research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (E)-4-{2,2-di­chloro-1-[(3,5-di­methyl­phen­yl)diazen­yl]ethen­yl}-N,N-di­methyl­aniline

CROSSMARK_Color_square_no_text.svg

aInstitute of Natural and Applied Science, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cOrganic Chemistry Department, Baku State University, Z. Khalilov str. 23, AZ, 1148 Baku, Azerbaijan, dDepartment of Health & Biomedical Sciences, School of Life Science and Bioengineering, The Nelson Mandela Africa Institute of Science and Technology, PO Box 447, Arusha, Tanzania, and eDepartment of Chemistry, St. John's University of Tanzania, PO Box 47, Dodoma, Tanzania
*Correspondence e-mail: dmssjut@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 7 May 2020; accepted 6 July 2020; online 10 July 2020)

In the title compound, C18H19Cl2N3, the planes of the benzene rings subtend a dihedral angle of 77.07 (10)°. In the crystal, mol­ecules are associated into inversion dimers via short Cl⋯Cl contacts [3.3763 (9) Å]. A Hirshfeld surface analysis indicates that the most important contact percentages for the different types of inter­actions are H⋯H (43.9%), Cl⋯H/H⋯Cl (22.9%), C⋯H/H⋯C (20.8%) and N⋯H/H⋯N (8.0%).

1. Chemical context

Aromatic azo compounds provide ubiquitous motifs in organic chemistry and are widely used as organic dyes, indicators, pigments, food additives, ligands, radical reaction initiators, therapeutic agents, etc. (Maharramov et al., 2010[Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Pashaev, F. G., Gasanov, A. G., Azimova, S. I., Askerov, R. K., Kurbanov, A. V. & Mahmudov, K. T. (2010). Dyes Pigments, 85, 1-6.]; Mahmudov et al., 2013[Mahmudov, K. T., Kopylovich, M. N. & Pombeiro, A. J. L. (2013). Coord. Chem. Rev. 257, 1244-1281.]). On the other hand, the study of both inter- and intra­molecular non-covalent inter­actions in azo compounds is important for our understanding of the factors governing the assembly of the mol­ecules into supra­molecular systems (see, for example, Mahmudov et al., 2015[Mahmudov, K. T., Guedes da Silva, M. F. C., Sutradhar, M., Kopylovich, M. N., Huseynov, F. E., Shamilov, N. T., Voronina, A. A., Buslaeva, T. M. & Pombeiro, A. J. L. (2015). Dalton Trans. 44, 5602-5610.]; Shixaliyev et al., 2014[Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807-4815.]). When compared to well-explored hydrogen-bonding and π-inter­actions (see, for example, Akbari et al., 2017[Akbari, A. F., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888-14896.]; Mahmoudi et al., 2018[Mahmoudi, G., Seth, S. K., Bauzá, A., Zubkov, F. I., Gurbanov, A. V., White, J., Stilinović, V., Doert, T. & Frontera, A. (2018). CrystEngComm, 20, 2812-2821.]), the exploration of new inter­molecular inter­actions such as halogen, chalcogen, pnictogen, tetrel and triel bonds is in progress. Thus, decorating the structure of azo compounds with tailored functionalities (halogen, chalcogen and tetrel bond-donor centres) can be an important strategy to control and tune their functional properties such as their analytical and solvatochromic behaviour (Mahmudov et al., 2010[Mahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Kopylovich, M. N. & Pombeiro, A. J. L. (2010). Anal. Lett. 43, 2923-2938.]; Mahmudov & Pombeiro, 2016[Mahmudov, K. T. & Pombeiro, A. J. L. (2016). Chem. Eur. J. 22, 16356-16398.]).

[Scheme 1]

In order to continue our work in this direction, we now describe the synthesis and structure of the title compound, C18H19Cl2N3 (I)[link] and its Hirshfeld surface analysis.

2. Structural commentary

The title compound has a non-planar mol­ecular conformation (Fig. 1[link]); the dihedral angle between the planes of the C1–C6 and C8–C13 aromatic rings is 77.07 (10)°. The amine N atom as well as the directly adjacent arene C atom are displaced out of the plane of the other five aromatic C atoms: the deviations are −0.009 (2) for C11 and −0.065 (2) Å for N3. Some key torsion angles describing the mol­ecular conformation are C6—C1—N1—N2 [–0.5 (3)°], C1—N1—N2—C7 [–178.40 (15)°], N1—N2—C7—C8 [−6.1 (3)°], N1—N2—C7—C16 [–173.27 (17)°], N2—C7—C8—C13 [–72.1 (3)°], N2—C7—C16—Cl1 [–0.9 (3)°], N2—C7—C16—Cl2 [179.97 (14)°] and C8—C7—C16—Cl2 [–0.6 (3)°]. All of the C=C, N=N, C—Cl bond lengths in (I)[link] are similar to those in the related azocompounds reported in the Database survey.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link] with displacement ellipsoids drawn at the 30% probability level.

3. Supra­molecular features

In the crystal, mol­ecules of (I)[link] are linked into inversion dimers via short halogen⋯halogen contacts [Cl1⋯Cl1i = 3.3763 (9) Å C16—Cl1⋯Cl1i = 141.47 (7)°; symmetry code: (i) = 2 – x, 1 − y, 2 − z] compared to the van der Waals radius sum of 3.50 Å. No other directional contacts could be identified and the shortest aromatic-ring-centroid separation is greater than 5.25 Å. The packing for (I)[link] is shown in Fig. 2[link].

[Figure 2]
Figure 2
Crystal packing for (I)[link] viewed along the a-axis direction.

4. Hirshfeld surface analysis

The Hirshfeld surface (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) for (I)[link] and its associated two-dimensional fingerprint plots (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]) were calculated using CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]). Red, white and blue regions visible on the dnorm surface indicate contacts with distances shorter, longer and approximately equal to the van der Waals radii: the surface for (I)[link] (Fig. 3[link]) is almost featureless, indicating a lack of directional inter­actions.

[Figure 3]
Figure 3
A view of the three-dimensional Hirshfeld surface for (I)[link] plotted over dnorm in the range −0.07 to 1.33 a.u.

The overall two-dimensional fingerprint plot (Fig. 4[link]a) and those delineated into H⋯H, Cl⋯H/H⋯Cl and C⋯H/H⋯C contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are illustrated in Fig. 4[link]bd, respectively and percentage contributions to the Hirshfeld surface are given in Table 1[link]. The most important inter­action is H⋯H, contributing 43.9% to the overall surface, which is reflected in Fig. 4[link]b as widely scattered points of high density due to the large hydrogen content of the mol­ecule, with the tip at de = di = 1.15 Å. The reciprocal Cl⋯H/H⋯Cl inter­actions appear as two symmetrical broad wings with de + di ≃ 3.05 Å and contribute 22.9% to the Hirshfeld surface (Fig. 4[link]c). The pair of characteristic wings in the fingerprint plot delineated into C⋯H/H⋯C contacts (Fig. 4[link]d; 20.8% contribution to the Hirshfeld surface), have the tips at de + di ≃ 2.80 Å. The remaining contributions from the other different inter­atomic contacts to the Hirshfeld surfaces are listed in Table 1[link]. The small contribution of the other weak inter­molecular N⋯H/H⋯N, Cl⋯C/C⋯Cl, Cl⋯Cl, N⋯C/C⋯N and C⋯C contacts suggest a negligible effect on the packing. The dominance of H-atom contacts suggest that van der Waals inter­actions play the major role in establishing the crystal packing for (I)[link] (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

Table 1
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for (I)

Contact Percentage contribution
H⋯H 43.9
Cl⋯H/H⋯Cl 22.9
C⋯H/H⋯C 20.8
N⋯H/H⋯N 8.0
Cl⋯C/C⋯Cl 2.3
Cl⋯Cl 1.4
N⋯C/C⋯N 0.3
C⋯C 0.3
[Figure 4]
Figure 4
A view of the two-dimensional fingerprint plots for (I)[link] showing (a) all inter­actions, and separated into (b) H⋯H, (c) Cl⋯H/H⋯Cl and (d) C⋯H/H⋯C inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface contacts.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.41, update of November 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) the (E)-1-(2,2-di­chloro-1-phenyl­ethen­yl)-2-phenyl­diazene unit resulted in 25 hits. Six compounds are closely related to the title compound, viz. 1-(4-bromo­phen­yl)-2-[2,2-di­chloro-1-(4-nitro­phen­yl)ethen­yl]diazene (CSD refcode HONBOE; Akkurt et al., 2019[Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Niyazova, A. A., Shikhaliyeva, I. M. & Toze, F. A. A. (2019). Acta Cryst. E75, 1199-1204.]), 1-(4-chloro­phen­yl)-2-[2,2-di­chloro-1-(4-nitro­phen­yl)ethen­yl]diazene (HONBUK; Akkurt et al., 2019[Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Niyazova, A. A., Shikhaliyeva, I. M. & Toze, F. A. A. (2019). Acta Cryst. E75, 1199-1204.]), 1-(4-chloro­phen­yl)-2-[2,2-di­chloro-1-(4-fluoro­phen­yl)ethen­yl]diazene (HODQAV; Shikhaliyev et al., 2019[Shikhaliyev, N. Q., Çelikesir, S. T., Akkurt, M., Bagirova, K. N., Suleymanova, G. T. & Toze, F. A. A. (2019). Acta Cryst. E75, 465-469.]), 1-[2,2-di­chloro-1-(4-nitro­phen­yl)ethen­yl]-2-(4-fluoro­phen­yl)diazene (XIZREG; Atioğlu et al., 2019[Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237-241.]), 1,1-[methyl­enebis(4,1-phenyl­ene)]bis­[(2,2-di­chloro-1-(4-nitro­phen­yl)ethen­yl]diaz­ene (LEQXIR; Shikhaliyev et al., 2018[Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377-381.]) and 1,1-[methyl­enebis(4,1-phenyl­ene)]bis­{[2,2-di­chloro-1-(4-chloro­phen­yl) ethen­yl]diazene} (LEQXOX; Shikhaliyev et al., 2018[Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377-381.]).

In the crystals of HONBOE and HONBUK, the aromatic rings form dihedral angles of 60.9 (2) and 64.1 (2)°, respectively. Mol­ecules are linked through weak X⋯Cl contacts (X = Br for HONBOE and Cl for HONBUK), C—H⋯Cl and C—Cl⋯π inter­actions into sheets parallel to the ab plane. Additional van der Waals inter­actions consolidate the three-dimensional packing. In the crystal of HODQAV, the planes of the benzene rings make a dihedral angle of 56.13 (13)°. Mol­ecules are stacked in columns along the a-axis direction via weak C—H⋯Cl hydrogen bonds and face-to-face ππ stacking inter­actions. The crystal packing is further consolidated by short Cl⋯Cl contacts. In XIZREG, the benzene rings form a dihedral angle of 63.29 (8)°. Mol­ecules are linked by C—H⋯O hydrogen bonds into zigzag chains running along the c-axis direction. The crystal packing also features C—Cl⋯π, C—F⋯π and N—O⋯π inter­actions. In the crystals of LEQXIR and LEQXOX, the dihedral angles between the aromatic rings are 56.18 (12) and 60.31 (14)°, respectively. In LEQXIR, C—H⋯N and C—H⋯O hydrogen bonds and short Cl⋯O contacts occur and in LEQXOX C—H⋯N and short Cl⋯Cl contacts are observed.

