research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

DL-Piperidinium-2-carboxyl­ate bis­­(hydrogen peroxide): unusual hydrogen-bonded peroxide chains

CROSSMARK_Color_square_no_text.svg

aInstitute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii prosp. 31, Moscow 119991, Russian Federation
*Correspondence e-mail: churakov@igic.ras.ru

Edited by L. Fabian, University of East Anglia, England (Received 27 May 2020; accepted 16 July 2020; online 21 July 2020)

The title compound, C6H11NO2·2H2O2, is the richest (by molar ratio) in hydrogen peroxide among the peroxosolvates of aliphatic α-amino acids. The asymmetric unit contains a zwitterionic pipecolinic acid mol­ecule and two hydrogen peroxide mol­ecules. The two crystallographically independent hydrogen peroxide mol­ecules form a different number of hydrogen bonds: one forms two as donor and two as acceptor ([2,2] mode) and the other forms two as donor and one as acceptor ([2,1] mode). The latter hydrogen peroxide mol­ecule forms infinite hydrogen-bonded hydro­peroxo chains running along the c-axis direction, which is unusual for aliphatic α-amino acid peroxosolvates.

1. Chemical context

Peroxosolvates are crystalline adducts of hydrogen peroxide with various organic or inorganic compounds. Since they are convenient solid sources of active oxygen, some of them have become widely used commercial bleaching, disinfection and oxidation reagents (Jakob et al., 2012[Jakob, H., Leininger, S., Lehmann, T., Jacobi, S. & Gutewort, S. (2012). Ullmann's Encyclopedia of Industrial Chemistry, pp 1-33. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.]; Cronin et al., 2017[Cronin, D. J., Zhang, X., Bartley, J. P. & Doherty, W. O. S. (2017). ACS Sustainable Chem. Eng. 5, 6253-6260.]). It is well known that their stability is strongly dependent on the hydrogen-bonded motifs formed by hydrogen peroxide (Chernyshov et al., 2017[Chernyshov, I. Yu., Vener, M. V., Prikhodchenko, P. V., Medvedev, A. G., Lev, O. & Churakov, A. V. (2017). Cryst. Growth Des. 17, 214-220.]). On other hand, H2O2 is one of the most important signalling mol­ecules in biological systems (Li et al., 2020[Li, J.-G., Fan, M., Hua, W., Tian, Y., Chen, L.-G., Sun, Y. & Bai, M.-Y. (2020). Plant Cell, 32, 984-999.]; To et al., 2020[To, E. E., O'Leary, J. J., O'Neill, L. A. J., Vlahos, R., Bozinovski, S., Porter, C. J. H., Brooks, R. D., Brooks, D. A. & Selemidis, S. (2020). Antioxid. & Redox Signal. 32, 982-992.]). The structures of amino acid peroxosolvates have been studied intensively as simple models of hydrogen peroxide binding with proteins (Prikhodchenko et al., 2011[Prikhodchenko, P. V., Medvedev, A. G., Tripol'skaya, T. A., Churakov, A. V., Wolanov, Y., Howard, J. A. K. & Lev, O. (2011). CrystEngComm, 13, 2399-2407.]; Kapustin et al., 2014[Kapustin, E. A., Minkov, V. S. & Boldyreva, E. V. (2014). CrystEngComm, 16, 10165-10168.]). Peroxide and water–peroxide clusters are now of special inter­est since they may simulate cooperative hydrogen-bonded switching in the transportation of hydrogen peroxide species through cell membranes (Grishanov et al., 2017[Grishanov, D. A., Navasardyan, M. A., Medvedev, A. G., Lev, O., Prikhodchenko, P. V. & Churakov, A. V. (2017). Angew. Chem. Int. Ed. 56, 15241-15245.]; Varadaraj & Kumari, 2020[Varadaraj, K. & Kumari, S. S. (2020). Biochem. Biophys. Res. Commun. 524, 1025-1029.]; Wang et al., 2020[Wang, H., Schoebel, S., Schmitz, F., Dong, H. & Hedfalk, K. (2020). Biochim. Biophys. Acta, 1862, 183065.]). Recently, several structures of organic peroxosolvates with peroxide hydrogen-bonded 1D-aggregates have been reported (Chernyshov et al., 2017[Chernyshov, I. Yu., Vener, M. V., Prikhodchenko, P. V., Medvedev, A. G., Lev, O. & Churakov, A. V. (2017). Cryst. Growth Des. 17, 214-220.]; Navasardyan et al., 2017[Navasardyan, M. A., Bezzubov, S. I., Kuz'mina, L. G., Prikhodchenko, P. V. & Churakov, A. V. (2017). Acta Cryst. E73, 1793-1796.], 2018[Navasardyan, M. A., Grishanov, D. A., Tripol'skaya, T. A., Kuz'mina, L. G., Prikhodchenko, P. V. & Churakov, A. V. (2018). CrystEngComm, 20, 7413-7416.]).

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound (I)[link] comprises a pipecolinic acid mol­ecule and two crystallographically independent peroxide mol­ecules (Fig. 1[link]). As expected, the amino acid coformer exhibits the zwitterionic form with almost equal C—O distances [1.2429 (11) and 1.2639 (11) Å]. All bond lengths and angles in the organic coformer are close to those observed in the structures of pure pipecolinic acid [(II); Stapleton & Tiekink, 2001[Stapleton, C. P. D. & Tiekink, E. R. T. (2001). Acta Cryst. E57, o75-o76.]) and pipecolinic acid tetra­hydrate [(III); Bhattacharjee & Chacko, 1979[Bhattacharjee, S. K. & Chacko, K. K. (1979). Acta Cryst. B35, 396-398.]; Lyssenko et al., 2006[Lyssenko, K. A., Nelyubina, Y. V., Kostyanovsky, R. G. & Antipin, M. Yu. (2006). ChemPhysChem, 7, 2453-2455.]]. As observed for (II) and (III), the pipecolinic acid mol­ecule in (I)[link] adopts a chair conformation with the carboxyl­ate group occupying the equatorial position. It is of inter­est to note in all three structures (I)[link], (II), and (III), the core amino acid fragments N—C—CO2 are almost planar, with N—C—C—O torsion angles of less than 22°. This is obviously caused by electrostatic inter­actions between the oppositely charged amino and carb­oxy­lic groups.

[Figure 1]
Figure 1
The asymmetric unit of (I)[link] with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.

3. Supra­molecular features

In the crystal, the organic mol­ecule acts as a donor of two N+—H⋯OHOH, and as an acceptor of three COO⋯HOOH hydrogen bonds (Table 1[link], Fig. 2[link]). The O—O bond lengths [1.4600 (9) and 1.4646 (11) Å] are typical for amino acid peroxosolvates (mean value of 1.465 Å according to the latest, March 2020 version of the CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). Both crystallographically independent peroxide mol­ecules occupy general positions and adopt skew conformations with H—O—O—H torsion angles of 102.5 (15) and −105.1 (15)°. It is well known that peroxide mol­ecules always form at least two donor hydrogen bonds in the structures of organic peroxosolvates (Chernyshov et al., 2017[Chernyshov, I. Yu., Vener, M. V., Prikhodchenko, P. V., Medvedev, A. G., Lev, O. & Churakov, A. V. (2017). Cryst. Growth Des. 17, 214-220.]) and compound (I)[link] is no exception. However, the symmetry-independent peroxide mol­ecules in (I)[link] form a different total number of hydrogen bonds: two donor HOOH⋯O2C and two acceptor N+—H⋯OHOH for H3—O3—O4—H4 ([2,2] mode; Table 1[link], Fig. 3[link]) and two donor HOOH⋯O2C and HOOH⋯OHOH together with one acceptor for H5—O5—O6—H6 ([2,1] mode; Table 1[link], Fig. 4[link]). The occurrence of inter­peroxide hydrogen-bonds results in the formation of simple infinite hydrogen-bonded `hydro­peroxo'-linked chains (Grishanov et al., 2017[Grishanov, D. A., Navasardyan, M. A., Medvedev, A. G., Lev, O., Prikhodchenko, P. V. & Churakov, A. V. (2017). Angew. Chem. Int. Ed. 56, 15241-15245.]), running along the c-axis direction (Fig. 5[link]). It is significant that such chains and HOOH⋯OHOH hydrogen bonds were not observed previously in the structures of aliphatic α-amino acid peroxosolvates. The reason for this is that charge-assisted HOOH⋯O2C bonds are energetically preferable to HOOH⋯OHOH inter­actions (Jesus & Redinha, 2011[Jesus, A. J. L. & Redinha, J. S. (2011). J. Phys. Chem. A, 115, 14069-14077.]; Zick & Geiger, 2018[Zick, P. L. & Geiger, D. K. (2018). Acta Cryst. C74, 1725-1731.]). For example, in (I)[link] the only inter­peroxide hydrogen-bond O5—H5⋯O6 is noticeably longer [2.778 (1) Å] than the three HOOH⋯O2C bonds [2.641 (1)–2.749 (1) Å].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1 0.872 (17) 1.819 (17) 2.6463 (10) 157.8 (15)
O4—H4⋯O2i 0.866 (18) 1.889 (18) 2.7490 (10) 172.2 (15)
O6—H6⋯O1 0.881 (16) 1.760 (16) 2.6412 (10) 177.4 (14)
O5—H5⋯O6ii 0.883 (17) 1.898 (18) 2.7777 (12) 174.4 (15)
N1—H1⋯O3iii 0.912 (15) 1.961 (15) 2.8336 (11) 159.6 (13)
N1—H2⋯O4iv 0.875 (15) 2.112 (15) 2.9459 (11) 159.1 (12)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) x-1, y, z; (iv) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
Pipecolinic acid with neighbouring hydrogen-bonded mol­ecules. Hydrogen bonds are shown as dashed lines. [Symmetry codes: (iii) −1 + x, y, z; (iv) 1 − x, 1 − y, 1 − z; (v) 1 − x, 1 − y, −z.]
[Figure 3]
Figure 3
Hydrogen bonds formed by the peroxide mol­ecule H3—O3—O4—H4. Hydrogen bonds are shown as dashed lines. [Symmetry codes: (i) 1 − x, 1 − y, −z; (vi) 1 + x, y, z; (vii) 1 − x, 1 − y, 1 − z.]
[Figure 4]
Figure 4
Hydrogen bonds formed by peroxide mol­ecule H5—O5—O6—H6. Hydrogen bonds are shown as dashed lines. [Symmetry codes: (ii) x, [{3\over 2}] − y, [{1\over 2}] + z; (viii) x, [{3\over 2}] − y, −[{1\over 2}] + z.]
[Figure 5]
Figure 5
Peroxide hydrogen-bonded chains parallel to the c axis. Hydrogen bonds are shown as dashed lines.

4. Database survey

Aliphatic α-amino acids contain side chains without heteroatoms suitable for hydrogen-bonding. Up to date, six structures of their peroxosolvates are known: monoperoxosolvates of N,N-di­methyl­glycine (C4H9NO2; Kapustin et al., 2014[Kapustin, E. A., Minkov, V. S. & Boldyreva, E. V. (2014). CrystEngComm, 16, 10165-10168.]), N-methyl­glycine (sarcosine) (C3H7NO2; Navasardyan et al., 2017[Navasardyan, M. A., Bezzubov, S. I., Kuz'mina, L. G., Prikhodchenko, P. V. & Churakov, A. V. (2017). Acta Cryst. E73, 1793-1796.]), isoleucine (C6H13NO2; Prikhodchenko et al., 2011[Prikhodchenko, P. V., Medvedev, A. G., Tripol'skaya, T. A., Churakov, A. V., Wolanov, Y., Howard, J. A. K. & Lev, O. (2011). CrystEngComm, 13, 2399-2407.]); sesquiperoxosolvates of glycine (C2H5NO2), DL-2-amino­butyric acid (C4H9NO2) and L-phenyl­alanine (C9H11NO2; Prikhodchenko et al., 2011[Prikhodchenko, P. V., Medvedev, A. G., Tripol'skaya, T. A., Churakov, A. V., Wolanov, Y., Howard, J. A. K. & Lev, O. (2011). CrystEngComm, 13, 2399-2407.]). In all of these structures, the organic mol­ecules exist as zwitterions and all peroxide hydrogen atoms are involved in charge-assisted hydrogen-bonds with the carboxyl­ate groups. All peroxide mol­ecules adopt skew conformations with H—O—O—H torsion angles varying between 88.6 and 166.3°.

The carboxyl­ate anions possess four sp2-hybridized lone electron pairs suitable for hydrogen-bond formation (Fig. 6[link]) (Mills & Dean, 1996[Mills, J. E. J. & Dean, P. M. (1996). J. Comput. Aided Mol. Des. 10, 607-622.]). It is well known that syn and anti lone pairs exhibit noticeably different basicity (Gandour, 1981[Gandour, R. D. (1981). Bioorg. Chem. 10, 169-176.]; Pal et al., 2018[Pal, R., Reddy, M., Dinesh, B., Venkatesha, M., Grabowsky, S., Jelsch, C. & Guru Row, T. N. (2018). J. Phys. Chem. A, 122, 3665-3679.]) and hydrogen-bonding properties as a result of electronic and steric effects (Gorbitz & Etter, 1992[Gorbitz, C. H. & Etter, M. C. (1992). J. Am. Chem. Soc. 114, 627-631.]; Pranata, 1993[Pranata, J. (1993). J. Comput. Chem. 14, 685-690.]). Nine hydrogen-bonded linkage modes are theoretically possible in the structures of amino acid peroxosolvates, taking into account that bifurcated HOOH⋯O bonds are not known (Fig. 7[link]). The two simplest modes [0;S] and [0;A] have not been observed in peroxosolvates of α-amino acids, since the peroxide/acid molar ratio is greater than or equal to 1 in each reported structure. The [S;S] linkage was observed in sarcosine monoperoxosolvate. The [S;A] mode was found for the N,N-di­methyl­glycine and isoleucine monosolvates. Examples of neither the [0;SA] nor the [A;A] case are currently known. As for three hydrogen bonds, both [S;SA] and [SA;A] linkages were found in the sesquiperoxosolvate structures of glycine, DL-2-amino­butyric acid and L-phenyl­alanine. Following the same logic, we expected to find [SA;SA] in the structure of the title diperoxosolvate (I)[link]. However, the triple hydrogen-bonded case [S;SA] occurred, with the fourth donor hydrogen bond HOOH⋯O engaged in forming hydrogen-bonded peroxide chains. It has been shown that the ability of carb­oxy­lic anti-orbitals to form hydrogen bonds is strongly affected by steric hindrance caused by β-substituents in the side chains of carb­oxy­lic acids (Gorbitz & Etter, 1992[Gorbitz, C. H. & Etter, M. C. (1992). J. Am. Chem. Soc. 114, 627-631.]). It is clear that in (I)[link] the unfeasibility of the fourth carb­oxy­lic hydrogen bond is the result of steric effects caused by the peroxide mol­ecules hydrogen bonded with the ammonium group (Fig. 2[link]). It should be noted that the spatial arrangement of the endocyclic amino group in (I)[link] is predefined by the aforementioned planarity of the N—C—CO2 amino acid fragment.

[Figure 6]
Figure 6
The mutual arrangement of syn and anti lone electron pairs of the carboxyl­ate anion.
[Figure 7]
Figure 7
Possible hydrogen-bonded motifs in the structures of amino acid peroxosolvates.

5. Synthesis and crystallization

96% Hydrogen peroxide was prepared by an extraction method from serine peroxosolvate (Wolanov et al., 2010[Wolanov, Y., Lev, O., Churakov, A. V., Medvedev, A. G., Novotortsev, V. M. & Prikhodchenko, P. V. (2010). Tetrahedron, 66, 5130-5133.]). Colourless prismatic crystals of the title compound were obtained by cooling a saturated solution (r.t.) of pipecolinic acid (Aldrich) in 96% hydrogen peroxide to 255 K. Handling procedures for concentrated hydrogen peroxide have been described in detail (danger of explosion!) by Schumb et al. (1955[Schumb, W. C., Satterfield, C. N. & Wentworth, R. P. (1955). Hydrogen peroxide. New York: Reinhold Publishing Corp.]).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All hydrogen atoms were found in difference-Fourier maps and were refined with independent positional and isotropic displacement parameters.

Table 2
Experimental details

Crystal data
Chemical formula C6H11NO2·2H2O2
Mr 197.19
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 6.5739 (4), 22.9278 (15), 6.0647 (4)
β (°) 93.770 (1)
V3) 912.12 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.13
Crystal size (mm) 0.50 × 0.50 × 0.50
 
Data collection
Diffractometer Bruker SMART APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.659, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 9809, 2418, 2170
Rint 0.018
(sin θ/λ)max−1) 0.682
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.084, 1.08
No. of reflections 2418
No. of parameters 178
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.44, −0.19
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008).

DL-Piperidinium-2-carboxylate bis(hydrogen peroxide) top
Crystal data top
C6H11NO2·2H2O2F(000) = 424
Mr = 197.19Dx = 1.436 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.5739 (4) ÅCell parameters from 5232 reflections
b = 22.9278 (15) Åθ = 3.1–30.6°
c = 6.0647 (4) ŵ = 0.13 mm1
β = 93.770 (1)°T = 150 K
V = 912.12 (10) Å3Nugget, colourless
Z = 40.50 × 0.50 × 0.50 mm
Data collection top
Bruker SMART APEXII
diffractometer
2170 reflections with I > 2σ(I)
ω scansRint = 0.018
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
θmax = 29.0°, θmin = 3.1°
Tmin = 0.659, Tmax = 0.746h = 88
9809 measured reflectionsk = 3031
2418 independent reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: difference Fourier map
wR(F2) = 0.084All H-atom parameters refined
S = 1.08 w = 1/[σ2(Fo2) + (0.0419P)2 + 0.218P]
where P = (Fo2 + 2Fc2)/3
2418 reflections(Δ/σ)max = 0.001
178 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.19 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.02450 (12)0.57964 (3)0.57611 (13)0.01528 (16)
H10.093 (2)0.5604 (6)0.463 (2)0.029 (3)*
H20.039 (2)0.5538 (6)0.661 (2)0.025 (3)*
O10.40875 (11)0.60608 (3)0.25095 (12)0.02266 (17)
O20.21298 (11)0.52860 (3)0.30218 (11)0.02005 (16)
C10.17311 (14)0.61336 (4)0.70359 (15)0.01777 (18)
H110.2642 (19)0.5851 (6)0.759 (2)0.021 (3)*
H120.2449 (19)0.6384 (6)0.597 (2)0.024 (3)*
C20.05768 (15)0.64708 (4)0.88702 (15)0.01993 (19)
H210.157 (2)0.6679 (6)0.968 (2)0.029 (3)*
H220.010 (2)0.6192 (6)0.988 (2)0.029 (3)*
C30.10082 (16)0.68727 (4)0.79508 (17)0.0218 (2)
H320.033 (2)0.7172 (6)0.703 (2)0.027 (3)*
H310.179 (2)0.7082 (6)0.916 (2)0.030 (3)*
C40.24769 (14)0.65223 (4)0.66075 (16)0.01923 (19)
H410.343 (2)0.6784 (6)0.590 (2)0.027 (3)*
H420.326 (2)0.6256 (6)0.759 (2)0.027 (3)*
C50.13006 (13)0.61800 (4)0.47837 (14)0.01483 (17)
H520.0520 (18)0.6451 (5)0.377 (2)0.019 (3)*
C60.26188 (13)0.58042 (4)0.33422 (14)0.01570 (18)
O30.74598 (11)0.54761 (3)0.18291 (11)0.01986 (16)
O40.72361 (11)0.48529 (3)0.13828 (12)0.02162 (16)
H40.737 (2)0.4839 (7)0.003 (3)0.040 (4)*
H30.620 (3)0.5583 (7)0.194 (3)0.040 (4)*
O50.67290 (12)0.72538 (4)0.33260 (14)0.02787 (18)
O60.49801 (12)0.71623 (3)0.17405 (13)0.02507 (17)
H50.613 (2)0.7454 (7)0.434 (3)0.041 (4)*
H60.472 (2)0.6792 (7)0.199 (2)0.034 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0163 (3)0.0143 (4)0.0153 (3)0.0005 (3)0.0025 (3)0.0015 (3)
O10.0229 (4)0.0170 (3)0.0293 (4)0.0015 (3)0.0110 (3)0.0023 (3)
O20.0237 (3)0.0149 (3)0.0221 (3)0.0016 (2)0.0060 (3)0.0044 (2)
C10.0169 (4)0.0183 (4)0.0185 (4)0.0023 (3)0.0044 (3)0.0002 (3)
C20.0237 (5)0.0202 (4)0.0163 (4)0.0037 (4)0.0042 (3)0.0023 (3)
C30.0251 (5)0.0179 (4)0.0225 (5)0.0009 (4)0.0036 (4)0.0074 (4)
C40.0186 (4)0.0182 (4)0.0211 (4)0.0024 (3)0.0023 (3)0.0057 (3)
C50.0165 (4)0.0132 (4)0.0150 (4)0.0002 (3)0.0028 (3)0.0004 (3)
C60.0170 (4)0.0162 (4)0.0140 (4)0.0019 (3)0.0018 (3)0.0012 (3)
O30.0193 (3)0.0172 (3)0.0229 (3)0.0006 (3)0.0008 (3)0.0044 (2)
O40.0301 (4)0.0158 (3)0.0187 (3)0.0029 (3)0.0003 (3)0.0012 (2)
O50.0261 (4)0.0308 (4)0.0265 (4)0.0044 (3)0.0001 (3)0.0053 (3)
O60.0308 (4)0.0200 (4)0.0237 (4)0.0027 (3)0.0029 (3)0.0024 (3)
Geometric parameters (Å, º) top
N1—C51.4955 (11)C3—H320.974 (14)
N1—C11.4996 (11)C3—H310.991 (14)
N1—H10.912 (15)C4—C51.5247 (12)
N1—H20.875 (15)C4—H410.986 (14)
O1—C61.2639 (11)C4—H420.975 (14)
O2—C61.2429 (11)C5—C61.5353 (12)
C1—C21.5166 (13)C5—H520.991 (12)
C1—H110.958 (13)O3—O41.4600 (9)
C1—H120.966 (13)O3—H30.872 (17)
C2—C31.5239 (14)O4—H40.866 (18)
C2—H210.968 (14)O5—O61.4646 (11)
C2—H220.972 (14)O5—H50.883 (17)
C3—C41.5313 (13)O6—H60.881 (16)
C5—N1—C1112.57 (7)C4—C3—H31109.3 (8)
C5—N1—H1107.6 (9)H32—C3—H31106.3 (11)
C1—N1—H1109.2 (9)C5—C4—C3110.40 (8)
C5—N1—H2108.7 (9)C5—C4—H41107.7 (8)
C1—N1—H2110.4 (9)C3—C4—H41110.7 (8)
H1—N1—H2108.2 (12)C5—C4—H42110.0 (8)
N1—C1—C2109.24 (7)C3—C4—H42109.4 (8)
N1—C1—H11106.0 (8)H41—C4—H42108.6 (11)
C2—C1—H11112.4 (8)N1—C5—C4109.91 (7)
N1—C1—H12105.4 (8)N1—C5—C6108.62 (7)
C2—C1—H12112.9 (8)C4—C5—C6115.06 (7)
H11—C1—H12110.4 (11)N1—C5—H52106.0 (7)
C1—C2—C3111.17 (8)C4—C5—H52110.1 (7)
C1—C2—H21107.6 (8)C6—C5—H52106.7 (7)
C3—C2—H21112.8 (8)O2—C6—O1125.38 (8)
C1—C2—H22108.3 (8)O2—C6—C5118.40 (8)
C3—C2—H22109.6 (8)O1—C6—C5116.16 (8)
H21—C2—H22107.3 (11)O4—O3—H3101.8 (11)
C2—C3—C4110.34 (8)O3—O4—H4101.7 (10)
C2—C3—H32109.7 (8)O6—O5—H599.6 (11)
C4—C3—H32110.2 (8)O5—O6—H6100.4 (10)
C2—C3—H31111.0 (8)
C5—N1—C1—C258.48 (10)C3—C4—C5—C6179.22 (8)
N1—C1—C2—C356.95 (10)N1—C5—C6—O26.85 (11)
C1—C2—C3—C456.65 (11)C4—C5—C6—O2130.51 (9)
C2—C3—C4—C555.85 (11)N1—C5—C6—O1175.64 (8)
C1—N1—C5—C458.51 (10)C4—C5—C6—O151.98 (11)
C1—N1—C5—C6174.80 (7)H3—O3—O4—H4102.5 (15)
C3—C4—C5—N156.25 (10)H5—O5—O6—H6105.1 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O10.872 (17)1.819 (17)2.6463 (10)157.8 (15)
O4—H4···O2i0.866 (18)1.889 (18)2.7490 (10)172.2 (15)
O6—H6···O10.881 (16)1.760 (16)2.6412 (10)177.4 (14)
O5—H5···O6ii0.883 (17)1.898 (18)2.7777 (12)174.4 (15)
N1—H1···O3iii0.912 (15)1.961 (15)2.8336 (11)159.6 (13)
N1—H2···O4iv0.875 (15)2.112 (15)2.9459 (11)159.1 (12)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+3/2, z+1/2; (iii) x1, y, z; (iv) x+1, y+1, z+1.
 

Acknowledgements

X-ray diffraction studies were performed at the Centre of Shared Equipment of IGIC RAS.

Funding information

Funding for this research was provided by: Russian Foundation for Basic Research (award No. 20-03-00449).

References

First citationBhattacharjee, S. K. & Chacko, K. K. (1979). Acta Cryst. B35, 396–398.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChernyshov, I. Yu., Vener, M. V., Prikhodchenko, P. V., Medvedev, A. G., Lev, O. & Churakov, A. V. (2017). Cryst. Growth Des. 17, 214–220.  CSD CrossRef CAS Google Scholar
First citationCronin, D. J., Zhang, X., Bartley, J. P. & Doherty, W. O. S. (2017). ACS Sustainable Chem. Eng. 5, 6253-6260.  CrossRef CAS Google Scholar
First citationGandour, R. D. (1981). Bioorg. Chem. 10, 169–176.  CrossRef CAS Web of Science Google Scholar
First citationGorbitz, C. H. & Etter, M. C. (1992). J. Am. Chem. Soc. 114, 627–631.  CrossRef CAS Google Scholar
First citationGrishanov, D. A., Navasardyan, M. A., Medvedev, A. G., Lev, O., Prikhodchenko, P. V. & Churakov, A. V. (2017). Angew. Chem. Int. Ed. 56, 15241–15245.  CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJakob, H., Leininger, S., Lehmann, T., Jacobi, S. & Gutewort, S. (2012). Ullmann's Encyclopedia of Industrial Chemistry, pp 1–33. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.  Google Scholar
First citationJesus, A. J. L. & Redinha, J. S. (2011). J. Phys. Chem. A, 115, 14069–14077.  CrossRef CAS PubMed Google Scholar
First citationKapustin, E. A., Minkov, V. S. & Boldyreva, E. V. (2014). CrystEngComm, 16, 10165–10168.  CSD CrossRef CAS Google Scholar
First citationLi, J.-G., Fan, M., Hua, W., Tian, Y., Chen, L.-G., Sun, Y. & Bai, M.-Y. (2020). Plant Cell, 32, 984–999.  CrossRef CAS PubMed Google Scholar
First citationLyssenko, K. A., Nelyubina, Y. V., Kostyanovsky, R. G. & Antipin, M. Yu. (2006). ChemPhysChem, 7, 2453–2455.  CSD CrossRef PubMed CAS Google Scholar
First citationMills, J. E. J. & Dean, P. M. (1996). J. Comput. Aided Mol. Des. 10, 607–622.  CrossRef PubMed Web of Science Google Scholar
First citationNavasardyan, M. A., Bezzubov, S. I., Kuz'mina, L. G., Prikhodchenko, P. V. & Churakov, A. V. (2017). Acta Cryst. E73, 1793–1796.  CSD CrossRef IUCr Journals Google Scholar
First citationNavasardyan, M. A., Grishanov, D. A., Tripol'skaya, T. A., Kuz'mina, L. G., Prikhodchenko, P. V. & Churakov, A. V. (2018). CrystEngComm, 20, 7413–7416.  CSD CrossRef CAS Google Scholar
First citationPal, R., Reddy, M., Dinesh, B., Venkatesha, M., Grabowsky, S., Jelsch, C. & Guru Row, T. N. (2018). J. Phys. Chem. A, 122, 3665–3679.  CSD CrossRef CAS PubMed Google Scholar
First citationPranata, J. (1993). J. Comput. Chem. 14, 685–690.  CrossRef CAS Google Scholar
First citationPrikhodchenko, P. V., Medvedev, A. G., Tripol'skaya, T. A., Churakov, A. V., Wolanov, Y., Howard, J. A. K. & Lev, O. (2011). CrystEngComm, 13, 2399–2407.  Web of Science CSD CrossRef CAS Google Scholar
First citationSchumb, W. C., Satterfield, C. N. & Wentworth, R. P. (1955). Hydrogen peroxide. New York: Reinhold Publishing Corp.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStapleton, C. P. D. & Tiekink, E. R. T. (2001). Acta Cryst. E57, o75–o76.  CSD CrossRef IUCr Journals Google Scholar
First citationTo, E. E., O'Leary, J. J., O'Neill, L. A. J., Vlahos, R., Bozinovski, S., Porter, C. J. H., Brooks, R. D., Brooks, D. A. & Selemidis, S. (2020). Antioxid. & Redox Signal. 32, 982–992.  CrossRef CAS Google Scholar
First citationVaradaraj, K. & Kumari, S. S. (2020). Biochem. Biophys. Res. Commun. 524, 1025–1029.  CrossRef CAS PubMed Google Scholar
First citationWang, H., Schoebel, S., Schmitz, F., Dong, H. & Hedfalk, K. (2020). Biochim. Biophys. Acta, 1862, 183065.  CrossRef Google Scholar
First citationWolanov, Y., Lev, O., Churakov, A. V., Medvedev, A. G., Novotortsev, V. M. & Prikhodchenko, P. V. (2010). Tetrahedron, 66, 5130–5133.  Web of Science CrossRef CAS Google Scholar
First citationZick, P. L. & Geiger, D. K. (2018). Acta Cryst. C74, 1725–1731.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds