research communications
E)-4-{2,2-dichloro-1-[(3,5-dimethylphenyl)diazenyl]ethenyl}-N,N-dimethylaniline
and Hirshfeld surface analysis of (aInstitute of Natural and Applied Science, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cOrganic Chemistry Department, Baku State University, Z. Khalilov str. 23, AZ, 1148 Baku, Azerbaijan, dDepartment of Health & Biomedical Sciences, School of Life Science and Bioengineering, The Nelson Mandela Africa Institute of Science and Technology, PO Box 447, Arusha, Tanzania, and eDepartment of Chemistry, St. John's University of Tanzania, PO Box 47, Dodoma, Tanzania
*Correspondence e-mail: dmssjut@gmail.com
In the title compound, C18H19Cl2N3, the planes of the benzene rings subtend a dihedral angle of 77.07 (10)°. In the crystal, molecules are associated into inversion dimers via short Cl⋯Cl contacts [3.3763 (9) Å]. A Hirshfeld surface analysis indicates that the most important contact percentages for the different types of interactions are H⋯H (43.9%), Cl⋯H/H⋯Cl (22.9%), C⋯H/H⋯C (20.8%) and N⋯H/H⋯N (8.0%).
CCDC reference: 2014419
1. Chemical context
Aromatic etc. (Maharramov et al., 2010; Mahmudov et al., 2013). On the other hand, the study of both inter- and intramolecular non-covalent interactions in is important for our understanding of the factors governing the assembly of the molecules into supramolecular systems (see, for example, Mahmudov et al., 2015; Shixaliyev et al., 2014). When compared to well-explored hydrogen-bonding and π-interactions (see, for example, Akbari et al., 2017; Mahmoudi et al., 2018), the exploration of new intermolecular interactions such as halogen, chalcogen, pnictogen, tetrel and triel bonds is in progress. Thus, decorating the structure of with tailored functionalities (halogen, chalcogen and tetrel bond-donor centres) can be an important strategy to control and tune their functional properties such as their analytical and solvatochromic behaviour (Mahmudov et al., 2010; Mahmudov & Pombeiro, 2016).
provide ubiquitous motifs in organic chemistry and are widely used as organic dyes, indicators, pigments, food additives, ligands, radical reaction initiators, therapeutic agents,In order to continue our work in this direction, we now describe the synthesis and structure of the title compound, C18H19Cl2N3 (I) and its Hirshfeld surface analysis.
2. Structural commentary
The title compound has a non-planar molecular conformation (Fig. 1); the dihedral angle between the planes of the C1–C6 and C8–C13 aromatic rings is 77.07 (10)°. The amine N atom as well as the directly adjacent arene C atom are displaced out of the plane of the other five aromatic C atoms: the deviations are −0.009 (2) for C11 and −0.065 (2) Å for N3. Some key torsion angles describing the molecular conformation are C6—C1—N1—N2 [–0.5 (3)°], C1—N1—N2—C7 [–178.40 (15)°], N1—N2—C7—C8 [−6.1 (3)°], N1—N2—C7—C16 [–173.27 (17)°], N2—C7—C8—C13 [–72.1 (3)°], N2—C7—C16—Cl1 [–0.9 (3)°], N2—C7—C16—Cl2 [179.97 (14)°] and C8—C7—C16—Cl2 [–0.6 (3)°]. All of the C=C, N=N, C—Cl bond lengths in (I) are similar to those in the related azocompounds reported in the Database survey.
3. Supramolecular features
In the crystal, molecules of (I) are linked into inversion dimers via short halogen⋯halogen contacts [Cl1⋯Cl1i = 3.3763 (9) Å C16—Cl1⋯Cl1i = 141.47 (7)°; symmetry code: (i) = 2 – x, 1 − y, 2 − z] compared to the van der Waals radius sum of 3.50 Å. No other directional contacts could be identified and the shortest aromatic-ring-centroid separation is greater than 5.25 Å. The packing for (I) is shown in Fig. 2.
4. Hirshfeld surface analysis
The Hirshfeld surface (McKinnon et al., 2007) for (I) and its associated two-dimensional fingerprint plots (Spackman & McKinnon, 2002) were calculated using CrystalExplorer17 (Turner et al., 2017). Red, white and blue regions visible on the dnorm surface indicate contacts with distances shorter, longer and approximately equal to the van der Waals radii: the surface for (I) (Fig. 3) is almost featureless, indicating a lack of directional interactions.
The overall two-dimensional fingerprint plot (Fig. 4a) and those delineated into H⋯H, Cl⋯H/H⋯Cl and C⋯H/H⋯C contacts (McKinnon et al., 2007) are illustrated in Fig. 4b–d, respectively and percentage contributions to the Hirshfeld surface are given in Table 1. The most important interaction is H⋯H, contributing 43.9% to the overall surface, which is reflected in Fig. 4b as widely scattered points of high density due to the large hydrogen content of the molecule, with the tip at de = di = 1.15 Å. The reciprocal Cl⋯H/H⋯Cl interactions appear as two symmetrical broad wings with de + di ≃ 3.05 Å and contribute 22.9% to the Hirshfeld surface (Fig. 4c). The pair of characteristic wings in the fingerprint plot delineated into C⋯H/H⋯C contacts (Fig. 4d; 20.8% contribution to the Hirshfeld surface), have the tips at de + di ≃ 2.80 Å. The remaining contributions from the other different interatomic contacts to the Hirshfeld surfaces are listed in Table 1. The small contribution of the other weak intermolecular N⋯H/H⋯N, Cl⋯C/C⋯Cl, Cl⋯Cl, N⋯C/C⋯N and C⋯C contacts suggest a negligible effect on the packing. The dominance of H-atom contacts suggest that van der Waals interactions play the major role in establishing the crystal packing for (I) (Hathwar et al., 2015).
|
5. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.41, update of November 2019; Groom et al., 2016) the (E)-1-(2,2-dichloro-1-phenylethenyl)-2-phenyldiazene unit resulted in 25 hits. Six compounds are closely related to the title compound, viz. 1-(4-bromophenyl)-2-[2,2-dichloro-1-(4-nitrophenyl)ethenyl]diazene (CSD refcode HONBOE; Akkurt et al., 2019), 1-(4-chlorophenyl)-2-[2,2-dichloro-1-(4-nitrophenyl)ethenyl]diazene (HONBUK; Akkurt et al., 2019), 1-(4-chlorophenyl)-2-[2,2-dichloro-1-(4-fluorophenyl)ethenyl]diazene (HODQAV; Shikhaliyev et al., 2019), 1-[2,2-dichloro-1-(4-nitrophenyl)ethenyl]-2-(4-fluorophenyl)diazene (XIZREG; Atioğlu et al., 2019), 1,1-[methylenebis(4,1-phenylene)]bis[(2,2-dichloro-1-(4-nitrophenyl)ethenyl]diazene (LEQXIR; Shikhaliyev et al., 2018) and 1,1-[methylenebis(4,1-phenylene)]bis{[2,2-dichloro-1-(4-chlorophenyl) ethenyl]diazene} (LEQXOX; Shikhaliyev et al., 2018).
In the crystals of HONBOE and HONBUK, the aromatic rings form dihedral angles of 60.9 (2) and 64.1 (2)°, respectively. Molecules are linked through weak X⋯Cl contacts (X = Br for HONBOE and Cl for HONBUK), C—H⋯Cl and C—Cl⋯π interactions into sheets parallel to the ab plane. Additional van der Waals interactions consolidate the three-dimensional packing. In the crystal of HODQAV, the planes of the benzene rings make a dihedral angle of 56.13 (13)°. Molecules are stacked in columns along the a-axis direction via weak C—H⋯Cl hydrogen bonds and face-to-face π–π stacking interactions. The crystal packing is further consolidated by short Cl⋯Cl contacts. In XIZREG, the benzene rings form a dihedral angle of 63.29 (8)°. Molecules are linked by C—H⋯O hydrogen bonds into zigzag chains running along the c-axis direction. The crystal packing also features C—Cl⋯π, C—F⋯π and N—O⋯π interactions. In the crystals of LEQXIR and LEQXOX, the dihedral angles between the aromatic rings are 56.18 (12) and 60.31 (14)°, respectively. In LEQXIR, C—H⋯N and C—H⋯O hydrogen bonds and short Cl⋯O contacts occur and in LEQXOX C—H⋯N and short Cl⋯Cl contacts are observed.
6. Synthesis and crystallization
A 20 ml screw-neck vial was charged with DMSO (10 ml), (Z)-4-{[2-(3,5-dimethylphenyl)hydrazineylidene]methyl}-N,N-dimethylaniline (267 mg, 1.00 mmol), tetramethylethylenediamine (TMEDA) (295 mg, 2.50 mmol), CuCl (2 mg, 0.02 mmol) and CCl4 (20 mmol, 10 equiv). After 1–3 h (until TLC analysis showed complete consumption of the corresponding Schiff base) the reaction mixture was poured into ∼0.01 M solution of HCl (100 ml, pH = 2–3) and extracted with dichloromethane (3 × 20 ml). The combined organic phase was washed with water (3 × 50 ml), brine (30 ml), dried over anhydrous Na2SO4 and concentrated in vacuo using a rotary evaporator. The residue was purified by on silica gel using appropriate mixtures of hexane and dichloromethane (3:1–1:1) to form a red solid in 85% yield (m.p. 429 K). Orange plates of (I) were obtained by the slow evaporation of an ethanol solution. Analysis calculated for C18H19Cl2N3: C 62.08, H 5.50, N 12.07; found: C 62.01, H 5.48, N 12.03%. 1H NMR (300 MHz, CDCl3) δ 2.38 (6H, ArMe2), 3.05 (6H, NMe2), 6.88–7.43 (7H, Ar). 13C NMR (75MHz, CDCl3) δ 155.57, 153.15, 151.94, 147.03, 142.69, 138.64, 137.97, 133.14, 131.20, 127.08, 121.02, 21.20. ESI–MS: m/z: 349.18 [M+H]+.
7. Refinement
Crystal data, data collection and structure . All C-bound H atoms were placed in idealized locations and refined using a riding model with C—H = 0.93–0.96 Å. The constraint Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C) was applied in all cases.
details are summarized in Table 2Supporting information
CCDC reference: 2014419
https://doi.org/10.1107/S2056989020009202/hb7912sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020009202/hb7912Isup2.hkl
Data collection: APEX3 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).C18H19Cl2N3 | Z = 2 |
Mr = 348.26 | F(000) = 364 |
Triclinic, P1 | Dx = 1.293 Mg m−3 |
a = 8.1035 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.1965 (5) Å | Cell parameters from 7784 reflections |
c = 12.3665 (7) Å | θ = 2.3–25.7° |
α = 102.421 (2)° | µ = 0.37 mm−1 |
β = 95.880 (2)° | T = 296 K |
γ = 91.105 (2)° | Plate, orange |
V = 894.48 (8) Å3 | 0.28 × 0.22 × 0.18 mm |
Bruker APEXII CCD diffractometer | 2786 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.039 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 25.8°, θmin = 2.3° |
Tmin = 0.897, Tmax = 0.924 | h = −9→9 |
13675 measured reflections | k = −10→11 |
3339 independent reflections | l = −15→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.045 | H-atom parameters constrained |
wR(F2) = 0.125 | w = 1/[σ2(Fo2) + (0.0539P)2 + 0.3599P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.001 |
3339 reflections | Δρmax = 0.30 e Å−3 |
212 parameters | Δρmin = −0.21 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.4932 (2) | 0.5319 (2) | 0.78212 (16) | 0.0507 (4) | |
C2 | 0.3377 (3) | 0.5251 (2) | 0.72287 (17) | 0.0572 (5) | |
H2A | 0.313279 | 0.592879 | 0.678105 | 0.069* | |
C3 | 0.2180 (2) | 0.4186 (2) | 0.72940 (19) | 0.0586 (5) | |
C4 | 0.2585 (2) | 0.3198 (2) | 0.79718 (18) | 0.0578 (5) | |
H4A | 0.179261 | 0.247628 | 0.801995 | 0.069* | |
C5 | 0.4136 (2) | 0.3245 (2) | 0.85843 (16) | 0.0528 (4) | |
C6 | 0.5313 (2) | 0.4323 (2) | 0.85097 (16) | 0.0515 (4) | |
H6A | 0.635267 | 0.438287 | 0.891630 | 0.062* | |
C7 | 0.8563 (2) | 0.7644 (2) | 0.81327 (15) | 0.0486 (4) | |
C8 | 0.8188 (2) | 0.8616 (2) | 0.73299 (15) | 0.0470 (4) | |
C9 | 0.7799 (3) | 1.0079 (2) | 0.76813 (17) | 0.0624 (5) | |
H9A | 0.780539 | 1.047283 | 0.844019 | 0.075* | |
C10 | 0.7401 (3) | 1.0978 (2) | 0.69421 (18) | 0.0663 (6) | |
H10A | 0.713687 | 1.195886 | 0.721428 | 0.080* | |
C11 | 0.7385 (2) | 1.0455 (2) | 0.58013 (16) | 0.0530 (4) | |
C12 | 0.7818 (4) | 0.8986 (3) | 0.54516 (18) | 0.0731 (7) | |
H12A | 0.785747 | 0.859575 | 0.469609 | 0.088* | |
C13 | 0.8188 (3) | 0.8099 (2) | 0.61981 (18) | 0.0705 (6) | |
H13A | 0.844835 | 0.711493 | 0.593078 | 0.085* | |
C14 | 0.0476 (3) | 0.4121 (3) | 0.6668 (3) | 0.0815 (7) | |
H14A | 0.015539 | 0.310513 | 0.631791 | 0.122* | |
H14B | 0.049299 | 0.470111 | 0.610925 | 0.122* | |
H14C | −0.030567 | 0.451581 | 0.717658 | 0.122* | |
C15 | 0.4523 (3) | 0.2146 (3) | 0.9306 (2) | 0.0681 (6) | |
H15A | 0.553126 | 0.246587 | 0.978497 | 0.102* | |
H15B | 0.465759 | 0.118284 | 0.884317 | 0.102* | |
H15C | 0.362933 | 0.208661 | 0.974908 | 0.102* | |
C16 | 0.9971 (2) | 0.7786 (2) | 0.88186 (16) | 0.0520 (4) | |
C17 | 0.6238 (4) | 1.2751 (3) | 0.5403 (2) | 0.0806 (7) | |
H17A | 0.556425 | 1.271764 | 0.599308 | 0.121* | |
H17B | 0.556809 | 1.299516 | 0.478616 | 0.121* | |
H17C | 0.711966 | 1.349476 | 0.566573 | 0.121* | |
C18 | 0.6996 (5) | 1.0776 (3) | 0.3882 (2) | 0.0944 (9) | |
H18A | 0.639013 | 0.983527 | 0.364268 | 0.142* | |
H18B | 0.813161 | 1.065188 | 0.373532 | 0.142* | |
H18C | 0.651020 | 1.147779 | 0.348239 | 0.142* | |
Cl1 | 1.04137 (8) | 0.67088 (7) | 0.97728 (5) | 0.0734 (2) | |
Cl2 | 1.15092 (7) | 0.90973 (7) | 0.88372 (5) | 0.0707 (2) | |
N1 | 0.6056 (2) | 0.64606 (18) | 0.76759 (14) | 0.0552 (4) | |
N2 | 0.7438 (2) | 0.64937 (17) | 0.82395 (13) | 0.0523 (4) | |
N3 | 0.6932 (3) | 1.1321 (2) | 0.50518 (15) | 0.0745 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0541 (10) | 0.0443 (9) | 0.0535 (10) | −0.0068 (8) | 0.0080 (8) | 0.0098 (8) |
C2 | 0.0576 (11) | 0.0520 (11) | 0.0617 (12) | 0.0014 (8) | 0.0037 (9) | 0.0127 (9) |
C3 | 0.0487 (10) | 0.0522 (11) | 0.0701 (12) | −0.0004 (8) | 0.0069 (9) | 0.0031 (9) |
C4 | 0.0515 (11) | 0.0497 (11) | 0.0695 (13) | −0.0095 (8) | 0.0145 (9) | 0.0044 (9) |
C5 | 0.0587 (11) | 0.0445 (10) | 0.0555 (11) | −0.0058 (8) | 0.0135 (9) | 0.0085 (8) |
C6 | 0.0522 (10) | 0.0489 (10) | 0.0524 (10) | −0.0075 (8) | 0.0047 (8) | 0.0104 (8) |
C7 | 0.0573 (10) | 0.0433 (9) | 0.0470 (9) | −0.0069 (8) | 0.0098 (8) | 0.0127 (7) |
C8 | 0.0526 (10) | 0.0438 (9) | 0.0462 (9) | −0.0061 (7) | 0.0053 (7) | 0.0139 (7) |
C9 | 0.0852 (15) | 0.0571 (12) | 0.0450 (10) | 0.0091 (10) | 0.0075 (10) | 0.0105 (9) |
C10 | 0.0933 (16) | 0.0507 (11) | 0.0555 (11) | 0.0152 (11) | 0.0078 (11) | 0.0116 (9) |
C11 | 0.0605 (11) | 0.0506 (10) | 0.0509 (10) | 0.0002 (8) | 0.0071 (8) | 0.0173 (8) |
C12 | 0.116 (2) | 0.0619 (13) | 0.0454 (11) | 0.0188 (13) | 0.0177 (11) | 0.0156 (9) |
C13 | 0.1110 (19) | 0.0516 (11) | 0.0516 (11) | 0.0172 (12) | 0.0162 (11) | 0.0124 (9) |
C14 | 0.0548 (13) | 0.0765 (16) | 0.107 (2) | 0.0020 (11) | −0.0048 (12) | 0.0125 (14) |
C15 | 0.0748 (14) | 0.0611 (13) | 0.0729 (14) | −0.0112 (10) | 0.0133 (11) | 0.0237 (11) |
C16 | 0.0617 (11) | 0.0470 (10) | 0.0501 (10) | −0.0114 (8) | 0.0049 (8) | 0.0187 (8) |
C17 | 0.0918 (18) | 0.0726 (15) | 0.0815 (16) | 0.0185 (13) | −0.0053 (13) | 0.0312 (13) |
C18 | 0.147 (3) | 0.0867 (18) | 0.0594 (14) | 0.0169 (18) | 0.0137 (15) | 0.0345 (13) |
Cl1 | 0.0839 (4) | 0.0724 (4) | 0.0705 (4) | −0.0174 (3) | −0.0110 (3) | 0.0408 (3) |
Cl2 | 0.0679 (4) | 0.0737 (4) | 0.0743 (4) | −0.0273 (3) | −0.0064 (3) | 0.0340 (3) |
N1 | 0.0584 (10) | 0.0498 (9) | 0.0589 (9) | −0.0091 (7) | 0.0039 (8) | 0.0170 (7) |
N2 | 0.0568 (9) | 0.0478 (8) | 0.0543 (9) | −0.0093 (7) | 0.0075 (7) | 0.0161 (7) |
N3 | 0.1083 (16) | 0.0659 (11) | 0.0564 (10) | 0.0201 (11) | 0.0110 (10) | 0.0269 (9) |
C1—C2 | 1.384 (3) | C11—C12 | 1.391 (3) |
C1—C6 | 1.397 (3) | C12—C13 | 1.373 (3) |
C1—N1 | 1.429 (2) | C12—H12A | 0.9300 |
C2—C3 | 1.385 (3) | C13—H13A | 0.9300 |
C2—H2A | 0.9300 | C14—H14A | 0.9600 |
C3—C4 | 1.385 (3) | C14—H14B | 0.9600 |
C3—C14 | 1.506 (3) | C14—H14C | 0.9600 |
C4—C5 | 1.394 (3) | C15—H15A | 0.9600 |
C4—H4A | 0.9300 | C15—H15B | 0.9600 |
C5—C6 | 1.387 (3) | C15—H15C | 0.9600 |
C5—C15 | 1.503 (3) | C16—Cl1 | 1.7123 (19) |
C6—H6A | 0.9300 | C16—Cl2 | 1.7129 (18) |
C7—C16 | 1.336 (3) | C17—N3 | 1.438 (3) |
C7—N2 | 1.420 (2) | C17—H17A | 0.9600 |
C7—C8 | 1.485 (2) | C17—H17B | 0.9600 |
C8—C9 | 1.375 (3) | C17—H17C | 0.9600 |
C8—C13 | 1.378 (3) | C18—N3 | 1.433 (3) |
C9—C10 | 1.378 (3) | C18—H18A | 0.9600 |
C9—H9A | 0.9300 | C18—H18B | 0.9600 |
C10—C11 | 1.388 (3) | C18—H18C | 0.9600 |
C10—H10A | 0.9300 | N1—N2 | 1.254 (2) |
C11—N3 | 1.374 (3) | ||
C2—C1—C6 | 120.38 (17) | C12—C13—C8 | 122.3 (2) |
C2—C1—N1 | 115.34 (17) | C12—C13—H13A | 118.9 |
C6—C1—N1 | 124.28 (17) | C8—C13—H13A | 118.9 |
C1—C2—C3 | 120.85 (19) | C3—C14—H14A | 109.5 |
C1—C2—H2A | 119.6 | C3—C14—H14B | 109.5 |
C3—C2—H2A | 119.6 | H14A—C14—H14B | 109.5 |
C4—C3—C2 | 118.00 (19) | C3—C14—H14C | 109.5 |
C4—C3—C14 | 120.8 (2) | H14A—C14—H14C | 109.5 |
C2—C3—C14 | 121.2 (2) | H14B—C14—H14C | 109.5 |
C3—C4—C5 | 122.48 (18) | C5—C15—H15A | 109.5 |
C3—C4—H4A | 118.8 | C5—C15—H15B | 109.5 |
C5—C4—H4A | 118.8 | H15A—C15—H15B | 109.5 |
C6—C5—C4 | 118.55 (18) | C5—C15—H15C | 109.5 |
C6—C5—C15 | 120.77 (19) | H15A—C15—H15C | 109.5 |
C4—C5—C15 | 120.67 (18) | H15B—C15—H15C | 109.5 |
C5—C6—C1 | 119.72 (18) | C7—C16—Cl1 | 124.05 (14) |
C5—C6—H6A | 120.1 | C7—C16—Cl2 | 122.70 (14) |
C1—C6—H6A | 120.1 | Cl1—C16—Cl2 | 113.24 (11) |
C16—C7—N2 | 114.49 (16) | N3—C17—H17A | 109.5 |
C16—C7—C8 | 123.12 (16) | N3—C17—H17B | 109.5 |
N2—C7—C8 | 122.39 (16) | H17A—C17—H17B | 109.5 |
C9—C8—C13 | 116.53 (18) | N3—C17—H17C | 109.5 |
C9—C8—C7 | 121.42 (17) | H17A—C17—H17C | 109.5 |
C13—C8—C7 | 122.04 (17) | H17B—C17—H17C | 109.5 |
C8—C9—C10 | 121.94 (18) | N3—C18—H18A | 109.5 |
C8—C9—H9A | 119.0 | N3—C18—H18B | 109.5 |
C10—C9—H9A | 119.0 | H18A—C18—H18B | 109.5 |
C9—C10—C11 | 121.60 (19) | N3—C18—H18C | 109.5 |
C9—C10—H10A | 119.2 | H18A—C18—H18C | 109.5 |
C11—C10—H10A | 119.2 | H18B—C18—H18C | 109.5 |
N3—C11—C10 | 122.27 (19) | N2—N1—C1 | 113.12 (16) |
N3—C11—C12 | 121.46 (18) | N1—N2—C7 | 114.22 (16) |
C10—C11—C12 | 116.26 (18) | C11—N3—C18 | 121.15 (19) |
C13—C12—C11 | 121.38 (19) | C11—N3—C17 | 121.07 (19) |
C13—C12—H12A | 119.3 | C18—N3—C17 | 117.6 (2) |
C11—C12—H12A | 119.3 | ||
C6—C1—C2—C3 | −0.9 (3) | C9—C10—C11—C12 | −1.0 (4) |
N1—C1—C2—C3 | 179.58 (18) | N3—C11—C12—C13 | −176.6 (2) |
C1—C2—C3—C4 | 0.2 (3) | C10—C11—C12—C13 | 1.9 (4) |
C1—C2—C3—C14 | 178.9 (2) | C11—C12—C13—C8 | −1.4 (4) |
C2—C3—C4—C5 | 0.2 (3) | C9—C8—C13—C12 | −0.2 (4) |
C14—C3—C4—C5 | −178.5 (2) | C7—C8—C13—C12 | 179.0 (2) |
C3—C4—C5—C6 | 0.0 (3) | N2—C7—C16—Cl1 | −0.9 (3) |
C3—C4—C5—C15 | −179.74 (19) | C8—C7—C16—Cl1 | 178.48 (14) |
C4—C5—C6—C1 | −0.6 (3) | N2—C7—C16—Cl2 | 179.97 (14) |
C15—C5—C6—C1 | 179.08 (18) | C8—C7—C16—Cl2 | −0.6 (3) |
C2—C1—C6—C5 | 1.1 (3) | C2—C1—N1—N2 | 179.06 (17) |
N1—C1—C6—C5 | −179.40 (17) | C6—C1—N1—N2 | −0.5 (3) |
C16—C7—C8—C9 | −72.4 (3) | C1—N1—N2—C7 | −178.40 (15) |
N2—C7—C8—C9 | 107.0 (2) | C16—C7—N2—N1 | −173.27 (17) |
C16—C7—C8—C13 | 108.5 (3) | C8—C7—N2—N1 | −6.1 (3) |
N2—C7—C8—C13 | −72.1 (3) | C10—C11—N3—C18 | 177.2 (3) |
C13—C8—C9—C10 | 1.1 (3) | C12—C11—N3—C18 | −4.4 (4) |
C7—C8—C9—C10 | −178.0 (2) | C10—C11—N3—C17 | −8.3 (4) |
C8—C9—C10—C11 | −0.5 (4) | C12—C11—N3—C17 | 170.1 (3) |
C9—C10—C11—N3 | 177.5 (2) |
Contact | Percentage contribution |
H···H | 43.9 |
Cl···H/H···Cl | 22.9 |
C···H/H···C | 20.8 |
N···H/H···N | 8.0 |
Cl···C/C···Cl | 2.3 |
Cl···Cl | 1.4 |
N···C/C···N | 0.3 |
C···C | 0.3 |
Funding information
This work was funded by Science Development Foundation under the President of the Republic of Azerbaijan (grant No. EIF– BGM-4-RFTF-1/2017–21/13/4) and RFBR grant No. 18–53–06006.
References
Akbari, A. F., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888–14896. Web of Science PubMed Google Scholar
Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Niyazova, A. A., Shikhaliyeva, I. M. & Toze, F. A. A. (2019). Acta Cryst. E75, 1199–1204. Web of Science CSD CrossRef IUCr Journals Google Scholar
Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237–241. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Pashaev, F. G., Gasanov, A. G., Azimova, S. I., Askerov, R. K., Kurbanov, A. V. & Mahmudov, K. T. (2010). Dyes Pigments, 85, 1–6. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Seth, S. K., Bauzá, A., Zubkov, F. I., Gurbanov, A. V., White, J., Stilinović, V., Doert, T. & Frontera, A. (2018). CrystEngComm, 20, 2812–2821. Web of Science CSD CrossRef CAS Google Scholar
Mahmudov, K. T., Guedes da Silva, M. F. C., Sutradhar, M., Kopylovich, M. N., Huseynov, F. E., Shamilov, N. T., Voronina, A. A., Buslaeva, T. M. & Pombeiro, A. J. L. (2015). Dalton Trans. 44, 5602–5610. Web of Science CSD CrossRef CAS PubMed Google Scholar
Mahmudov, K. T., Kopylovich, M. N. & Pombeiro, A. J. L. (2013). Coord. Chem. Rev. 257, 1244–1281. Web of Science CrossRef CAS Google Scholar
Mahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Kopylovich, M. N. & Pombeiro, A. J. L. (2010). Anal. Lett. 43, 2923–2938. Web of Science CrossRef CAS Google Scholar
Mahmudov, K. T. & Pombeiro, A. J. L. (2016). Chem. Eur. J. 22, 16356–16398. Web of Science CrossRef CAS PubMed Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381. Web of Science CSD CrossRef CAS Google Scholar
Shikhaliyev, N. Q., Çelikesir, S. T., Akkurt, M., Bagirova, K. N., Suleymanova, G. T. & Toze, F. A. A. (2019). Acta Cryst. E75, 465–469. Web of Science CSD CrossRef IUCr Journals Google Scholar
Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807–4815. Web of Science CSD CrossRef CAS Google Scholar
Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.