6. Synthesis and crystallization

A 20 ml screw-neck vial was charged with DMSO (10 ml), (Z)-4-{[2-(3,5-di­methyl­phen­yl)hydrazineyl­idene]meth­yl}-N,N-di­methyl­aniline (267 mg, 1.00 mmol), tetra­methyl­ethylenedi­amine (TMEDA) (295 mg, 2.50 mmol), CuCl (2 mg, 0.02 mmol) and CCl4 (20 mmol, 10 equiv). After 1–3 h (until TLC analysis showed complete consumption of the corres­ponding Schiff base) the reaction mixture was poured into ∼0.01 M solution of HCl (100 ml, pH = 2–3) and extracted with di­chloro­methane (3 × 20 ml). The combined organic phase was washed with water (3 × 50 ml), brine (30 ml), dried over anhydrous Na2SO4 and concentrated in vacuo using a rotary evaporator. The residue was purified by column chromatography on silica gel using appropriate mixtures of hexane and di­chloro­methane (3:1–1:1) to form a red solid in 85% yield (m.p. 429 K). Orange plates of (I)[link] were obtained by the slow evaporation of an ethanol solution. Analysis calculated for C18H19Cl2N3: C 62.08, H 5.50, N 12.07; found: C 62.01, H 5.48, N 12.03%. 1H NMR (300 MHz, CDCl3) δ 2.38 (6H, ArMe2), 3.05 (6H, NMe2), 6.88–7.43 (7H, Ar). 13C NMR (75MHz, CDCl3) δ 155.57, 153.15, 151.94, 147.03, 142.69, 138.64, 137.97, 133.14, 131.20, 127.08, 121.02, 21.20. ESI–MS: m/z: 349.18 [M+H]+.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All C-bound H atoms were placed in idealized locations and refined using a riding model with C—H = 0.93–0.96 Å. The constraint Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C) was applied in all cases.

Table 2
Experimental details

Crystal data
Chemical formula C18H19Cl2N3
Mr 348.26
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 8.1035 (4), 9.1965 (5), 12.3665 (7)
α, β, γ (°) 102.421 (2), 95.880 (2), 91.105 (2)
V3) 894.48 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.37
Crystal size (mm) 0.28 × 0.22 × 0.18
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.897, 0.924
No. of measured, independent and observed [I > 2σ(I)] reflections 13675, 3339, 2786
Rint 0.039
(sin θ/λ)max−1) 0.611
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.125, 1.03
No. of reflections 3339
No. of parameters 212
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.30, −0.21
Computer programs: APEX3 and SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016/6 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

(E)-4-{2,2-Dichloro-1-[(3,5-dimethylphenyl)diazenyl]ethenyl}-N,N-dimethylaniline top
Crystal data top
C18H19Cl2N3Z = 2
Mr = 348.26F(000) = 364
Triclinic, P1Dx = 1.293 Mg m3
a = 8.1035 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.1965 (5) ÅCell parameters from 7784 reflections
c = 12.3665 (7) Åθ = 2.3–25.7°
α = 102.421 (2)°µ = 0.37 mm1
β = 95.880 (2)°T = 296 K
γ = 91.105 (2)°Plate, orange
V = 894.48 (8) Å30.28 × 0.22 × 0.18 mm
Data collection top
Bruker APEXII CCD
diffractometer
2786 reflections with I > 2σ(I)
φ and ω scansRint = 0.039
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 25.8°, θmin = 2.3°
Tmin = 0.897, Tmax = 0.924h = 99
13675 measured reflectionsk = 1011
3339 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.0539P)2 + 0.3599P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3339 reflectionsΔρmax = 0.30 e Å3
212 parametersΔρmin = 0.21 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4932 (2)0.5319 (2)0.78212 (16)0.0507 (4)
C20.3377 (3)0.5251 (2)0.72287 (17)0.0572 (5)
H2A0.3132790.5928790.6781050.069*
C30.2180 (2)0.4186 (2)0.72940 (19)0.0586 (5)
C40.2585 (2)0.3198 (2)0.79718 (18)0.0578 (5)
H4A0.1792610.2476280.8019950.069*
C50.4136 (2)0.3245 (2)0.85843 (16)0.0528 (4)
C60.5313 (2)0.4323 (2)0.85097 (16)0.0515 (4)
H6A0.6352670.4382870.8916300.062*
C70.8563 (2)0.7644 (2)0.81327 (15)0.0486 (4)
C80.8188 (2)0.8616 (2)0.73299 (15)0.0470 (4)
C90.7799 (3)1.0079 (2)0.76813 (17)0.0624 (5)
H9A0.7805391.0472830.8440190.075*
C100.7401 (3)1.0978 (2)0.69421 (18)0.0663 (6)
H10A0.7136871.1958860.7214280.080*
C110.7385 (2)1.0455 (2)0.58013 (16)0.0530 (4)
C120.7818 (4)0.8986 (3)0.54516 (18)0.0731 (7)
H12A0.7857470.8595750.4696090.088*
C130.8188 (3)0.8099 (2)0.61981 (18)0.0705 (6)
H13A0.8448350.7114930.5930780.085*
C140.0476 (3)0.4121 (3)0.6668 (3)0.0815 (7)
H14A0.0155390.3105130.6317910.122*
H14B0.0492990.4701110.6109250.122*
H14C0.0305670.4515810.7176580.122*
C150.4523 (3)0.2146 (3)0.9306 (2)0.0681 (6)
H15A0.5531260.2465870.9784970.102*
H15B0.4657590.1182840.8843170.102*
H15C0.3629330.2086610.9749080.102*
C160.9971 (2)0.7786 (2)0.88186 (16)0.0520 (4)
C170.6238 (4)1.2751 (3)0.5403 (2)0.0806 (7)
H17A0.5564251.2717640.5993080.121*
H17B0.5568091.2995160.4786160.121*
H17C0.7119661.3494760.5665730.121*
C180.6996 (5)1.0776 (3)0.3882 (2)0.0944 (9)
H18A0.6390130.9835270.3642680.142*
H18B0.8131611.0651880.3735320.142*
H18C0.6510201.1477790.3482390.142*
Cl11.04137 (8)0.67088 (7)0.97728 (5)0.0734 (2)
Cl21.15092 (7)0.90973 (7)0.88372 (5)0.0707 (2)
N10.6056 (2)0.64606 (18)0.76759 (14)0.0552 (4)
N20.7438 (2)0.64937 (17)0.82395 (13)0.0523 (4)
N30.6932 (3)1.1321 (2)0.50518 (15)0.0745 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0541 (10)0.0443 (9)0.0535 (10)0.0068 (8)0.0080 (8)0.0098 (8)
C20.0576 (11)0.0520 (11)0.0617 (12)0.0014 (8)0.0037 (9)0.0127 (9)
C30.0487 (10)0.0522 (11)0.0701 (12)0.0004 (8)0.0069 (9)0.0031 (9)
C40.0515 (11)0.0497 (11)0.0695 (13)0.0095 (8)0.0145 (9)0.0044 (9)
C50.0587 (11)0.0445 (10)0.0555 (11)0.0058 (8)0.0135 (9)0.0085 (8)
C60.0522 (10)0.0489 (10)0.0524 (10)0.0075 (8)0.0047 (8)0.0104 (8)
C70.0573 (10)0.0433 (9)0.0470 (9)0.0069 (8)0.0098 (8)0.0127 (7)
C80.0526 (10)0.0438 (9)0.0462 (9)0.0061 (7)0.0053 (7)0.0139 (7)
C90.0852 (15)0.0571 (12)0.0450 (10)0.0091 (10)0.0075 (10)0.0105 (9)
C100.0933 (16)0.0507 (11)0.0555 (11)0.0152 (11)0.0078 (11)0.0116 (9)
C110.0605 (11)0.0506 (10)0.0509 (10)0.0002 (8)0.0071 (8)0.0173 (8)
C120.116 (2)0.0619 (13)0.0454 (11)0.0188 (13)0.0177 (11)0.0156 (9)
C130.1110 (19)0.0516 (11)0.0516 (11)0.0172 (12)0.0162 (11)0.0124 (9)
C140.0548 (13)0.0765 (16)0.107 (2)0.0020 (11)0.0048 (12)0.0125 (14)
C150.0748 (14)0.0611 (13)0.0729 (14)0.0112 (10)0.0133 (11)0.0237 (11)
C160.0617 (11)0.0470 (10)0.0501 (10)0.0114 (8)0.0049 (8)0.0187 (8)
C170.0918 (18)0.0726 (15)0.0815 (16)0.0185 (13)0.0053 (13)0.0312 (13)
C180.147 (3)0.0867 (18)0.0594 (14)0.0169 (18)0.0137 (15)0.0345 (13)
Cl10.0839 (4)0.0724 (4)0.0705 (4)0.0174 (3)0.0110 (3)0.0408 (3)
Cl20.0679 (4)0.0737 (4)0.0743 (4)0.0273 (3)0.0064 (3)0.0340 (3)
N10.0584 (10)0.0498 (9)0.0589 (9)0.0091 (7)0.0039 (8)0.0170 (7)
N20.0568 (9)0.0478 (8)0.0543 (9)0.0093 (7)0.0075 (7)0.0161 (7)
N30.1083 (16)0.0659 (11)0.0564 (10)0.0201 (11)0.0110 (10)0.0269 (9)
Geometric parameters (Å, º) top
C1—C21.384 (3)C11—C121.391 (3)
C1—C61.397 (3)C12—C131.373 (3)
C1—N11.429 (2)C12—H12A0.9300
C2—C31.385 (3)C13—H13A0.9300
C2—H2A0.9300C14—H14A0.9600
C3—C41.385 (3)C14—H14B0.9600
C3—C141.506 (3)C14—H14C0.9600
C4—C51.394 (3)C15—H15A0.9600
C4—H4A0.9300C15—H15B0.9600
C5—C61.387 (3)C15—H15C0.9600
C5—C151.503 (3)C16—Cl11.7123 (19)
C6—H6A0.9300C16—Cl21.7129 (18)
C7—C161.336 (3)C17—N31.438 (3)
C7—N21.420 (2)C17—H17A0.9600
C7—C81.485 (2)C17—H17B0.9600
C8—C91.375 (3)C17—H17C0.9600
C8—C131.378 (3)C18—N31.433 (3)
C9—C101.378 (3)C18—H18A0.9600
C9—H9A0.9300C18—H18B0.9600
C10—C111.388 (3)C18—H18C0.9600
C10—H10A0.9300N1—N21.254 (2)
C11—N31.374 (3)
C2—C1—C6120.38 (17)C12—C13—C8122.3 (2)
C2—C1—N1115.34 (17)C12—C13—H13A118.9
C6—C1—N1124.28 (17)C8—C13—H13A118.9
C1—C2—C3120.85 (19)C3—C14—H14A109.5
C1—C2—H2A119.6C3—C14—H14B109.5
C3—C2—H2A119.6H14A—C14—H14B109.5
C4—C3—C2118.00 (19)C3—C14—H14C109.5
C4—C3—C14120.8 (2)H14A—C14—H14C109.5
C2—C3—C14121.2 (2)H14B—C14—H14C109.5
C3—C4—C5122.48 (18)C5—C15—H15A109.5
C3—C4—H4A118.8C5—C15—H15B109.5
C5—C4—H4A118.8H15A—C15—H15B109.5
C6—C5—C4118.55 (18)C5—C15—H15C109.5
C6—C5—C15120.77 (19)H15A—C15—H15C109.5
C4—C5—C15120.67 (18)H15B—C15—H15C109.5
C5—C6—C1119.72 (18)C7—C16—Cl1124.05 (14)
C5—C6—H6A120.1C7—C16—Cl2122.70 (14)
C1—C6—H6A120.1Cl1—C16—Cl2113.24 (11)
C16—C7—N2114.49 (16)N3—C17—H17A109.5
C16—C7—C8123.12 (16)N3—C17—H17B109.5
N2—C7—C8122.39 (16)H17A—C17—H17B109.5
C9—C8—C13116.53 (18)N3—C17—H17C109.5
C9—C8—C7121.42 (17)H17A—C17—H17C109.5
C13—C8—C7122.04 (17)H17B—C17—H17C109.5
C8—C9—C10121.94 (18)N3—C18—H18A109.5
C8—C9—H9A119.0N3—C18—H18B109.5
C10—C9—H9A119.0H18A—C18—H18B109.5
C9—C10—C11121.60 (19)N3—C18—H18C109.5
C9—C10—H10A119.2H18A—C18—H18C109.5
C11—C10—H10A119.2H18B—C18—H18C109.5
N3—C11—C10122.27 (19)N2—N1—C1113.12 (16)
N3—C11—C12121.46 (18)N1—N2—C7114.22 (16)
C10—C11—C12116.26 (18)C11—N3—C18121.15 (19)
C13—C12—C11121.38 (19)C11—N3—C17121.07 (19)
C13—C12—H12A119.3C18—N3—C17117.6 (2)
C11—C12—H12A119.3
C6—C1—C2—C30.9 (3)C9—C10—C11—C121.0 (4)
N1—C1—C2—C3179.58 (18)N3—C11—C12—C13176.6 (2)
C1—C2—C3—C40.2 (3)C10—C11—C12—C131.9 (4)
C1—C2—C3—C14178.9 (2)C11—C12—C13—C81.4 (4)
C2—C3—C4—C50.2 (3)C9—C8—C13—C120.2 (4)
C14—C3—C4—C5178.5 (2)C7—C8—C13—C12179.0 (2)
C3—C4—C5—C60.0 (3)N2—C7—C16—Cl10.9 (3)
C3—C4—C5—C15179.74 (19)C8—C7—C16—Cl1178.48 (14)
C4—C5—C6—C10.6 (3)N2—C7—C16—Cl2179.97 (14)
C15—C5—C6—C1179.08 (18)C8—C7—C16—Cl20.6 (3)
C2—C1—C6—C51.1 (3)C2—C1—N1—N2179.06 (17)
N1—C1—C6—C5179.40 (17)C6—C1—N1—N20.5 (3)
C16—C7—C8—C972.4 (3)C1—N1—N2—C7178.40 (15)
N2—C7—C8—C9107.0 (2)C16—C7—N2—N1173.27 (17)
C16—C7—C8—C13108.5 (3)C8—C7—N2—N16.1 (3)
N2—C7—C8—C1372.1 (3)C10—C11—N3—C18177.2 (3)
C13—C8—C9—C101.1 (3)C12—C11—N3—C184.4 (4)
C7—C8—C9—C10178.0 (2)C10—C11—N3—C178.3 (4)
C8—C9—C10—C110.5 (4)C12—C11—N3—C17170.1 (3)
C9—C10—C11—N3177.5 (2)
Percentage contributions of interatomic contacts to the Hirshfeld surface for (I) top
ContactPercentage contribution
H···H43.9
Cl···H/H···Cl22.9
C···H/H···C20.8
N···H/H···N8.0
Cl···C/C···Cl2.3
Cl···Cl1.4
N···C/C···N0.3
C···C0.3
 

Funding information

This work was funded by Science Development Foundation under the President of the Republic of Azerbaijan (grant No. EIF– BGM-4-RFTF-1/2017–21/13/4) and RFBR grant No. 18–53–06006.

References

First citationAkbari, A. F., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888–14896.  Web of Science PubMed Google Scholar
First citationAkkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Niyazova, A. A., Shikhaliyeva, I. M. & Toze, F. A. A. (2019). Acta Cryst. E75, 1199–1204.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAtioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237–241.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMaharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Pashaev, F. G., Gasanov, A. G., Azimova, S. I., Askerov, R. K., Kurbanov, A. V. & Mahmudov, K. T. (2010). Dyes Pigments, 85, 1–6.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Seth, S. K., Bauzá, A., Zubkov, F. I., Gurbanov, A. V., White, J., Stilinović, V., Doert, T. & Frontera, A. (2018). CrystEngComm, 20, 2812–2821.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmudov, K. T., Guedes da Silva, M. F. C., Sutradhar, M., Kopylovich, M. N., Huseynov, F. E., Shamilov, N. T., Voronina, A. A., Buslaeva, T. M. & Pombeiro, A. J. L. (2015). Dalton Trans. 44, 5602–5610.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N. & Pombeiro, A. J. L. (2013). Coord. Chem. Rev. 257, 1244–1281.  Web of Science CrossRef CAS Google Scholar
First citationMahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Kopylovich, M. N. & Pombeiro, A. J. L. (2010). Anal. Lett. 43, 2923–2938.  Web of Science CrossRef CAS Google Scholar
First citationMahmudov, K. T. & Pombeiro, A. J. L. (2016). Chem. Eur. J. 22, 16356–16398.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381.  Web of Science CSD CrossRef CAS Google Scholar
First citationShikhaliyev, N. Q., Çelikesir, S. T., Akkurt, M., Bagirova, K. N., Suleymanova, G. T. & Toze, F. A. A. (2019). Acta Cryst. E75, 465–469.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807–4815.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds