research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of the product of the ring-opening reaction of a di­hydro­benzoxazine: 6,6′-[(cyclo­hexyl­aza­nedi­yl)bis­­(methyl­ene)]bis­­(2,4-di­methyl­phenol)

CROSSMARK_Color_square_no_text.svg

aSynchrotron Light Research Institute, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima 30000, Thailand, bDepartment of Materials Engineering, Faculty of Engineering, Kasetsart University 10900, Thailand, cNational Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, 12120, Thailand, dSchool of Chemistry, Institute of Science, Suranaree University of Technology, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima 30000, Thailand, and eDepartment of Materials and Metallurgical Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi, Pathumthani 12110, Thailand
*Correspondence e-mail: fengwwwa@ku.ac.th

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 22 June 2020; accepted 6 July 2020; online 10 July 2020)

In the title unsymmetrical tertiary amine, C24H33NO2, which arose from the ring-opening reaction of a di­hydro­benzoxazine, two 2,4-di­methyl­phenol moieties are linked by a 6,6′-(cyclo­hexyl­aza­nedi­yl)-bis­(methyl­ene) bridge: the dihedral angle between the dimethyl­phenol rings is 72.45 (7)°. The cyclo­hexyl ring adopts a chair conformation with the exocyclic C—N bond in an equatorial orientation. One of the phenol OH groups forms an intra­molecular O—H⋯N hydrogen bond, generating an S(6) ring, and a short intra­molecular C—H⋯O contact is also present. In the crystal, O—H⋯O hydrogen bonds link the mol­ecules into C(10) chains propagating along the [100] direction. The Hirshfeld surface analysis of the title compound confirms the presence of these intra- and inter­molecular inter­actions. The corresponding fingerprint plots indicate that the most significant contacts in the crystal packing are H⋯H (76.4%), H⋯C/C⋯H (16.3%), and H⋯O/O⋯H (7.2%).

1. Chemical context

Di­hydro-benzoxazines contain a benzene ring fused with a di­hydro-oxazine ring (a six-membered heterocycle containing one nitro­gen atom and one oxygen atom). Several isomers of di­hydro-benzoxazines can be formed by varying the heteroatomic positions within the di­hydro-oxazine ring. Among the different isomers of di­hydro-benzoxazines, only 3,4-di­hydro-2H-benzo[e]-1,3-oxaxines (commonly called 1,3-2H-benzoxazine monomers) can undergo a ring-opening polymerization reaction to form polybenzoxazines. As a result of various promising physical and chemical properties, polybenzoxazines have been studied by a number of workers (Ishida & Allen, 1996[Ishida, H. & Allen, D. J. (1996). J. Polym. Sci. B Polym. Phys. 34, 1019-1030.]; Ishida & Agag 2011[Ishida, H. & Agag, T. (2011). Handbook of Benzoxazine Resins. Amsterdam: Elsevier.]; Kiskan et al., 2011[Kiskan, B., Ghosh, N. N. & Yagci, Y. (2011). Polym. Int. 60, 167-177.]; Demir et al., 2013[Demir, K. D., Kiskan, B., Aydogan, B. & Yagci, Y. (2013). React. Funct. Polym. 73, 346-359.]; Kim & & Ishida, 2001[Kim, H. D. & Ishida, H. (2001). J. Appl. Polym. Sci. 79, 1207-1219.]; Velez-Herrera et al., 2008[Velez-Herrera, P., Doyama, K., Abe, H. & Ishida, H. (2008). Macromolecules, 41, 9704-9714.]; Xu et al., 2018[Xu, Q., Zeng, M., Chen, J., Zeng, S., Huang, Y., Feng, Z., Xu, Q., Yan, C. & Gu, Y. (2018). React. Funct. Polym. 122, 158-166.]). Moreover, a ring-opening polymerization to form the aza-methyl­ene-phenol [–NR–CH2–C6H4(OH)–] moiety provides such hydrogen bonding as to inter­connect with other materials (Froimowicz et al., 2016[Froimowicz, P., Zhang, K. & Ishida, H. (2016). Chem. Eur. J. 22, 2691-2707.]; Iguchi et al., 2018[Iguchi, D., Salum, M. L. & Froimowicz, P. (2018). Macromol. Chem. Phys. 220, 1800366.]).

Inter­estingly, the use of phenol derivatives as initiators for the ring-opening polymerization of 3,4-di­hydro-2H-benzo[e]-1,3-oxaxines leads to the formation of small mol­ecules instead of polybenzoxazines (Chirachanchai et al., 2009[Chirachanchai, S., Laobuthee, A. & Phongtamrug, S. (2009). J. Heterocycl. Chem. 46, 714-721.]). These small mol­ecules (so-called di­hydro-benzoxazine dimers), which generally possess an aza-methyl­ene-phenol group, have been employed as models for describing polybenzoxazines (Hemvichian et al., 2002[Hemvichian, K., Laobuthee, A., Chirachanchai, S. & Ishida, H. (2002). Polym. Degrad. Stabil. 76, 1-15.]). In addition, the asymmetric Mannich reaction of the derivatives of di­hydro-benzoxazine dimers, where only one OH group undergoes the ring-closure reaction has been reported (Laobuthee et al., 2001[Laobuthee, A., Chirachanchai, S., Ishida, H. & Tashiro, K. (2001). J. Am. Chem. Soc. 123, 9947-9955.]). As a result of these aza-methyl­ene-phenol moieties, inter­molecular and intra­molecular hydrogen bonds are found in both the polybenzoxazines and the di­hydro-benzoxazine dimers. They enhance the reactivity of the di­hydro-benzoxazine dimers towards transition and rare-earth metal ions with respect to the common phenolic compounds. For instances, di­hydro-benzoxazine dimers have been reported to be good chelating agents (Iguchi et al., 2018[Iguchi, D., Salum, M. L. & Froimowicz, P. (2018). Macromol. Chem. Phys. 220, 1800366.]) for cerium ions (Veranitisagul et al., 2011[Veranitisagul, C., Kaewvilai, A., Sangngern, S., Wattanathana, W., Suramitr, S., Koonsaeng, N. & Laobuthee, A. (2011). Int. J. Mol. Sci. 12, 4365-4377.]) and copper ions (Phongtamrug et al., 2006[Phongtamrug, S., Tashiro, K., Miyata, M. & Chirachanchai, S. (2006). J. Phys. Chem. B, 110, 21365-21370.]).

[Scheme 1]

In this work, as part of our ongoing studies in this area (Wattanathana et al., 2016[Wattanathana, W., Nootsuwan, N., Veranitisagul, C., Koonsaeng, N., Suramitr, S. & Laobuthee, A. (2016). J. Mol. Struct. 1109, 201-208.]), we report the synthesis, crystal structure and Hirshfeld surface analysis of the title compound, (I)[link].

2. Structural commentary

Fig. 1[link] shows the mol­ecular structure of (I)[link], which crystallizes in space group Pna21. The tertiary-amine nitro­gen atom (N1) adopts a distorted trigonal pyramidal shape because of the expansion of the angles around N1 atom [C9—N1—C19 = 112.59 (15); C10—N1—C9 = 109.97 (15); C10—N1—C19 = 115.09 (15); bond-angle sum = 337.7°].

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link] with displacement ellipsoids drawn at the 50% probability level. The O—H⋯O and C—H⋯O hydrogen bonds are shown as yellow and magenta dashed lines, respectively.

The non-hydrogen atoms of the 2,4-di­methyl­phenol moieties, namely C1–C8/O1 and C11–C18/O2, are almost planar (r.m.s. deviations = 0.030 and 0.017 Å, respectively) and their mean planes subtend a dihedral angle of 72.45 (7)°. The C atoms in the methyl groups in the para-positions with respect to the OH groups deviate the most from the calculated mean planes with deviations of 0.043 (2) for C8 and −0.033 (2) Å for C17. The cyclo­hexyl group adopts a regular chair conformation as seen from the C—C—C bond angles, which are in the range 109.14 (17)° to 111.59 (17)°. The hydrogen atom bonded to C19 (H19) is in the axial position to allow the bulkier group (N1 tertiary-amine nitro­gen atom) to be located at the equatorial position.

According to freely refined positions of the O-bound hydrogen atoms (H1 and H2), H1 points toward N1 to set up an intra­molecular O—H⋯N hydrogen bond with an S(6) graph-set motif (Table 1[link]). This type of intra­molecular O—H⋯N hydrogen bond is commonly noticed in the compounds having –OH and aza­methyl­ene groups attached to the benzene ring in the ortho positions (Suramitr et al., 2020[Suramitr, S., Teanwarawat, J., Ithiapa, N., Wattanathana, W. & Suramitr, A. (2020). Acta Cryst. E76, 1027-1032.]), especially dihydro-benzoxazine dimer derivatives (Veranitisagul et al., 2012[Veranitisagul, C., Wattanathana, W., Kaewvilai, A., Duangthongyou, T., Laobuthee, A. & Koonsaeng, N. (2012). Acta Cryst. E68, o1826.]; Wattanathana et al., 2012[Wattanathana, W., Veranitisagul, C., Kaewvilai, A., Laobuthee, A. & Koonsaeng, N. (2012). Acta Cryst. E68, o3050.], 2016[Wattanathana, W., Nootsuwan, N., Veranitisagul, C., Koonsaeng, N., Suramitr, S. & Laobuthee, A. (2016). J. Mol. Struct. 1109, 201-208.]). In addition to the classical hydrogen bond, one of the hydrogen atoms on the methyl side chain at the ortho position to the O1 atom exhibits a C7—H7A⋯O1 close contact (Table 1[link]) The characteristics of specific interactions for compound (I)[link] are displayed as a non-covalent interaction plot (NCIPLOT) (Johnson et al., 2010[Johnson, E. R., Keinan, S., Mori-Sánchez, P., Contreras-García, J., Cohen, A. J. & Yang, W. (2010). J. Am. Chem. Soc. 132, 6498-6506.]; Contreras-García et al., 2011[Contreras-García, J., Johnson, E. R., Keinan, S., Chaudret, R., Piquemal, J.-P., Beratan, D. N. & Yang, W. (2011). J. Chem. Theory Comput. 7, 625-632.]) in Fig. S1 of the supporting information.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.89 (4) 1.81 (4) 2.630 (2) 153 (3)
O2—H2⋯O1i 0.99 (4) 1.87 (4) 2.741 (2) 145 (3)
C7—H7A⋯O1 0.98 2.40 2.854 (3) 108
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z].

3. Supra­molecular features

The other (O2) phenol group in (I)[link] forms an inter­molecular O—H⋯O hydrogen bond with O1 as the acceptor, which generates C(10) chains in the crystal, propagating in the [100] direction (Fig. 2[link]). Unlike other dihydro-benzoxazine dimer derivatives, the title compound does not exhibit R22(20) hydrogen-bonded loops like those formed in 6,6′-(methyl­aza­nedi­yl)bis­(methyl­ene)bis­(2,4-di­methyl­phenol) (NUPJOX: Dunkers et al., 1996[Dunkers, J., Zarate, E. A. & Ishida, H. (1996). J. Phys. Chem. 100, 13514-13520.]; Phongtamrug et al., 2006[Phongtamrug, S., Tashiro, K., Miyata, M. & Chirachanchai, S. (2006). J. Phys. Chem. B, 110, 21365-21370.]; Veranitisagul et al., 2012a[Veranitisagul, C., Wattanathana, W., Kaewvilai, A., Duangthongyou, T., Laobuthee, A. & Koonsaeng, N. (2012). Acta Cryst. E68, o1826.]), 2,2′-(cyclo­hexyl­aza­nedi­yl)bis­(methyl­ene)bis­(4-ethyl­phenol) (SACYAZ and SADPEV; Wattanathana et al., 2016[Wattanathana, W., Nootsuwan, N., Veranitisagul, C., Koonsaeng, N., Suramitr, S. & Laobuthee, A. (2016). J. Mol. Struct. 1109, 201-208.]), 2,2′-(methyl­aza­nedi­yl)bis­(methyl­ene)bis­(4-methyl­phen­ol) (IDUHEV; Wu et al., 2006[Wu, M.-H., Liu, W.-J., Zou, W.-D. & Wang, H.-Y. (2006). Acta Cryst. E62, o2949-o2950.]), 2,2′-(methyl­aza­nedi­yl)bis­(meth­yl­ene)bis­(4-meth­oxy­phenol) (XEBBIR; Veranitisagul et al., 2012b[Veranitisagul, C., Kaewvilai, A., Duangthongyou, T., Koonsaeng, N. & Laobuthee, A. (2012b). Acta Cryst. E68, o2139.]), 2,2′-(cyclo­hexyl­aza­nedi­yl)bis­(methyl­ene)bis­(4-meth­yl­phenol) (HETGOD; Phongtamrug et al., 2006[Phongtamrug, S., Tashiro, K., Miyata, M. & Chirachanchai, S. (2006). J. Phys. Chem. B, 110, 21365-21370.]), and 2,2′-(cyclo­hexyl­aza­nedi­yl)bis­(methyl­ene)bis­(4-ethyl­phenol) (CEGYUK; Wattanathana et al., 2012[Wattanathana, W., Veranitisagul, C., Kaewvilai, A., Laobuthee, A. & Koonsaeng, N. (2012). Acta Cryst. E68, o3050.]). This might be due to a greater steric effect from both the methyl and cyclo­hexyl groups.

[Figure 2]
Figure 2
A view down [001] illustrating part of a [100] C(10) chain of O—H⋯O hydrogen bonds in the extended structure of (I)[link].

The structure overlay of the title compound (green compound) and its structural isomer with only ethyl groups at the para-positions of the phenol rings (CEGYUK; Wattanathana et al., 2012[Wattanathana, W., Veranitisagul, C., Kaewvilai, A., Laobuthee, A. & Koonsaeng, N. (2012). Acta Cryst. E68, o3050.]) is displayed in Fig. 3[link]. For CEGYUK, both O1 and O2 point toward the same side of the mol­ecule to form the R22(20) hydrogen-bond motif just mentioned, while the O1 and O2 atoms of (I)[link] are oriented in the opposite direction in order to reduce the steric effect. Therefore, the title mol­ecules are joined together in an end-to-end packing mode into [100] chains (Fig. 2[link]), where it may be seen that the bulky substituent groups are arrayed in an alternating fashion along the chain.

[Figure 3]
Figure 3
Overlay diagram of (I)[link] (green structure) and its structural isomer (yellow structure, CEGYUK; Wattanathana et al., 2012[Wattanathana, W., Veranitisagul, C., Kaewvilai, A., Laobuthee, A. & Koonsaeng, N. (2012). Acta Cryst. E68, o3050.]). The N and six cyclo­hexyl C atoms are used as centers for structural overlay.

4. Hirshfeld analysis

To better understand and visualize the inter­actions within the crystal of the title compound, a Hirshfeld surface (HS) analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out using Crystal Explorer 17.5 software (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.]). The HS plotted over the given range of dnorm from −0.56 to 1.39 a.u. (Fig. 4[link]) shows faint red spots near O1, H2, and C7, confirming the S(6) ring, C(10) chain, and C—H⋯O inter­action, respectively.

[Figure 4]
Figure 4
A view of the three-dimensional Hirshfeld surface of (I)[link] plotted over dnorm in the range −0.56 to 1.39 a.u.

Fig. 5[link] shows the full two-dimensional fingerprint plot and those delineated into individual inter­actions (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]). The fingerprint plots show that the major contacts in the crystal structure are the contacts regarding H atoms only as the sum of all the H-related contributions is 99.9%. The H⋯H contacts are characterized as a single spike at de + di ≃ 2.3 Å with the contribution of 76.4%, while the H⋯C/C⋯H contacts are observed as a pair of beak-shaped tips at de + di ≃ 2.75 Å with a contribution of 16.3%. The pair of sharp peaks at de + di ≃ 2.2 Å represents the H⋯O/O⋯H contacts (7.2%). The C⋯C contact only participates slightly in the crystal packing as its individual contribution is only 0.1%. The other contacts, i.e., N⋯N, H⋯N/N⋯H, C⋯N/N⋯C, C⋯O/O⋯C, show no effect on the crystal packing due to the contribution of 0.0%.

[Figure 5]
Figure 5
The full two-dimensional fingerprint plots for (I)[link], showing (a) all inter­actions, and those delineated into (b) H⋯H, (c) C⋯H /H⋯C and (d) O⋯H/ H⋯O inter­actions.

5. Database survey

A search for structures containing the bis­(phenol) linked by a bis­(methyl­ene)aza bridge in the Cambridge Structural Database (CSD version 5.41, November 2019 + two updates; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) showed 156 match entries. Structural diversity of the dihydro-benzoxazine derivatives is observed as a result of the variation of the substituent groups on both the phenol moieties and tertiary-amine nitro­gen atom. Several crystal structures of dihydro-benzoxazine dimer derivatives with no other substituent groups on both the phenol rings have been reported (BUZWUP; Abrahams et al., 2009[Abrahams, A., Gerber, T., Hosten, E. & Mayer, P. (2009). Turk. J. Chem. 33, 569-577.]; KEJRAU; Kuźnik et al., 2012[Kuźnik, N., Chrobaczyński, A., Mika, M., Miler, P., Komor, R. & Kubicki, M. (2012). Eur. J. Med. Chem. 52, 184-192.]). The crystal structures of dihydro-benzoxazine dimer derivatives with ortho substituents have also been reported, e.g., tert-butyl substituents (CIJLEN; Kelly et al., 2007[Kelly, B. V., Weintrob, E. C., Buccella, D., Tanski, J. M. & Parkin, G. (2007). Inorg. Chem. Commun. 10, 699-704.]) and meth­oxy substituents (SILROV; Liu et al., 2007[Liu, Y.-F., Xia, H.-T., Wang, D.-Q., Yang, S.-P. & Meng, Y.-L. (2007). Acta Cryst. E63, o4070.]). However, no crystal structures of dihydro-benzoxazine dimers possessing meta substituents have been reported. This might be due to the ortho and para directing property of the phenolic –OH groups. Dihydro-benzoxazine dimer derivatives with para substituents are very common, viz. with methyl groups (FANHOT; Janas et al., 2012[Janas, Z., Nerkowski, T., Kober, E., Jerzykiewicz, L. B. & Lis, T. (2012). Dalton Trans. 41, 442-447.], Singh et al., 2012[Singh, M., Butcher, R. J., Jasinski, J. P., Golen, J. A. & Mugesh, G. (2012). J. Chem. Sci. 124, 1301-1313.]; HETGOD; Phongtamrug et al., 2006[Phongtamrug, S., Tashiro, K., Miyata, M. & Chirachanchai, S. (2006). J. Phys. Chem. B, 110, 21365-21370.]; ICEMIO; Wang et al., 2011a[Wang, N.-S., Wang, Y.-T., Li, J.-D. & Li, T.-D. (2011a). Chin. J. Struct. Chem. 30, 1533-1536.], Rivera & Bolte, 2016[Rivera, A. & Bolte, M. (2016). Private communication (refcode ICEMIO01). CCDC, Cambridge, England.]; IDUHEV; Wu et al., 2006[Wu, M.-H., Liu, W.-J., Zou, W.-D. & Wang, H.-Y. (2006). Acta Cryst. E62, o2949-o2950.]; USODAC; Wang et al., 2011b[Wang, N.-S., Wang, Y.-T., Guo, X.-K. & Li, T.-D. (2011b). Acta Cryst. E67, o1438.],c[Wang, N., Wang, Y., Li, J. & Li, T. (2011c). Chin. J. Org. Chem. 31, 1703-1706.]), ethyl groups (CEGYUK; Wattanathana et al., 2012[Wattanathana, W., Veranitisagul, C., Kaewvilai, A., Laobuthee, A. & Koonsaeng, N. (2012). Acta Cryst. E68, o3050.], SACYAZ and SADPEV; Wattanathana et al., 2016[Wattanathana, W., Nootsuwan, N., Veranitisagul, C., Koonsaeng, N., Suramitr, S. & Laobuthee, A. (2016). J. Mol. Struct. 1109, 201-208.]), a meth­oxy group (XEBBIR; Veranitisagul et al., 2012b[Veranitisagul, C., Kaewvilai, A., Duangthongyou, T., Koonsaeng, N. & Laobuthee, A. (2012b). Acta Cryst. E68, o2139.]), and tert-butyl groups (GIKJOC; Redjel et al., 2018[Redjel, Y. K., Thevenin, L., Daran, J.-C., Benslimane, M., Poli, R. & Fliedel, C. (2018). Polyhedron, 158, 83-90.]). Apart from the monosubstituted derivatives, there are some reports on the crystal structures of ortho and para disubstituted derivatives, e.g., HEPZOU (Zhang et al., 2018[Zhang, J., Wang, B., Wang, L., Sun, J., Zhang, Y., Cao, Z. & Wu, Z. (2018). Appl. Organomet. Chem. 32, e4077.]) and RACMEP (Lionetti et al., 2010[Lionetti, D., Medvecz, A. J., Ugrinova, V., Quiroz-Guzman, M., Noll, B. C. & Brown, S. N. (2010). Inorg. Chem. 49, 4687-4697.]). Moreover, dihydro-benzoxazine dimers can also have different substituents on both the phenol rings as in AMEFUT, AMEGAA and AMEGEE (Sony et al., 2003[Sony, S. M. M., Kuppayee, M., Ponnuswamy, M. N., Manonmani, J., Kandaswamy, M. & Fun, H.-K. (2003). J. Chem. Crystallogr. 33, 925-932.]), resulting in considerable structural variety.

When more restriction is applied to the search of 2,4-di­methyl­bis­(phenol) linked by bis­(methyl­ene)aza bridge, the number of match structures is now reduced to 38 hits as only the N-substituted grouping can change. Examples of different N-substituents of the 6,6′-(aza­nedi­yl)bis­(methyl­ene)bis­(2,4-di­methyl­phenol) derivatives are –CH3 (NUPJOX; Dunkers et al., 1996[Dunkers, J., Zarate, E. A. & Ishida, H. (1996). J. Phys. Chem. 100, 13514-13520.], Phongtamrug et al., 2006[Phongtamrug, S., Tashiro, K., Miyata, M. & Chirachanchai, S. (2006). J. Phys. Chem. B, 110, 21365-21370.], Veranitisagul et al., 2012a[Veranitisagul, C., Wattanathana, W., Kaewvilai, A., Duangthongyou, T., Laobuthee, A. & Koonsaeng, N. (2012). Acta Cryst. E68, o1826.]), –CH2CH2OCH3 (CAKDUP; Hasan et al., 2011[Hasan, K., Dawe, L. N. & Kozak, C. N. (2011). Eur. J. Inorg. Chem. 2011, 4610-4621.]), –CH2CH2N(CH3)2 (ESAHUB; Velusamy et al., 2003[Velusamy, M., Palaniandavar, M., Gopalan, R. S. & Kulkarni, G. U. (2003). Inorg. Chem. 42, 8283-8293.], Lorber et al., 2005[Lorber, C., Wolff, F., Choukroun, R. & Vendier, L. (2005). Eur. J. Inorg. Chem. pp. 2850-2859.]), –CH2CH2CH2OH (GIMWIL; Olesiejuk et al., 2018[Olesiejuk, M., Bakalorz, K., Krawczyk, T. & Kuźnik, N. (2018). C. R. Chim. 21, 831-834.]), –CH2CH2CH2Cl (GIMWOR; Olesiejuk et al., 2018[Olesiejuk, M., Bakalorz, K., Krawczyk, T. & Kuźnik, N. (2018). C. R. Chim. 21, 831-834.]), –CH2CH2N(CH2CH3)2 (TOJSUI; Singh et al., 2012[Singh, M., Butcher, R. J., Jasinski, J. P., Golen, J. A. & Mugesh, G. (2012). J. Chem. Sci. 124, 1301-1313.]), and –CH2CH2CH2N(CH3)2 (ZUXJAF; Bowser et al., 2016[Bowser, A. K., Anderson-Wile, A. M., Johnston, D. H. & Wile, B. M. (2016). Appl. Organomet. Chem. 30, 32-39.]).

6. Synthesis, characterization and crystallization

Firstly, the corresponding dihydro-benzoxazine monomer, 3-cyclo­hexyl-6,8-dimethyl-3,4-di­hydro-2H-benzo[e][1,3]oxa­zine, was prepared by a one-pot Mannich reaction (Chirachanchai et al., 2009[Chirachanchai, S., Laobuthee, A. & Phongtamrug, S. (2009). J. Heterocycl. Chem. 46, 714-721.]; Wattanathana et al., 2014[Wattanathana, W., Nonthaglin, S., Veranitisagul, C., Koonsaeng, N. & Laobuthee, A. (2014). J. Mol. Struct. 1074, 118-125.]). Cyclo­hexyl­amine (0.99 g, 10 mmol), paraformaldehyde (0.63 g, 20 mmol) and 2,4-di­methyl­phenol (1.22 g, 10 mmol) were dissolved in dioxane (10 ml). The mixture was refluxed for 6 h to obtain a clear yellow solution. The solvent was removed by a rotary evaporator to obtain a yellowish viscous liquid as a crude product. After that, 10 ml of di­chloro­methane were added to the dried crude product. The crude product was then washed by a liquid–liquid extraction method using 3 N NaOH (10 ml) three times, followed by 10 ml of deionized water for three more times until the solution became neutral. The product was dried by anhydrous sodium sulfate. Then, the di­chloro­methane solvent was removed by a rotary evaporator and consequently the dihydro-benzoxazine monomer, 3-cyclo­hexyl-6,8-dimethyl-3,4-di­hydro-2H-benzo[e][1,3]oxazine, (II), was collected.

An equimolar amount of 2,4-di­methyl­phenol was then mixed with (II) and the mixture was heated at 333 K overnight. After the reaction was complete, the yellow viscous liquid turned into a yellow solid, which was washed using diethyl ether, giving rise to a white precipitate of the title compound, which was separated from the yellow solution by deca­ntation and rinsing with diethyl ether. The white precip­itate was recrystallized from propan-2-ol solution to yield colourless blocks of (I)[link].

M.p. 425 K; FTIR (KBR pellet, cm−1): 3384 (br, O—H), 1484 (vs, Ca—Ca), 1451 (m, N–CH3), 1245 (m, C—N), 1199 (m, C—N—C), 858 (m, C—N—C); Raman (cm−1): 3023 (m, Ca—H), 2942 (vs, Csp3—H), 1447 (m, N—CH3); 1H NMR (δH, ppm): 1.06–1.14 (m, 1H), 1.19 (q, J = 12.0 Hz, 2H), 1.44 (q, J = 9.5 Hz, 2H), 1.64 (d, J = 12.0 Hz, 1H), 1.81 (d, J = 13.0 Hz, 2H), 1.94 (d, J = 11.5 Hz, 2H), 2.21 (d, J = 11.0 Hz, 12H), 2.72 (tt, J = 12.0, 3.0 Hz, 1H), 3.73 (s, 4H), 6.70 (s, 2H), 6.85 (s, 2H), 8.04 (s, 2H); 13C NMR (δC, ppm): 16.03 (–CH3), 20.61 (–CH3), 25.99 (Ccy), 26.35 (Ccy), 27.66 (Ccy), 51.64 (–CH2–NR2), 57.65 (Ccy—NR2), 122.01 (Ca), 124.94 (Ca), 128.57 (Ca), 128.65 (Ca), 131.03 (Ca), 152.27 (C—OH) (cy = cyclo­hexyl, a = aromatic). Elemental analysis: analysis calculated for C24H33NO2 (%): C 78.47; H 8.99; N 3.82; found: C 78.49; H 8.97; N 3.85. The good agreement (see Fig. S2 in the supporting information) between the measured PXRD pattern of (I)[link] and the calculated pattern based on the single crystal data indicates the high degree of crystal homogeneity and crystallinity of the obtained compound. For full details of the spectroscopic and powder diffraction measurements, see the supporting information.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The O-bound H atoms (H1 and H2) were located in a difference map and their positions were freely refined. The C-bound H atoms were placed in idealized positions (C—H = 0.95–1.00 Å depending on hybridization) and refined as riding atoms. The methyl groups were allowed to rotate, but not to tip, to best fit the electron density. The constraint Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl C) was applied in all cases. The absolute structure of (I)[link] was indeterminate in the present refinement.

Table 2
Experimental details

Crystal data
Chemical formula C24H33NO2
Mr 367.51
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 100
a, b, c (Å) 10.2778 (7), 11.4064 (11), 17.5586 (15)
V3) 2058.4 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.50 × 0.28 × 0.22
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.661, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 17289, 7626, 6367
Rint 0.035
(sin θ/λ)max−1) 0.771
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.139, 1.04
No. of reflections 7626
No. of parameters 256
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.85, −0.26
Computer programs: APEX2 and SAINT (Bruker, 2018[Bruker (2018). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2018); data reduction: SAINT(Bruker, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009), Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

6,6'-[(Cyclohexylazanediyl)bis(methylene)]bis(2,4-dimethylphenol) top
Crystal data top
C24H33NO2Dx = 1.186 Mg m3
Mr = 367.51Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 4297 reflections
a = 10.2778 (7) Åθ = 2.3–30.4°
b = 11.4064 (11) ŵ = 0.07 mm1
c = 17.5586 (15) ÅT = 100 K
V = 2058.4 (3) Å3Block, colourless
Z = 40.50 × 0.28 × 0.22 mm
F(000) = 800
Data collection top
Bruker APEXII CCD
diffractometer
6367 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
φ and ω scansθmax = 33.2°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1513
Tmin = 0.661, Tmax = 0.747k = 1716
17289 measured reflectionsl = 2626
7626 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.053H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.139 w = 1/[σ2(Fo2) + (0.0816P)2 + 0.0042P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
7626 reflectionsΔρmax = 0.85 e Å3
256 parametersΔρmin = 0.26 e Å3
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.55606 (15)0.40779 (15)0.48635 (9)0.0185 (3)
O20.25137 (17)0.07066 (16)0.38097 (11)0.0282 (4)
N10.30494 (16)0.38434 (15)0.46177 (9)0.0124 (3)
C110.33237 (18)0.26439 (18)0.34561 (11)0.0146 (3)
C10.53009 (19)0.38603 (17)0.56149 (11)0.0136 (3)
C40.4756 (2)0.34173 (18)0.71588 (11)0.0162 (4)
C160.33219 (19)0.14251 (19)0.34158 (12)0.0163 (4)
C60.41375 (18)0.33056 (18)0.58231 (10)0.0129 (3)
C50.3869 (2)0.31068 (18)0.65887 (11)0.0148 (3)
H50.3066480.2752820.6727460.018*
C90.31994 (19)0.29297 (18)0.52109 (11)0.0148 (4)
H9A0.3517670.2197360.4972440.018*
H9B0.2341010.2764760.5443160.018*
C190.24654 (17)0.49405 (17)0.49191 (11)0.0118 (3)
H190.2907940.5097910.5415860.014*
C100.23905 (18)0.33456 (18)0.39420 (11)0.0144 (3)
H10A0.2015700.3989530.3634120.017*
H10B0.1667810.2833210.4109900.017*
C30.5912 (2)0.39448 (18)0.69330 (12)0.0170 (4)
H30.6534250.4140460.7312180.020*
C240.10054 (19)0.48969 (19)0.50922 (12)0.0170 (4)
H24A0.0814860.4230620.5435900.020*
H24B0.0510240.4782360.4614340.020*
C140.5057 (2)0.1484 (2)0.24962 (12)0.0201 (4)
H140.5647430.1082690.2171440.024*
C130.50935 (19)0.2702 (2)0.25194 (12)0.0182 (4)
C120.4226 (2)0.32580 (19)0.30100 (12)0.0167 (4)
H120.4246820.4089030.3043710.020*
C20.61996 (19)0.42005 (18)0.61731 (12)0.0153 (4)
C200.27874 (19)0.59824 (18)0.44034 (12)0.0165 (4)
H20A0.3736030.6003070.4306360.020*
H20B0.2339100.5886650.3908210.020*
C150.4194 (2)0.08345 (19)0.29282 (13)0.0191 (4)
C220.09195 (19)0.7111 (2)0.49721 (13)0.0199 (4)
H22A0.0397730.7077350.4498630.024*
H22B0.0687910.7840640.5245580.024*
C210.2364 (2)0.71323 (18)0.47706 (13)0.0187 (4)
H21A0.2535980.7787810.4415100.022*
H21B0.2880550.7267860.5238250.022*
C230.0594 (2)0.60523 (19)0.54719 (13)0.0197 (4)
H23A0.0354310.6035830.5570530.024*
H23B0.1044400.6130960.5967670.024*
C70.7421 (2)0.4850 (2)0.59612 (14)0.0216 (4)
H7A0.7528900.4838100.5406760.032*
H7B0.8171540.4471730.6202090.032*
H7C0.7357710.5663630.6136870.032*
C80.4433 (2)0.3241 (2)0.79879 (12)0.0228 (4)
H8A0.4129000.3982840.8206270.034*
H8B0.5212700.2978870.8260660.034*
H8C0.3749070.2647690.8036070.034*
C170.6012 (2)0.3382 (3)0.20141 (13)0.0265 (5)
H17A0.6811730.2928660.1938140.040*
H17B0.6224020.4132460.2255650.040*
H17C0.5596760.3525740.1520430.040*
C180.4156 (3)0.0484 (2)0.28772 (17)0.0318 (5)
H18A0.4188480.0818990.3390820.048*
H18B0.4904590.0761750.2582360.048*
H18C0.3349660.0729010.2625190.048*
H10.480 (3)0.405 (3)0.463 (2)0.042 (10)*
H20.195 (4)0.111 (4)0.419 (3)0.057 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0135 (6)0.0288 (8)0.0133 (6)0.0015 (6)0.0020 (5)0.0010 (6)
O20.0312 (9)0.0236 (8)0.0299 (9)0.0038 (7)0.0126 (7)0.0037 (7)
N10.0136 (7)0.0141 (7)0.0094 (6)0.0016 (6)0.0021 (5)0.0020 (5)
C110.0150 (8)0.0172 (9)0.0116 (7)0.0026 (7)0.0019 (6)0.0034 (7)
C10.0133 (8)0.0144 (8)0.0132 (8)0.0025 (7)0.0000 (6)0.0009 (7)
C40.0221 (9)0.0144 (9)0.0120 (8)0.0034 (7)0.0018 (7)0.0004 (7)
C160.0165 (8)0.0175 (9)0.0148 (8)0.0002 (7)0.0016 (6)0.0024 (7)
C60.0135 (8)0.0136 (8)0.0116 (8)0.0013 (6)0.0021 (6)0.0007 (6)
C50.0176 (8)0.0130 (8)0.0138 (8)0.0008 (7)0.0000 (6)0.0004 (7)
C90.0165 (8)0.0153 (9)0.0125 (8)0.0014 (7)0.0028 (6)0.0001 (7)
C190.0122 (7)0.0128 (8)0.0104 (7)0.0005 (6)0.0012 (6)0.0010 (6)
C100.0149 (8)0.0169 (9)0.0115 (7)0.0019 (7)0.0029 (6)0.0044 (7)
C30.0175 (8)0.0178 (9)0.0158 (8)0.0036 (7)0.0057 (7)0.0038 (7)
C240.0143 (8)0.0166 (9)0.0200 (9)0.0006 (7)0.0045 (7)0.0001 (7)
C140.0196 (9)0.0279 (11)0.0127 (8)0.0080 (8)0.0023 (7)0.0046 (8)
C130.0174 (8)0.0263 (10)0.0110 (8)0.0036 (8)0.0007 (7)0.0007 (8)
C120.0193 (9)0.0171 (9)0.0135 (8)0.0021 (7)0.0019 (7)0.0013 (7)
C20.0132 (8)0.0156 (9)0.0170 (8)0.0013 (7)0.0016 (6)0.0026 (7)
C200.0170 (8)0.0158 (9)0.0166 (8)0.0002 (7)0.0048 (7)0.0016 (7)
C150.0230 (9)0.0175 (9)0.0167 (9)0.0047 (8)0.0019 (7)0.0057 (8)
C220.0193 (9)0.0178 (9)0.0224 (10)0.0047 (7)0.0018 (7)0.0010 (7)
C210.0203 (9)0.0146 (9)0.0210 (9)0.0008 (7)0.0026 (7)0.0003 (7)
C230.0179 (9)0.0205 (10)0.0209 (10)0.0034 (7)0.0079 (7)0.0023 (8)
C70.0156 (9)0.0235 (10)0.0256 (10)0.0021 (8)0.0027 (8)0.0032 (8)
C80.0334 (11)0.0237 (10)0.0113 (8)0.0018 (9)0.0031 (8)0.0007 (8)
C170.0234 (10)0.0382 (13)0.0178 (10)0.0042 (10)0.0039 (8)0.0044 (9)
C180.0414 (14)0.0193 (11)0.0348 (13)0.0026 (10)0.0087 (11)0.0083 (10)
Geometric parameters (Å, º) top
O1—C11.369 (2)C14—H140.9500
O1—H10.89 (4)C14—C131.391 (3)
O2—C161.356 (3)C14—C151.382 (3)
O2—H20.99 (4)C13—C121.393 (3)
N1—C91.482 (3)C13—C171.510 (3)
N1—C191.485 (2)C12—H120.9500
N1—C101.479 (2)C2—C71.504 (3)
C11—C161.392 (3)C20—H20A0.9900
C11—C101.513 (3)C20—H20B0.9900
C11—C121.402 (3)C20—C211.525 (3)
C1—C61.401 (3)C15—C181.507 (3)
C1—C21.402 (3)C22—H22A0.9900
C4—C51.399 (3)C22—H22B0.9900
C4—C31.390 (3)C22—C211.526 (3)
C4—C81.506 (3)C22—C231.530 (3)
C16—C151.411 (3)C21—H21A0.9900
C6—C51.391 (3)C21—H21B0.9900
C6—C91.506 (3)C23—H23A0.9900
C5—H50.9500C23—H23B0.9900
C9—H9A0.9900C7—H7A0.9800
C9—H9B0.9900C7—H7B0.9800
C19—H191.0000C7—H7C0.9800
C19—C241.532 (3)C8—H8A0.9800
C19—C201.530 (3)C8—H8B0.9800
C10—H10A0.9900C8—H8C0.9800
C10—H10B0.9900C17—H17A0.9800
C3—H30.9500C17—H17B0.9800
C3—C21.397 (3)C17—H17C0.9800
C24—H24A0.9900C18—H18A0.9800
C24—H24B0.9900C18—H18B0.9800
C24—C231.536 (3)C18—H18C0.9800
C1—O1—H1106 (2)C13—C12—C11122.80 (19)
C16—O2—H2115 (2)C13—C12—H12118.6
C9—N1—C19112.59 (15)C1—C2—C7120.89 (19)
C10—N1—C9109.97 (15)C3—C2—C1118.06 (18)
C10—N1—C19115.09 (15)C3—C2—C7121.03 (18)
C16—C11—C10123.80 (18)C19—C20—H20A109.5
C16—C11—C12118.14 (18)C19—C20—H20B109.5
C12—C11—C10118.05 (18)H20A—C20—H20B108.1
O1—C1—C6119.99 (17)C21—C20—C19110.85 (17)
O1—C1—C2119.69 (18)C21—C20—H20A109.5
C6—C1—C2120.32 (18)C21—C20—H20B109.5
C5—C4—C8120.95 (19)C16—C15—C18119.7 (2)
C3—C4—C5117.54 (19)C14—C15—C16119.01 (19)
C3—C4—C8121.43 (19)C14—C15—C18121.2 (2)
O2—C16—C11125.33 (19)H22A—C22—H22B108.0
O2—C16—C15114.21 (19)C21—C22—H22A109.4
C11—C16—C15120.46 (19)C21—C22—H22B109.4
C1—C6—C9119.24 (17)C21—C22—C23111.00 (18)
C5—C6—C1119.68 (18)C23—C22—H22A109.4
C5—C6—C9121.08 (18)C23—C22—H22B109.4
C4—C5—H5119.3C20—C21—C22111.22 (17)
C6—C5—C4121.38 (19)C20—C21—H21A109.4
C6—C5—H5119.3C20—C21—H21B109.4
N1—C9—C6111.60 (16)C22—C21—H21A109.4
N1—C9—H9A109.3C22—C21—H21B109.4
N1—C9—H9B109.3H21A—C21—H21B108.0
C6—C9—H9A109.3C24—C23—H23A109.3
C6—C9—H9B109.3C24—C23—H23B109.3
H9A—C9—H9B108.0C22—C23—C24111.59 (17)
N1—C19—H19106.2C22—C23—H23A109.3
N1—C19—C24116.06 (16)C22—C23—H23B109.3
N1—C19—C20110.85 (15)H23A—C23—H23B108.0
C24—C19—H19106.2C2—C7—H7A109.5
C20—C19—H19106.2C2—C7—H7B109.5
C20—C19—C24110.76 (16)C2—C7—H7C109.5
N1—C10—C11111.41 (15)H7A—C7—H7B109.5
N1—C10—H10A109.3H7A—C7—H7C109.5
N1—C10—H10B109.3H7B—C7—H7C109.5
C11—C10—H10A109.3C4—C8—H8A109.5
C11—C10—H10B109.3C4—C8—H8B109.5
H10A—C10—H10B108.0C4—C8—H8C109.5
C4—C3—H3118.5H8A—C8—H8B109.5
C4—C3—C2122.94 (18)H8A—C8—H8C109.5
C2—C3—H3118.5H8B—C8—H8C109.5
C19—C24—H24A109.9C13—C17—H17A109.5
C19—C24—H24B109.9C13—C17—H17B109.5
C19—C24—C23109.14 (17)C13—C17—H17C109.5
H24A—C24—H24B108.3H17A—C17—H17B109.5
C23—C24—H24A109.9H17A—C17—H17C109.5
C23—C24—H24B109.9H17B—C17—H17C109.5
C13—C14—H14118.8C15—C18—H18A109.5
C15—C14—H14118.8C15—C18—H18B109.5
C15—C14—C13122.5 (2)C15—C18—H18C109.5
C14—C13—C12117.1 (2)H18A—C18—H18B109.5
C14—C13—C17120.9 (2)H18A—C18—H18C109.5
C12—C13—C17122.0 (2)H18B—C18—H18C109.5
C11—C12—H12118.6
O1—C1—C6—C5178.81 (18)C19—C24—C23—C2257.3 (2)
O1—C1—C6—C91.4 (3)C19—C20—C21—C2255.9 (2)
O1—C1—C2—C3178.87 (18)C10—N1—C9—C6166.26 (16)
O1—C1—C2—C72.7 (3)C10—N1—C19—C2453.1 (2)
O2—C16—C15—C14179.63 (19)C10—N1—C19—C2074.3 (2)
O2—C16—C15—C180.6 (3)C10—C11—C16—O21.2 (3)
N1—C19—C24—C23174.32 (17)C10—C11—C16—C15177.75 (18)
N1—C19—C20—C21171.58 (15)C10—C11—C12—C13177.36 (18)
C11—C16—C15—C140.5 (3)C3—C4—C5—C60.7 (3)
C11—C16—C15—C18178.5 (2)C24—C19—C20—C2158.1 (2)
C1—C6—C5—C42.0 (3)C14—C13—C12—C111.4 (3)
C1—C6—C9—N143.1 (2)C13—C14—C15—C160.5 (3)
C4—C3—C2—C12.8 (3)C13—C14—C15—C18178.5 (2)
C4—C3—C2—C7175.6 (2)C12—C11—C16—O2179.99 (19)
C16—C11—C10—N1106.6 (2)C12—C11—C16—C151.0 (3)
C16—C11—C12—C131.5 (3)C12—C11—C10—N174.6 (2)
C6—C1—C2—C31.5 (3)C2—C1—C6—C50.8 (3)
C6—C1—C2—C7176.93 (19)C2—C1—C6—C9178.92 (18)
C5—C4—C3—C21.8 (3)C20—C19—C24—C2358.2 (2)
C5—C6—C9—N1137.12 (19)C15—C14—C13—C120.9 (3)
C9—N1—C19—C2474.0 (2)C15—C14—C13—C17177.40 (19)
C9—N1—C19—C20158.55 (16)C21—C22—C23—C2455.9 (2)
C9—N1—C10—C1179.0 (2)C23—C22—C21—C2054.7 (2)
C9—C6—C5—C4177.78 (19)C8—C4—C5—C6177.6 (2)
C19—N1—C9—C664.0 (2)C8—C4—C3—C2175.1 (2)
C19—N1—C10—C11152.53 (16)C17—C13—C12—C11176.86 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.89 (4)1.81 (4)2.630 (2)153 (3)
O2—H2···O1i0.99 (4)1.87 (4)2.741 (2)145 (3)
C7—H7A···O10.982.402.854 (3)108
Symmetry code: (i) x1/2, y+1/2, z.
 

Acknowledgements

We thank the Department of Materials Engineering, Faculty of Engineering, Kasetsart University for the facility support. We acknowledge the Synchrotron Light Research Institute (Public Organization), SLRI, Thailand for the provision of beam time for XRD at BL1.1 W. All research staff of BL1.1 W are acknowledged for experimental consulting and assistance.

References

First citationAbrahams, A., Gerber, T., Hosten, E. & Mayer, P. (2009). Turk. J. Chem. 33, 569–577.  CAS Google Scholar
First citationBowser, A. K., Anderson-Wile, A. M., Johnston, D. H. & Wile, B. M. (2016). Appl. Organomet. Chem. 30, 32–39.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2018). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChirachanchai, S., Laobuthee, A. & Phongtamrug, S. (2009). J. Heterocycl. Chem. 46, 714–721.  Web of Science CrossRef CAS Google Scholar
First citationContreras-García, J., Johnson, E. R., Keinan, S., Chaudret, R., Piquemal, J.-P., Beratan, D. N. & Yang, W. (2011). J. Chem. Theory Comput. 7, 625–632.  Web of Science PubMed Google Scholar
First citationDemir, K. D., Kiskan, B., Aydogan, B. & Yagci, Y. (2013). React. Funct. Polym. 73, 346–359.  Web of Science CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDunkers, J., Zarate, E. A. & Ishida, H. (1996). J. Phys. Chem. 100, 13514–13520.  CSD CrossRef CAS Web of Science Google Scholar
First citationFroimowicz, P., Zhang, K. & Ishida, H. (2016). Chem. Eur. J. 22, 2691–2707.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHasan, K., Dawe, L. N. & Kozak, C. N. (2011). Eur. J. Inorg. Chem. 2011, 4610–4621.  Web of Science CSD CrossRef CAS Google Scholar
First citationHemvichian, K., Laobuthee, A., Chirachanchai, S. & Ishida, H. (2002). Polym. Degrad. Stabil. 76, 1–15.  Web of Science CrossRef CAS Google Scholar
First citationIguchi, D., Salum, M. L. & Froimowicz, P. (2018). Macromol. Chem. Phys. 220, 1800366.  Web of Science CrossRef Google Scholar
First citationIshida, H. & Agag, T. (2011). Handbook of Benzoxazine Resins. Amsterdam: Elsevier.  Google Scholar
First citationIshida, H. & Allen, D. J. (1996). J. Polym. Sci. B Polym. Phys. 34, 1019–1030.  CrossRef CAS Google Scholar
First citationJanas, Z., Nerkowski, T., Kober, E., Jerzykiewicz, L. B. & Lis, T. (2012). Dalton Trans. 41, 442–447.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationJohnson, E. R., Keinan, S., Mori-Sánchez, P., Contreras-García, J., Cohen, A. J. & Yang, W. (2010). J. Am. Chem. Soc. 132, 6498–6506.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKelly, B. V., Weintrob, E. C., Buccella, D., Tanski, J. M. & Parkin, G. (2007). Inorg. Chem. Commun. 10, 699–704.  Web of Science CSD CrossRef CAS Google Scholar
First citationKim, H. D. & Ishida, H. (2001). J. Appl. Polym. Sci. 79, 1207–1219.  CrossRef CAS Google Scholar
First citationKiskan, B., Ghosh, N. N. & Yagci, Y. (2011). Polym. Int. 60, 167–177.  Web of Science CrossRef CAS Google Scholar
First citationKuźnik, N., Chrobaczyński, A., Mika, M., Miler, P., Komor, R. & Kubicki, M. (2012). Eur. J. Med. Chem. 52, 184–192.  Web of Science PubMed Google Scholar
First citationLaobuthee, A., Chirachanchai, S., Ishida, H. & Tashiro, K. (2001). J. Am. Chem. Soc. 123, 9947–9955.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLionetti, D., Medvecz, A. J., Ugrinova, V., Quiroz-Guzman, M., Noll, B. C. & Brown, S. N. (2010). Inorg. Chem. 49, 4687–4697.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLiu, Y.-F., Xia, H.-T., Wang, D.-Q., Yang, S.-P. & Meng, Y.-L. (2007). Acta Cryst. E63, o4070.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLorber, C., Wolff, F., Choukroun, R. & Vendier, L. (2005). Eur. J. Inorg. Chem. pp. 2850–2859.  Web of Science CSD CrossRef Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationOlesiejuk, M., Bakalorz, K., Krawczyk, T. & Kuźnik, N. (2018). C. R. Chim. 21, 831–834.  Web of Science CSD CrossRef CAS Google Scholar
First citationPhongtamrug, S., Tashiro, K., Miyata, M. & Chirachanchai, S. (2006). J. Phys. Chem. B, 110, 21365–21370.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRedjel, Y. K., Thevenin, L., Daran, J.-C., Benslimane, M., Poli, R. & Fliedel, C. (2018). Polyhedron, 158, 83–90.  Web of Science CSD CrossRef Google Scholar
First citationRivera, A. & Bolte, M. (2016). Private communication (refcode ICEMIO01). CCDC, Cambridge, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, M., Butcher, R. J., Jasinski, J. P., Golen, J. A. & Mugesh, G. (2012). J. Chem. Sci. 124, 1301–1313.  Web of Science CSD CrossRef CAS Google Scholar
First citationSony, S. M. M., Kuppayee, M., Ponnuswamy, M. N., Manonmani, J., Kandaswamy, M. & Fun, H.-K. (2003). J. Chem. Crystallogr. 33, 925–932.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSuramitr, S., Teanwarawat, J., Ithiapa, N., Wattanathana, W. & Suramitr, A. (2020). Acta Cryst. E76, 1027–1032.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.  Google Scholar
First citationVelez-Herrera, P., Doyama, K., Abe, H. & Ishida, H. (2008). Macromolecules, 41, 9704–9714.  CAS Google Scholar
First citationVelusamy, M., Palaniandavar, M., Gopalan, R. S. & Kulkarni, G. U. (2003). Inorg. Chem. 42, 8283–8293.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationVeranitisagul, C., Kaewvilai, A., Duangthongyou, T., Koonsaeng, N. & Laobuthee, A. (2012b). Acta Cryst. E68, o2139.  CSD CrossRef IUCr Journals Google Scholar
First citationVeranitisagul, C., Kaewvilai, A., Sangngern, S., Wattanathana, W., Suramitr, S., Koonsaeng, N. & Laobuthee, A. (2011). Int. J. Mol. Sci. 12, 4365–4377.  Web of Science CrossRef CAS PubMed Google Scholar
First citationVeranitisagul, C., Wattanathana, W., Kaewvilai, A., Duangthongyou, T., Laobuthee, A. & Koonsaeng, N. (2012). Acta Cryst. E68, o1826.  CSD CrossRef IUCr Journals Google Scholar
First citationWang, N., Wang, Y., Li, J. & Li, T. (2011c). Chin. J. Org. Chem. 31, 1703–1706.  CAS Google Scholar
First citationWang, N.-S., Wang, Y.-T., Guo, X.-K. & Li, T.-D. (2011b). Acta Cryst. E67, o1438.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, N.-S., Wang, Y.-T., Li, J.-D. & Li, T.-D. (2011a). Chin. J. Struct. Chem. 30, 1533–1536.  CAS Google Scholar
First citationWattanathana, W., Nonthaglin, S., Veranitisagul, C., Koonsaeng, N. & Laobuthee, A. (2014). J. Mol. Struct. 1074, 118–125.  Web of Science CSD CrossRef CAS Google Scholar
First citationWattanathana, W., Nootsuwan, N., Veranitisagul, C., Koonsaeng, N., Suramitr, S. & Laobuthee, A. (2016). J. Mol. Struct. 1109, 201–208.  Web of Science CSD CrossRef CAS Google Scholar
First citationWattanathana, W., Veranitisagul, C., Kaewvilai, A., Laobuthee, A. & Koonsaeng, N. (2012). Acta Cryst. E68, o3050.  CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, M.-H., Liu, W.-J., Zou, W.-D. & Wang, H.-Y. (2006). Acta Cryst. E62, o2949–o2950.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXu, Q., Zeng, M., Chen, J., Zeng, S., Huang, Y., Feng, Z., Xu, Q., Yan, C. & Gu, Y. (2018). React. Funct. Polym. 122, 158–166.  Web of Science CrossRef CAS Google Scholar
First citationZhang, J., Wang, B., Wang, L., Sun, J., Zhang, Y., Cao, Z. & Wu, Z. (2018). Appl. Organomet. Chem. 32, e4077.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds