research communications
Diaquabis{μ-1,5-bis[(pyridin-2-yl)methylidene]carbonohydrazide(1–)}di-μ-chlorido-tetrachloridotetrazinc(II)
aDépartement de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, bDépartement de Chimie, UFR Sciences et Techniques, Université Assane Seck, Ziguinchor, Senegal, and cSubstances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université, Paris-Saclay, 1 av. de la Terrasse, 91198 Gif-sur-Yvette, France
*Correspondence e-mail: mlgayeastou@yahoo.fr
A tetranuclear ZnII complex, [Zn4(C13H11N6O)2Cl6(H2O)2] or {[Zn2(HL)(H2O)(Cl2)](μCl)2[Zn2(HL)(H2O)(Cl)]}2, was synthesized by mixing an equimolar amount of a methanol solution containing ZnCl2 and a methanol solution containing the ligand H2L [1,5-bis(pyridin-2-ylmethylene)carbonohydrazide]. In the tetranuclear complex, each of the two ligand molecules forms a dinuclear unit that is connected to another dinuclear unit by two bridging chloride anions. In each dinuclear unit, one ZnII cation is pentacoordinated in a N2OCl2 in a distorted square-pyramidal geometry, while the other ZnII cation is hexacoordinated in a N3OCl2 environment with a distorted octahedral geometry. The basal plane around the pentacoordinated ZnII cation is formed by one chloride anion, one oxygen atom, one imino nitrogen atom and one pyridine nitrogen atom with the apical position occupied by a chloride anion. The basal plane of the hexacoordinated ZnII cation is formed by one chloride anion, one hydrazinyl nitrogen atom, one imino nitrogen atom and one pyridine nitrogen atom with the apical positions occupied by a water oxygen atom and a bridged chloro anion from another dinuclear unit, leading to a tetranuclear complex. A series of intramolecular C—H⋯Cl hydrogen bonds is observed in each tetranuclear unit. In the crystal, the tetranuclear units are connected by intermolecular C—H⋯Cl, C—H⋯O and N—H⋯O hydrogen bonds, forming a planar two-dimensional structure in the ac plane.
Keywords: zinc; complex; crystal structure; tetranuclear; square-pyramidal coordination.
CCDC reference: 2011426
1. Chemical context
Symmetrical dicarbonohydrazide e.g. S-cis or S-trans, yielding different structures with the same metal cation. These ligands can coordinate to transition metals in a pentadentate or hexadentate manner (El-Gammal et al., 2012; Sow et al., 2013), as well as in the ketonic or enolic form (Zhang et al., 2014). When the configuration of this kind of ligand is S-trans, it acts in a hexadentate fashion. In this case, the formation of a dinuclear complex with a μ-N,N bridge is generally observed, for example in a dinuclear copper(II) complex (Dragancea et al., 2014). The S-cis–enol configuration leads to the formation of square-grid complexes by directed self-assembly (Bikas et al., 2015; Sow et al., 2013; Li et al., 2014). In these complexes, μ-O and μ-N,N atoms bridge the metal ions, which display N4O2 or N5O octahedral environments (Shuvaev et al., 2010).
possess two cavitiess, which make them versatile. During complexation, either one or both of the cages can be occupied by a metal ion depending on the reaction conditions. The presence of an amidic bond in these molecules leads to the keto-enol tautomer, which can act in neutral or deprotonated forms. These compounds can adopt two different configurations,The behavior of these molecules has attracted the interest of chemists working in coordination chemistry. The free dicarbonohydrazide exhibits biological activities (Bacchi et al., 1999; Kothari & Sharma, 2010), which are increased upon complexation with certain transition metals (Wu et al., 2009; Bikas et al., 2015). The synthesis of high nuclearity complexes of transition metals derived from these types of ligands are highly targeted because of their magnetic (Sow et al., 2013; Zhang et al., 2014a; Dragancea et al., 2014), catalytic (Bikas et al., 2015), biological (Zhang et al., 2014) and optical (Easwaran potti et al., 2007) properties. Recently, our research group synthesized a new tetranuclear grid complex [Zn4(HL1)4](NO3)4·2H2O where H2L1 is 1,5-bis[1-(pyridin-2-yl)ethylidene)carbonohydrazide]. The study of the fluorescence properties of the ligand H2L1 and its complex revealed that complexation increased the fluorescent properties of the ligand (Seck et al., 2018). In a continuation of our work on symmetrical dicarbonohydrazide ligands, we have synthesized and characterized a new tetranuclear zinc(II) complex formulated as {[Zn2(HL)(H2O)(Cl2)](μCl)2[Zn2(HL)(H2O)(Cl)]}2 where H2L is 1,5-bis(pyridin-2-ylmethylene)carbonohydrazide.
2. Structural commentary
The title compound is a centrosymmetric tetranuclear ZnII complex composed by two dinuclear entities. Each dinuclear entity contains one ligand molecule acting in monodeprotonated form, three bonded chloride anions, one bonded water molecule, and two ZnII cations. The two units are linked by two choride anions acting as bridges (Fig. 1). Each monodeprotonated organic molecule acts through two azomethine nitrogen atoms, two pyridine nitrogen atoms, one hydrazinyl nitrogen atom and one carbonyl oxygen atom, resulting in a hexadentate ligand. The Zn1 and Zn2 cations are situated, respectively in N2OCl2 and N3OCl2 coordination sites (Fig. 1). In the structure of the complex, the two ligand molecules are arranged in the Z–E form.
The Zn1 atom is pentacoordinated by one pyridine nitrogen atom, one azomethine nitrogen atom, one oxygen atom, and two terminal chloride anions. According to the Addison (1984) index, the coordination geometry around a pentacoordinated metal center can be discussed in terms of the τ parameter [defined as τ = (β - α)/60 where β and α are the largest values of the bond angles around the central atom]; τ = 0 for a perfect square pyramidal geometry while τ = 1 for a perfect trigonal–bipyramidal geometry. In the case of the title complex, the τ value of 0.1085 is indicative of a distorted square-pyramidal geometry around the Zn1 center. The equatorial plane is occupied by atoms N5, N6, Cl3, O2 while the apical position is occupied by Cl2. The angles N5—Zn1—O2 [72.76 (9)°], O2—Zn1—Cl3 [96.00 (6)°], Cl3—Zn1—N6 [97.10 (8)°] and N6—Zn1—N5 [75.82 (10)°] deviate from those for a regular square pyramid. The transoid angles in the basal plane O2—Zn1—N6 and N5—Zn1—Cl3 deviate severely from linearity with values of 144.87 (10) and 138.36 (8)°, respectively (Table 1). The angles involving the atoms in the axial position deviate severely from the ideal value of 90°, being in the range 97.45 (7)–110.85 (8)°.
The geometry around the hexacoordinated Zn2 atom is best described as distorted octahedral. The basal plane is occupied by atoms N2, N4, N1 and Cl1 with cissoid bond angles in the range 73.95 (9)–111.20 (7)° and transoid angles of 171.67 (8)° [N2—Zn2—Cl1] and 148.24 (10)° [N4—Zn2—N1]. The sum of the angles subtended by the atoms in the plane is 359.77°. The apical positions are occupied by O1 and Cl1i with O 1—Zn2—Cl1i = 172.20 (7)° (Table 1). The deviation of the angles around the Zn2 cation with respect to the valence angles for a regular octahedron (180 and 90°) indicates that the geometry around the Zn2 ion is a distorted octahedron (Fig. 1). The five-membered rings (NCNNZn and NCCNZn) formed by the ligand with Zn2 impose large distortions on the ideal angles of a regular octahedron with bite angles in the range 73.95 (9)–74.29 (9)°.
The Zn2—Cl1—Zn2i angle of 92.37 (3)° is in accordance with the value reported for the complex di-μ-chlorido-bis{[2-({[2-(2-pyridyl)ethyl](2-pyridylmethyl)amino}methyl)-phenol]zinc(II)} bis(perchlorate) dihydrate (Coelho et al., 2010). The zinc–halogen distances Zn2—Cl1 and Zn2i—Cl1 of 2.2873 (8) and 2.7489 (10) Å, respectively, agree with those for a chloride anion in a bridging position (Coelho et al., 2010; Yu et al., 2009). The distances Zn1—Cl2 and Zn1—Cl3 of 2.2573 (10) and 2.2477 (9) Å, respectively, are indicative of a unidentate terminal chloride anion (Sanyal et al., 2014).
Only one weak intramolecular C—H⋯O hydrogen bond (Table 2) occurs.
|
3. Supramolecular features
In the crystal, numerous intermolecular O—H⋯Cl, C—H⋯O, C—H⋯Cl and N—H⋯O hydrogen bonds are observed (Fig. 2, Table 2). An N—H⋯O type occurs between the oxygen atom O2 of the ligand, which acts as a proton acceptor, and the nitrogen atom of the hydrazinyl group, which acts as the proton donor. An O—H⋯Cl link is established between a water molecule in the apical position of the Zn2 ion, acting as proton donor, and a terminal chloride ions linked to Zn1 as proton acceptor. These intermolecular hydrogen bonds ensure the cohesion of the crystal, developing a planar two-dimensional structure in the ac plane.
4. Database survey
A survey of the Cambridge Structural Database (CSD, Version 5.40, October 2019; Groom et al., 2016) reveals five examples of crystal structures containing H2L derivatives where the molecule is monoprotonated (H3L+) or diprotonated (H4L2+) and additionally one Dy complex molecule in which HL− and L2− are present as ligands. Among the diprotonated molecules, three different counter-ions are present: I− in AVOSOV (Hoque et al., 2016), ClO4− in LOFDUH (Hoque et al., 2014), and SO42− in LOFFAP (Hoque et al., 2014) and LOFFAP01 (Hoque et al., 2016). In the structure incorporating monoprotonated H3L+, H2PO4− is the counter-ion (LOFFIX; Hoque et al., 2014). The tetranuclear Dy3+ complex has a [2 x 2] grid structure (DIGQER; Randell et al., 2013).
5. Synthesis and crystallization
Synthesis of the H2L ligand
Carbonohydrazide (2 g, 22.2 mmol) was introduced into a 100 mL flask containing 20 mL of methanol. To the resulting suspension was added a methanolic solution containing 2-pyridinecarbaldehyde (4.757 g 44.4 mmol) and two drops of glacial acetic acid. The mixture was stirred under reflux for 2 h. After being kept for two days at 277 K, the resulting orange solution yielded a precipitate, which was recovered by filtration. The solid was washed successively with cold methanol (2 × 10 mL) and diethyl ether (2 × 10 mL) before being dried under P2O5; m.p. 489 K, yield 82%. Analysis calculated for [C13H12N6O] C, 58.20; H, 4.51; N, 31.33. Found: C, 58.17; H, 4.49; N, 31.30. IR (cm−1): 3439, 3204, 3198, 3055, 2936, 1684, 1582, 1610, 1582, 1532, 1467, 1360, 1274, 1131. 1H NMR (DMSO-d6, δ in ppm): 7.6–8.72 (m, 8H, HPy); 10.82 (s, 2H, H—N); 8.03 (s, 2H, H—C=N). 13C NMR (DMSO-d6, δ in ppm): 157.9 (C=O); 154.70 (CPy); 148.07 (CPy); 146.67 (C=N) imine; 137.60 (CPy); 123.00 (CPy); 119.09 (CPy).
Synthesis of the title complex
The title complex was prepared by mixing a solution of H2L (134.15 mg, 0.5 mmol) in 10 mL of methanol and a methanolic solution of ZnCl2 (68.15 mg, 0.5 mmol). A yellow solution was obtained after stirring for 1 h at room temperature. The solution was filtered, and the filtrate left for slow evaporation. After two weeks, yellow crystals suitable for X-ray diffraction were collected, yield 87.9%. Analysis calculated for [C26H26Cl6Zn4N12O4] C, 29.89; H, 2.51; N, 16.09. Found: C, 29.88; H, 2.49; N, 16.05. ΛM (S cm2 mol−): 11. IR (cm−1): 3428, 3116, 3043, 1585, 1553, 1497, 1461, 1377, 1313, 1226, 1143, 820.
6. Refinement
Crystal data, data collection and structure . N- and C-bound H atoms were refined with Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O). C atoms were placed in calculated positions and refined as riding with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).
details are summarized in Table 3
|
Supporting information
CCDC reference: 2011426
https://doi.org/10.1107/S2056989020009834/ex2035sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020009834/ex2035Isup2.hkl
Data collection: CrysAlis PRO (Rigaku OD, 2018); cell
CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012).[Zn4(C13H11N6O)2Cl6(H2O)2] | Z = 1 |
Mr = 1044.77 | F(000) = 520 |
Triclinic, P1 | Dx = 1.843 Mg m−3 |
a = 9.2002 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.4306 (4) Å | Cell parameters from 6440 reflections |
c = 11.7651 (4) Å | θ = 4.3–30.7° |
α = 94.639 (3)° | µ = 2.99 mm−1 |
β = 110.091 (4)° | T = 293 K |
γ = 97.599 (3)° | Tab, pale yellow |
V = 941.47 (7) Å3 | 0.21 × 0.10 × 0.05 mm |
XtaLAB AFC12 (RINC): Kappa single diffractometer | 4132 independent reflections |
Radiation source: micro-focus sealed X-ray tube, Rigaku (Mo) X-ray Source | 3343 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.049 |
ω scans | θmax = 27.1°, θmin = 4.4° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2018) | h = −11→11 |
Tmin = 0.375, Tmax = 1.000 | k = −12→12 |
15934 measured reflections | l = −15→15 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: mixed |
wR(F2) = 0.103 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0583P)2 + 0.5038P] where P = (Fo2 + 2Fc2)/3 |
4127 reflections | (Δ/σ)max < 0.001 |
244 parameters | Δρmax = 0.80 e Å−3 |
2 restraints | Δρmin = −0.94 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.80255 (4) | 0.26414 (4) | 0.42860 (3) | 0.03096 (12) | |
Zn2 | 0.57362 (4) | 0.62337 (4) | 0.14274 (3) | 0.03302 (12) | |
Cl1 | 0.66995 (10) | 0.59565 (10) | −0.01140 (7) | 0.0390 (2) | |
Cl2 | 0.61634 (11) | 0.06523 (11) | 0.34885 (11) | 0.0537 (3) | |
Cl3 | 0.93484 (10) | 0.25785 (12) | 0.62765 (8) | 0.0500 (3) | |
O1 | 0.7387 (3) | 0.8113 (3) | 0.2417 (2) | 0.0427 (6) | |
H1A | 0.823 (3) | 0.802 (5) | 0.291 (4) | 0.064* | |
H1B | 0.718 (6) | 0.878 (4) | 0.278 (4) | 0.064* | |
N1 | 0.4062 (3) | 0.7669 (3) | 0.0700 (2) | 0.0312 (6) | |
N4 | 0.6695 (3) | 0.4927 (3) | 0.2813 (2) | 0.0316 (6) | |
N5 | 0.7847 (3) | 0.4085 (3) | 0.3030 (2) | 0.0290 (5) | |
O2 | 0.6460 (3) | 0.4146 (3) | 0.4577 (2) | 0.0366 (5) | |
N2 | 0.4518 (3) | 0.6419 (3) | 0.2652 (2) | 0.0297 (5) | |
C5 | 0.3207 (4) | 0.7960 (4) | 0.1389 (3) | 0.0345 (7) | |
C7 | 0.6080 (4) | 0.4865 (3) | 0.3697 (3) | 0.0291 (6) | |
N3 | 0.4932 (3) | 0.5689 (3) | 0.3617 (3) | 0.0362 (7) | |
H3N | 0.442 (5) | 0.567 (4) | 0.409 (4) | 0.043* | |
C1 | 0.3864 (4) | 0.8307 (4) | −0.0303 (3) | 0.0397 (8) | |
H1 | 0.444294 | 0.809996 | −0.078687 | 0.048* | |
C10 | 1.1160 (4) | 0.3293 (4) | 0.2278 (4) | 0.0423 (8) | |
H10 | 1.115666 | 0.386847 | 0.167216 | 0.051* | |
N6 | 0.9966 (3) | 0.2407 (3) | 0.3647 (3) | 0.0359 (6) | |
C9 | 1.0000 (4) | 0.3243 (4) | 0.2777 (3) | 0.0325 (7) | |
C4 | 0.2147 (5) | 0.8905 (4) | 0.1096 (4) | 0.0481 (9) | |
H4 | 0.156102 | 0.908579 | 0.158053 | 0.058* | |
C8 | 0.8767 (4) | 0.4134 (4) | 0.2430 (3) | 0.0327 (7) | |
H8 | 0.866238 | 0.470241 | 0.180546 | 0.039* | |
C2 | 0.2826 (5) | 0.9266 (4) | −0.0646 (3) | 0.0480 (9) | |
H2 | 0.270608 | 0.969450 | −0.135049 | 0.058* | |
C11 | 1.2334 (5) | 0.2466 (5) | 0.2698 (4) | 0.0510 (10) | |
H11 | 1.312414 | 0.247754 | 0.237298 | 0.061* | |
C6 | 0.3499 (4) | 0.7248 (4) | 0.2481 (3) | 0.0385 (8) | |
H6 | 0.297366 | 0.738940 | 0.301839 | 0.046* | |
C3 | 0.1979 (5) | 0.9572 (5) | 0.0069 (4) | 0.0544 (10) | |
H3 | 0.129191 | 1.022847 | −0.013639 | 0.065* | |
C13 | 1.1100 (4) | 0.1625 (4) | 0.4044 (4) | 0.0459 (9) | |
H13 | 1.107789 | 0.104825 | 0.464524 | 0.055* | |
C12 | 1.2309 (5) | 0.1637 (5) | 0.3596 (4) | 0.0522 (10) | |
H12 | 1.309318 | 0.108995 | 0.390059 | 0.063* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0313 (2) | 0.0364 (2) | 0.0331 (2) | 0.01189 (15) | 0.01808 (15) | 0.00942 (15) |
Zn2 | 0.0394 (2) | 0.0418 (2) | 0.0306 (2) | 0.01887 (17) | 0.02281 (16) | 0.01138 (16) |
Cl1 | 0.0456 (5) | 0.0475 (5) | 0.0364 (4) | 0.0111 (4) | 0.0291 (4) | 0.0070 (3) |
Cl2 | 0.0430 (5) | 0.0450 (5) | 0.0757 (7) | 0.0007 (4) | 0.0311 (5) | −0.0103 (5) |
Cl3 | 0.0343 (4) | 0.0852 (7) | 0.0373 (4) | 0.0232 (5) | 0.0152 (4) | 0.0142 (4) |
O1 | 0.0397 (14) | 0.0429 (15) | 0.0450 (15) | 0.0176 (12) | 0.0110 (11) | 0.0047 (11) |
N1 | 0.0327 (13) | 0.0373 (15) | 0.0285 (13) | 0.0097 (11) | 0.0152 (11) | 0.0078 (11) |
N4 | 0.0349 (14) | 0.0408 (15) | 0.0309 (13) | 0.0187 (12) | 0.0209 (11) | 0.0106 (11) |
N5 | 0.0287 (13) | 0.0330 (14) | 0.0329 (13) | 0.0123 (11) | 0.0173 (11) | 0.0077 (11) |
O2 | 0.0470 (13) | 0.0480 (14) | 0.0323 (12) | 0.0270 (11) | 0.0263 (10) | 0.0183 (10) |
N2 | 0.0337 (13) | 0.0371 (14) | 0.0275 (12) | 0.0163 (11) | 0.0175 (11) | 0.0101 (11) |
C5 | 0.0331 (16) | 0.0419 (18) | 0.0329 (16) | 0.0152 (14) | 0.0136 (13) | 0.0077 (14) |
C7 | 0.0296 (15) | 0.0359 (17) | 0.0279 (15) | 0.0123 (13) | 0.0155 (12) | 0.0047 (12) |
N3 | 0.0420 (16) | 0.0511 (18) | 0.0326 (14) | 0.0273 (14) | 0.0251 (12) | 0.0166 (13) |
C1 | 0.0441 (19) | 0.043 (2) | 0.0340 (17) | 0.0059 (16) | 0.0165 (15) | 0.0098 (15) |
C10 | 0.0406 (19) | 0.047 (2) | 0.052 (2) | 0.0100 (16) | 0.0311 (17) | 0.0059 (16) |
N6 | 0.0330 (14) | 0.0446 (16) | 0.0402 (15) | 0.0168 (12) | 0.0212 (12) | 0.0092 (12) |
C9 | 0.0285 (15) | 0.0394 (17) | 0.0359 (16) | 0.0083 (13) | 0.0188 (13) | 0.0046 (13) |
C4 | 0.046 (2) | 0.056 (2) | 0.052 (2) | 0.0282 (19) | 0.0211 (18) | 0.0166 (18) |
C8 | 0.0348 (16) | 0.0367 (17) | 0.0377 (17) | 0.0136 (14) | 0.0230 (14) | 0.0102 (13) |
C2 | 0.049 (2) | 0.052 (2) | 0.043 (2) | 0.0120 (18) | 0.0111 (17) | 0.0210 (17) |
C11 | 0.0386 (19) | 0.057 (2) | 0.070 (3) | 0.0108 (18) | 0.0369 (19) | 0.001 (2) |
C6 | 0.0401 (18) | 0.053 (2) | 0.0368 (17) | 0.0227 (16) | 0.0247 (15) | 0.0124 (15) |
C3 | 0.049 (2) | 0.057 (3) | 0.062 (3) | 0.029 (2) | 0.0153 (19) | 0.023 (2) |
C13 | 0.046 (2) | 0.054 (2) | 0.051 (2) | 0.0236 (18) | 0.0266 (17) | 0.0155 (18) |
C12 | 0.040 (2) | 0.065 (3) | 0.065 (3) | 0.0294 (19) | 0.0281 (19) | 0.011 (2) |
Zn1—N5 | 2.069 (2) | C7—N3 | 1.374 (4) |
Zn1—N6 | 2.191 (3) | N3—H3N | 0.85 (4) |
Zn1—O2 | 2.237 (2) | C1—C2 | 1.384 (5) |
Zn1—Cl3 | 2.2477 (9) | C1—H1 | 0.9300 |
Zn1—Cl2 | 2.2573 (10) | C10—C9 | 1.381 (4) |
Zn2—N2 | 2.117 (2) | C10—C11 | 1.391 (5) |
Zn2—O1 | 2.132 (3) | C10—H10 | 0.9300 |
Zn2—N4 | 2.139 (3) | N6—C13 | 1.333 (4) |
Zn2—N1 | 2.184 (3) | N6—C9 | 1.348 (4) |
Zn2—Cl1 | 2.2873 (8) | C9—C8 | 1.465 (4) |
Zn2—Cl1i | 2.7489 (10) | C4—C3 | 1.378 (5) |
O1—H1A | 0.816 (19) | C4—H4 | 0.9300 |
O1—H1B | 0.819 (19) | C8—H8 | 0.9300 |
N1—C1 | 1.335 (4) | C2—C3 | 1.367 (6) |
N1—C5 | 1.346 (4) | C2—H2 | 0.9300 |
N4—C7 | 1.345 (4) | C11—C12 | 1.369 (6) |
N4—N5 | 1.374 (3) | C11—H11 | 0.9300 |
N5—C8 | 1.274 (4) | C6—H6 | 0.9300 |
O2—C7 | 1.258 (4) | C3—H3 | 0.9300 |
N2—C6 | 1.273 (4) | C13—C12 | 1.385 (5) |
N2—N3 | 1.344 (3) | C13—H13 | 0.9300 |
C5—C4 | 1.382 (5) | C12—H12 | 0.9300 |
C5—C6 | 1.457 (4) | ||
N5—Zn1—N6 | 75.82 (10) | C4—C5—C6 | 122.1 (3) |
N5—Zn1—O2 | 72.76 (9) | O2—C7—N4 | 126.6 (3) |
N6—Zn1—O2 | 144.87 (10) | O2—C7—N3 | 117.8 (3) |
N5—Zn1—Cl3 | 138.36 (8) | N4—C7—N3 | 115.6 (3) |
N6—Zn1—Cl3 | 97.10 (8) | N2—N3—C7 | 116.7 (3) |
O2—Zn1—Cl3 | 96.00 (6) | N2—N3—H3N | 120 (3) |
N5—Zn1—Cl2 | 110.85 (8) | C7—N3—H3N | 123 (3) |
N6—Zn1—Cl2 | 108.19 (9) | N1—C1—C2 | 122.3 (3) |
O2—Zn1—Cl2 | 97.45 (7) | N1—C1—H1 | 118.9 |
Cl3—Zn1—Cl2 | 110.31 (4) | C2—C1—H1 | 118.9 |
N2—Zn2—O1 | 90.19 (11) | C9—C10—C11 | 118.9 (3) |
N2—Zn2—N4 | 73.95 (9) | C9—C10—H10 | 120.6 |
O1—Zn2—N4 | 92.86 (10) | C11—C10—H10 | 120.6 |
N2—Zn2—N1 | 74.29 (9) | C13—N6—C9 | 118.7 (3) |
O1—Zn2—N1 | 87.40 (10) | C13—N6—Zn1 | 128.7 (2) |
N4—Zn2—N1 | 148.24 (10) | C9—N6—Zn1 | 112.5 (2) |
N2—Zn2—Cl1 | 171.67 (8) | N6—C9—C10 | 121.8 (3) |
O1—Zn2—Cl1 | 95.98 (8) | N6—C9—C8 | 115.8 (3) |
N4—Zn2—Cl1 | 111.20 (7) | C10—C9—C8 | 122.3 (3) |
N1—Zn2—Cl1 | 100.33 (7) | C3—C4—C5 | 118.5 (4) |
N2—Zn2—Cl1i | 85.59 (8) | C3—C4—H4 | 120.8 |
O1—Zn2—Cl1i | 172.20 (7) | C5—C4—H4 | 120.8 |
N4—Zn2—Cl1i | 92.27 (8) | N5—C8—C9 | 116.3 (3) |
N1—Zn2—Cl1i | 85.15 (8) | N5—C8—H8 | 121.9 |
Cl1—Zn2—Cl1i | 87.63 (3) | C9—C8—H8 | 121.9 |
Zn2—Cl1—Zn2i | 92.37 (3) | C3—C2—C1 | 118.7 (3) |
Zn2—O1—H1A | 119 (3) | C3—C2—H2 | 120.6 |
Zn2—O1—H1B | 124 (4) | C1—C2—H2 | 120.6 |
H1A—O1—H1B | 101 (5) | C12—C11—C10 | 119.1 (3) |
C1—N1—C5 | 118.6 (3) | C12—C11—H11 | 120.4 |
C1—N1—Zn2 | 127.0 (2) | C10—C11—H11 | 120.4 |
C5—N1—Zn2 | 114.4 (2) | N2—C6—C5 | 115.8 (3) |
C7—N4—N5 | 108.9 (2) | N2—C6—H6 | 122.1 |
C7—N4—Zn2 | 116.75 (19) | C5—C6—H6 | 122.1 |
N5—N4—Zn2 | 134.33 (19) | C2—C3—C4 | 119.9 (3) |
C8—N5—N4 | 120.9 (3) | C2—C3—H3 | 120.1 |
C8—N5—Zn1 | 119.3 (2) | C4—C3—H3 | 120.1 |
N4—N5—Zn1 | 119.75 (19) | N6—C13—C12 | 122.5 (4) |
C7—O2—Zn1 | 109.38 (18) | N6—C13—H13 | 118.7 |
C6—N2—N3 | 123.3 (3) | C12—C13—H13 | 118.7 |
C6—N2—Zn2 | 119.7 (2) | C11—C12—C13 | 119.0 (3) |
N3—N2—Zn2 | 116.96 (18) | C11—C12—H12 | 120.5 |
N1—C5—C4 | 122.1 (3) | C13—C12—H12 | 120.5 |
N1—C5—C6 | 115.8 (3) | ||
C7—N4—N5—C8 | −169.4 (3) | C13—N6—C9—C8 | −176.8 (3) |
Zn2—N4—N5—C8 | 10.8 (5) | Zn1—N6—C9—C8 | 0.1 (4) |
C7—N4—N5—Zn1 | 13.8 (3) | C11—C10—C9—N6 | −0.7 (6) |
Zn2—N4—N5—Zn1 | −166.03 (17) | C11—C10—C9—C8 | 176.9 (4) |
C1—N1—C5—C4 | −0.6 (5) | N1—C5—C4—C3 | −0.5 (6) |
Zn2—N1—C5—C4 | 176.8 (3) | C6—C5—C4—C3 | 177.8 (4) |
C1—N1—C5—C6 | −179.0 (3) | N4—N5—C8—C9 | 177.2 (3) |
Zn2—N1—C5—C6 | −1.6 (4) | Zn1—N5—C8—C9 | −6.0 (4) |
Zn1—O2—C7—N4 | −10.3 (4) | N6—C9—C8—N5 | 3.7 (5) |
Zn1—O2—C7—N3 | 170.3 (2) | C10—C9—C8—N5 | −174.0 (3) |
N5—N4—C7—O2 | −1.0 (5) | N1—C1—C2—C3 | 0.2 (6) |
Zn2—N4—C7—O2 | 178.8 (3) | C9—C10—C11—C12 | −0.4 (6) |
N5—N4—C7—N3 | 178.4 (3) | N3—N2—C6—C5 | 179.5 (3) |
Zn2—N4—C7—N3 | −1.7 (4) | Zn2—N2—C6—C5 | 2.9 (4) |
C6—N2—N3—C7 | −178.3 (3) | N1—C5—C6—N2 | −0.7 (5) |
Zn2—N2—N3—C7 | −1.6 (4) | C4—C5—C6—N2 | −179.1 (4) |
O2—C7—N3—N2 | −178.4 (3) | C1—C2—C3—C4 | −1.3 (7) |
N4—C7—N3—N2 | 2.2 (5) | C5—C4—C3—C2 | 1.5 (7) |
C5—N1—C1—C2 | 0.8 (5) | C9—N6—C13—C12 | −0.1 (6) |
Zn2—N1—C1—C2 | −176.2 (3) | Zn1—N6—C13—C12 | −176.5 (3) |
C13—N6—C9—C10 | 0.9 (5) | C10—C11—C12—C13 | 1.2 (7) |
Zn1—N6—C9—C10 | 177.9 (3) | N6—C13—C12—C11 | −1.0 (7) |
Symmetry code: (i) −x+1, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···Cl3ii | 0.82 (2) | 2.27 (2) | 3.052 (3) | 161 (5) |
O1—H1B···Cl2iii | 0.82 (2) | 2.32 (2) | 3.129 (3) | 169 (5) |
C8—H8···Cl1 | 0.93 | 2.82 | 3.649 (3) | 149 |
C2—H2···O1iv | 0.93 | 2.50 | 3.342 (4) | 151 |
C6—H6···Cl3v | 0.93 | 2.55 | 3.425 (3) | 158 |
N3—H3N···O2v | 0.85 (4) | 2.00 (4) | 2.837 (3) | 170 (4) |
Symmetry codes: (ii) −x+2, −y+1, −z+1; (iii) x, y+1, z; (iv) −x+1, −y+2, −z; (v) −x+1, −y+1, −z+1. |
References
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Bacchi, A., Carcelli, M., Pelagatti, P., Pelizzi, C., Pelizzi, G. & Zani, F. (1999). J. Inorg. Biochem. 75, 123–133. Web of Science CrossRef PubMed CAS Google Scholar
Bikas, R., Hosseini-Monfared, H., Aleshkevych, P., Szymczak, R., Siczek, M. & Lis, T. (2015). Polyhedron, 88, 48–56. CSD CrossRef CAS Google Scholar
Coelho, S. E., Terra, G. G. & Bortoluzzi, A. J. (2010). Acta Cryst. E66, m229–m230. CSD CrossRef IUCr Journals Google Scholar
Dragancea, D., Shova, S., Enyedy, A., Breza, M., Rapta, P., Carrella, L. M., Rentschler, E., Dobrov, A. & Arion, V. B. (2014). Polyhedron, 80, 180–192. CSD CrossRef CAS Google Scholar
Easwaran potti, M., Kurup, M. R. P. P. & Fun, H.-K. (2007). Inorg. Chem. Commun. 10, 324–328. CSD CrossRef Google Scholar
El-Gammal, O. A., Abu El-Reash, G. M., Ghazy, S. E. & Radwan, A. H. (2012). J. Mol. Struct. 1020, 6–15. CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hoque, Md. N., Basu, A. & Das, G. (2014). Cryst. Growth Des. 14, 6–10. CSD CrossRef CAS Google Scholar
Hoque, M. N., Manna, U. & Das, G. (2016). Polyhedron, 119, 307–316. CSD CrossRef CAS Google Scholar
Kothari, R. & Sharma, B. (2010). Orient. J. Chem. 26, 1577–1579. CAS Google Scholar
Li, J., Zhang, L., Xu, G.-C., Yu, W.-X. & Jia, D.-Z. (2014). Inorg. Chem. Commun. 45, 40–43. CSD CrossRef Google Scholar
Randell, N. M., Anwar, M. U., Drover, M. W., Dawe, L. N. & Thompson, L. K. (2013). Inorg. Chem. 52, 6731–6742. CSD CrossRef CAS PubMed Google Scholar
Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sanyal, R., Guha, A., Ghosh, T., Mondal, T. K., Zangrando, E. & Das, D. (2014). Inorg. Chem. 53, 85–96. Web of Science CSD CrossRef CAS PubMed Google Scholar
Seck, T. M., Diop, M., Diouf, D., Diouf, O., Barry, A. H. & Gaye, M. (2018). IOSR J. Appl. Chem. 11, 6–14. CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shuvaev, K. V., Dawe, L. N. & Thompson, L. K. (2010). Dalton Trans. 39, 4768–4776. CSD CrossRef CAS PubMed Google Scholar
Sow, M. M., Diouf, O., Gaye, M., Sall, A. S., Pérez-Lourido, P., Valencia-Matarranz, L., Castro, G., Caneschi, A. & Sorace, L. (2013). Inorg. Chim. Acta, 406, 171–175. CSD CrossRef CAS Google Scholar
Wu, D.-Y., Sato, O., Einaga, Y. & Duan, C.-Y. (2009). Angew. Chem. Int. Ed. 48, 1475–1478. Web of Science CSD CrossRef CAS Google Scholar
Yu, M.-M., Shi, Q.-Z., Zhang, Y.-N. & Li, Z.-X. (2009). Acta Cryst. E65, m744–m745. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhang, L., Wang, J.-J. & Xu, G.-C. (2014). Inorg. Chem. Commun. 39, 66–69. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.