research communications
and Hirshfeld surface analysis of the product of the ring-opening reaction of a dihydrobenzoxazine: 6,6′-[(cyclohexylazanediyl)bis(methylene)]bis(2,4-dimethylphenol)
aSynchrotron Light Research Institute, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima 30000, Thailand, bDepartment of Materials Engineering, Faculty of Engineering, Kasetsart University 10900, Thailand, cNational Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, 12120, Thailand, dSchool of Chemistry, Institute of Science, Suranaree University of Technology, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima 30000, Thailand, and eDepartment of Materials and Metallurgical Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi, Pathumthani 12110, Thailand
*Correspondence e-mail: fengwwwa@ku.ac.th
In the title unsymmetrical tertiary amine, C24H33NO2, which arose from the ring-opening reaction of a dihydrobenzoxazine, two 2,4-dimethylphenol moieties are linked by a 6,6′-(cyclohexylazanediyl)-bis(methylene) bridge: the dihedral angle between the dimethylphenol rings is 72.45 (7)°. The cyclohexyl ring adopts a chair conformation with the exocyclic C—N bond in an equatorial orientation. One of the phenol OH groups forms an intramolecular O—H⋯N hydrogen bond, generating an S(6) ring, and a short intramolecular C—H⋯O contact is also present. In the crystal, O—H⋯O hydrogen bonds link the molecules into C(10) chains propagating along the [100] direction. The Hirshfeld surface analysis of the title compound confirms the presence of these intra- and intermolecular interactions. The corresponding fingerprint plots indicate that the most significant contacts in the crystal packing are H⋯H (76.4%), H⋯C/C⋯H (16.3%), and H⋯O/O⋯H (7.2%).
Keywords: crystal structure; dihydrobenzoxazine; Hirshfeld surface.
CCDC reference: 2014264
1. Chemical context
Dihydro-benzoxazines contain a benzene ring fused with a dihydro-oxazine ring (a six-membered heterocycle containing one nitrogen atom and one oxygen atom). Several isomers of dihydro-benzoxazines can be formed by varying the heteroatomic positions within the dihydro-oxazine ring. Among the different isomers of dihydro-benzoxazines, only 3,4-dihydro-2H-benzo[e]-1,3-oxaxines (commonly called 1,3-2H-benzoxazine monomers) can undergo a reaction to form polybenzoxazines. As a result of various promising physical and chemical properties, polybenzoxazines have been studied by a number of workers (Ishida & Allen, 1996; Ishida & Agag 2011; Kiskan et al., 2011; Demir et al., 2013; Kim & & Ishida, 2001; Velez-Herrera et al., 2008; Xu et al., 2018). Moreover, a to form the aza-methylene-phenol [–NR–CH2–C6H4(OH)–] moiety provides such hydrogen bonding as to interconnect with other materials (Froimowicz et al., 2016; Iguchi et al., 2018).
Interestingly, the use of phenol derivatives as initiators for the H-benzo[e]-1,3-oxaxines leads to the formation of small molecules instead of polybenzoxazines (Chirachanchai et al., 2009). These small molecules (so-called dihydro-benzoxazine dimers), which generally possess an aza-methylene-phenol group, have been employed as models for describing polybenzoxazines (Hemvichian et al., 2002). In addition, the asymmetric Mannich reaction of the derivatives of dihydro-benzoxazine dimers, where only one OH group undergoes the ring-closure reaction has been reported (Laobuthee et al., 2001). As a result of these aza-methylene-phenol moieties, intermolecular and intramolecular hydrogen bonds are found in both the polybenzoxazines and the dihydro-benzoxazine dimers. They enhance the reactivity of the dihydro-benzoxazine dimers towards transition and rare-earth metal ions with respect to the common phenolic compounds. For instances, dihydro-benzoxazine dimers have been reported to be good chelating agents (Iguchi et al., 2018) for cerium ions (Veranitisagul et al., 2011) and copper ions (Phongtamrug et al., 2006).
of 3,4-dihydro-2In this work, as part of our ongoing studies in this area (Wattanathana et al., 2016), we report the synthesis, and Hirshfeld surface analysis of the title compound, (I).
2. Structural commentary
Fig. 1 shows the molecular structure of (I), which crystallizes in Pna21. The tertiary-amine nitrogen atom (N1) adopts a distorted trigonal pyramidal shape because of the expansion of the angles around N1 atom [C9—N1—C19 = 112.59 (15); C10—N1—C9 = 109.97 (15); C10—N1—C19 = 115.09 (15); bond-angle sum = 337.7°].
The non-hydrogen atoms of the 2,4-dimethylphenol moieties, namely C1–C8/O1 and C11–C18/O2, are almost planar (r.m.s. deviations = 0.030 and 0.017 Å, respectively) and their mean planes subtend a dihedral angle of 72.45 (7)°. The C atoms in the methyl groups in the para-positions with respect to the OH groups deviate the most from the calculated mean planes with deviations of 0.043 (2) for C8 and −0.033 (2) Å for C17. The cyclohexyl group adopts a regular chair conformation as seen from the C—C—C bond angles, which are in the range 109.14 (17)° to 111.59 (17)°. The hydrogen atom bonded to C19 (H19) is in the axial position to allow the bulkier group (N1 tertiary-amine nitrogen atom) to be located at the equatorial position.
According to freely refined positions of the O-bound hydrogen atoms (H1 and H2), H1 points toward N1 to set up an intramolecular O—H⋯N hydrogen bond with an S(6) graph-set motif (Table 1). This type of intramolecular O—H⋯N hydrogen bond is commonly noticed in the compounds having –OH and azamethylene groups attached to the benzene ring in the ortho positions (Suramitr et al., 2020), especially dihydro-benzoxazine dimer derivatives (Veranitisagul et al., 2012; Wattanathana et al., 2012, 2016). In addition to the classical hydrogen bond, one of the hydrogen atoms on the methyl side chain at the ortho position to the O1 atom exhibits a C7—H7A⋯O1 close contact (Table 1) The characteristics of specific interactions for compound (I) are displayed as a non-covalent interaction plot (NCIPLOT) (Johnson et al., 2010; Contreras-García et al., 2011) in Fig. S1 of the supporting information.
3. Supramolecular features
The other (O2) phenol group in (I) forms an intermolecular O—H⋯O hydrogen bond with O1 as the acceptor, which generates C(10) chains in the crystal, propagating in the [100] direction (Fig. 2). Unlike other dihydro-benzoxazine dimer derivatives, the title compound does not exhibit R22(20) hydrogen-bonded loops like those formed in 6,6′-(methylazanediyl)bis(methylene)bis(2,4-dimethylphenol) (NUPJOX: Dunkers et al., 1996; Phongtamrug et al., 2006; Veranitisagul et al., 2012a), 2,2′-(cyclohexylazanediyl)bis(methylene)bis(4-ethylphenol) (SACYAZ and SADPEV; Wattanathana et al., 2016), 2,2′-(methylazanediyl)bis(methylene)bis(4-methylphenol) (IDUHEV; Wu et al., 2006), 2,2′-(methylazanediyl)bis(methylene)bis(4-methoxyphenol) (XEBBIR; Veranitisagul et al., 2012b), 2,2′-(cyclohexylazanediyl)bis(methylene)bis(4-methylphenol) (HETGOD; Phongtamrug et al., 2006), and 2,2′-(cyclohexylazanediyl)bis(methylene)bis(4-ethylphenol) (CEGYUK; Wattanathana et al., 2012). This might be due to a greater from both the methyl and cyclohexyl groups.
The structure overlay of the title compound (green compound) and its structural isomer with only ethyl groups at the para-positions of the phenol rings (CEGYUK; Wattanathana et al., 2012) is displayed in Fig. 3. For CEGYUK, both O1 and O2 point toward the same side of the molecule to form the R22(20) hydrogen-bond motif just mentioned, while the O1 and O2 atoms of (I) are oriented in the opposite direction in order to reduce the Therefore, the title molecules are joined together in an end-to-end packing mode into [100] chains (Fig. 2), where it may be seen that the bulky substituent groups are arrayed in an alternating fashion along the chain.
4. Hirshfeld analysis
To better understand and visualize the interactions within the crystal of the title compound, a Hirshfeld surface (HS) analysis (Spackman & Jayatilaka, 2009) was carried out using Crystal Explorer 17.5 software (Turner et al., 2017). The HS plotted over the given range of dnorm from −0.56 to 1.39 a.u. (Fig. 4) shows faint red spots near O1, H2, and C7, confirming the S(6) ring, C(10) chain, and C—H⋯O interaction, respectively.
Fig. 5 shows the full two-dimensional fingerprint plot and those delineated into individual interactions (McKinnon et al., 2007). The fingerprint plots show that the major contacts in the are the contacts regarding H atoms only as the sum of all the H-related contributions is 99.9%. The H⋯H contacts are characterized as a single spike at de + di ≃ 2.3 Å with the contribution of 76.4%, while the H⋯C/C⋯H contacts are observed as a pair of beak-shaped tips at de + di ≃ 2.75 Å with a contribution of 16.3%. The pair of sharp peaks at de + di ≃ 2.2 Å represents the H⋯O/O⋯H contacts (7.2%). The C⋯C contact only participates slightly in the crystal packing as its individual contribution is only 0.1%. The other contacts, i.e., N⋯N, H⋯N/N⋯H, C⋯N/N⋯C, C⋯O/O⋯C, show no effect on the crystal packing due to the contribution of 0.0%.
5. Database survey
A search for structures containing the bis(phenol) linked by a bis(methylene)aza bridge in the Cambridge Structural Database (CSD version 5.41, November 2019 + two updates; Groom et al., 2016) showed 156 match entries. Structural diversity of the dihydro-benzoxazine derivatives is observed as a result of the variation of the substituent groups on both the phenol moieties and tertiary-amine nitrogen atom. Several crystal structures of dihydro-benzoxazine dimer derivatives with no other substituent groups on both the phenol rings have been reported (BUZWUP; Abrahams et al., 2009; KEJRAU; Kuźnik et al., 2012). The crystal structures of dihydro-benzoxazine dimer derivatives with ortho substituents have also been reported, e.g., tert-butyl substituents (CIJLEN; Kelly et al., 2007) and methoxy substituents (SILROV; Liu et al., 2007). However, no crystal structures of dihydro-benzoxazine dimers possessing meta substituents have been reported. This might be due to the ortho and para directing property of the phenolic –OH groups. Dihydro-benzoxazine dimer derivatives with para substituents are very common, viz. with methyl groups (FANHOT; Janas et al., 2012, Singh et al., 2012; HETGOD; Phongtamrug et al., 2006; ICEMIO; Wang et al., 2011a, Rivera & Bolte, 2016; IDUHEV; Wu et al., 2006; USODAC; Wang et al., 2011b,c), ethyl groups (CEGYUK; Wattanathana et al., 2012, SACYAZ and SADPEV; Wattanathana et al., 2016), a methoxy group (XEBBIR; Veranitisagul et al., 2012b), and tert-butyl groups (GIKJOC; Redjel et al., 2018). Apart from the monosubstituted derivatives, there are some reports on the crystal structures of ortho and para disubstituted derivatives, e.g., HEPZOU (Zhang et al., 2018) and RACMEP (Lionetti et al., 2010). Moreover, dihydro-benzoxazine dimers can also have different substituents on both the phenol rings as in AMEFUT, AMEGAA and AMEGEE (Sony et al., 2003), resulting in considerable structural variety.
When more restriction is applied to the search of 2,4-dimethylbis(phenol) linked by bis(methylene)aza bridge, the number of match structures is now reduced to 38 hits as only the N-substituted grouping can change. Examples of different N-substituents of the 6,6′-(azanediyl)bis(methylene)bis(2,4-dimethylphenol) derivatives are –CH3 (NUPJOX; Dunkers et al., 1996, Phongtamrug et al., 2006, Veranitisagul et al., 2012a), –CH2CH2OCH3 (CAKDUP; Hasan et al., 2011), –CH2CH2N(CH3)2 (ESAHUB; Velusamy et al., 2003, Lorber et al., 2005), –CH2CH2CH2OH (GIMWIL; Olesiejuk et al., 2018), –CH2CH2CH2Cl (GIMWOR; Olesiejuk et al., 2018), –CH2CH2N(CH2CH3)2 (TOJSUI; Singh et al., 2012), and –CH2CH2CH2N(CH3)2 (ZUXJAF; Bowser et al., 2016).
6. Synthesis, characterization and crystallization
Firstly, the corresponding dihydro-benzoxazine monomer, 3-cyclohexyl-6,8-dimethyl-3,4-dihydro-2H-benzo[e][1,3]oxazine, was prepared by a one-pot Mannich reaction (Chirachanchai et al., 2009; Wattanathana et al., 2014). Cyclohexylamine (0.99 g, 10 mmol), paraformaldehyde (0.63 g, 20 mmol) and 2,4-dimethylphenol (1.22 g, 10 mmol) were dissolved in dioxane (10 ml). The mixture was refluxed for 6 h to obtain a clear yellow solution. The solvent was removed by a rotary evaporator to obtain a yellowish viscous liquid as a crude product. After that, 10 ml of dichloromethane were added to the dried crude product. The crude product was then washed by a liquid–liquid extraction method using 3 N NaOH (10 ml) three times, followed by 10 ml of deionized water for three more times until the solution became neutral. The product was dried by anhydrous sodium sulfate. Then, the dichloromethane solvent was removed by a rotary evaporator and consequently the dihydro-benzoxazine monomer, 3-cyclohexyl-6,8-dimethyl-3,4-dihydro-2H-benzo[e][1,3]oxazine, (II), was collected.
An equimolar amount of 2,4-dimethylphenol was then mixed with (II) and the mixture was heated at 333 K overnight. After the reaction was complete, the yellow viscous liquid turned into a yellow solid, which was washed using diethyl ether, giving rise to a white precipitate of the title compound, which was separated from the yellow solution by decantation and rinsing with diethyl ether. The white precipitate was recrystallized from propan-2-ol solution to yield colourless blocks of (I).
M.p. 425 K; FTIR (KBR pellet, cm−1): 3384 (br, O—H), 1484 (vs, Ca—Ca), 1451 (m, N–CH3), 1245 (m, C—N), 1199 (m, C—N—C), 858 (m, C—N—C); Raman (cm−1): 3023 (m, Ca—H), 2942 (vs, Csp3—H), 1447 (m, N—CH3); 1H NMR (δH, ppm): 1.06–1.14 (m, 1H), 1.19 (q, J = 12.0 Hz, 2H), 1.44 (q, J = 9.5 Hz, 2H), 1.64 (d, J = 12.0 Hz, 1H), 1.81 (d, J = 13.0 Hz, 2H), 1.94 (d, J = 11.5 Hz, 2H), 2.21 (d, J = 11.0 Hz, 12H), 2.72 (tt, J = 12.0, 3.0 Hz, 1H), 3.73 (s, 4H), 6.70 (s, 2H), 6.85 (s, 2H), 8.04 (s, 2H); 13C NMR (δC, ppm): 16.03 (–CH3), 20.61 (–CH3), 25.99 (Ccy), 26.35 (Ccy), 27.66 (Ccy), 51.64 (–CH2–NR2), 57.65 (Ccy—NR2), 122.01 (Ca), 124.94 (Ca), 128.57 (Ca), 128.65 (Ca), 131.03 (Ca), 152.27 (C—OH) (cy = cyclohexyl, a = aromatic). Elemental analysis: analysis calculated for C24H33NO2 (%): C 78.47; H 8.99; N 3.82; found: C 78.49; H 8.97; N 3.85. The good agreement (see Fig. S2 in the supporting information) between the measured PXRD pattern of (I) and the calculated pattern based on the single crystal data indicates the high degree of crystal and crystallinity of the obtained compound. For full details of the spectroscopic and powder diffraction measurements, see the supporting information.
7. Refinement
Crystal data, data collection and structure . The O-bound H atoms (H1 and H2) were located in a difference map and their positions were freely refined. The C-bound H atoms were placed in idealized positions (C—H = 0.95–1.00 Å depending on hybridization) and refined as riding atoms. The methyl groups were allowed to rotate, but not to tip, to best fit the electron density. The constraint Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl C) was applied in all cases. The of (I) was indeterminate in the present refinement.
details are summarized in Table 2Supporting information
CCDC reference: 2014264
https://doi.org/10.1107/S2056989020009184/hb7926sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020009184/hb7926Isup2.hkl
Non-covalent interaction plot and powder diffraction plot. DOI: https://doi.org/10.1107/S2056989020009184/hb7926sup3.docx
Supporting information file. DOI: https://doi.org/10.1107/S2056989020009184/hb7926Isup4.cml
Data collection: APEX3 (Bruker, 2018); cell
SAINT (Bruker, 2018); data reduction: SAINT(Bruker, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009), Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).C24H33NO2 | Dx = 1.186 Mg m−3 |
Mr = 367.51 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pna21 | Cell parameters from 4297 reflections |
a = 10.2778 (7) Å | θ = 2.3–30.4° |
b = 11.4064 (11) Å | µ = 0.07 mm−1 |
c = 17.5586 (15) Å | T = 100 K |
V = 2058.4 (3) Å3 | Block, colourless |
Z = 4 | 0.50 × 0.28 × 0.22 mm |
F(000) = 800 |
Bruker APEXII CCD diffractometer | 6367 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.035 |
φ and ω scans | θmax = 33.2°, θmin = 2.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | h = −15→13 |
Tmin = 0.661, Tmax = 0.747 | k = −17→16 |
17289 measured reflections | l = −26→26 |
7626 independent reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.053 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.139 | w = 1/[σ2(Fo2) + (0.0816P)2 + 0.0042P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
7626 reflections | Δρmax = 0.85 e Å−3 |
256 parameters | Δρmin = −0.26 e Å−3 |
1 restraint |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.55606 (15) | 0.40779 (15) | 0.48635 (9) | 0.0185 (3) | |
O2 | 0.25137 (17) | 0.07066 (16) | 0.38097 (11) | 0.0282 (4) | |
N1 | 0.30494 (16) | 0.38434 (15) | 0.46177 (9) | 0.0124 (3) | |
C11 | 0.33237 (18) | 0.26439 (18) | 0.34561 (11) | 0.0146 (3) | |
C1 | 0.53009 (19) | 0.38603 (17) | 0.56149 (11) | 0.0136 (3) | |
C4 | 0.4756 (2) | 0.34173 (18) | 0.71588 (11) | 0.0162 (4) | |
C16 | 0.33219 (19) | 0.14251 (19) | 0.34158 (12) | 0.0163 (4) | |
C6 | 0.41375 (18) | 0.33056 (18) | 0.58231 (10) | 0.0129 (3) | |
C5 | 0.3869 (2) | 0.31068 (18) | 0.65887 (11) | 0.0148 (3) | |
H5 | 0.306648 | 0.275282 | 0.672746 | 0.018* | |
C9 | 0.31994 (19) | 0.29297 (18) | 0.52109 (11) | 0.0148 (4) | |
H9A | 0.351767 | 0.219736 | 0.497244 | 0.018* | |
H9B | 0.234101 | 0.276476 | 0.544316 | 0.018* | |
C19 | 0.24654 (17) | 0.49405 (17) | 0.49191 (11) | 0.0118 (3) | |
H19 | 0.290794 | 0.509791 | 0.541586 | 0.014* | |
C10 | 0.23905 (18) | 0.33456 (18) | 0.39420 (11) | 0.0144 (3) | |
H10A | 0.201570 | 0.398953 | 0.363412 | 0.017* | |
H10B | 0.166781 | 0.283321 | 0.410990 | 0.017* | |
C3 | 0.5912 (2) | 0.39448 (18) | 0.69330 (12) | 0.0170 (4) | |
H3 | 0.653425 | 0.414046 | 0.731218 | 0.020* | |
C24 | 0.10054 (19) | 0.48969 (19) | 0.50922 (12) | 0.0170 (4) | |
H24A | 0.081486 | 0.423062 | 0.543590 | 0.020* | |
H24B | 0.051024 | 0.478236 | 0.461434 | 0.020* | |
C14 | 0.5057 (2) | 0.1484 (2) | 0.24962 (12) | 0.0201 (4) | |
H14 | 0.564743 | 0.108269 | 0.217144 | 0.024* | |
C13 | 0.50935 (19) | 0.2702 (2) | 0.25194 (12) | 0.0182 (4) | |
C12 | 0.4226 (2) | 0.32580 (19) | 0.30100 (12) | 0.0167 (4) | |
H12 | 0.424682 | 0.408903 | 0.304371 | 0.020* | |
C2 | 0.61996 (19) | 0.42005 (18) | 0.61731 (12) | 0.0153 (4) | |
C20 | 0.27874 (19) | 0.59824 (18) | 0.44034 (12) | 0.0165 (4) | |
H20A | 0.373603 | 0.600307 | 0.430636 | 0.020* | |
H20B | 0.233910 | 0.588665 | 0.390821 | 0.020* | |
C15 | 0.4194 (2) | 0.08345 (19) | 0.29282 (13) | 0.0191 (4) | |
C22 | 0.09195 (19) | 0.7111 (2) | 0.49721 (13) | 0.0199 (4) | |
H22A | 0.039773 | 0.707735 | 0.449863 | 0.024* | |
H22B | 0.068791 | 0.784064 | 0.524558 | 0.024* | |
C21 | 0.2364 (2) | 0.71323 (18) | 0.47706 (13) | 0.0187 (4) | |
H21A | 0.253598 | 0.778781 | 0.441510 | 0.022* | |
H21B | 0.288055 | 0.726786 | 0.523825 | 0.022* | |
C23 | 0.0594 (2) | 0.60523 (19) | 0.54719 (13) | 0.0197 (4) | |
H23A | −0.035431 | 0.603583 | 0.557053 | 0.024* | |
H23B | 0.104440 | 0.613096 | 0.596767 | 0.024* | |
C7 | 0.7421 (2) | 0.4850 (2) | 0.59612 (14) | 0.0216 (4) | |
H7A | 0.752890 | 0.483810 | 0.540676 | 0.032* | |
H7B | 0.817154 | 0.447173 | 0.620209 | 0.032* | |
H7C | 0.735771 | 0.566363 | 0.613687 | 0.032* | |
C8 | 0.4433 (2) | 0.3241 (2) | 0.79879 (12) | 0.0228 (4) | |
H8A | 0.412900 | 0.398284 | 0.820627 | 0.034* | |
H8B | 0.521270 | 0.297887 | 0.826066 | 0.034* | |
H8C | 0.374907 | 0.264769 | 0.803607 | 0.034* | |
C17 | 0.6012 (2) | 0.3382 (3) | 0.20141 (13) | 0.0265 (5) | |
H17A | 0.681173 | 0.292866 | 0.193814 | 0.040* | |
H17B | 0.622402 | 0.413246 | 0.225565 | 0.040* | |
H17C | 0.559676 | 0.352574 | 0.152043 | 0.040* | |
C18 | 0.4156 (3) | −0.0484 (2) | 0.28772 (17) | 0.0318 (5) | |
H18A | 0.418848 | −0.081899 | 0.339082 | 0.048* | |
H18B | 0.490459 | −0.076175 | 0.258236 | 0.048* | |
H18C | 0.334966 | −0.072901 | 0.262519 | 0.048* | |
H1 | 0.480 (3) | 0.405 (3) | 0.463 (2) | 0.042 (10)* | |
H2 | 0.195 (4) | 0.111 (4) | 0.419 (3) | 0.057 (12)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0135 (6) | 0.0288 (8) | 0.0133 (6) | 0.0015 (6) | 0.0020 (5) | 0.0010 (6) |
O2 | 0.0312 (9) | 0.0236 (8) | 0.0299 (9) | −0.0038 (7) | 0.0126 (7) | −0.0037 (7) |
N1 | 0.0136 (7) | 0.0141 (7) | 0.0094 (6) | 0.0016 (6) | −0.0021 (5) | −0.0020 (5) |
C11 | 0.0150 (8) | 0.0172 (9) | 0.0116 (7) | 0.0026 (7) | −0.0019 (6) | −0.0034 (7) |
C1 | 0.0133 (8) | 0.0144 (8) | 0.0132 (8) | 0.0025 (7) | 0.0000 (6) | −0.0009 (7) |
C4 | 0.0221 (9) | 0.0144 (9) | 0.0120 (8) | 0.0034 (7) | −0.0018 (7) | −0.0004 (7) |
C16 | 0.0165 (8) | 0.0175 (9) | 0.0148 (8) | 0.0002 (7) | −0.0016 (6) | −0.0024 (7) |
C6 | 0.0135 (8) | 0.0136 (8) | 0.0116 (8) | 0.0013 (6) | −0.0021 (6) | −0.0007 (6) |
C5 | 0.0176 (8) | 0.0130 (8) | 0.0138 (8) | 0.0008 (7) | 0.0000 (6) | 0.0004 (7) |
C9 | 0.0165 (8) | 0.0153 (9) | 0.0125 (8) | −0.0014 (7) | −0.0028 (6) | 0.0001 (7) |
C19 | 0.0122 (7) | 0.0128 (8) | 0.0104 (7) | 0.0005 (6) | 0.0012 (6) | −0.0010 (6) |
C10 | 0.0149 (8) | 0.0169 (9) | 0.0115 (7) | 0.0019 (7) | −0.0029 (6) | −0.0044 (7) |
C3 | 0.0175 (8) | 0.0178 (9) | 0.0158 (8) | 0.0036 (7) | −0.0057 (7) | −0.0038 (7) |
C24 | 0.0143 (8) | 0.0166 (9) | 0.0200 (9) | 0.0006 (7) | 0.0045 (7) | −0.0001 (7) |
C14 | 0.0196 (9) | 0.0279 (11) | 0.0127 (8) | 0.0080 (8) | −0.0023 (7) | −0.0046 (8) |
C13 | 0.0174 (8) | 0.0263 (10) | 0.0110 (8) | 0.0036 (8) | −0.0007 (7) | −0.0007 (8) |
C12 | 0.0193 (9) | 0.0171 (9) | 0.0135 (8) | 0.0021 (7) | −0.0019 (7) | −0.0013 (7) |
C2 | 0.0132 (8) | 0.0156 (9) | 0.0170 (8) | 0.0013 (7) | −0.0016 (6) | −0.0026 (7) |
C20 | 0.0170 (8) | 0.0158 (9) | 0.0166 (8) | 0.0002 (7) | 0.0048 (7) | 0.0016 (7) |
C15 | 0.0230 (9) | 0.0175 (9) | 0.0167 (9) | 0.0047 (8) | −0.0019 (7) | −0.0057 (8) |
C22 | 0.0193 (9) | 0.0178 (9) | 0.0224 (10) | 0.0047 (7) | 0.0018 (7) | −0.0010 (7) |
C21 | 0.0203 (9) | 0.0146 (9) | 0.0210 (9) | −0.0008 (7) | 0.0026 (7) | 0.0003 (7) |
C23 | 0.0179 (9) | 0.0205 (10) | 0.0209 (10) | 0.0034 (7) | 0.0079 (7) | −0.0023 (8) |
C7 | 0.0156 (9) | 0.0235 (10) | 0.0256 (10) | −0.0021 (8) | −0.0027 (8) | −0.0032 (8) |
C8 | 0.0334 (11) | 0.0237 (10) | 0.0113 (8) | 0.0018 (9) | −0.0031 (8) | 0.0007 (8) |
C17 | 0.0234 (10) | 0.0382 (13) | 0.0178 (10) | 0.0042 (10) | 0.0039 (8) | 0.0044 (9) |
C18 | 0.0414 (14) | 0.0193 (11) | 0.0348 (13) | 0.0026 (10) | 0.0087 (11) | −0.0083 (10) |
O1—C1 | 1.369 (2) | C14—H14 | 0.9500 |
O1—H1 | 0.89 (4) | C14—C13 | 1.391 (3) |
O2—C16 | 1.356 (3) | C14—C15 | 1.382 (3) |
O2—H2 | 0.99 (4) | C13—C12 | 1.393 (3) |
N1—C9 | 1.482 (3) | C13—C17 | 1.510 (3) |
N1—C19 | 1.485 (2) | C12—H12 | 0.9500 |
N1—C10 | 1.479 (2) | C2—C7 | 1.504 (3) |
C11—C16 | 1.392 (3) | C20—H20A | 0.9900 |
C11—C10 | 1.513 (3) | C20—H20B | 0.9900 |
C11—C12 | 1.402 (3) | C20—C21 | 1.525 (3) |
C1—C6 | 1.401 (3) | C15—C18 | 1.507 (3) |
C1—C2 | 1.402 (3) | C22—H22A | 0.9900 |
C4—C5 | 1.399 (3) | C22—H22B | 0.9900 |
C4—C3 | 1.390 (3) | C22—C21 | 1.526 (3) |
C4—C8 | 1.506 (3) | C22—C23 | 1.530 (3) |
C16—C15 | 1.411 (3) | C21—H21A | 0.9900 |
C6—C5 | 1.391 (3) | C21—H21B | 0.9900 |
C6—C9 | 1.506 (3) | C23—H23A | 0.9900 |
C5—H5 | 0.9500 | C23—H23B | 0.9900 |
C9—H9A | 0.9900 | C7—H7A | 0.9800 |
C9—H9B | 0.9900 | C7—H7B | 0.9800 |
C19—H19 | 1.0000 | C7—H7C | 0.9800 |
C19—C24 | 1.532 (3) | C8—H8A | 0.9800 |
C19—C20 | 1.530 (3) | C8—H8B | 0.9800 |
C10—H10A | 0.9900 | C8—H8C | 0.9800 |
C10—H10B | 0.9900 | C17—H17A | 0.9800 |
C3—H3 | 0.9500 | C17—H17B | 0.9800 |
C3—C2 | 1.397 (3) | C17—H17C | 0.9800 |
C24—H24A | 0.9900 | C18—H18A | 0.9800 |
C24—H24B | 0.9900 | C18—H18B | 0.9800 |
C24—C23 | 1.536 (3) | C18—H18C | 0.9800 |
C1—O1—H1 | 106 (2) | C13—C12—C11 | 122.80 (19) |
C16—O2—H2 | 115 (2) | C13—C12—H12 | 118.6 |
C9—N1—C19 | 112.59 (15) | C1—C2—C7 | 120.89 (19) |
C10—N1—C9 | 109.97 (15) | C3—C2—C1 | 118.06 (18) |
C10—N1—C19 | 115.09 (15) | C3—C2—C7 | 121.03 (18) |
C16—C11—C10 | 123.80 (18) | C19—C20—H20A | 109.5 |
C16—C11—C12 | 118.14 (18) | C19—C20—H20B | 109.5 |
C12—C11—C10 | 118.05 (18) | H20A—C20—H20B | 108.1 |
O1—C1—C6 | 119.99 (17) | C21—C20—C19 | 110.85 (17) |
O1—C1—C2 | 119.69 (18) | C21—C20—H20A | 109.5 |
C6—C1—C2 | 120.32 (18) | C21—C20—H20B | 109.5 |
C5—C4—C8 | 120.95 (19) | C16—C15—C18 | 119.7 (2) |
C3—C4—C5 | 117.54 (19) | C14—C15—C16 | 119.01 (19) |
C3—C4—C8 | 121.43 (19) | C14—C15—C18 | 121.2 (2) |
O2—C16—C11 | 125.33 (19) | H22A—C22—H22B | 108.0 |
O2—C16—C15 | 114.21 (19) | C21—C22—H22A | 109.4 |
C11—C16—C15 | 120.46 (19) | C21—C22—H22B | 109.4 |
C1—C6—C9 | 119.24 (17) | C21—C22—C23 | 111.00 (18) |
C5—C6—C1 | 119.68 (18) | C23—C22—H22A | 109.4 |
C5—C6—C9 | 121.08 (18) | C23—C22—H22B | 109.4 |
C4—C5—H5 | 119.3 | C20—C21—C22 | 111.22 (17) |
C6—C5—C4 | 121.38 (19) | C20—C21—H21A | 109.4 |
C6—C5—H5 | 119.3 | C20—C21—H21B | 109.4 |
N1—C9—C6 | 111.60 (16) | C22—C21—H21A | 109.4 |
N1—C9—H9A | 109.3 | C22—C21—H21B | 109.4 |
N1—C9—H9B | 109.3 | H21A—C21—H21B | 108.0 |
C6—C9—H9A | 109.3 | C24—C23—H23A | 109.3 |
C6—C9—H9B | 109.3 | C24—C23—H23B | 109.3 |
H9A—C9—H9B | 108.0 | C22—C23—C24 | 111.59 (17) |
N1—C19—H19 | 106.2 | C22—C23—H23A | 109.3 |
N1—C19—C24 | 116.06 (16) | C22—C23—H23B | 109.3 |
N1—C19—C20 | 110.85 (15) | H23A—C23—H23B | 108.0 |
C24—C19—H19 | 106.2 | C2—C7—H7A | 109.5 |
C20—C19—H19 | 106.2 | C2—C7—H7B | 109.5 |
C20—C19—C24 | 110.76 (16) | C2—C7—H7C | 109.5 |
N1—C10—C11 | 111.41 (15) | H7A—C7—H7B | 109.5 |
N1—C10—H10A | 109.3 | H7A—C7—H7C | 109.5 |
N1—C10—H10B | 109.3 | H7B—C7—H7C | 109.5 |
C11—C10—H10A | 109.3 | C4—C8—H8A | 109.5 |
C11—C10—H10B | 109.3 | C4—C8—H8B | 109.5 |
H10A—C10—H10B | 108.0 | C4—C8—H8C | 109.5 |
C4—C3—H3 | 118.5 | H8A—C8—H8B | 109.5 |
C4—C3—C2 | 122.94 (18) | H8A—C8—H8C | 109.5 |
C2—C3—H3 | 118.5 | H8B—C8—H8C | 109.5 |
C19—C24—H24A | 109.9 | C13—C17—H17A | 109.5 |
C19—C24—H24B | 109.9 | C13—C17—H17B | 109.5 |
C19—C24—C23 | 109.14 (17) | C13—C17—H17C | 109.5 |
H24A—C24—H24B | 108.3 | H17A—C17—H17B | 109.5 |
C23—C24—H24A | 109.9 | H17A—C17—H17C | 109.5 |
C23—C24—H24B | 109.9 | H17B—C17—H17C | 109.5 |
C13—C14—H14 | 118.8 | C15—C18—H18A | 109.5 |
C15—C14—H14 | 118.8 | C15—C18—H18B | 109.5 |
C15—C14—C13 | 122.5 (2) | C15—C18—H18C | 109.5 |
C14—C13—C12 | 117.1 (2) | H18A—C18—H18B | 109.5 |
C14—C13—C17 | 120.9 (2) | H18A—C18—H18C | 109.5 |
C12—C13—C17 | 122.0 (2) | H18B—C18—H18C | 109.5 |
C11—C12—H12 | 118.6 | ||
O1—C1—C6—C5 | −178.81 (18) | C19—C24—C23—C22 | 57.3 (2) |
O1—C1—C6—C9 | 1.4 (3) | C19—C20—C21—C22 | −55.9 (2) |
O1—C1—C2—C3 | −178.87 (18) | C10—N1—C9—C6 | 166.26 (16) |
O1—C1—C2—C7 | 2.7 (3) | C10—N1—C19—C24 | 53.1 (2) |
O2—C16—C15—C14 | 179.63 (19) | C10—N1—C19—C20 | −74.3 (2) |
O2—C16—C15—C18 | 0.6 (3) | C10—C11—C16—O2 | −1.2 (3) |
N1—C19—C24—C23 | 174.32 (17) | C10—C11—C16—C15 | 177.75 (18) |
N1—C19—C20—C21 | −171.58 (15) | C10—C11—C12—C13 | −177.36 (18) |
C11—C16—C15—C14 | 0.5 (3) | C3—C4—C5—C6 | 0.7 (3) |
C11—C16—C15—C18 | −178.5 (2) | C24—C19—C20—C21 | 58.1 (2) |
C1—C6—C5—C4 | −2.0 (3) | C14—C13—C12—C11 | −1.4 (3) |
C1—C6—C9—N1 | −43.1 (2) | C13—C14—C15—C16 | −0.5 (3) |
C4—C3—C2—C1 | −2.8 (3) | C13—C14—C15—C18 | 178.5 (2) |
C4—C3—C2—C7 | 175.6 (2) | C12—C11—C16—O2 | 179.99 (19) |
C16—C11—C10—N1 | 106.6 (2) | C12—C11—C16—C15 | −1.0 (3) |
C16—C11—C12—C13 | 1.5 (3) | C12—C11—C10—N1 | −74.6 (2) |
C6—C1—C2—C3 | 1.5 (3) | C2—C1—C6—C5 | 0.8 (3) |
C6—C1—C2—C7 | −176.93 (19) | C2—C1—C6—C9 | −178.92 (18) |
C5—C4—C3—C2 | 1.8 (3) | C20—C19—C24—C23 | −58.2 (2) |
C5—C6—C9—N1 | 137.12 (19) | C15—C14—C13—C12 | 0.9 (3) |
C9—N1—C19—C24 | −74.0 (2) | C15—C14—C13—C17 | −177.40 (19) |
C9—N1—C19—C20 | 158.55 (16) | C21—C22—C23—C24 | −55.9 (2) |
C9—N1—C10—C11 | −79.0 (2) | C23—C22—C21—C20 | 54.7 (2) |
C9—C6—C5—C4 | 177.78 (19) | C8—C4—C5—C6 | 177.6 (2) |
C19—N1—C9—C6 | −64.0 (2) | C8—C4—C3—C2 | −175.1 (2) |
C19—N1—C10—C11 | 152.53 (16) | C17—C13—C12—C11 | 176.86 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1 | 0.89 (4) | 1.81 (4) | 2.630 (2) | 153 (3) |
O2—H2···O1i | 0.99 (4) | 1.87 (4) | 2.741 (2) | 145 (3) |
C7—H7A···O1 | 0.98 | 2.40 | 2.854 (3) | 108 |
Symmetry code: (i) x−1/2, −y+1/2, z. |
Acknowledgements
We thank the Department of Materials Engineering, Faculty of Engineering, Kasetsart University for the facility support. We acknowledge the Synchrotron Light Research Institute (Public Organization), SLRI, Thailand for the provision of beam time for XRD at BL1.1 W. All research staff of BL1.1 W are acknowledged for experimental consulting and assistance.
References
Abrahams, A., Gerber, T., Hosten, E. & Mayer, P. (2009). Turk. J. Chem. 33, 569–577. CAS Google Scholar
Bowser, A. K., Anderson-Wile, A. M., Johnston, D. H. & Wile, B. M. (2016). Appl. Organomet. Chem. 30, 32–39. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2018). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chirachanchai, S., Laobuthee, A. & Phongtamrug, S. (2009). J. Heterocycl. Chem. 46, 714–721. Web of Science CrossRef CAS Google Scholar
Contreras-García, J., Johnson, E. R., Keinan, S., Chaudret, R., Piquemal, J.-P., Beratan, D. N. & Yang, W. (2011). J. Chem. Theory Comput. 7, 625–632. Web of Science PubMed Google Scholar
Demir, K. D., Kiskan, B., Aydogan, B. & Yagci, Y. (2013). React. Funct. Polym. 73, 346–359. Web of Science CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Dunkers, J., Zarate, E. A. & Ishida, H. (1996). J. Phys. Chem. 100, 13514–13520. CSD CrossRef CAS Web of Science Google Scholar
Froimowicz, P., Zhang, K. & Ishida, H. (2016). Chem. Eur. J. 22, 2691–2707. Web of Science CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hasan, K., Dawe, L. N. & Kozak, C. N. (2011). Eur. J. Inorg. Chem. 2011, 4610–4621. Web of Science CSD CrossRef CAS Google Scholar
Hemvichian, K., Laobuthee, A., Chirachanchai, S. & Ishida, H. (2002). Polym. Degrad. Stabil. 76, 1–15. Web of Science CrossRef CAS Google Scholar
Iguchi, D., Salum, M. L. & Froimowicz, P. (2018). Macromol. Chem. Phys. 220, 1800366. Web of Science CrossRef Google Scholar
Ishida, H. & Agag, T. (2011). Handbook of Benzoxazine Resins. Amsterdam: Elsevier. Google Scholar
Ishida, H. & Allen, D. J. (1996). J. Polym. Sci. B Polym. Phys. 34, 1019–1030. CrossRef CAS Google Scholar
Janas, Z., Nerkowski, T., Kober, E., Jerzykiewicz, L. B. & Lis, T. (2012). Dalton Trans. 41, 442–447. Web of Science CSD CrossRef CAS PubMed Google Scholar
Johnson, E. R., Keinan, S., Mori-Sánchez, P., Contreras-García, J., Cohen, A. J. & Yang, W. (2010). J. Am. Chem. Soc. 132, 6498–6506. Web of Science CrossRef CAS PubMed Google Scholar
Kelly, B. V., Weintrob, E. C., Buccella, D., Tanski, J. M. & Parkin, G. (2007). Inorg. Chem. Commun. 10, 699–704. Web of Science CSD CrossRef CAS Google Scholar
Kim, H. D. & Ishida, H. (2001). J. Appl. Polym. Sci. 79, 1207–1219. CrossRef CAS Google Scholar
Kiskan, B., Ghosh, N. N. & Yagci, Y. (2011). Polym. Int. 60, 167–177. Web of Science CrossRef CAS Google Scholar
Kuźnik, N., Chrobaczyński, A., Mika, M., Miler, P., Komor, R. & Kubicki, M. (2012). Eur. J. Med. Chem. 52, 184–192. Web of Science PubMed Google Scholar
Laobuthee, A., Chirachanchai, S., Ishida, H. & Tashiro, K. (2001). J. Am. Chem. Soc. 123, 9947–9955. Web of Science CrossRef PubMed CAS Google Scholar
Lionetti, D., Medvecz, A. J., Ugrinova, V., Quiroz-Guzman, M., Noll, B. C. & Brown, S. N. (2010). Inorg. Chem. 49, 4687–4697. Web of Science CSD CrossRef CAS PubMed Google Scholar
Liu, Y.-F., Xia, H.-T., Wang, D.-Q., Yang, S.-P. & Meng, Y.-L. (2007). Acta Cryst. E63, o4070. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lorber, C., Wolff, F., Choukroun, R. & Vendier, L. (2005). Eur. J. Inorg. Chem. pp. 2850–2859. Web of Science CSD CrossRef Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Olesiejuk, M., Bakalorz, K., Krawczyk, T. & Kuźnik, N. (2018). C. R. Chim. 21, 831–834. Web of Science CSD CrossRef CAS Google Scholar
Phongtamrug, S., Tashiro, K., Miyata, M. & Chirachanchai, S. (2006). J. Phys. Chem. B, 110, 21365–21370. Web of Science CSD CrossRef PubMed CAS Google Scholar
Redjel, Y. K., Thevenin, L., Daran, J.-C., Benslimane, M., Poli, R. & Fliedel, C. (2018). Polyhedron, 158, 83–90. Web of Science CSD CrossRef Google Scholar
Rivera, A. & Bolte, M. (2016). Private communication (refcode ICEMIO01). CCDC, Cambridge, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Singh, M., Butcher, R. J., Jasinski, J. P., Golen, J. A. & Mugesh, G. (2012). J. Chem. Sci. 124, 1301–1313. Web of Science CSD CrossRef CAS Google Scholar
Sony, S. M. M., Kuppayee, M., Ponnuswamy, M. N., Manonmani, J., Kandaswamy, M. & Fun, H.-K. (2003). J. Chem. Crystallogr. 33, 925–932. Web of Science CSD CrossRef CAS Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Suramitr, S., Teanwarawat, J., Ithiapa, N., Wattanathana, W. & Suramitr, A. (2020). Acta Cryst. E76, 1027–1032. Web of Science CrossRef IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia. Google Scholar
Velez-Herrera, P., Doyama, K., Abe, H. & Ishida, H. (2008). Macromolecules, 41, 9704–9714. CAS Google Scholar
Velusamy, M., Palaniandavar, M., Gopalan, R. S. & Kulkarni, G. U. (2003). Inorg. Chem. 42, 8283–8293. Web of Science CSD CrossRef PubMed CAS Google Scholar
Veranitisagul, C., Kaewvilai, A., Duangthongyou, T., Koonsaeng, N. & Laobuthee, A. (2012b). Acta Cryst. E68, o2139. CSD CrossRef IUCr Journals Google Scholar
Veranitisagul, C., Kaewvilai, A., Sangngern, S., Wattanathana, W., Suramitr, S., Koonsaeng, N. & Laobuthee, A. (2011). Int. J. Mol. Sci. 12, 4365–4377. Web of Science CrossRef CAS PubMed Google Scholar
Veranitisagul, C., Wattanathana, W., Kaewvilai, A., Duangthongyou, T., Laobuthee, A. & Koonsaeng, N. (2012). Acta Cryst. E68, o1826. CSD CrossRef IUCr Journals Google Scholar
Wang, N., Wang, Y., Li, J. & Li, T. (2011c). Chin. J. Org. Chem. 31, 1703–1706. CAS Google Scholar
Wang, N.-S., Wang, Y.-T., Guo, X.-K. & Li, T.-D. (2011b). Acta Cryst. E67, o1438. Web of Science CSD CrossRef IUCr Journals Google Scholar
Wang, N.-S., Wang, Y.-T., Li, J.-D. & Li, T.-D. (2011a). Chin. J. Struct. Chem. 30, 1533–1536. CAS Google Scholar
Wattanathana, W., Nonthaglin, S., Veranitisagul, C., Koonsaeng, N. & Laobuthee, A. (2014). J. Mol. Struct. 1074, 118–125. Web of Science CSD CrossRef CAS Google Scholar
Wattanathana, W., Nootsuwan, N., Veranitisagul, C., Koonsaeng, N., Suramitr, S. & Laobuthee, A. (2016). J. Mol. Struct. 1109, 201–208. Web of Science CSD CrossRef CAS Google Scholar
Wattanathana, W., Veranitisagul, C., Kaewvilai, A., Laobuthee, A. & Koonsaeng, N. (2012). Acta Cryst. E68, o3050. CSD CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wu, M.-H., Liu, W.-J., Zou, W.-D. & Wang, H.-Y. (2006). Acta Cryst. E62, o2949–o2950. Web of Science CSD CrossRef IUCr Journals Google Scholar
Xu, Q., Zeng, M., Chen, J., Zeng, S., Huang, Y., Feng, Z., Xu, Q., Yan, C. & Gu, Y. (2018). React. Funct. Polym. 122, 158–166. Web of Science CrossRef CAS Google Scholar
Zhang, J., Wang, B., Wang, L., Sun, J., Zhang, Y., Cao, Z. & Wu, Z. (2018). Appl. Organomet. Chem. 32, e4077. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.