247 (2)0.0338 (2)0.01649 (18)0.0018 (2)0.00142 (13)0.00037 (17)
O1W0.0350 (10)0.0495 (11)0.0230 (9)0.0071 (8)0.0003 (7)0.0027 (8)
O2W0.0294 (12)0.0368 (13)0.0159 (10)0.0000.0003 (8)0.000
O20.0315 (8)0.0446 (10)0.0216 (7)0.0107 (7)0.0029 (6)0.0006 (7)
O30.0398 (9)0.0569 (11)0.0222 (8)0.0138 (9)0.0022 (7)0.0012 (7)
C80.0303 (11)0.0301 (12)0.0241 (10)0.0036 (10)0.0026 (8)0.0016 (9)
C90.0319 (12)0.0397 (13)0.0283 (11)0.0086 (10)0.0033 (9)0.0052 (10)
N10.0309 (11)0.0339 (12)0.0396 (12)0.0079 (9)0.0028 (8)0.0026 (9)
O10.0679 (14)0.0367 (11)0.0820 (16)0.0057 (10)0.0293 (11)0.0015 (10)
C10.0371 (13)0.0404 (14)0.0385 (13)0.0039 (12)0.0032 (10)0.0024 (11)
C20.0320 (13)0.0474 (15)0.0359 (13)0.0030 (12)0.0002 (10)0.0014 (11)
C30.0579 (19)0.060 (2)0.072 (2)0.0079 (16)0.0251 (16)0.0049 (16)
C40.0534 (19)0.097 (3)0.073 (2)0.014 (2)0.0290 (17)0.007 (2)
C50.0393 (15)0.105 (3)0.0552 (19)0.0147 (19)0.0096 (13)0.0112 (19)
C60.0544 (19)0.070 (2)0.069 (2)0.0216 (17)0.0092 (16)0.0097 (17)
C70.0415 (15)0.0540 (17)0.0539 (17)0.0074 (14)0.0037 (12)0.0005 (14)
O3W0.0454 (11)0.0412 (11)0.0368 (11)0.0000 (9)0.0036 (8)0.0005 (8)
Geometric parameters (Å, º) top
Co1—O22.0563 (15)N1—H10.83 (3)
Co1—O2i2.0563 (15)O1—C11.235 (3)
Co1—O1W2.0622 (17)C1—C21.498 (3)
Co1—O1Wi2.0622 (17)C2—C31.370 (4)
Co1—O2Wi2.1899 (9)C2—C71.376 (4)
Co1—O2W2.1899 (9)C3—C41.386 (4)
O1W—H1WA0.78 (3)C3—H30.9300
O1W—H1WB0.85 (3)C4—C51.357 (5)
O2W—H2W0.88 (3)C4—H40.9300
O2W—H2Wii0.88 (3)C5—C61.356 (5)
O2—C81.270 (2)C5—H50.9300
O3—C81.238 (2)C6—C71.387 (4)
C8—C91.517 (3)C6—H60.9300
C9—N11.445 (3)C7—H70.9300
C9—H9A0.9700O3W—H3WA0.83 (4)
C9—H9B0.9700O3W—H3WB0.84 (3)
N1—C11.330 (3)
O2—Co1—O2i180.0C8—C9—H9A108.5
O2—Co1—O1W89.40 (7)N1—C9—H9B108.5
O2i—Co1—O1W90.60 (7)C8—C9—H9B108.5
O2—Co1—O1Wi90.60 (7)H9A—C9—H9B107.5
O2i—Co1—O1Wi89.40 (7)C1—N1—C9121.5 (2)
O1W—Co1—O1Wi180.0C1—N1—H1121.7 (18)
O2—Co1—O2Wi92.59 (6)C9—N1—H1116.7 (18)
O2i—Co1—O2Wi87.41 (6)O1—C1—N1121.7 (2)
O1W—Co1—O2Wi90.55 (7)O1—C1—C2119.8 (2)
O1Wi—Co1—O2Wi89.45 (7)N1—C1—C2118.5 (2)
O2—Co1—O2W87.41 (6)C3—C2—C7118.9 (3)
O2i—Co1—O2W92.59 (6)C3—C2—C1117.3 (2)
O1W—Co1—O2W89.45 (7)C7—C2—C1123.8 (2)
O1Wi—Co1—O2W90.55 (7)C2—C3—C4120.8 (3)
O2Wi—Co1—O2W180.0C2—C3—H3119.6
Co1—O1W—H1WA109 (2)C4—C3—H3119.6
Co1—O1W—H1WB118.5 (19)C5—C4—C3120.2 (3)
H1WA—O1W—H1WB110 (3)C5—C4—H4119.9
Co1ii—O2W—Co1132.03 (11)C3—C4—H4119.9
Co1ii—O2W—H2W95 (2)C6—C5—C4119.3 (3)
Co1—O2W—H2W109 (2)C6—C5—H5120.3
Co1ii—O2W—H2Wii109 (2)C4—C5—H5120.3
Co1—O2W—H2Wii95 (2)C5—C6—C7121.5 (3)
H2W—O2W—H2Wii118 (4)C5—C6—H6119.3
C8—O2—Co1126.39 (14)C7—C6—H6119.3
O3—C8—O2125.2 (2)C2—C7—C6119.3 (3)
O3—C8—C9121.20 (19)C2—C7—H7120.4
O2—C8—C9113.61 (18)C6—C7—H7120.4
N1—C9—C8115.14 (18)H3WA—O3W—H3WB108 (3)
N1—C9—H9A108.5
Co1—O2—C8—O314.5 (3)N1—C1—C2—C70.2 (4)
Co1—O2—C8—C9166.03 (14)C7—C2—C3—C41.1 (5)
O3—C8—C9—N16.9 (3)C1—C2—C3—C4177.5 (3)
O2—C8—C9—N1173.6 (2)C2—C3—C4—C50.7 (6)
C8—C9—N1—C178.1 (3)C3—C4—C5—C60.3 (6)
C9—N1—C1—O13.4 (4)C4—C5—C6—C70.8 (5)
C9—N1—C1—C2175.3 (2)C3—C2—C7—C60.5 (4)
O1—C1—C2—C30.0 (4)C1—C2—C7—C6178.0 (3)
N1—C1—C2—C3178.7 (3)C5—C6—C7—C20.5 (5)
O1—C1—C2—C7178.5 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O2ii0.78 (3)1.93 (3)2.714 (2)176 (3)
O1W—H1WB···O3Wi0.85 (3)1.93 (3)2.780 (3)178 (3)
O2W—H2W···O3iii0.88 (3)1.80 (3)2.6576 (18)163 (3)
C9—H9B···O3iv0.972.513.481 (3)178
N1—H1···O3Wv0.83 (3)2.13 (3)2.880 (3)149 (2)
O3W—H3WA···O10.83 (4)1.90 (4)2.708 (3)164 (3)
O3W—H3WB···O3iii0.84 (3)2.12 (3)2.873 (3)149 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+3/2; (iii) x, y+1, z+1/2; (iv) x, y+2, z+1/2; (v) x, y+1, z.
catena-Poly[[[diaquabis(N-benzoylglycinato)nickel(II)]-µ-aqua] dihydrate] (2) top
Crystal data top
[Ni(C9H8NO3)2(H2O)3]·2H2OF(000) = 1056
Mr = 505.12Dx = 1.497 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 40.884 (4) ÅCell parameters from 8047 reflections
b = 6.9438 (8) Åθ = 3.0–30.5°
c = 7.8983 (8) ŵ = 0.93 mm1
β = 91.900 (2)°T = 293 K
V = 2241.0 (4) Å3Plate, green
Z = 40.29 × 0.24 × 0.05 mm
Data collection top
Bruker D8 Quest Eco
diffractometer
2995 reflections with I > 2σ(I)
Radiation source: Sealed TubeRint = 0.036
φ and ω scansθmax = 30.5°, θmin = 3.0°
Absorption correction: numerical
(SADABS; Krause et al., 2015)
h = 5858
Tmin = 0.608, Tmax = 0.746k = 99
17095 measured reflectionsl = 1111
3392 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.056H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.151 w = 1/[σ2(Fo2) + (0.0534P)2 + 10.915P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max < 0.001
3392 reflectionsΔρmax = 1.24 e Å3
174 parametersΔρmin = 0.75 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.5000000.5000000.5000000.01759 (14)
O1W0.46631 (6)0.6995 (4)0.4192 (3)0.0285 (4)
H1WA0.4671 (12)0.696 (8)0.305 (7)0.058 (14)*
H1WB0.4475 (12)0.690 (7)0.447 (6)0.043 (12)*
O2W0.5000000.3793 (4)0.2500000.0202 (5)
H2W0.4841 (9)0.322 (6)0.263 (5)0.034 (11)*
O20.53585 (5)0.6801 (3)0.4257 (2)0.0268 (4)
O30.55711 (6)0.7689 (4)0.6765 (3)0.0351 (5)
C80.55754 (7)0.7599 (4)0.5190 (3)0.0226 (5)
C90.58529 (8)0.8493 (5)0.4233 (4)0.0300 (6)
H9A0.5937080.7530370.3470500.036*
H9B0.5764310.9536310.3542010.036*
N10.61229 (6)0.9234 (4)0.5260 (4)0.0309 (5)
H10.6146 (12)1.056 (8)0.526 (6)0.049 (13)*
O10.63274 (9)0.6289 (4)0.5816 (5)0.0642 (10)
C10.63502 (8)0.8063 (5)0.5955 (4)0.0353 (7)
C20.66370 (8)0.8938 (6)0.6870 (5)0.0379 (7)
C30.68705 (12)0.7700 (8)0.7561 (6)0.0591 (12)
H30.6837710.6376910.7489420.071*
C40.71526 (13)0.8407 (11)0.8360 (7)0.0746 (17)
H40.7311240.7556540.8779350.090*
C50.71989 (12)1.0344 (10)0.8535 (7)0.0687 (16)
H50.7386431.0817930.9088170.082*
C60.69707 (12)1.1556 (8)0.7899 (6)0.0602 (12)
H60.7002031.2875200.8025930.072*
C70.66879 (10)1.0893 (7)0.7054 (6)0.0501 (10)
H70.6534291.1763280.6616770.060*
O3W0.59732 (7)0.3249 (4)0.4678 (4)0.0389 (6)
H3WB0.5916 (14)0.323 (9)0.362 (8)0.076 (19)*
H3WA0.611 (2)0.407 (13)0.485 (11)0.12 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0173 (2)0.0246 (2)0.01079 (19)0.00141 (17)0.00075 (14)0.00031 (17)
O1W0.0269 (10)0.0380 (12)0.0204 (9)0.0067 (9)0.0004 (8)0.0033 (8)
O2W0.0212 (13)0.0262 (13)0.0132 (11)0.0000.0013 (9)0.000
O20.0246 (9)0.0393 (12)0.0164 (8)0.0116 (8)0.0010 (7)0.0008 (8)
O30.0328 (11)0.0521 (15)0.0204 (9)0.0160 (10)0.0010 (8)0.0017 (9)
C80.0221 (12)0.0246 (12)0.0211 (11)0.0038 (9)0.0002 (9)0.0029 (10)
C90.0283 (14)0.0373 (16)0.0242 (12)0.0099 (12)0.0006 (10)0.0052 (12)
N10.0246 (12)0.0318 (13)0.0360 (13)0.0082 (10)0.0012 (10)0.0031 (11)
O10.067 (2)0.0349 (15)0.089 (3)0.0063 (14)0.0317 (18)0.0038 (15)
C10.0331 (16)0.0359 (17)0.0367 (16)0.0054 (13)0.0027 (13)0.0024 (13)
C20.0294 (15)0.049 (2)0.0352 (16)0.0032 (14)0.0019 (12)0.0030 (15)
C30.055 (3)0.057 (3)0.064 (3)0.008 (2)0.020 (2)0.005 (2)
C40.047 (3)0.104 (5)0.071 (3)0.018 (3)0.025 (2)0.006 (3)
C50.039 (2)0.108 (5)0.058 (3)0.020 (3)0.010 (2)0.014 (3)
C60.053 (3)0.065 (3)0.062 (3)0.024 (2)0.009 (2)0.004 (2)
C70.0386 (19)0.054 (2)0.057 (2)0.0104 (18)0.0091 (17)0.002 (2)
O3W0.0391 (13)0.0405 (14)0.0367 (13)0.0001 (11)0.0027 (10)0.0007 (11)
Geometric parameters (Å, º) top
Ni1—O2i2.029 (2)N1—H10.93 (5)
Ni1—O22.029 (2)O1—C11.240 (5)
Ni1—O1Wi2.041 (2)C1—C21.487 (5)
Ni1—O1W2.041 (2)C2—C71.380 (6)
Ni1—O2Wi2.1450 (12)C2—C31.384 (6)
Ni1—O2W2.1450 (12)C3—C41.386 (7)
O1W—H1WA0.90 (5)C3—H30.9300
O1W—H1WB0.81 (5)C4—C51.364 (9)
O2W—H2W0.77 (4)C4—H40.9300
O2W—H2Wii0.77 (4)C5—C61.342 (8)
O2—C81.262 (3)C5—H50.9300
O3—C81.246 (3)C6—C71.394 (6)
C8—C91.517 (4)C6—H60.9300
C9—N11.443 (4)C7—H70.9300
C9—H9A0.9700O3W—H3WB0.86 (6)
C9—H9B0.9700O3W—H3WA0.81 (9)
N1—C11.338 (5)
O2i—Ni1—O2180.00 (12)C8—C9—H9A108.3
O2i—Ni1—O1Wi88.72 (10)N1—C9—H9B108.3
O2—Ni1—O1Wi91.28 (10)C8—C9—H9B108.3
O2i—Ni1—O1W91.28 (10)H9A—C9—H9B107.4
O2—Ni1—O1W88.72 (10)C1—N1—C9121.4 (3)
O1Wi—Ni1—O1W180.0C1—N1—H1122 (3)
O2i—Ni1—O2Wi87.27 (8)C9—N1—H1116 (3)
O2—Ni1—O2Wi92.73 (8)O1—C1—N1121.2 (3)
O1Wi—Ni1—O2Wi89.87 (8)O1—C1—C2120.3 (3)
O1W—Ni1—O2Wi90.13 (8)N1—C1—C2118.5 (3)
O2i—Ni1—O2W92.73 (8)C7—C2—C3118.0 (4)
O2—Ni1—O2W87.27 (8)C7—C2—C1124.6 (4)
O1Wi—Ni1—O2W90.13 (8)C3—C2—C1117.4 (4)
O1W—Ni1—O2W89.87 (8)C2—C3—C4120.8 (5)
O2Wi—Ni1—O2W180.0C2—C3—H3119.6
Ni1—O1W—H1WA104 (3)C4—C3—H3119.6
Ni1—O1W—H1WB120 (3)C5—C4—C3120.4 (5)
H1WA—O1W—H1WB109 (4)C5—C4—H4119.8
Ni1—O2W—Ni1ii134.02 (15)C3—C4—H4119.8
Ni1—O2W—H2W93 (3)C6—C5—C4119.2 (4)
Ni1ii—O2W—H2W111 (3)C6—C5—H5120.4
Ni1—O2W—H2Wii111 (3)C4—C5—H5120.4
Ni1ii—O2W—H2Wii93 (3)C5—C6—C7121.8 (5)
H2W—O2W—H2Wii118 (6)C5—C6—H6119.1
C8—O2—Ni1127.02 (18)C7—C6—H6119.1
O3—C8—O2124.9 (3)C2—C7—C6119.7 (4)
O3—C8—C9120.8 (2)C2—C7—H7120.2
O2—C8—C9114.3 (2)C6—C7—H7120.2
N1—C9—C8115.9 (2)H3WB—O3W—H3WA110 (7)
N1—C9—H9A108.3
Ni1—O2—C8—O313.6 (5)N1—C1—C2—C3179.3 (4)
Ni1—O2—C8—C9166.8 (2)C7—C2—C3—C42.3 (8)
O3—C8—C9—N16.8 (5)C1—C2—C3—C4176.8 (5)
O2—C8—C9—N1173.5 (3)C2—C3—C4—C52.5 (9)
C8—C9—N1—C178.0 (4)C3—C4—C5—C61.1 (9)
C9—N1—C1—O13.9 (6)C4—C5—C6—C70.4 (9)
C9—N1—C1—C2174.6 (3)C3—C2—C7—C60.8 (7)
O1—C1—C2—C7178.3 (4)C1—C2—C7—C6178.2 (4)
N1—C1—C2—C70.2 (6)C5—C6—C7—C20.5 (8)
O1—C1—C2—C30.7 (6)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O2ii0.90 (5)1.82 (5)2.726 (3)174 (5)
O1W—H1WB···O3Wi0.81 (5)1.97 (5)2.783 (4)176 (5)
O2W—H2W···O3i0.77 (4)1.88 (4)2.634 (3)167 (4)
C9—H9B···O3iii0.972.503.465 (4)176
N1—H1···O3Wiv0.93 (5)2.04 (5)2.888 (4)151 (4)
O3W—H3WB···O3v0.86 (6)2.10 (6)2.858 (4)147 (5)
O3W—H3WA···O10.81 (9)1.92 (9)2.697 (4)159 (8)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1/2; (iii) x, y+2, z1/2; (iv) x, y+1, z; (v) x, y+1, z1/2.
Comparative structural chemistry of bivalent metal N-benzoylglycinates top
CN = coordination number of metal, C9H9NO3 = N-benzoylglycine, C9H8NO3 = N-benzoylglycinate.
CompoundSpace groupCNBinding modeDimensionalityRefcode
C9H9NO3P212121--monomerHIPPAC
[Ca(H2O)2(C9H8NO3)2]·H2OP21/c8µ2-tridentate1DANEDON
[Ba2(H2O)3(C9H8NO3)4]P19, 10µ3-tridentate, µ3-tetradentate2DHIFFIM
[Fe(H2O)3(C9H8NO3)2]·2H2OC2/c6monodentate1DBITDAJ
[Co(H2O)3(C9H8NO3)2]·2H2OC2/c6monodentate1DCOHIPP10, this work
[Ni(H2O)3(C9H8NO3)2]·2H2OC2/c6monodentate1DANIHIP, this work
[Cu2(H2O)4(C9H8NO3)4]·2H2OP21/c5, 5monodentate, µ2-monoatomicdimerCUHIPT
[Zn(H2O)3(C9H8NO3)2]·2H2OP15monodentatemonomerBIZFUL
[Pb(H2O)2(C9H8NO3)2]·2H2OC2/c8µ2-tridentate1DTEZMOA
References: HIPPAC: Ringertz (1971); ANEDON: Jisha et al. (2010); HIFFIM: Natarajan et al. (2007); BITDAJ: Morelock et al. (1982); COHIPP10: Morelock et al. (1979); CUHIPT: Brown & Trefonas (1973); BIZFUL: Grewe et al. (1982); TEZMOA: Battistuzzi et al. (1996).
 

Funding information

KUN acknowledges the University Grants Commission (UGC), New Delhi, for the sanction of a UGC Basic Scientific Research Fellowship. BRS acknowledges the Department of Science & Technology (DST), New Delhi, for the sanction of a Bruker D8 Quest Eco single crystal X-ray diffractometerunder the DST–FIST program.

References

First citationBattistuzzi, G., Borsari, M., Menabue, L., Saladini, M. & Sola, M. (1996). Inorg. Chem. 35, 4239–4247.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationBrown, J. N. & Trefonas, L. M. (1973). Inorg. Chem. 12, 1730–1733.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2019). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChadha, R., Singh, P., Khullar, S. & Mandal, S. K. (2016). Cryst. Growth Des. 16, 4960–4967.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGörbitz, C. H. & Sagstuen, E. (2004). Acta Cryst. E60, o1945–o1947.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGoyal, P., Rani, D. & Chadha, R. (2018). Cryst. Growth Des. 18, 105–118.  Web of Science CSD CrossRef CAS Google Scholar
First citationGrewe, H., Udupa, M. R. & Krebs, B. (1982). Inorg. Chim. Acta, 63, 119–124.  CSD CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHunter, C. A. & Sanders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5525–5534.  CrossRef CAS Web of Science Google Scholar
First citationJisha, K. R., Suma, S. & Sudarsanakumar, M. R. (2010). Polyhedron, 29, 3164–3169.  Web of Science CSD CrossRef CAS Google Scholar
First citationJohn, J. S., Arumanayagam, T., Murugakoothan, P., Sajan, D., Joy, N. & Philip, R. (2018). CSD Communication (CCDC code 1863868). CCDC, Cambridge, England.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMarcotrigiano, G. & Pellacani, G. C. (1975). Inorg. Nucl. Chem. Lett. 11, 643–648.  CrossRef CAS Web of Science Google Scholar
First citationMorelock, M. M., Good, M. L., Trefonas, L. M., Karraker, D., Maleki, L., Eichelberger, H. R., Majeste, R. & Dodge, J. (1979). J. Am. Chem. Soc. 101, 4858–4866.  CSD CrossRef CAS Web of Science Google Scholar
First citationMorelock, M. M., Good, M. L., Trefonas, L. M., Majeste, R. & Karraker, D. G. (1982). Inorg. Chem. 21, 3044–3050.  CSD CrossRef CAS Web of Science Google Scholar
First citationNatarajan, S., Dhas, S. A. M. B., Suresh, J. & Krishnakumar, R. V. (2007). Acta Cryst. E63, m1408–m1410.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNinković, D. B., Janjić, G. V., Veljković, D. Ž., Sredojević, D. N. & Zarić, S. D. (2011). Chem. Phys. Chem. 12, 351–351.  Google Scholar
First citationPero, R. W. (2010). Curr. Clin. Pharmacol. 5, 67–73.  CrossRef PubMed CAS Google Scholar
First citationRingertz, H. (1971). Acta Cryst. B27, 285–291.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds