research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­­{μ-1,5-bis­­[(pyridin-2-yl)methyl­­idene]carbonohydrazide(1–)}di-μ-chlorido-tetra­chlorido­tetra­zinc(II)

CROSSMARK_Color_square_no_text.svg

aDépartement de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, bDépartement de Chimie, UFR Sciences et Techniques, Université Assane Seck, Ziguinchor, Senegal, and cSubstances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université, Paris-Saclay, 1 av. de la Terrasse, 91198 Gif-sur-Yvette, France
*Correspondence e-mail: mlgayeastou@yahoo.fr

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 4 July 2020; accepted 17 July 2020; online 24 July 2020)

A tetra­nuclear ZnII complex, [Zn4(C13H11N6O)2Cl6(H2O)2] or {[Zn2(HL)(H2O)(Cl2)](μCl)2[Zn2(HL)(H2O)(Cl)]}2, was synthesized by mixing an equimolar amount of a methanol solution containing ZnCl2 and a methanol solution containing the ligand H2L [1,5-bis­(pyridin-2-yl­methyl­ene)carbono­hydrazide]. In the tetra­nuclear complex, each of the two ligand mol­ecules forms a dinuclear unit that is connected to another dinuclear unit by two bridging chloride anions. In each dinuclear unit, one ZnII cation is penta­coordinated in a N2OCl2 in a distorted square-pyramidal geometry, while the other ZnII cation is hexa­coordinated in a N3OCl2 environment with a distorted octa­hedral geometry. The basal plane around the penta­coordinated ZnII cation is formed by one chloride anion, one oxygen atom, one imino nitro­gen atom and one pyridine nitro­gen atom with the apical position occupied by a chloride anion. The basal plane of the hexa­coordinated ZnII cation is formed by one chloride anion, one hydrazinyl nitro­gen atom, one imino nitro­gen atom and one pyridine nitro­gen atom with the apical positions occupied by a water oxygen atom and a bridged chloro anion from another dinuclear unit, leading to a tetra­nuclear complex. A series of intra­molecular C—H⋯Cl hydrogen bonds is observed in each tetra­nuclear unit. In the crystal, the tetra­nuclear units are connected by inter­molecular C—H⋯Cl, C—H⋯O and N—H⋯O hydrogen bonds, forming a planar two-dimensional structure in the ac plane.

1. Chemical context

Symmetrical dicarbonohydrazide Schiff bases possess two cavitiess, which make them versatile. During complexation, either one or both of the cages can be occupied by a metal ion depending on the reaction conditions. The presence of an amidic bond in these mol­ecules leads to the keto-enol tautomer, which can act in neutral or deprotonated forms. These compounds can adopt two different configurations, e.g. S-cis or S-trans, yielding different structures with the same metal cation. These ligands can coordinate to transition metals in a penta­dentate or hexa­dentate manner (El-Gammal et al., 2012[El-Gammal, O. A., Abu El-Reash, G. M., Ghazy, S. E. & Radwan, A. H. (2012). J. Mol. Struct. 1020, 6-15.]; Sow et al., 2013[Sow, M. M., Diouf, O., Gaye, M., Sall, A. S., Pérez-Lourido, P., Valencia-Matarranz, L., Castro, G., Caneschi, A. & Sorace, L. (2013). Inorg. Chim. Acta, 406, 171-175.]), as well as in the ketonic or enolic form (Zhang et al., 2014[Zhang, L., Wang, J.-J. & Xu, G.-C. (2014). Inorg. Chem. Commun. 39, 66-69.]). When the configuration of this kind of ligand is S-trans, it acts in a hexa­dentate fashion. In this case, the formation of a dinuclear complex with a μ-N,N bridge is generally observed, for example in a dinuclear copper(II) complex (Dragancea et al., 2014[Dragancea, D., Shova, S., Enyedy, A., Breza, M., Rapta, P., Carrella, L. M., Rentschler, E., Dobrov, A. & Arion, V. B. (2014). Polyhedron, 80, 180-192.]). The S-cis–enol configuration leads to the formation of square-grid complexes by directed self-assembly (Bikas et al., 2015[Bikas, R., Hosseini-Monfared, H., Aleshkevych, P., Szymczak, R., Siczek, M. & Lis, T. (2015). Polyhedron, 88, 48-56.]; Sow et al., 2013[Sow, M. M., Diouf, O., Gaye, M., Sall, A. S., Pérez-Lourido, P., Valencia-Matarranz, L., Castro, G., Caneschi, A. & Sorace, L. (2013). Inorg. Chim. Acta, 406, 171-175.]; Li et al., 2014[Li, J., Zhang, L., Xu, G.-C., Yu, W.-X. & Jia, D.-Z. (2014). Inorg. Chem. Commun. 45, 40-43.]). In these complexes, μ-O and μ-N,N atoms bridge the metal ions, which display N4O2 or N5O octa­hedral environments (Shuvaev et al., 2010[Shuvaev, K. V., Dawe, L. N. & Thompson, L. K. (2010). Dalton Trans. 39, 4768-4776.]).

[Scheme 1]

The behavior of these mol­ecules has attracted the inter­est of chemists working in coordination chemistry. The free dicarbonohydrazide exhibits biological activities (Bacchi et al., 1999[Bacchi, A., Carcelli, M., Pelagatti, P., Pelizzi, C., Pelizzi, G. & Zani, F. (1999). J. Inorg. Biochem. 75, 123-133.]; Kothari & Sharma, 2010[Kothari, R. & Sharma, B. (2010). Orient. J. Chem. 26, 1577-1579.]), which are increased upon complexation with certain transition metals (Wu et al., 2009[Wu, D.-Y., Sato, O., Einaga, Y. & Duan, C.-Y. (2009). Angew. Chem. Int. Ed. 48, 1475-1478.]; Bikas et al., 2015[Bikas, R., Hosseini-Monfared, H., Aleshkevych, P., Szymczak, R., Siczek, M. & Lis, T. (2015). Polyhedron, 88, 48-56.]). The synthesis of high nuclearity complexes of transition metals derived from these types of ligands are highly targeted because of their magnetic (Sow et al., 2013[Sow, M. M., Diouf, O., Gaye, M., Sall, A. S., Pérez-Lourido, P., Valencia-Matarranz, L., Castro, G., Caneschi, A. & Sorace, L. (2013). Inorg. Chim. Acta, 406, 171-175.]; Zhang et al., 2014a[Zhang, L., Wang, J.-J. & Xu, G.-C. (2014). Inorg. Chem. Commun. 39, 66-69.]; Dragancea et al., 2014[Dragancea, D., Shova, S., Enyedy, A., Breza, M., Rapta, P., Carrella, L. M., Rentschler, E., Dobrov, A. & Arion, V. B. (2014). Polyhedron, 80, 180-192.]), catalytic (Bikas et al., 2015[Bikas, R., Hosseini-Monfared, H., Aleshkevych, P., Szymczak, R., Siczek, M. & Lis, T. (2015). Polyhedron, 88, 48-56.]), biological (Zhang et al., 2014[Zhang, L., Wang, J.-J. & Xu, G.-C. (2014). Inorg. Chem. Commun. 39, 66-69.]) and optical (Easwaran potti et al., 2007[Easwaran potti, M., Kurup, M. R. P. P. & Fun, H.-K. (2007). Inorg. Chem. Commun. 10, 324-328.]) properties. Recently, our research group synthesized a new tetra­nuclear grid complex [Zn4(HL1)4](NO3)4·2H2O where H2L1 is 1,5-bis­[1-(pyridin-2-yl)ethyl­idene)carbonohydrazide]. The study of the fluorescence properties of the ligand H2L1 and its complex revealed that complexation increased the fluorescent properties of the ligand (Seck et al., 2018[Seck, T. M., Diop, M., Diouf, D., Diouf, O., Barry, A. H. & Gaye, M. (2018). IOSR J. Appl. Chem. 11, 6-14.]). In a continuation of our work on symmetrical dicarbonohydrazide ligands, we have synthesized and characterized a new tetra­nuclear zinc(II) complex formulated as {[Zn2(HL)(H2O)(Cl2)](μCl)2[Zn2(HL)(H2O)(Cl)]}2 where H2L is 1,5-bis­(pyridin-2-yl­methyl­ene)carbono­hydrazide.

2. Structural commentary

The title compound is a centrosymmetric tetra­nuclear ZnII complex composed by two dinuclear entities. Each dinuclear entity contains one ligand mol­ecule acting in monodeprotonated form, three bonded chloride anions, one bonded water mol­ecule, and two ZnII cations. The two units are linked by two choride anions acting as bridges (Fig. 1[link]). Each monodeprotonated organic mol­ecule acts through two azomethine nitro­gen atoms, two pyridine nitro­gen atoms, one hydrazinyl nitro­gen atom and one carbonyl oxygen atom, resulting in a hexa­dentate ligand. The Zn1 and Zn2 cations are situated, respectively in N2OCl2 and N3OCl2 coordination sites (Fig. 1[link]). In the structure of the complex, the two ligand mol­ecules are arranged in the Z–E form.

[Figure 1]
Figure 1
A view of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are plotted at the 30% probability level. Unlabelled atoms are generated by the symmetry operation 1 − x, 1 − y, −z.

The Zn1 atom is penta­coordinated by one pyridine nitro­gen atom, one azomethine nitro­gen atom, one oxygen atom, and two terminal chloride anions. According to the Addison (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]) index, the coordination geometry around a penta­coordinated metal center can be discussed in terms of the τ parameter [defined as τ = (β - α)/60 where β and α are the largest values of the bond angles around the central atom]; τ = 0 for a perfect square pyramidal geometry while τ = 1 for a perfect trigonal–bipyramidal geometry. In the case of the title complex, the τ value of 0.1085 is indicative of a distorted square-pyramidal geometry around the Zn1 center. The equatorial plane is occupied by atoms N5, N6, Cl3, O2 while the apical position is occupied by Cl2. The angles N5—Zn1—O2 [72.76 (9)°], O2—Zn1—Cl3 [96.00 (6)°], Cl3—Zn1—N6 [97.10 (8)°] and N6—Zn1—N5 [75.82 (10)°] deviate from those for a regular square pyramid. The transoid angles in the basal plane O2—Zn1—N6 and N5—Zn1—Cl3 deviate severely from linearity with values of 144.87 (10) and 138.36 (8)°, respectively (Table 1[link]). The angles involving the atoms in the axial position deviate severely from the ideal value of 90°, being in the range 97.45 (7)–110.85 (8)°.

Table 1
Selected geometric parameters (Å, °)

Zn1—N5 2.069 (2) Zn2—O1 2.132 (3)
Zn1—N6 2.191 (3) Zn2—N4 2.139 (3)
Zn1—O2 2.237 (2) Zn2—N1 2.184 (3)
Zn1—Cl3 2.2477 (9) Zn2—Cl1 2.2873 (8)
Zn1—Cl2 2.2573 (10) Zn2—Cl1i 2.7489 (10)
Zn2—N2 2.117 (2)    
       
N5—Zn1—N6 75.82 (10) N2—Zn2—N1 74.29 (9)
N5—Zn1—O2 72.76 (9) O1—Zn2—N1 87.40 (10)
N6—Zn1—O2 144.87 (10) N4—Zn2—N1 148.24 (10)
N5—Zn1—Cl3 138.36 (8) N2—Zn2—Cl1 171.67 (8)
N6—Zn1—Cl3 97.10 (8) O1—Zn2—Cl1 95.98 (8)
O2—Zn1—Cl3 96.00 (6) N4—Zn2—Cl1 111.20 (7)
N5—Zn1—Cl2 110.85 (8) N1—Zn2—Cl1 100.33 (7)
N6—Zn1—Cl2 108.19 (9) N2—Zn2—Cl1i 85.59 (8)
O2—Zn1—Cl2 97.45 (7) O1—Zn2—Cl1i 172.20 (7)
Cl3—Zn1—Cl2 110.31 (4) N4—Zn2—Cl1i 92.27 (8)
N2—Zn2—O1 90.19 (11) N1—Zn2—Cl1i 85.15 (8)
N2—Zn2—N4 73.95 (9) Cl1—Zn2—Cl1i 87.63 (3)
O1—Zn2—N4 92.86 (10) Zn2—Cl1—Zn2i 92.37 (3)
Symmetry code: (i) -x+1, -y+1, -z.

The geometry around the hexa­coordinated Zn2 atom is best described as distorted octahedral. The basal plane is occupied by atoms N2, N4, N1 and Cl1 with cissoid bond angles in the range 73.95 (9)–111.20 (7)° and transoid angles of 171.67 (8)° [N2—Zn2—Cl1] and 148.24 (10)° [N4—Zn2—N1]. The sum of the angles subtended by the atoms in the plane is 359.77°. The apical positions are occupied by O1 and Cl1i with O 1—Zn2—Cl1i = 172.20 (7)° (Table 1[link]). The deviation of the angles around the Zn2 cation with respect to the valence angles for a regular octa­hedron (180 and 90°) indicates that the geometry around the Zn2 ion is a distorted octa­hedron (Fig. 1[link]). The five-membered rings (NCNNZn and NCCNZn) formed by the ligand with Zn2 impose large distortions on the ideal angles of a regular octa­hedron with bite angles in the range 73.95 (9)–74.29 (9)°.

The Zn2—Cl1—Zn2i angle of 92.37 (3)° is in accordance with the value reported for the complex di-μ-chlorido-bis­{[2-({[2-(2-pyrid­yl)eth­yl](2-pyridyl­meth­yl)amino}­meth­yl)-phen­ol]zinc(II)} bis­(perchlorate) dihydrate (Coelho et al., 2010[Coelho, S. E., Terra, G. G. & Bortoluzzi, A. J. (2010). Acta Cryst. E66, m229-m230.]). The zinc–halogen distances Zn2—Cl1 and Zn2i—Cl1 of 2.2873 (8) and 2.7489 (10) Å, respectively, agree with those for a chloride anion in a bridging position (Coelho et al., 2010[Coelho, S. E., Terra, G. G. & Bortoluzzi, A. J. (2010). Acta Cryst. E66, m229-m230.]; Yu et al., 2009[Yu, M.-M., Shi, Q.-Z., Zhang, Y.-N. & Li, Z.-X. (2009). Acta Cryst. E65, m744-m745.]). The distances Zn1—Cl2 and Zn1—Cl3 of 2.2573 (10) and 2.2477 (9) Å, respectively, are indicative of a unidentate terminal chloride anion (Sanyal et al., 2014[Sanyal, R., Guha, A., Ghosh, T., Mondal, T. K., Zangrando, E. & Das, D. (2014). Inorg. Chem. 53, 85-96.]).

Only one weak intra­molecular C—H⋯O hydrogen bond (Table 2[link]) occurs.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯Cl3ii 0.82 (2) 2.27 (2) 3.052 (3) 161 (5)
O1—H1B⋯Cl2iii 0.82 (2) 2.32 (2) 3.129 (3) 169 (5)
C8—H8⋯Cl1 0.93 2.82 3.649 (3) 149
C2—H2⋯O1iv 0.93 2.50 3.342 (4) 151
C6—H6⋯Cl3v 0.93 2.55 3.425 (3) 158
N3—H3N⋯O2v 0.85 (4) 2.00 (4) 2.837 (3) 170 (4)
Symmetry codes: (ii) -x+2, -y+1, -z+1; (iii) x, y+1, z; (iv) -x+1, -y+2, -z; (v) -x+1, -y+1, -z+1.

3. Supra­molecular features

In the crystal, numerous inter­molecular O—H⋯Cl, C—H⋯O, C—H⋯Cl and N—H⋯O hydrogen bonds are observed (Fig. 2[link], Table 2[link]). An N—H⋯O type occurs between the oxygen atom O2 of the ligand, which acts as a proton acceptor, and the nitro­gen atom of the hydrazinyl group, which acts as the proton donor. An O—H⋯Cl link is established between a water mol­ecule in the apical position of the Zn2 ion, acting as proton donor, and a terminal chloride ions linked to Zn1 as proton acceptor. These inter­molecular hydrogen bonds ensure the cohesion of the crystal, developing a planar two-dimensional structure in the ac plane.

[Figure 2]
Figure 2
View of the chains formed by hydrogen bonds in the ac plane.

4. Database survey

A survey of the Cambridge Structural Database (CSD, Version 5.40, October 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) reveals five examples of crystal structures containing H2L derivatives where the mol­ecule is monoprotonated (H3L+) or diprotonated (H4L2+) and additionally one Dy complex mol­ecule in which HL and L2− are present as ligands. Among the diprotonated mol­ecules, three different counter-ions are present: I in AVOSOV (Hoque et al., 2016[Hoque, M. N., Manna, U. & Das, G. (2016). Polyhedron, 119, 307-316.]), ClO4 in LOFDUH (Hoque et al., 2014[Hoque, Md. N., Basu, A. & Das, G. (2014). Cryst. Growth Des. 14, 6-10.]), and SO42− in LOFFAP (Hoque et al., 2014[Hoque, Md. N., Basu, A. & Das, G. (2014). Cryst. Growth Des. 14, 6-10.]) and LOFFAP01 (Hoque et al., 2016[Hoque, M. N., Manna, U. & Das, G. (2016). Polyhedron, 119, 307-316.]). In the structure incorporating monoprotonated H3L+, H2PO4 is the counter-ion (LOFFIX; Hoque et al., 2014[Hoque, Md. N., Basu, A. & Das, G. (2014). Cryst. Growth Des. 14, 6-10.]). The tetra­nuclear Dy3+ complex has a [2 x 2] grid structure (DIGQER; Randell et al., 2013[Randell, N. M., Anwar, M. U., Drover, M. W., Dawe, L. N. & Thompson, L. K. (2013). Inorg. Chem. 52, 6731-6742.]).

5. Synthesis and crystallization

Synthesis of the H2L ligand

Carbonohydrazide (2 g, 22.2 mmol) was introduced into a 100 mL flask containing 20 mL of methanol. To the resulting suspension was added a methano­lic solution containing 2-pyridine­carbaldehyde (4.757 g 44.4 mmol) and two drops of glacial acetic acid. The mixture was stirred under reflux for 2 h. After being kept for two days at 277 K, the resulting orange solution yielded a precipitate, which was recovered by filtration. The solid was washed successively with cold methanol (2 × 10 mL) and diethyl ether (2 × 10 mL) before being dried under P2O5; m.p. 489 K, yield 82%. Analysis calculated for [C13H12N6O] C, 58.20; H, 4.51; N, 31.33. Found: C, 58.17; H, 4.49; N, 31.30. IR (cm−1): 3439, 3204, 3198, 3055, 2936, 1684, 1582, 1610, 1582, 1532, 1467, 1360, 1274, 1131. 1H NMR (DMSO-d6, δ in ppm): 7.6–8.72 (m, 8H, HPy); 10.82 (s, 2H, H—N); 8.03 (s, 2H, H—C=N). 13C NMR (DMSO-d6, δ in ppm): 157.9 (C=O); 154.70 (CPy); 148.07 (CPy); 146.67 (C=N) imine; 137.60 (CPy); 123.00 (CPy); 119.09 (CPy).

Synthesis of the title complex

The title complex was prepared by mixing a solution of H2L (134.15 mg, 0.5 mmol) in 10 mL of methanol and a methano­lic solution of ZnCl2 (68.15 mg, 0.5 mmol). A yellow solution was obtained after stirring for 1 h at room temperature. The solution was filtered, and the filtrate left for slow evaporation. After two weeks, yellow crystals suitable for X-ray diffraction were collected, yield 87.9%. Analysis calculated for [C26H26Cl6Zn4N12O4] C, 29.89; H, 2.51; N, 16.09. Found: C, 29.88; H, 2.49; N, 16.05. ΛM (S cm2 mol): 11. IR (cm−1): 3428, 3116, 3043, 1585, 1553, 1497, 1461, 1377, 1313, 1226, 1143, 820.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. N- and C-bound H atoms were refined with Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O). C atoms were placed in calculated positions and refined as riding with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula [Zn4(C13H11N6O)2Cl6(H2O)2]
Mr 1044.77
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 9.2002 (4), 9.4306 (4), 11.7651 (4)
α, β, γ (°) 94.639 (3), 110.091 (4), 97.599 (3)
V3) 941.47 (7)
Z 1
Radiation type Mo Kα
μ (mm−1) 2.99
Crystal size (mm) 0.21 × 0.10 × 0.05
 
Data collection
Diffractometer XtaLAB AFC12 (RINC): Kappa single
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.375, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 15934, 4132, 3343
Rint 0.049
(sin θ/λ)max−1) 0.641
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.103, 1.05
No. of reflections 4127
No. of parameters 244
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.80, −0.94
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012).

Diaquabis{µ-1,5-bis[(pyridin-2-yl)methylidene]carbonohydrazide(1-)}di-µ-chlorido-tetrachloridotetrazinc(II) top
Crystal data top
[Zn4(C13H11N6O)2Cl6(H2O)2]Z = 1
Mr = 1044.77F(000) = 520
Triclinic, P1Dx = 1.843 Mg m3
a = 9.2002 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.4306 (4) ÅCell parameters from 6440 reflections
c = 11.7651 (4) Åθ = 4.3–30.7°
α = 94.639 (3)°µ = 2.99 mm1
β = 110.091 (4)°T = 293 K
γ = 97.599 (3)°Tab, pale yellow
V = 941.47 (7) Å30.21 × 0.10 × 0.05 mm
Data collection top
XtaLAB AFC12 (RINC): Kappa single
diffractometer
4132 independent reflections
Radiation source: micro-focus sealed X-ray tube, Rigaku (Mo) X-ray Source3343 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.049
ω scansθmax = 27.1°, θmin = 4.4°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)
h = 1111
Tmin = 0.375, Tmax = 1.000k = 1212
15934 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: mixed
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0583P)2 + 0.5038P]
where P = (Fo2 + 2Fc2)/3
4127 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.80 e Å3
2 restraintsΔρmin = 0.94 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.80255 (4)0.26414 (4)0.42860 (3)0.03096 (12)
Zn20.57362 (4)0.62337 (4)0.14274 (3)0.03302 (12)
Cl10.66995 (10)0.59565 (10)0.01140 (7)0.0390 (2)
Cl20.61634 (11)0.06523 (11)0.34885 (11)0.0537 (3)
Cl30.93484 (10)0.25785 (12)0.62765 (8)0.0500 (3)
O10.7387 (3)0.8113 (3)0.2417 (2)0.0427 (6)
H1A0.823 (3)0.802 (5)0.291 (4)0.064*
H1B0.718 (6)0.878 (4)0.278 (4)0.064*
N10.4062 (3)0.7669 (3)0.0700 (2)0.0312 (6)
N40.6695 (3)0.4927 (3)0.2813 (2)0.0316 (6)
N50.7847 (3)0.4085 (3)0.3030 (2)0.0290 (5)
O20.6460 (3)0.4146 (3)0.4577 (2)0.0366 (5)
N20.4518 (3)0.6419 (3)0.2652 (2)0.0297 (5)
C50.3207 (4)0.7960 (4)0.1389 (3)0.0345 (7)
C70.6080 (4)0.4865 (3)0.3697 (3)0.0291 (6)
N30.4932 (3)0.5689 (3)0.3617 (3)0.0362 (7)
H3N0.442 (5)0.567 (4)0.409 (4)0.043*
C10.3864 (4)0.8307 (4)0.0303 (3)0.0397 (8)
H10.4442940.8099960.0786870.048*
C101.1160 (4)0.3293 (4)0.2278 (4)0.0423 (8)
H101.1156660.3868470.1672160.051*
N60.9966 (3)0.2407 (3)0.3647 (3)0.0359 (6)
C91.0000 (4)0.3243 (4)0.2777 (3)0.0325 (7)
C40.2147 (5)0.8905 (4)0.1096 (4)0.0481 (9)
H40.1561020.9085790.1580530.058*
C80.8767 (4)0.4134 (4)0.2430 (3)0.0327 (7)
H80.8662380.4702410.1805460.039*
C20.2826 (5)0.9266 (4)0.0646 (3)0.0480 (9)
H20.2706080.9694500.1350490.058*
C111.2334 (5)0.2466 (5)0.2698 (4)0.0510 (10)
H111.3124140.2477540.2372980.061*
C60.3499 (4)0.7248 (4)0.2481 (3)0.0385 (8)
H60.2973660.7389400.3018390.046*
C30.1979 (5)0.9572 (5)0.0069 (4)0.0544 (10)
H30.1291911.0228470.0136390.065*
C131.1100 (4)0.1625 (4)0.4044 (4)0.0459 (9)
H131.1077890.1048250.4645240.055*
C121.2309 (5)0.1637 (5)0.3596 (4)0.0522 (10)
H121.3093180.1089950.3900590.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0313 (2)0.0364 (2)0.0331 (2)0.01189 (15)0.01808 (15)0.00942 (15)
Zn20.0394 (2)0.0418 (2)0.0306 (2)0.01887 (17)0.02281 (16)0.01138 (16)
Cl10.0456 (5)0.0475 (5)0.0364 (4)0.0111 (4)0.0291 (4)0.0070 (3)
Cl20.0430 (5)0.0450 (5)0.0757 (7)0.0007 (4)0.0311 (5)0.0103 (5)
Cl30.0343 (4)0.0852 (7)0.0373 (4)0.0232 (5)0.0152 (4)0.0142 (4)
O10.0397 (14)0.0429 (15)0.0450 (15)0.0176 (12)0.0110 (11)0.0047 (11)
N10.0327 (13)0.0373 (15)0.0285 (13)0.0097 (11)0.0152 (11)0.0078 (11)
N40.0349 (14)0.0408 (15)0.0309 (13)0.0187 (12)0.0209 (11)0.0106 (11)
N50.0287 (13)0.0330 (14)0.0329 (13)0.0123 (11)0.0173 (11)0.0077 (11)
O20.0470 (13)0.0480 (14)0.0323 (12)0.0270 (11)0.0263 (10)0.0183 (10)
N20.0337 (13)0.0371 (14)0.0275 (12)0.0163 (11)0.0175 (11)0.0101 (11)
C50.0331 (16)0.0419 (18)0.0329 (16)0.0152 (14)0.0136 (13)0.0077 (14)
C70.0296 (15)0.0359 (17)0.0279 (15)0.0123 (13)0.0155 (12)0.0047 (12)
N30.0420 (16)0.0511 (18)0.0326 (14)0.0273 (14)0.0251 (12)0.0166 (13)
C10.0441 (19)0.043 (2)0.0340 (17)0.0059 (16)0.0165 (15)0.0098 (15)
C100.0406 (19)0.047 (2)0.052 (2)0.0100 (16)0.0311 (17)0.0059 (16)
N60.0330 (14)0.0446 (16)0.0402 (15)0.0168 (12)0.0212 (12)0.0092 (12)
C90.0285 (15)0.0394 (17)0.0359 (16)0.0083 (13)0.0188 (13)0.0046 (13)
C40.046 (2)0.056 (2)0.052 (2)0.0282 (19)0.0211 (18)0.0166 (18)
C80.0348 (16)0.0367 (17)0.0377 (17)0.0136 (14)0.0230 (14)0.0102 (13)
C20.049 (2)0.052 (2)0.043 (2)0.0120 (18)0.0111 (17)0.0210 (17)
C110.0386 (19)0.057 (2)0.070 (3)0.0108 (18)0.0369 (19)0.001 (2)
C60.0401 (18)0.053 (2)0.0368 (17)0.0227 (16)0.0247 (15)0.0124 (15)
C30.049 (2)0.057 (3)0.062 (3)0.029 (2)0.0153 (19)0.023 (2)
C130.046 (2)0.054 (2)0.051 (2)0.0236 (18)0.0266 (17)0.0155 (18)
C120.040 (2)0.065 (3)0.065 (3)0.0294 (19)0.0281 (19)0.011 (2)
Geometric parameters (Å, º) top
Zn1—N52.069 (2)C7—N31.374 (4)
Zn1—N62.191 (3)N3—H3N0.85 (4)
Zn1—O22.237 (2)C1—C21.384 (5)
Zn1—Cl32.2477 (9)C1—H10.9300
Zn1—Cl22.2573 (10)C10—C91.381 (4)
Zn2—N22.117 (2)C10—C111.391 (5)
Zn2—O12.132 (3)C10—H100.9300
Zn2—N42.139 (3)N6—C131.333 (4)
Zn2—N12.184 (3)N6—C91.348 (4)
Zn2—Cl12.2873 (8)C9—C81.465 (4)
Zn2—Cl1i2.7489 (10)C4—C31.378 (5)
O1—H1A0.816 (19)C4—H40.9300
O1—H1B0.819 (19)C8—H80.9300
N1—C11.335 (4)C2—C31.367 (6)
N1—C51.346 (4)C2—H20.9300
N4—C71.345 (4)C11—C121.369 (6)
N4—N51.374 (3)C11—H110.9300
N5—C81.274 (4)C6—H60.9300
O2—C71.258 (4)C3—H30.9300
N2—C61.273 (4)C13—C121.385 (5)
N2—N31.344 (3)C13—H130.9300
C5—C41.382 (5)C12—H120.9300
C5—C61.457 (4)
N5—Zn1—N675.82 (10)C4—C5—C6122.1 (3)
N5—Zn1—O272.76 (9)O2—C7—N4126.6 (3)
N6—Zn1—O2144.87 (10)O2—C7—N3117.8 (3)
N5—Zn1—Cl3138.36 (8)N4—C7—N3115.6 (3)
N6—Zn1—Cl397.10 (8)N2—N3—C7116.7 (3)
O2—Zn1—Cl396.00 (6)N2—N3—H3N120 (3)
N5—Zn1—Cl2110.85 (8)C7—N3—H3N123 (3)
N6—Zn1—Cl2108.19 (9)N1—C1—C2122.3 (3)
O2—Zn1—Cl297.45 (7)N1—C1—H1118.9
Cl3—Zn1—Cl2110.31 (4)C2—C1—H1118.9
N2—Zn2—O190.19 (11)C9—C10—C11118.9 (3)
N2—Zn2—N473.95 (9)C9—C10—H10120.6
O1—Zn2—N492.86 (10)C11—C10—H10120.6
N2—Zn2—N174.29 (9)C13—N6—C9118.7 (3)
O1—Zn2—N187.40 (10)C13—N6—Zn1128.7 (2)
N4—Zn2—N1148.24 (10)C9—N6—Zn1112.5 (2)
N2—Zn2—Cl1171.67 (8)N6—C9—C10121.8 (3)
O1—Zn2—Cl195.98 (8)N6—C9—C8115.8 (3)
N4—Zn2—Cl1111.20 (7)C10—C9—C8122.3 (3)
N1—Zn2—Cl1100.33 (7)C3—C4—C5118.5 (4)
N2—Zn2—Cl1i85.59 (8)C3—C4—H4120.8
O1—Zn2—Cl1i172.20 (7)C5—C4—H4120.8
N4—Zn2—Cl1i92.27 (8)N5—C8—C9116.3 (3)
N1—Zn2—Cl1i85.15 (8)N5—C8—H8121.9
Cl1—Zn2—Cl1i87.63 (3)C9—C8—H8121.9
Zn2—Cl1—Zn2i92.37 (3)C3—C2—C1118.7 (3)
Zn2—O1—H1A119 (3)C3—C2—H2120.6
Zn2—O1—H1B124 (4)C1—C2—H2120.6
H1A—O1—H1B101 (5)C12—C11—C10119.1 (3)
C1—N1—C5118.6 (3)C12—C11—H11120.4
C1—N1—Zn2127.0 (2)C10—C11—H11120.4
C5—N1—Zn2114.4 (2)N2—C6—C5115.8 (3)
C7—N4—N5108.9 (2)N2—C6—H6122.1
C7—N4—Zn2116.75 (19)C5—C6—H6122.1
N5—N4—Zn2134.33 (19)C2—C3—C4119.9 (3)
C8—N5—N4120.9 (3)C2—C3—H3120.1
C8—N5—Zn1119.3 (2)C4—C3—H3120.1
N4—N5—Zn1119.75 (19)N6—C13—C12122.5 (4)
C7—O2—Zn1109.38 (18)N6—C13—H13118.7
C6—N2—N3123.3 (3)C12—C13—H13118.7
C6—N2—Zn2119.7 (2)C11—C12—C13119.0 (3)
N3—N2—Zn2116.96 (18)C11—C12—H12120.5
N1—C5—C4122.1 (3)C13—C12—H12120.5
N1—C5—C6115.8 (3)
C7—N4—N5—C8169.4 (3)C13—N6—C9—C8176.8 (3)
Zn2—N4—N5—C810.8 (5)Zn1—N6—C9—C80.1 (4)
C7—N4—N5—Zn113.8 (3)C11—C10—C9—N60.7 (6)
Zn2—N4—N5—Zn1166.03 (17)C11—C10—C9—C8176.9 (4)
C1—N1—C5—C40.6 (5)N1—C5—C4—C30.5 (6)
Zn2—N1—C5—C4176.8 (3)C6—C5—C4—C3177.8 (4)
C1—N1—C5—C6179.0 (3)N4—N5—C8—C9177.2 (3)
Zn2—N1—C5—C61.6 (4)Zn1—N5—C8—C96.0 (4)
Zn1—O2—C7—N410.3 (4)N6—C9—C8—N53.7 (5)
Zn1—O2—C7—N3170.3 (2)C10—C9—C8—N5174.0 (3)
N5—N4—C7—O21.0 (5)N1—C1—C2—C30.2 (6)
Zn2—N4—C7—O2178.8 (3)C9—C10—C11—C120.4 (6)
N5—N4—C7—N3178.4 (3)N3—N2—C6—C5179.5 (3)
Zn2—N4—C7—N31.7 (4)Zn2—N2—C6—C52.9 (4)
C6—N2—N3—C7178.3 (3)N1—C5—C6—N20.7 (5)
Zn2—N2—N3—C71.6 (4)C4—C5—C6—N2179.1 (4)
O2—C7—N3—N2178.4 (3)C1—C2—C3—C41.3 (7)
N4—C7—N3—N22.2 (5)C5—C4—C3—C21.5 (7)
C5—N1—C1—C20.8 (5)C9—N6—C13—C120.1 (6)
Zn2—N1—C1—C2176.2 (3)Zn1—N6—C13—C12176.5 (3)
C13—N6—C9—C100.9 (5)C10—C11—C12—C131.2 (7)
Zn1—N6—C9—C10177.9 (3)N6—C13—C12—C111.0 (7)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Cl3ii0.82 (2)2.27 (2)3.052 (3)161 (5)
O1—H1B···Cl2iii0.82 (2)2.32 (2)3.129 (3)169 (5)
C8—H8···Cl10.932.823.649 (3)149
C2—H2···O1iv0.932.503.342 (4)151
C6—H6···Cl3v0.932.553.425 (3)158
N3—H3N···O2v0.85 (4)2.00 (4)2.837 (3)170 (4)
Symmetry codes: (ii) x+2, y+1, z+1; (iii) x, y+1, z; (iv) x+1, y+2, z; (v) x+1, y+1, z+1.
 

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBacchi, A., Carcelli, M., Pelagatti, P., Pelizzi, C., Pelizzi, G. & Zani, F. (1999). J. Inorg. Biochem. 75, 123–133.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBikas, R., Hosseini-Monfared, H., Aleshkevych, P., Szymczak, R., Siczek, M. & Lis, T. (2015). Polyhedron, 88, 48–56.  CSD CrossRef CAS Google Scholar
First citationCoelho, S. E., Terra, G. G. & Bortoluzzi, A. J. (2010). Acta Cryst. E66, m229–m230.  CSD CrossRef IUCr Journals Google Scholar
First citationDragancea, D., Shova, S., Enyedy, A., Breza, M., Rapta, P., Carrella, L. M., Rentschler, E., Dobrov, A. & Arion, V. B. (2014). Polyhedron, 80, 180–192.  CSD CrossRef CAS Google Scholar
First citationEaswaran potti, M., Kurup, M. R. P. P. & Fun, H.-K. (2007). Inorg. Chem. Commun. 10, 324–328.  CSD CrossRef Google Scholar
First citationEl-Gammal, O. A., Abu El-Reash, G. M., Ghazy, S. E. & Radwan, A. H. (2012). J. Mol. Struct. 1020, 6–15.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHoque, Md. N., Basu, A. & Das, G. (2014). Cryst. Growth Des. 14, 6–10.  CSD CrossRef CAS Google Scholar
First citationHoque, M. N., Manna, U. & Das, G. (2016). Polyhedron, 119, 307–316.  CSD CrossRef CAS Google Scholar
First citationKothari, R. & Sharma, B. (2010). Orient. J. Chem. 26, 1577–1579.  CAS Google Scholar
First citationLi, J., Zhang, L., Xu, G.-C., Yu, W.-X. & Jia, D.-Z. (2014). Inorg. Chem. Commun. 45, 40–43.  CSD CrossRef Google Scholar
First citationRandell, N. M., Anwar, M. U., Drover, M. W., Dawe, L. N. & Thompson, L. K. (2013). Inorg. Chem. 52, 6731–6742.  CSD CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSanyal, R., Guha, A., Ghosh, T., Mondal, T. K., Zangrando, E. & Das, D. (2014). Inorg. Chem. 53, 85–96.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSeck, T. M., Diop, M., Diouf, D., Diouf, O., Barry, A. H. & Gaye, M. (2018). IOSR J. Appl. Chem. 11, 6–14.  CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShuvaev, K. V., Dawe, L. N. & Thompson, L. K. (2010). Dalton Trans. 39, 4768–4776.  CSD CrossRef CAS PubMed Google Scholar
First citationSow, M. M., Diouf, O., Gaye, M., Sall, A. S., Pérez-Lourido, P., Valencia-Matarranz, L., Castro, G., Caneschi, A. & Sorace, L. (2013). Inorg. Chim. Acta, 406, 171–175.  CSD CrossRef CAS Google Scholar
First citationWu, D.-Y., Sato, O., Einaga, Y. & Duan, C.-Y. (2009). Angew. Chem. Int. Ed. 48, 1475–1478.  Web of Science CSD CrossRef CAS Google Scholar
First citationYu, M.-M., Shi, Q.-Z., Zhang, Y.-N. & Li, Z.-X. (2009). Acta Cryst. E65, m744–m745.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, L., Wang, J.-J. & Xu, G.-C. (2014). Inorg. Chem. Commun. 39, 66–69.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds