research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The crystal structures of salts of N-(4-fluoro­phen­yl)piperazine with four aromatic carb­­oxy­lic acids and with picric acid

CROSSMARK_Color_square_no_text.svg

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru-570 006, India, bDepartment of Chemistry, Maharani's Science College for Women, Mysuru-570 001, India, cInstitute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Strasse 2, D-64287 Darmstadt, Germany, and dSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, UK
*Correspondence e-mail: yathirajan@hotmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 23 June 2020; accepted 29 June 2020; online 3 July 2020)

The structures are reported for five salts formed by reactions between N-(4-fluoro­phen­yl)piperazine and aromatic acids. In 4-(4-fluoro­phen­yl)piperazin-1-ium 2-fluoro­benzoate monohydrate, C10H14FN2+·C7H4FO2·H2O, (I), the components are linked by a combination of N—H⋯O and O—H⋯O hydrogen bonds to form a chain of alternating R46(12) and R66(16) rings. The ionic components of 4-(4-fluoro­phen­yl)piperazin-1-ium 2-bromo­benzoate 0.353-hydrate, C10H14FN2+·C7H4BrO2·0.353H2O, (II), are linked by N—H⋯O hydrogen bonds to form a centrosymmetric four-ion aggregate containing an R44(12) motif, and these aggregates are linked into a mol­ecular ladder by a single C—H⋯π(arene) hydrogen bond. 4-(4-Fluoro­phen­yl)piperazin-1-ium 2-iodo­benzoate, C10H14FN2+·C7H4IO2, (III), crystallizes with Z′ = 2 in space group P[\overline{1}]: the four independent ions are linked by N—H⋯O hydrogen bonds to form a non-centrosymmetric aggregate again containing an R44(12) motif, and aggregates of this type are linked into a ribbon by a combination of C—H⋯O and C—H⋯π(arene) hydrogen bonds. The anion in 4-(4-fluoro­phen­yl)piperazin-1-ium 2,4,6-tri­nitro­phenolate, C10H14FN2+·C6H2N3O7, (IV), shows clear evidence of extensive electronic delocalization from the phenolate O atom into the adjacent ring. The ions are linked by a combination of two-centre N—H⋯O and three-centre N—H⋯(O)2 hydrogen bonds to form centrosymmetric four-ion aggregates containing three types of ring. The ions in 4-(4-fluoro­phen­yl)piperazin-1-ium 3,5-di­nitro­benzoate, C10H14FN2+·C7H3N2O6, (V), are again linked by N—H⋯O hydrogen bonds to form centrosymmetric R44(12) aggregates, which are themselves linked by a C—H⋯π(arene) hydrogen bond to form sheets, the stacking of which leads to the formation of narrow channels, containing disordered and/or mobile solvent entities. Comparisons are made with some related structures.

1. Chemical context

N-(4-fluoro­phen­yl)piperazine (C10H13N2F; 4-FPP) has mild psychedelic and euphorigenic properties and, in this respect, it exhibits effects similar to those of the related compound N-(4-meth­oxy­phen­yl)piperazine (MeOPP), which has been used as a recreational drug (Nagai et al., 2007[Nagai, F., Nonaka, R. & Kamimura, K. S. H. (2007). Eur. J. Pharmacol. 559, 132-137.]). 4-FPP is also is a major metabolite (Keane et al., 1982[Keane, P. E., Benedetti, M. S. & Dow, J. (1982). Neuropharmacology, 21, 163-169.]; Sanjuan et al., 1983[Sanjuan, M., Rovei, V., Dow, J. & Benedetti, R. S. (1983). Int. J. Mass Spectrom. Ion Phys. 48, 93-96.]) of the sedative and hypnotic drug niaprazine, N-{4-[4-(4-fluoro­phen­yl)piperazin-1-yl]butan-2-yl}pyridine-3-carboxamide, used in the treatment of autistic disorders (Rossi et al., 1999[Rossi, P. G., Posar, A., Parmeggiani, A., Pipitone, E. & D'Agata, M. (1999). J. Child Neurol. 14, 547-550.]).

We have recently reported (Harish Chinthal et al., 2020[Harish Chinthal, C., Yathirajan, H. S., Archana, S. D., Foro, S. & Glidewell, C. (2020). Acta Cryst. E76, 841-847.]) the structures of the salts formed between 4-FPP and 2-hy­droxy-3,5-di­nitro­benzoic, oxalic and (2R,3R)-tartaric acids, the last of which crystallizes as a monohydrate. That work was a development from our structural studies (Kiran Kumar et al., 2019[Kiran Kumar, H., Yathirajan, H. S., Foro, S. & Glidewell, C. (2019). Acta Cryst. E75, 1494-1506.], 2020[Kiran Kumar, H., Yathirajan, H. S., Harish Chinthal, C., Foro, S. & Glidewell, C. (2020). Acta Cryst. E76, 488-495.]) of a wide range of salts formed between organic acids and MeOPP. As part of our study of 4-FPP, we now report the structures of five salts formed between 4-FPP and four aromatic carb­oxy­lic acids and picric acid, namely 4-(4-fluoro­phen­yl)piperazin-1-ium 2-fluoro­benzoate monohydrate (I)[link], 4-(4-fluoro­phen­yl)piperazin-1-ium 2-bromo­benzoate 0.353(hydrate) (II)[link], 4-(4-fluoro­phen­yl)piperazin-1-ium 2-iodo­benzoate (III)[link], 4-(4-fluoro­phen­yl)piperazin-1-ium 2,4,6-tri­nitro­phenolate (IV)[link] and 4-(4-fluoro­phen­yl)piperazin-1-ium 3,5-di­nitro­benzoate (V).[link] (Figs. 1[link]–5[link][link][link][link])

[Scheme 1]
[Figure 1]
Figure 1
The independent components of compound (I)[link] showing the atom-labeling scheme and the hydrogen bonds, drawn as dashed lines, within the selected asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
The independent components of compound (II)[link] showing the atom-labeling scheme and the hydrogen bonds, drawn as dashed lines, within the selected asymmetric unit. The water mol­ecule has occupancy 0.353 (8) and the displacement ellipsoids are drawn at the 30% probability level.
[Figure 3]
Figure 3
The independent components of compound (III)[link] showing the atom-labeling scheme and the hydrogen bonds, drawn as dashed lines, within the selected asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4]
Figure 4
The independent components of compound (IV)[link] showing the atom-labeling scheme and the hydrogen bonds, drawn as dashed lines, within the selected asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 5]
Figure 5
The independent components of compound (V)[link] showing the atom-labeling scheme and the hydrogen bonds, drawn as dashed lines, within the selected asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level.

2. Structural commentary

The crystallization characteristics of the 2-halobenzoate salts (I)–(III) are all different (Figs. 1[link]–3[link][link]), so that no two of them are isostructural. The 2-fluoro­benzoate salt (I)[link] crystallizes as a monohydrate. However, the 2-bromo­benzoate (II)[link] crystallizes as a partial hydrate: the refined occupancy of the water mol­ecule is 0.353 (8) and the O atom of this component, O41 (Fig. 2[link]), lies close to an inversion centre, such that the O⋯O distance across this centre is only 0.962 (16) Å. Hence, if either of this pair of sites is occupied, the other must be vacant. By contrast, the 2-iodo­benzoate (III)[link] crystallizes in solvent-free form with Z′ = 2 in space group P[\overline{1}] (Fig. 3[link]). The refined structure of the 3,5-di­nitro­benzoate salt (V)[link] contains four void spaces per unit cell, each of volume 59 Å3, which lie on the twofold rotation axes, and which are connected into narrow channels lying along these axes. Examination of the refined structure using the SQUEEZE procedure (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) showed the the presence of 48 electrons per unit cell that were not accounted for by the ionic components, i.e. an average of 12 electrons per void, or rather less than the equivalent of one water mol­ecule. There were two significant peaks in the difference maps, but no plausible solvent model could be developed from these. Hence the SQUEEZE procedure was used prior to the final refinement, and the nature of the solvent component remains unknown: it seem likely that the included mol­ecules are disordered and/or mobile within the channels.

In each of the cations in compounds (I)–(V), the piperazine ring adopts an almost perfect chair conformation: in every case the reference cation was selected as one having the ring-puckering angle θ (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]), as calculated for the atom sequence (N1,C2,C3,N4,C5,C6), or the equivalent sequences in compound (III)[link], close to the ideal value (Boeyens, 1978[Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317-320.]) of zero, rather than close to 180° as expected for the enanti­omeric form of the cation.

The dihedral angles between the aryl ring and the carboxyl­ate group in compounds (I)–(III) and (V)[link] vary from 5.94 (11)° in (V)[link] to 75.9 (2)° in the anion of (III)[link], which contains atom I132 (Fig. 3[link]). The corresponding angles involving the nitro groups in compounds (IV)[link] and (V)[link] span a much smaller range, from 5.24 (11)° for the group containing atom N35 in (V)[link] to 29.09 (6)° for the group containing atom N36 in (IV)[link]. This contrasting behaviour may be associated with the differences in the hydrogen-bonding participation of the carboxyl­ate and nitro groups, as discussed below (§ 3).

Within the anion of compound (IV)[link], the distances C31—C32 and C31—C36 of 1.451 (2) and 1.449 (2) Å, respectively are very much longer than the other C—C distances in this ring, which range from 1.365 (2) Å to 1.383 (2) Å; in addition the distance C31—O31 [1.2398 (19) Å] is much close to the values typically found in ketones than to those in phenols (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). These values indicate significant delocalization of the negative charge from the atom O31 into the adjacent ring, as shown in the Scheme.

3. Supra­molecular features

It is possible to select a compact asymmetric unit for compound (I)[link] (Fig. 1[link]) in which the three independent components are linked by two N—H⋯O hydrogen bonds (Table 1[link]). The supra­molecular assembly of (I)[link] is determined by a combination of two N—H⋯O hydrogen bonds and two O—H⋯O hydrogen bonds (Table 1[link]). Together these link the three independent components into a chain of centrosymmetric rings running parallel to the [100] direction in which rings of R64(12) type (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) centred at (n, 0.5, 0.5) alternate with R66(16) rings centred at (n + 0.5, 0.5, 0.5), where n represents an integer in each case (Fig. 6[link]). A weak C—H⋯O hydrogen bond (Table 1[link]), having a fairly small C—H⋯O angle (Wood et al., 2009[Wood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563-1571.]), links these chains into complex sheets lying parallel to (001).

Table 1
Hydrogen bonds and short inter­molecular contacts (Å, °) for compounds (I)-(V)

Cg1, Cg2 and Cg3 represent the centroids of the rings (C31–C36), (C221–C226) and (C21–C26), respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
I        
N1—H11⋯O31 0.975 (19) 1.773 (19) 2.7426 (18) 173.2 (14)
N1—H12⋯O41 0.970 (16) 1.793 (16) 2.749 (2) 167.9 (18)
O41—H41⋯O32i 0.84 (3) 1.95 (3) 2.7744 (19) 168 (2)
O41—H42⋯O31ii 0.89 (3) 1.80 (3) 2.6693 (18) 164 (2)
C3—H3A⋯O32iii 0.97 2.44 3.317 (3) 149
         
(II)        
N1—H11⋯O32 0.78 (4) 1.93 (4) 2.677 (4) 160 (3)
N1—H12⋯O3i 0.91 (3) 1.80 (3) 2.707 (4) 175 (3)
O41—H41⋯O31 0.90 1.76 2.661 (12) 179
O41—H42⋯O31iii 0.89 1.90 2.792 (12) 179
C35—H35⋯O41iv 0.93 2.38 3.257 (11) 157
C2—H2ACg1v 0.97 2.78 3.598 (3) 142
         
(III)        
N11—H111⋯O132 0.80 (6) 1.89 (6) 2.680 (7) 168 (6)
N11—H112⋯O231 0.90 (6) 1.87 (6) 2.758 (6) 171 (4)
N21—H211⋯O232 0.79 (6) 1.88 (6) 2.665 (6) 173 (6)
N21—H212⋯O131 0.85 (7) 1.87 (7) 2.714 (6) 179 (8)
C13—H13A⋯O131i 0.97 2.50 3.396 (7) 154
C133—H133⋯Cg2vi 0.93 2.69 3.433 (6) 137
         
(IV)        
N1—H11⋯O31 0.91 (3) 1.85 (2) 2.687 (2) 153 (2)
N1—H11⋯O32 0.91 (3) 2.46 (3) 3.103 (3) 128.2 (17)
N1—H12⋯O33i 0.84 (2) 2.35 (2) 3.035 (2) 138.5 (18)
C5—H5A⋯O36vii 0.97 2.49 3.318 (3) 144
C6—H6B⋯O34viii 0.97 2.40 3.207 (3) 140
C25—H25⋯O37ix 0.93 2.58 3.365 (3) 142
         
(V)        
N1—H11⋯O31 0.94 (3) 1.77 (3) 2.681 (3) 164 (3)
N1—H11⋯O32i 0.95 (3) 1.80 (3) 2.731 (3) 165 (3)
C23—H23⋯Cg3viii 0.93 2.88 3.787 (3) 167
Symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) −x, 1 − y, 1 − z; (iii) 1 − x, −y, 1 − z; (iv) 1 + x, y, z; (v) −1 + x, y, z; (vi) x, 1 + y, z; (vii) −[{1\over 2}] + x, [{1\over 2}] − y, −[{1\over 2}] + z; (viii) [{3\over 2}] − x, −[{1\over 2}] + y, [{3\over 2}] − z; (ix) [{1\over 2}] − x, −[{1\over 2}] + y, [{3\over 2}] − z.
[Figure 6]
Figure 6
Part of the crystal structure of compound (I)[link] showing the formation of a hydrogen-bonded chain of alternating R64(12) and R66(16) rings along [100]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted.

The ionic components of compound (II)[link] are linked by two independent N—H⋯O hydrogen bonds (Table 1[link]) to form a centrosymmetric four-ion aggregate, characterized by an R44(12) motif, with the reference aggregate centred at (0.5, 0.5, 0.5) (Fig. 7[link]). If the water mol­ecules were present with full occupancy, their role would be the linking of the four-ion aggregates into chains running parallel to the [010] direction: however, the low occupancy of the water sites indicates that continuous chain formation is not possible. On the other hand, a single C—H⋯π(arene) hydrogen bond links these four-ion aggregates into a ribbon, or mol­ecular ladder running parallel to the [100] direction (Fig. 8[link]), in which the centrosymmetric R44(12) rings containing four N—H⋯O hydrogen bonds and centred at (n + 0.5, 0.5, 0.5) alternate with rings containing two each of N—H⋯O and C—H⋯π(arene) hydrogen bonds and centred at (n, 0.5, 0.5), where n represents an integer in each case.

[Figure 7]
Figure 7
Part of the crystal structure of compound (II)[link] showing the formation of a centrosymmetric four-ion R44(12) aggregate. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the partial-occupancy water mol­ecules and the H atoms bonded to C atoms have been omitted. The atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 1 − z).
[Figure 8]
Figure 8
Part of the crystal structure of compound (II)[link] showing the formation of a mol­ecular ribbon of centrosymmetric rings running parallel to the [100] direction. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the partial-occupancy water mol­ecules and the H atoms bonded to those C atoms which are not involved in the motifs shown have been omitted.

As noted above, compound (III)[link] crystallizes with Z′ = 2 (Fig. 3[link]) and it is possible to select a compact asymmetric unit in which the four independent ions are linked by four N—H⋯O hydrogen bonds to form a four-ion R44(12) aggregate, analogous to that in compound (II)[link]. The aggregate in (III)[link] exhibits approximate, but non-crystallographic, inversion symmetry with its centroid close to (0.25, 0.25, 0.5): a search for possible additional crystallographic symmetry found none. A combination of one C—H⋯O and one C—H⋯π(arene) hydrogen bonds (Table 1[link]) links the four-ion aggregates into a complex mol­ecular ribbon running parallel to the [010] direction (Fig. 9[link]).

[Figure 9]
Figure 9
Part of the crystal structure of compound (III)[link] showing the formation of a mol­ecular ribbon of edge-fused rings running parallel to the [010] direction. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to those C atoms which are not involved in the motifs shown have been omitted.

The component ions in compound (IV)[link] are linked by a three-centre (bifurcated) N—H⋯(O)2 hydrogen bond within the selected asymmetric unit (Fig. 4[link], Table 1[link]), while a two centre N—H⋯O hydrogen bond links the ions to form a centrosymmetric four-ion aggregate, in which rings of R12(6), R44(12) and R44(16) types can be identified (Fig. 10[link]): it is inter­esting to note the occurrence of the R44(12) ring type, exactly as in the structures of compounds (II)[link] and (III)[link]. The structure of compound (IV)[link] contains several short C—H⋯O contacts, but in all of these contacts the C—H⋯O angle is close to 140° (Table 1[link]), so that their structural significance is likely to be minimal, at best (Wood et al., 2009[Wood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563-1571.]).

[Figure 10]
Figure 10
Part of the crystal structure of compound (IV)[link] showing the formation of a centrosymmetric four-ion aggregate containing R12(6), R44(12) and R44(16) ring types. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted. The atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 1 − z).

Inversion-related ion pairs in compound (V)[link] form the same type of R44(12) motif (Fig. 11[link]) as previously seen in each of compounds (II)–(IV). In addition, an almost linear C—H⋯π(arene) hydrogen bond links these four-ion aggregates into a sheet lying parallel to (10[\overline{1}]) (Fig. 12[link]). A second sheet of this type, related to the first by the twofold rotation axes, also passes through each unit cell, but there are no direction-specific inter­actions between adjacent sheets. However, the stacking of the sheets leaves void space in the form of narrow channels lying along the twofold axes (Fig. 13[link]). As noted above (§ 2), the channels appear to contain solvent mol­ecules, which are disordered and/or mobile.

[Figure 11]
Figure 11
Part of the crystal structure of compound (V)[link] showing the formation of a centrosymmetric four-ion R44(12) aggregate. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted. The atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 1 − z).
[Figure 12]
Figure 12
Part of the crystal structure of compound (V)[link] showing the formation of a sheet lying parallel to (10[\overline{1}]) and formed from N—H⋯O and C—H⋯π(arene) hydrogen bonds, drawn as dashed lines. For the sake of clarity, the H atoms not involved in the motifs shown have been omitted.
[Figure 13]
Figure 13
A space-filling projection down [010] of part of the crystal structure of compound (V)[link] showing the formation of narrow channels parallel to the twofold rotation axes.

Thus the cyclic R44(12) motif can be identified in some form in each of compounds (II)–(V), although such rings are centrosymmetric in each of (II)[link], (IV)[link] and (V)[link], but non-centrosymmetric in (III)[link], and they are explicit in (II)[link], (III)[link] and (V)[link] (Figs. 3[link], 7[link], 11[link]), but masked within a more complex four-ion aggregate in (IV)[link] (Fig. 10[link]).

4. Database survey

It is of inter­est briefly to compare the structures reported here with those of some closely related compounds. One obvious comparison is between the monohydrated compound (I)[link] reported here and a series of isostructural salts (benzoate, 4-fluoro­benzoate, 4-chloro­benzoate and 4-bromo­benzoate) of MeOPP [compounds (VI)–(IX)], all of which crystallize as monohydrates (Kiran Kumar et al., 2019[Kiran Kumar, H., Yathirajan, H. S., Foro, S. & Glidewell, C. (2019). Acta Cryst. E75, 1494-1506.]). Compounds (VI)–(IX) all form a chain of centrosymmetric R64(12) and R66(16) rings comparable to that found here in compound (I)[link]. It is important to emphasize, however, that (I)[link] is not isostructural with (VI)–(IX); thus, although the repeat vectors for the unit cell of (I)[link] are somewhat similar to those in (VI)–(IX), the inter-axial angles in (I)[link] are all greater than 90°, whereas in (VI)–(IX) they are consistently less than 90°.

The picrate salt of MeOPP (X) (Kiran Kumar et al., 2020[Kiran Kumar, H., Yathirajan, H. S., Harish Chinthal, C., Foro, S. & Glidewell, C. (2020). Acta Cryst. E76, 488-495.]) is analogous to the picrate salt (IV)[link] formed by 4-FPP, and both show the same pattern of electronic delocalization within the anion. While (IV)[link] and (X) both crystallize in space group P21/n, they are by no means isomorphous, and in (X) two of the nitro groups exhibit disorder. Whereas the N—H⋯O hydrogen bonds in (IV)[link] generate a dimeric structure (Fig. 10[link]), in (X) they generate a chain of rings, and adjacent chains are linked by a C—H⋯π(arene) hydrogen bond to form a sheet parallel to (001) (Kiran Kumar et al., 2020[Kiran Kumar, H., Yathirajan, H. S., Harish Chinthal, C., Foro, S. & Glidewell, C. (2020). Acta Cryst. E76, 488-495.]). Similar delocalization is apparent in the anion of the 5-hy­droxy-3,5-di­nitro­benzoate salts of both 4-FPP (XI) (Harish Chinthal et al., 2020[Harish Chinthal, C., Yathirajan, H. S., Archana, S. D., Foro, S. & Glidewell, C. (2020). Acta Cryst. E76, 841-847.]) and MeOPP (XII) (Kiran Kumar et al., 2019[Kiran Kumar, H., Yathirajan, H. S., Foro, S. & Glidewell, C. (2019). Acta Cryst. E75, 1494-1506.]). However, in (XI) the ions are linked into a chain of R12(4) and R12(6) rings by two independent three-centre N—H⋯(O)2 hydrogen bonds, while in (XII) a combination of N—H⋯O and C—H⋯O hydrogen bonds generates a chain of alternating R22(10) and R64(16) rings, with the chains further linked into a three-dimensional framework structure by a single C—H⋯π(arene) hydrogen bond.

5. Synthesis and crystallization

All starting materials were obtained commercially, and all were used as received: solutions of N-(4-fluoro­phen­yl)piperazine (100 mg, 0.55 mol) in methanol (10 ml) were mixed with solutions of the appropriate acids (0.55 mol) in methanol (10 ml), viz. 2-fluoro­benzoic acid (77.1 mg) for (I)[link], 2-bromo­benzoic acid (110.6 mg) for (II)[link], 2-iodo­benzoic acid (136.4 mg) for (III)[link], picric acid (126 mg) for (IV)[link] and 3,5-di­nitro­benzoic acid (116.7 mg) for (V)[link]. The corresponding pairs of solution were mixed and then briefly held at 323 K, before being set aside to crystallize. After two days at room temperature, the resulting solid products were collected by filtration, dried in air and then crystallized, at ambient temperature and in the presence of air from mixture of ethyl acetate and acetone (initial composition 9:1, v/v) for (I)[link], or ethyl acetate and methanol [initial composition 9:1, v/v for (II)–(IV), and 1:1 v/v for (V)]. M.p. (I)[link] 349–351 K, (II)[link] 411–414 K, (III)[link] 409–411 K, (IV)[link] 405–410 K, and (V)[link] 426–430 K. Despite repeated efforts, we have been unable to obtain satisfactory crystals of the 2-chloro­benzoate salt, using solvents such as aceto­nitrile, acetone, ethyl acetate or methanol, and a number of mixtures of such solvents.

6. Refinement

Crystal data, data collection and refinement details are summarized in Table 2[link]. All H atoms, apart from those of the partial-occupancy water mol­ecule in compound (II)[link], were located in difference maps. The H atoms bonded to C atoms were then treated as riding atoms in geometrically idealized positions with C—H distances of 0.93 Å (aromatic) or 0.97 Å (CH2), and with Uiso(H) = 1.2Ueq(C). For the H atoms bonded to N atoms, the atomic coordinates were refined with Uiso(H) = 1.2Ueq(N) giving the N—H distances shown in Table 1[link]. Before the final refinements for compound (V)[link], one low-angle reflection, (110), which had been attenuated by the beam stop, and one bad outlier reflection, (004), were removed from the data set. It was not possible to reliably locate in difference maps the H atoms of the partial-occupancy water mol­ecule in (II)[link]; hence they were included in calculated positions, riding at 0.90 Å from the atom O41, at positions calculated by inter­polation along the relevant O⋯O vectors, with Uiso(H) = 1.5Ueq(O): the water atom O41 was refined isotropically and the refined occupancy of the water mol­ecule was 0.353 (8). The largest maximum and minimum in the final difference map for (III)[link], +2.92 and −2.00 e Å-3, respectively, were both close to atom I232, at distances of 0.92 and 0.77 Å, respectively. Examination of the difference map for compound (V)[link] after conventional refinement showed the presence of two significant peaks, one of 2.98 e Å−3 lying on a twofold rotation axis, at (0.5, −0.0533, 0.75), and the other, 1.94 e Å−3, lying in a general position at (0.534, 0.882, 0.760). No plausible solvent model could be developed based upon these two maxima and, accordingly, the data at this stage were subjected to the SQUEEZE procedure (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) prior to the final refinements, and it is the results of that refinement which are reported here for compound (V)[link].

Table 2
Experimental details

  (I) (II) (III) (IV) (V)
Crystal data
Chemical formula C10H14FN2+·C7H4FO2·H2O C10H14FN2+·C7H4BrO2·0.353H2O C10H14FN2+·C7H4IO2 C10H14FN2+·C6H2N3O7 C10H14FN2+·C7H3N2O6
Mr 338.35 387.59 428.23 409.34 392.34
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}] Triclinic, P[\overline{1}] Monoclinic, P21/n Monoclinic, C2/c
Temperature (K) 293 293 293 293 293
a, b, c (Å) 6.5873 (5), 7.6616 (6), 17.3399 (9) 7.2584 (8), 9.347 (1), 13.767 (2) 9.8892 (3), 11.6831 (7), 16.4547 (9) 16.658 (2), 6.6734 (6), 17.553 (3) 19.871 (1), 7.3420 (7), 26.306 (2)
α, β, γ (°) 97.842 (6), 90.378 (6), 95.540 (6) 101.14 (1), 95.98 (1), 109.44 (1) 106.776 (5), 93.327 (4), 104.874 (4) 90, 117.84 (2), 90 90, 94.540 (8), 90
V3) 862.72 (11) 849.72 (19) 1741.19 (16) 1725.4 (5) 3825.8 (5)
Z 2 2 4 4 8
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.10 2.44 1.86 0.13 0.11
Crystal size (mm) 0.46 × 0.40 × 0.14 0.50 × 0.48 × 0.44 0.50 × 0.50 × 0.48 0.48 × 0.40 × 0.40 0.46 × 0.42 × 0.22
 
Data collection
Diffractometer Oxford Diffraction Xcalibur with Sapphire CCD Oxford Diffraction Xcalibur with Sapphire CCD Oxford Diffraction Xcalibur with Sapphire CCD Oxford Diffraction Xcalibur with Sapphire CCD Oxford Diffraction Xcalibur with Sapphire CCD
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.])
Tmin, Tmax 0.871, 0.986 0.257, 0.341 0.383, 0.411 0.816, 0.949 0.832, 0.976
No. of measured, independent and observed [I > 2σ(I)] reflections 5683, 3567, 2350 5475, 3582, 2775 12798, 7396, 5890 12153, 3865, 2922 7938, 4080, 2490
Rint 0.012 0.026 0.015 0.019 0.017
(sin θ/λ)max−1) 0.629 0.650 0.651 0.656 0.654
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.123, 1.01 0.043, 0.124, 1.10 0.047, 0.127, 1.06 0.045, 0.136, 1.05 0.056, 0.144, 1.07
No. of reflections 3567 3582 7396 3865 4080
No. of parameters 229 219 427 269 259
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.20, −0.18 0.47, −0.77 2.92, −2.00 0.45, −0.27 0.19, −0.18
Computer programs: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]), CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]), CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.], SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

For all structures, data collection: CrysAlis CCD (Oxford Diffraction, 2009). Cell refinement: CrysAlis RED (Oxford Diffraction, 2009) for (I), (II), (III), (IV); CrysAlis RED (Oxford Diffraction, 2009 for (V). For all structures, data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b) and PLATON (Spek, 2020).

4-(4-Fluorophenyl)piperazin-1-ium 2-fluorobenzoate monohydrate (I) top
Crystal data top
C10H14FN2+·C7H4FO2·H2OZ = 2
Mr = 338.35F(000) = 356
Triclinic, P1Dx = 1.302 Mg m3
a = 6.5873 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.6616 (6) ÅCell parameters from 3684 reflections
c = 17.3399 (9) Åθ = 3.1–27.8°
α = 97.842 (6)°µ = 0.10 mm1
β = 90.378 (6)°T = 293 K
γ = 95.540 (6)°Plate, yellow
V = 862.72 (11) Å30.46 × 0.40 × 0.14 mm
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
3567 independent reflections
Radiation source: Enhance (Mo) X-ray Source2350 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.012
ω scansθmax = 26.6°, θmin = 3.1°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 88
Tmin = 0.871, Tmax = 0.986k = 99
5683 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.0551P)2 + 0.1332P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
3567 reflectionsΔρmax = 0.20 e Å3
229 parametersΔρmin = 0.18 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1956 (2)0.2775 (2)0.55321 (8)0.0526 (4)
H110.128 (3)0.248 (2)0.5023 (11)0.063*
H120.261 (3)0.397 (2)0.5549 (10)0.063*
C20.3525 (3)0.1578 (2)0.56592 (10)0.0613 (5)
H2A0.45560.16350.52640.074*
H2B0.29000.03690.56160.074*
C30.4500 (3)0.2110 (3)0.64506 (10)0.0600 (5)
H3A0.55020.13020.65330.072*
H3B0.52040.32900.64780.072*
N40.2988 (2)0.20918 (17)0.70635 (8)0.0505 (3)
C50.1372 (3)0.3200 (2)0.69427 (10)0.0564 (4)
H5A0.19330.44300.70070.068*
H5B0.03410.30710.73330.068*
C60.0396 (3)0.2714 (3)0.61423 (10)0.0601 (5)
H6A0.03110.15330.60980.072*
H6B0.06000.35330.60680.072*
C210.3776 (3)0.2198 (2)0.78315 (9)0.0529 (4)
C220.5444 (3)0.1322 (3)0.79801 (12)0.0717 (5)
H220.60840.07030.75670.086*
C230.6182 (4)0.1350 (3)0.87334 (14)0.0871 (7)
H230.73070.07560.88240.105*
C240.5257 (4)0.2242 (3)0.93308 (12)0.0856 (7)
F240.5993 (3)0.2265 (2)1.00693 (8)0.1322 (6)
C250.3638 (4)0.3123 (3)0.92138 (12)0.0915 (7)
H250.30230.37370.96350.110*
C260.2891 (3)0.3115 (3)0.84663 (11)0.0757 (6)
H260.17780.37340.83880.091*
C310.1143 (2)0.23893 (19)0.27760 (9)0.0460 (4)
C320.2604 (3)0.3128 (2)0.23158 (11)0.0608 (5)
F320.45031 (17)0.36529 (19)0.26186 (8)0.0980 (4)
C330.2228 (3)0.3407 (3)0.15683 (13)0.0800 (6)
H330.32390.39510.12850.096*
C340.0325 (4)0.2866 (3)0.12448 (12)0.0806 (6)
H340.00520.30040.07310.097*
C350.1176 (3)0.2123 (3)0.16775 (12)0.0757 (6)
H350.24660.17630.14570.091*
C360.0777 (3)0.1908 (2)0.24373 (10)0.0605 (5)
H360.18160.14310.27290.073*
C370.1585 (2)0.2067 (2)0.35934 (10)0.0485 (4)
O310.01691 (18)0.21983 (18)0.40748 (7)0.0682 (4)
O320.32700 (18)0.16218 (18)0.37573 (8)0.0718 (4)
O410.3280 (2)0.63088 (18)0.56039 (9)0.0707 (4)
H410.430 (4)0.685 (3)0.5852 (15)0.106*
H420.224 (4)0.688 (3)0.5795 (14)0.106*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0615 (9)0.0535 (8)0.0436 (8)0.0059 (7)0.0030 (7)0.0095 (6)
C20.0789 (12)0.0603 (11)0.0489 (10)0.0238 (9)0.0110 (9)0.0097 (8)
C30.0601 (10)0.0749 (12)0.0513 (10)0.0275 (9)0.0088 (8)0.0163 (8)
N40.0562 (8)0.0558 (8)0.0426 (8)0.0151 (6)0.0054 (6)0.0114 (6)
C50.0524 (10)0.0683 (11)0.0512 (10)0.0156 (8)0.0070 (8)0.0113 (8)
C60.0523 (10)0.0705 (11)0.0596 (11)0.0083 (8)0.0017 (8)0.0157 (9)
C210.0637 (10)0.0501 (9)0.0461 (10)0.0065 (8)0.0014 (8)0.0107 (7)
C220.0830 (13)0.0771 (13)0.0580 (12)0.0253 (11)0.0088 (10)0.0080 (9)
C230.1000 (17)0.0901 (15)0.0751 (15)0.0248 (13)0.0274 (13)0.0156 (12)
C240.1192 (19)0.0878 (15)0.0498 (12)0.0060 (14)0.0209 (12)0.0130 (11)
F240.1853 (16)0.1527 (14)0.0599 (8)0.0244 (12)0.0440 (9)0.0162 (8)
C250.120 (2)0.1097 (18)0.0467 (12)0.0245 (16)0.0060 (12)0.0066 (11)
C260.0880 (14)0.0932 (15)0.0497 (12)0.0259 (12)0.0062 (10)0.0108 (10)
C310.0482 (9)0.0404 (8)0.0491 (9)0.0074 (7)0.0027 (7)0.0029 (7)
C320.0513 (10)0.0673 (11)0.0624 (12)0.0003 (8)0.0023 (9)0.0086 (9)
F320.0601 (7)0.1385 (11)0.0924 (9)0.0228 (7)0.0031 (6)0.0283 (8)
C330.0815 (15)0.0946 (16)0.0662 (13)0.0028 (12)0.0108 (11)0.0267 (11)
C340.0925 (16)0.0986 (16)0.0546 (12)0.0100 (13)0.0069 (11)0.0236 (11)
C350.0707 (13)0.0935 (15)0.0627 (13)0.0016 (11)0.0201 (10)0.0178 (11)
C360.0571 (10)0.0673 (11)0.0570 (11)0.0021 (8)0.0084 (8)0.0146 (8)
C370.0472 (9)0.0447 (9)0.0521 (10)0.0063 (7)0.0065 (8)0.0009 (7)
O310.0538 (7)0.1020 (10)0.0504 (7)0.0164 (7)0.0032 (6)0.0098 (6)
O320.0586 (8)0.0929 (10)0.0695 (9)0.0283 (7)0.0068 (6)0.0163 (7)
O410.0574 (8)0.0642 (8)0.0923 (11)0.0069 (6)0.0025 (7)0.0166 (7)
Geometric parameters (Å, º) top
N1—C21.481 (2)C23—H230.9300
N1—C61.482 (2)C24—C251.345 (3)
N1—H110.974 (19)C24—F241.364 (2)
N1—H120.973 (18)C25—C261.382 (3)
C2—C31.499 (2)C25—H250.9300
C2—H2A0.9700C26—H260.9300
C2—H2B0.9700C31—C321.383 (2)
C3—N41.462 (2)C31—C361.386 (2)
C3—H3A0.9700C31—C371.503 (2)
C3—H3B0.9700C32—F321.356 (2)
N4—C211.415 (2)C32—C331.367 (3)
N4—C51.455 (2)C33—C341.373 (3)
C5—C61.510 (2)C33—H330.9300
C5—H5A0.9700C34—C351.372 (3)
C5—H5B0.9700C34—H340.9300
C6—H6A0.9700C35—C361.377 (3)
C6—H6B0.9700C35—H350.9300
C21—C221.382 (2)C36—H360.9300
C21—C261.386 (2)C37—O321.2347 (18)
C22—C231.387 (3)C37—O311.2580 (19)
C22—H220.9300O41—H410.84 (3)
C23—C241.344 (3)O41—H420.89 (3)
C2—N1—C6109.84 (13)C21—C22—H22119.4
C2—N1—H11112.8 (10)C23—C22—H22119.4
C6—N1—H11108.9 (10)C24—C23—C22119.5 (2)
C2—N1—H12109.1 (10)C24—C23—H23120.3
C6—N1—H12110.1 (10)C22—C23—H23120.3
H11—N1—H12106.0 (15)C23—C24—C25121.4 (2)
N1—C2—C3109.97 (14)C23—C24—F24119.1 (2)
N1—C2—H2A109.7C25—C24—F24119.5 (2)
C3—C2—H2A109.7C24—C25—C26119.8 (2)
N1—C2—H2B109.7C24—C25—H25120.1
C3—C2—H2B109.7C26—C25—H25120.1
H2A—C2—H2B108.2C25—C26—C21121.0 (2)
N4—C3—C2111.44 (15)C25—C26—H26119.5
N4—C3—H3A109.3C21—C26—H26119.5
C2—C3—H3A109.3C32—C31—C36116.39 (16)
N4—C3—H3B109.3C32—C31—C37122.84 (15)
C2—C3—H3B109.3C36—C31—C37120.76 (15)
H3A—C3—H3B108.0F32—C32—C33117.41 (17)
C21—N4—C5117.11 (13)F32—C32—C31119.16 (16)
C21—N4—C3115.84 (14)C33—C32—C31123.41 (17)
C5—N4—C3111.76 (12)C32—C33—C34118.53 (19)
N4—C5—C6111.74 (14)C32—C33—H33120.7
N4—C5—H5A109.3C34—C33—H33120.7
C6—C5—H5A109.3C35—C34—C33120.21 (19)
N4—C5—H5B109.3C35—C34—H34119.9
C6—C5—H5B109.3C33—C34—H34119.9
H5A—C5—H5B107.9C34—C35—C36120.10 (19)
N1—C6—C5110.66 (14)C34—C35—H35120.0
N1—C6—H6A109.5C36—C35—H35120.0
C5—C6—H6A109.5C35—C36—C31121.31 (18)
N1—C6—H6B109.5C35—C36—H36119.3
C5—C6—H6B109.5C31—C36—H36119.3
H6A—C6—H6B108.1O32—C37—O31122.88 (16)
C22—C21—C26117.06 (17)O32—C37—C31119.41 (15)
C22—C21—N4120.50 (15)O31—C37—C31117.65 (14)
C26—C21—N4122.41 (16)H41—O41—H42104 (2)
C21—C22—C23121.2 (2)
C6—N1—C2—C358.4 (2)C24—C25—C26—C210.5 (4)
N1—C2—C3—N457.70 (19)C22—C21—C26—C250.9 (3)
C2—C3—N4—C21166.90 (14)N4—C21—C26—C25176.88 (19)
C2—C3—N4—C555.50 (19)C36—C31—C32—F32178.92 (16)
C21—N4—C5—C6169.07 (14)C37—C31—C32—F322.6 (2)
C3—N4—C5—C653.91 (19)C36—C31—C32—C330.7 (3)
C2—N1—C6—C557.07 (19)C37—C31—C32—C33179.14 (17)
N4—C5—C6—N154.95 (19)F32—C32—C33—C34179.15 (19)
C5—N4—C21—C22173.58 (16)C31—C32—C33—C342.6 (3)
C3—N4—C21—C2238.3 (2)C32—C33—C34—C352.4 (3)
C5—N4—C21—C268.7 (2)C33—C34—C35—C360.3 (3)
C3—N4—C21—C26143.97 (18)C34—C35—C36—C311.7 (3)
C26—C21—C22—C230.6 (3)C32—C31—C36—C351.5 (3)
N4—C21—C22—C23177.22 (18)C37—C31—C36—C35177.02 (16)
C21—C22—C23—C240.1 (4)C32—C31—C37—O3235.4 (2)
C22—C23—C24—C250.6 (4)C36—C31—C37—O32143.03 (17)
C22—C23—C24—F24179.9 (2)C32—C31—C37—O31147.48 (16)
C23—C24—C25—C260.3 (4)C36—C31—C37—O3134.1 (2)
F24—C24—C25—C26179.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O310.975 (19)1.773 (19)2.7426 (18)173.2 (14)
N1—H12···O410.970 (16)1.793 (16)2.749 (2)167.9 (18)
O41—H41···O32i0.84 (3)1.95 (3)2.7744 (19)168 (2)
O41—H42···O31ii0.89 (3)1.80 (3)2.6693 (18)164 (2)
C3—H3A···O32iii0.972.443.317 (3)149
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x+1, y, z+1.
4-(4-Fluorophenyl)piperazin-1-ium 2-bromobenzoate 0.353-hydrate (II) top
Crystal data top
C10H14FN2+·C7H4BrO2·0.353H2OZ = 2
Mr = 387.59F(000) = 395.1
Triclinic, P1Dx = 1.515 Mg m3
a = 7.2584 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.347 (1) ÅCell parameters from 3585 reflections
c = 13.767 (2) Åθ = 3.0–27.6°
α = 101.14 (1)°µ = 2.44 mm1
β = 95.98 (1)°T = 293 K
γ = 109.44 (1)°Block, orange
V = 849.72 (19) Å30.50 × 0.48 × 0.44 mm
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
3582 independent reflections
Radiation source: Enhance (Mo) X-ray Source2775 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 49
Tmin = 0.257, Tmax = 0.341k = 1211
5475 measured reflectionsl = 1617
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0776P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
3582 reflectionsΔρmax = 0.47 e Å3
219 parametersΔρmin = 0.77 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.4921 (4)0.5765 (3)0.36697 (18)0.0441 (5)
H110.577 (5)0.549 (4)0.386 (2)0.053*
H120.448 (5)0.616 (4)0.422 (2)0.053*
C20.3355 (5)0.4415 (3)0.2958 (2)0.0553 (7)
H2A0.28120.36010.33040.066*
H2B0.39280.39960.24170.066*
C30.1719 (4)0.4880 (3)0.2525 (2)0.0516 (7)
H3A0.07180.39790.20540.062*
H3B0.10950.52460.30610.062*
N40.2506 (3)0.6110 (2)0.20113 (16)0.0398 (5)
C50.4007 (4)0.7471 (3)0.2736 (2)0.0512 (7)
H5A0.33880.78550.32670.061*
H5B0.45300.83000.23980.061*
C60.5673 (4)0.7068 (4)0.3186 (2)0.0520 (7)
H6A0.63730.67770.26650.062*
H6B0.66050.79760.36820.062*
C210.1090 (4)0.6461 (3)0.1414 (2)0.0402 (6)
C220.0941 (4)0.5824 (3)0.1394 (2)0.0516 (7)
H220.14100.51510.18040.062*
C230.2270 (5)0.6168 (4)0.0782 (3)0.0658 (9)
H230.36280.57200.07670.079*
C240.1579 (6)0.7161 (5)0.0204 (2)0.0689 (10)
F240.2891 (5)0.7538 (4)0.0391 (2)0.1093 (9)
C250.0363 (7)0.7830 (5)0.0199 (3)0.0724 (10)
H250.07960.85300.02000.087*
C260.1726 (5)0.7464 (4)0.0798 (2)0.0556 (7)
H260.30740.78980.07840.067*
C310.8354 (4)0.2190 (3)0.3694 (2)0.0373 (5)
C320.7930 (4)0.1403 (3)0.2693 (2)0.0402 (6)
Br320.59370 (5)0.15933 (4)0.17735 (2)0.06077 (16)
C330.8889 (5)0.0410 (3)0.2323 (3)0.0552 (8)
H330.85750.01140.16460.066*
C341.0298 (5)0.0214 (4)0.2964 (3)0.0628 (9)
H341.09700.04310.27210.075*
C351.0731 (5)0.0959 (4)0.3964 (3)0.0622 (9)
H351.16780.08080.44000.075*
C360.9752 (4)0.1941 (4)0.4325 (2)0.0529 (7)
H361.00470.24390.50060.064*
C370.7364 (4)0.3310 (3)0.41091 (19)0.0417 (6)
O310.6248 (4)0.2899 (3)0.4701 (2)0.0826 (8)
O320.7754 (3)0.4539 (2)0.38357 (18)0.0584 (6)
O410.4360 (13)0.0019 (13)0.4890 (8)0.101 (4)*0.353 (8)
H410.49890.09900.48250.152*0.353 (8)
H420.41590.09200.50150.152*0.353 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0506 (14)0.0534 (14)0.0440 (12)0.0320 (12)0.0205 (11)0.0181 (10)
C20.0616 (18)0.0406 (15)0.070 (2)0.0195 (14)0.0168 (15)0.0247 (14)
C30.0439 (15)0.0436 (16)0.070 (2)0.0094 (13)0.0157 (14)0.0283 (14)
N40.0430 (12)0.0293 (10)0.0464 (12)0.0086 (9)0.0126 (10)0.0130 (9)
C50.0536 (17)0.0360 (14)0.0578 (17)0.0061 (13)0.0045 (14)0.0180 (12)
C60.0431 (15)0.0511 (17)0.0627 (18)0.0119 (13)0.0139 (13)0.0226 (14)
C210.0484 (15)0.0343 (13)0.0368 (12)0.0163 (12)0.0080 (11)0.0037 (10)
C220.0509 (16)0.0463 (16)0.0535 (17)0.0147 (14)0.0064 (13)0.0098 (13)
C230.0569 (19)0.068 (2)0.060 (2)0.0223 (17)0.0068 (16)0.0029 (17)
C240.088 (3)0.079 (2)0.0451 (18)0.051 (2)0.0058 (17)0.0003 (17)
F240.134 (2)0.143 (2)0.0717 (15)0.088 (2)0.0174 (15)0.0237 (15)
C250.115 (3)0.074 (2)0.0461 (18)0.050 (2)0.0165 (19)0.0253 (16)
C260.072 (2)0.0548 (18)0.0496 (16)0.0277 (16)0.0181 (14)0.0207 (14)
C310.0367 (13)0.0303 (12)0.0491 (14)0.0128 (10)0.0180 (11)0.0123 (10)
C320.0449 (14)0.0278 (12)0.0495 (14)0.0115 (11)0.0188 (11)0.0104 (10)
Br320.0670 (2)0.0549 (2)0.0537 (2)0.02015 (17)0.00086 (15)0.00658 (14)
C330.072 (2)0.0381 (15)0.0619 (18)0.0243 (15)0.0303 (16)0.0081 (13)
C340.070 (2)0.0430 (16)0.095 (3)0.0350 (16)0.043 (2)0.0215 (17)
C350.0556 (18)0.0560 (19)0.092 (3)0.0325 (16)0.0196 (17)0.0318 (18)
C360.0561 (17)0.0517 (17)0.0558 (17)0.0244 (14)0.0125 (14)0.0139 (13)
C370.0414 (14)0.0411 (14)0.0424 (14)0.0172 (12)0.0132 (11)0.0025 (11)
O310.107 (2)0.0798 (17)0.0924 (19)0.0535 (16)0.0711 (17)0.0299 (14)
O320.0564 (12)0.0443 (11)0.0858 (16)0.0290 (10)0.0240 (11)0.0164 (11)
Geometric parameters (Å, º) top
N1—C61.473 (4)C24—C251.340 (6)
N1—C21.476 (4)C24—F241.369 (4)
N1—H110.78 (3)C25—C261.393 (5)
N1—H120.92 (3)C25—H250.9300
C2—C31.500 (4)C26—H260.9300
C2—H2A0.9700C31—C361.376 (4)
C2—H2B0.9700C31—C321.379 (4)
C3—N41.453 (3)C31—C371.514 (3)
C3—H3A0.9700C32—C331.388 (4)
C3—H3B0.9700C32—Br321.898 (3)
N4—C211.412 (3)C33—C341.363 (5)
N4—C51.470 (4)C33—H330.9300
C5—C61.492 (4)C34—C351.368 (5)
C5—H5A0.9700C34—H340.9300
C5—H5B0.9700C35—C361.387 (4)
C6—H6A0.9700C35—H350.9300
C6—H6B0.9700C36—H360.9300
C21—C261.382 (4)C37—O321.231 (3)
C21—C221.389 (4)C37—O311.233 (3)
C22—C231.373 (4)O41—O41i0.962 (16)
C22—H220.9300O41—H410.8970
C23—C241.344 (5)O41—H420.8940
C23—H230.9300
C6—N1—C2110.7 (2)C21—C22—H22119.3
C6—N1—H11111 (2)C24—C23—C22119.0 (3)
C2—N1—H11108 (2)C24—C23—H23120.5
C6—N1—H12106 (2)C22—C23—H23120.5
C2—N1—H12113 (2)C25—C24—C23122.5 (3)
H11—N1—H12108 (3)C25—C24—F24118.1 (4)
N1—C2—C3111.1 (2)C23—C24—F24119.4 (4)
N1—C2—H2A109.4C24—C25—C26119.2 (3)
C3—C2—H2A109.4C24—C25—H25120.4
N1—C2—H2B109.4C26—C25—H25120.4
C3—C2—H2B109.4C21—C26—C25120.5 (3)
H2A—C2—H2B108.0C21—C26—H26119.8
N4—C3—C2110.3 (2)C25—C26—H26119.8
N4—C3—H3A109.6C36—C31—C32117.6 (2)
C2—C3—H3A109.6C36—C31—C37119.7 (2)
N4—C3—H3B109.6C32—C31—C37122.8 (2)
C2—C3—H3B109.6C31—C32—C33121.8 (3)
H3A—C3—H3B108.1C31—C32—Br32120.83 (19)
C21—N4—C3116.1 (2)C33—C32—Br32117.3 (2)
C21—N4—C5114.7 (2)C34—C33—C32119.1 (3)
C3—N4—C5109.0 (2)C34—C33—H33120.4
N4—C5—C6111.5 (2)C32—C33—H33120.4
N4—C5—H5A109.3C33—C34—C35120.4 (3)
C6—C5—H5A109.3C33—C34—H34119.8
N4—C5—H5B109.3C35—C34—H34119.8
C6—C5—H5B109.3C34—C35—C36119.8 (3)
H5A—C5—H5B108.0C34—C35—H35120.1
N1—C6—C5110.8 (2)C36—C35—H35120.1
N1—C6—H6A109.5C31—C36—C35121.2 (3)
C5—C6—H6A109.5C31—C36—H36119.4
N1—C6—H6B109.5C35—C36—H36119.4
C5—C6—H6B109.5O32—C37—O31126.2 (3)
H6A—C6—H6B108.1O32—C37—C31117.6 (2)
C26—C21—C22117.5 (3)O31—C37—C31116.2 (3)
C26—C21—N4119.2 (3)O41i—O41—H4188.0
C22—C21—N4123.3 (2)O41i—O41—H4272.5
C23—C22—C21121.3 (3)H41—O41—H42160.5
C23—C22—H22119.3
C6—N1—C2—C354.9 (3)C22—C21—C26—C251.1 (4)
N1—C2—C3—N458.5 (3)N4—C21—C26—C25179.9 (3)
C2—C3—N4—C21168.8 (2)C24—C25—C26—C212.0 (5)
C2—C3—N4—C559.8 (3)C36—C31—C32—C331.0 (4)
C21—N4—C5—C6168.4 (2)C37—C31—C32—C33178.4 (2)
C3—N4—C5—C659.5 (3)C36—C31—C32—Br32177.1 (2)
C2—N1—C6—C553.7 (3)C37—C31—C32—Br323.5 (3)
N4—C5—C6—N156.6 (3)C31—C32—C33—C340.4 (4)
C3—N4—C21—C26171.3 (3)Br32—C32—C33—C34178.5 (2)
C5—N4—C21—C2660.0 (3)C32—C33—C34—C351.4 (5)
C3—N4—C21—C227.4 (4)C33—C34—C35—C361.0 (5)
C5—N4—C21—C22121.2 (3)C32—C31—C36—C351.3 (4)
C26—C21—C22—C230.4 (4)C37—C31—C36—C35178.1 (3)
N4—C21—C22—C23178.3 (3)C34—C35—C36—C310.4 (5)
C21—C22—C23—C241.1 (5)C36—C31—C37—O32111.7 (3)
C22—C23—C24—C250.2 (5)C32—C31—C37—O3267.7 (3)
C22—C23—C24—F24178.5 (3)C36—C31—C37—O3167.7 (4)
C23—C24—C25—C261.3 (6)C32—C31—C37—O31112.9 (3)
F24—C24—C25—C26180.0 (3)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O320.78 (4)1.93 (4)2.677 (4)160 (3)
N1—H12···O31ii0.91 (3)1.80 (3)2.707 (4)175 (3)
O41—H41···O310.901.762.661 (12)179
O41—H42···O31i0.891.902.792 (12)179
C35—H35···O41iii0.932.383.257 (11)157
C2—H2A···Cg1iv0.972.783.598 (3)142
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y, z; (iv) x1, y, z.
4-(4-Fluorophenyl)piperazin-1-ium 2-iodobenzoate (III) top
Crystal data top
C10H14FN2+·C7H4IO2Z = 4
Mr = 428.23F(000) = 848
Triclinic, P1Dx = 1.634 Mg m3
a = 9.8892 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.6831 (7) ÅCell parameters from 7405 reflections
c = 16.4547 (9) Åθ = 2.6–27.8°
α = 106.776 (5)°µ = 1.86 mm1
β = 93.327 (4)°T = 293 K
γ = 104.874 (4)°Block, orange
V = 1741.19 (16) Å30.50 × 0.50 × 0.48 mm
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
7396 independent reflections
Radiation source: Enhance (Mo) X-ray Source5890 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ω scansθmax = 27.6°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 126
Tmin = 0.383, Tmax = 0.411k = 1415
12798 measured reflectionsl = 2120
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0543P)2 + 4.1226P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
7396 reflectionsΔρmax = 2.92 e Å3
427 parametersΔρmin = 2.00 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.1718 (4)0.3441 (4)0.4399 (3)0.0473 (9)
H1110.168 (6)0.371 (5)0.490 (4)0.057*
H1120.156 (6)0.261 (5)0.425 (3)0.057*
C120.3127 (5)0.4007 (5)0.4209 (3)0.0592 (12)
H12A0.38310.37440.44860.071*
H12B0.33560.49090.44370.071*
C130.3165 (5)0.3626 (5)0.3258 (3)0.0546 (12)
H13A0.40930.40230.31460.066*
H13B0.30000.27300.30370.066*
N140.2090 (4)0.3984 (3)0.2818 (3)0.0450 (8)
C150.0698 (5)0.3408 (5)0.2987 (4)0.0579 (12)
H15A0.04830.25080.27520.069*
H15B0.00020.36680.27040.069*
C160.0617 (5)0.3762 (5)0.3932 (4)0.0598 (13)
H16A0.07360.46520.41550.072*
H16B0.03090.33300.40250.072*
C1210.2253 (5)0.3925 (4)0.1963 (3)0.0487 (10)
C1220.3559 (6)0.4465 (5)0.1766 (4)0.0597 (12)
H1220.43290.48290.21990.072*
C1230.3747 (7)0.4476 (6)0.0947 (4)0.0741 (16)
H1230.46310.48370.08230.089*
C1240.2606 (9)0.3945 (6)0.0319 (4)0.0760 (18)
F1240.2786 (6)0.3960 (4)0.0494 (2)0.1097 (15)
C1250.1323 (8)0.3422 (6)0.0477 (4)0.0817 (19)
H1250.05630.30830.00370.098*
C1260.1126 (6)0.3385 (5)0.1294 (4)0.0680 (15)
H1260.02380.29990.14000.082*
N210.3249 (4)0.1830 (4)0.5932 (3)0.0481 (9)
H2110.329 (6)0.157 (5)0.544 (4)0.058*
H2120.337 (6)0.261 (6)0.611 (4)0.058*
C220.4376 (5)0.1501 (6)0.6362 (3)0.0589 (13)
H22A0.52900.19800.62840.071*
H22B0.42910.06230.61000.071*
C230.4291 (5)0.1759 (5)0.7303 (3)0.0550 (12)
H23A0.50000.14790.75610.066*
H23B0.44870.26510.75780.066*
N240.2907 (4)0.1127 (3)0.7441 (2)0.0445 (8)
C250.1819 (5)0.1523 (5)0.7055 (3)0.0537 (11)
H25A0.19770.24120.73180.064*
H25B0.08990.10960.71600.064*
C260.1841 (5)0.1235 (5)0.6102 (3)0.0604 (13)
H26A0.16020.03400.58320.072*
H26B0.11410.15390.58590.072*
C2210.2749 (5)0.0994 (4)0.8257 (3)0.0462 (10)
C2220.3844 (6)0.1474 (5)0.8936 (3)0.0604 (13)
H2220.47220.19440.88710.072*
C2230.3638 (7)0.1256 (6)0.9712 (4)0.0739 (16)
H2230.43730.15801.01670.089*
C2240.2374 (8)0.0578 (6)0.9801 (4)0.0749 (17)
F2240.2184 (6)0.0351 (5)1.0561 (3)0.1125 (15)
C2250.1270 (7)0.0094 (6)0.9158 (4)0.0711 (15)
H2250.04000.03660.92400.085*
C2260.1453 (5)0.0295 (5)0.8381 (4)0.0573 (12)
H2260.07030.00410.79350.069*
C1310.2741 (4)0.5826 (4)0.7440 (3)0.0436 (9)
C1320.3185 (4)0.7104 (4)0.7577 (3)0.0438 (9)
I1320.38641 (4)0.78363 (3)0.65990 (2)0.06260 (12)
C1330.3235 (6)0.7943 (5)0.8376 (3)0.0579 (12)
H1330.35420.87960.84610.069*
C1340.2831 (7)0.7512 (6)0.9039 (4)0.0714 (16)
H1340.28500.80740.95740.086*
C1350.2401 (7)0.6259 (6)0.8920 (4)0.0755 (17)
H1350.21280.59710.93740.091*
C1360.2371 (6)0.5442 (5)0.8148 (4)0.0621 (13)
H1360.20970.45940.80830.075*
C1370.2666 (5)0.4864 (4)0.6585 (3)0.0456 (10)
O1310.3594 (4)0.4325 (3)0.6506 (3)0.0648 (10)
O1320.1659 (5)0.4666 (4)0.6041 (3)0.0837 (13)
C2310.2056 (4)0.0826 (4)0.3071 (3)0.0408 (9)
C2320.1850 (4)0.1973 (4)0.3215 (3)0.0454 (10)
I2320.18832 (4)0.21282 (3)0.44547 (2)0.06302 (13)
C2330.1639 (6)0.3058 (5)0.2536 (4)0.0684 (15)
H2330.15020.38190.26400.082*
C2340.1632 (8)0.3016 (6)0.1721 (4)0.0837 (19)
H2340.14880.37480.12670.100*
C2350.1838 (7)0.1889 (6)0.1561 (4)0.0732 (16)
H2350.18390.18620.10020.088*
C2360.2044 (5)0.0805 (5)0.2232 (3)0.0541 (11)
H2360.21750.00500.21210.065*
C2370.2275 (5)0.0386 (4)0.3779 (3)0.0434 (9)
O2310.1327 (4)0.0902 (3)0.3784 (3)0.0689 (10)
O2320.3391 (4)0.0769 (3)0.4284 (2)0.0619 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.052 (2)0.0355 (19)0.053 (2)0.0165 (17)0.0012 (18)0.0095 (17)
C120.042 (2)0.063 (3)0.063 (3)0.006 (2)0.007 (2)0.017 (2)
C130.034 (2)0.065 (3)0.068 (3)0.016 (2)0.001 (2)0.026 (3)
N140.0333 (17)0.0402 (19)0.062 (2)0.0093 (14)0.0003 (16)0.0192 (17)
C150.034 (2)0.067 (3)0.077 (3)0.011 (2)0.003 (2)0.033 (3)
C160.044 (3)0.066 (3)0.081 (4)0.025 (2)0.010 (2)0.033 (3)
C1210.047 (2)0.034 (2)0.067 (3)0.0149 (18)0.002 (2)0.017 (2)
C1220.055 (3)0.056 (3)0.063 (3)0.010 (2)0.005 (2)0.018 (2)
C1230.083 (4)0.069 (4)0.077 (4)0.027 (3)0.023 (3)0.027 (3)
C1240.122 (6)0.061 (3)0.056 (3)0.042 (4)0.013 (4)0.021 (3)
F1240.177 (5)0.106 (3)0.066 (2)0.065 (3)0.022 (3)0.034 (2)
C1250.095 (5)0.071 (4)0.069 (4)0.023 (4)0.021 (4)0.014 (3)
C1260.058 (3)0.065 (3)0.071 (4)0.007 (3)0.016 (3)0.022 (3)
N210.053 (2)0.043 (2)0.048 (2)0.0181 (18)0.0033 (18)0.0102 (18)
C220.045 (3)0.079 (4)0.068 (3)0.030 (2)0.015 (2)0.033 (3)
C230.033 (2)0.071 (3)0.064 (3)0.011 (2)0.002 (2)0.030 (3)
N240.0348 (18)0.046 (2)0.053 (2)0.0125 (15)0.0033 (15)0.0151 (17)
C250.039 (2)0.061 (3)0.068 (3)0.021 (2)0.008 (2)0.025 (2)
C260.045 (3)0.070 (3)0.064 (3)0.014 (2)0.002 (2)0.021 (3)
C2210.047 (2)0.039 (2)0.054 (3)0.0155 (19)0.008 (2)0.0128 (19)
C2220.056 (3)0.062 (3)0.057 (3)0.010 (2)0.000 (2)0.016 (2)
C2230.084 (4)0.080 (4)0.057 (3)0.027 (3)0.000 (3)0.019 (3)
C2240.104 (5)0.080 (4)0.057 (3)0.044 (4)0.031 (3)0.027 (3)
F2240.148 (4)0.148 (4)0.075 (2)0.065 (3)0.044 (3)0.061 (3)
C2250.077 (4)0.068 (4)0.079 (4)0.025 (3)0.035 (3)0.029 (3)
C2260.051 (3)0.054 (3)0.067 (3)0.014 (2)0.015 (2)0.018 (2)
C1310.039 (2)0.040 (2)0.054 (2)0.0174 (18)0.0056 (18)0.0126 (19)
C1320.038 (2)0.042 (2)0.054 (2)0.0167 (18)0.0042 (18)0.0143 (19)
I1320.0718 (2)0.0563 (2)0.0754 (2)0.02666 (17)0.02048 (18)0.03511 (18)
C1330.062 (3)0.043 (3)0.063 (3)0.021 (2)0.004 (2)0.003 (2)
C1340.088 (4)0.073 (4)0.054 (3)0.039 (3)0.015 (3)0.007 (3)
C1350.097 (5)0.083 (4)0.067 (4)0.044 (4)0.033 (3)0.035 (3)
C1360.078 (4)0.050 (3)0.073 (3)0.027 (3)0.024 (3)0.030 (3)
C1370.040 (2)0.033 (2)0.060 (3)0.0088 (17)0.008 (2)0.0102 (19)
O1310.056 (2)0.0489 (19)0.082 (3)0.0241 (16)0.0081 (18)0.0017 (18)
O1320.074 (3)0.097 (3)0.063 (2)0.043 (2)0.013 (2)0.013 (2)
C2310.034 (2)0.039 (2)0.050 (2)0.0118 (16)0.0033 (17)0.0134 (18)
C2320.040 (2)0.037 (2)0.060 (3)0.0146 (17)0.0038 (19)0.0125 (19)
I2320.0707 (2)0.0597 (2)0.0752 (2)0.02272 (17)0.02547 (18)0.03962 (18)
C2330.079 (4)0.041 (3)0.079 (4)0.021 (3)0.006 (3)0.006 (3)
C2340.107 (5)0.059 (4)0.067 (4)0.030 (3)0.003 (3)0.011 (3)
C2350.091 (4)0.079 (4)0.046 (3)0.035 (3)0.001 (3)0.007 (3)
C2360.059 (3)0.056 (3)0.052 (3)0.023 (2)0.004 (2)0.018 (2)
C2370.050 (2)0.033 (2)0.047 (2)0.0059 (18)0.012 (2)0.0170 (18)
O2310.072 (2)0.0392 (18)0.090 (3)0.0232 (17)0.011 (2)0.0065 (18)
O2320.062 (2)0.061 (2)0.0474 (19)0.0034 (17)0.0019 (16)0.0074 (16)
Geometric parameters (Å, º) top
N11—C121.474 (6)C25—H25B0.9700
N11—C161.483 (6)C26—H26A0.9700
N11—H1110.80 (6)C26—H26B0.9700
N11—H1120.89 (6)C221—C2221.387 (7)
C12—C131.505 (7)C221—C2261.394 (7)
C12—H12A0.9700C222—C2231.389 (8)
C12—H12B0.9700C222—H2220.9300
C13—N141.463 (5)C223—C2241.338 (9)
C13—H13A0.9700C223—H2230.9300
C13—H13B0.9700C224—C2251.354 (9)
N14—C1211.410 (6)C224—F2241.366 (7)
N14—C151.450 (6)C225—C2261.378 (8)
C15—C161.501 (8)C225—H2250.9300
C15—H15A0.9700C226—H2260.9300
C15—H15B0.9700C131—C1321.389 (6)
C16—H16A0.9700C131—C1361.400 (7)
C16—H16B0.9700C131—C1371.510 (6)
C121—C1221.385 (7)C132—C1331.383 (7)
C121—C1261.395 (7)C132—I1322.097 (5)
C122—C1231.374 (8)C133—C1341.367 (8)
C122—H1220.9300C133—H1330.9300
C123—C1241.364 (10)C134—C1351.366 (9)
C123—H1230.9300C134—H1340.9300
C124—C1251.335 (10)C135—C1361.344 (8)
C124—F1241.364 (7)C135—H1350.9300
C125—C1261.381 (9)C136—H1360.9300
C125—H1250.9300C137—O1321.228 (6)
C126—H1260.9300C137—O1311.232 (5)
N21—C261.470 (7)C231—C2361.388 (7)
N21—C221.475 (6)C231—C2321.393 (6)
N21—H2110.78 (6)C231—C2371.507 (6)
N21—H2120.84 (6)C232—C2331.385 (7)
C22—C231.502 (7)C232—I2322.099 (5)
C22—H22A0.9700C233—C2341.357 (9)
C22—H22B0.9700C233—H2330.9300
C23—N241.444 (6)C234—C2351.383 (9)
C23—H23A0.9700C234—H2340.9300
C23—H23B0.9700C235—C2361.377 (7)
N24—C2211.408 (6)C235—H2350.9300
N24—C251.456 (6)C236—H2360.9300
C25—C261.509 (7)C237—O2311.237 (6)
C25—H25A0.9700C237—O2321.238 (6)
C12—N11—C16110.2 (4)N24—C25—C26110.6 (4)
C12—N11—H111110 (4)N24—C25—H25A109.5
C16—N11—H111108 (4)C26—C25—H25A109.5
C12—N11—H112109 (3)N24—C25—H25B109.5
C16—N11—H112111 (3)C26—C25—H25B109.5
H111—N11—H112109 (5)H25A—C25—H25B108.1
N11—C12—C13110.8 (4)N21—C26—C25110.2 (4)
N11—C12—H12A109.5N21—C26—H26A109.6
C13—C12—H12A109.5C25—C26—H26A109.6
N11—C12—H12B109.5N21—C26—H26B109.6
C13—C12—H12B109.5C25—C26—H26B109.6
H12A—C12—H12B108.1H26A—C26—H26B108.1
N14—C13—C12110.8 (4)C222—C221—C226117.9 (5)
N14—C13—H13A109.5C222—C221—N24123.2 (4)
C12—C13—H13A109.5C226—C221—N24118.8 (4)
N14—C13—H13B109.5C221—C222—C223120.3 (5)
C12—C13—H13B109.5C221—C222—H222119.8
H13A—C13—H13B108.1C223—C222—H222119.8
C121—N14—C15117.6 (4)C224—C223—C222119.6 (6)
C121—N14—C13114.6 (4)C224—C223—H223120.2
C15—N14—C13110.1 (4)C222—C223—H223120.2
N14—C15—C16111.3 (4)C223—C224—C225122.3 (6)
N14—C15—H15A109.4C223—C224—F224119.3 (6)
C16—C15—H15A109.4C225—C224—F224118.4 (6)
N14—C15—H15B109.4C224—C225—C226119.1 (6)
C16—C15—H15B109.4C224—C225—H225120.5
H15A—C15—H15B108.0C226—C225—H225120.5
N11—C16—C15111.3 (4)C225—C226—C221120.8 (5)
N11—C16—H16A109.4C225—C226—H226119.6
C15—C16—H16A109.4C221—C226—H226119.6
N11—C16—H16B109.4C132—C131—C136116.7 (4)
C15—C16—H16B109.4C132—C131—C137123.5 (4)
H16A—C16—H16B108.0C136—C131—C137119.8 (4)
C122—C121—C126117.4 (5)C133—C132—C131120.9 (4)
C122—C121—N14120.0 (4)C133—C132—I132117.5 (4)
C126—C121—N14122.6 (5)C131—C132—I132121.6 (3)
C123—C122—C121121.7 (5)C134—C133—C132119.7 (5)
C123—C122—H122119.1C134—C133—H133120.1
C121—C122—H122119.1C132—C133—H133120.1
C124—C123—C122118.5 (6)C135—C134—C133120.3 (5)
C124—C123—H123120.8C135—C134—H134119.8
C122—C123—H123120.8C133—C134—H134119.8
C125—C124—C123122.1 (6)C136—C135—C134120.1 (6)
C125—C124—F124119.2 (7)C136—C135—H135120.0
C123—C124—F124118.7 (7)C134—C135—H135120.0
C124—C125—C126120.0 (6)C135—C136—C131122.2 (5)
C124—C125—H125120.0C135—C136—H136118.9
C126—C125—H125120.0C131—C136—H136118.9
C125—C126—C121120.3 (6)O132—C137—O131126.0 (5)
C125—C126—H126119.9O132—C137—C131116.7 (4)
C121—C126—H126119.9O131—C137—C131117.3 (4)
C26—N21—C22112.1 (4)C236—C231—C232118.2 (4)
C26—N21—H211109 (4)C236—C231—C237118.5 (4)
C22—N21—H211105 (4)C232—C231—C237123.3 (4)
C26—N21—H212107 (4)C233—C232—C231120.7 (5)
C22—N21—H212110 (4)C233—C232—I232117.4 (4)
H211—N21—H212114 (6)C231—C232—I232121.9 (3)
N21—C22—C23111.3 (4)C234—C233—C232120.2 (5)
N21—C22—H22A109.4C234—C233—H233119.9
C23—C22—H22A109.4C232—C233—H233119.9
N21—C22—H22B109.4C233—C234—C235120.3 (5)
C23—C22—H22B109.4C233—C234—H234119.9
H22A—C22—H22B108.0C235—C234—H234119.9
N24—C23—C22110.7 (4)C236—C235—C234119.9 (5)
N24—C23—H23A109.5C236—C235—H235120.0
C22—C23—H23A109.5C234—C235—H235120.0
N24—C23—H23B109.5C235—C236—C231120.8 (5)
C22—C23—H23B109.5C235—C236—H236119.6
H23A—C23—H23B108.1C231—C236—H236119.6
C221—N24—C23118.0 (4)O231—C237—O232127.0 (4)
C221—N24—C25116.3 (4)O231—C237—C231116.2 (4)
C23—N24—C25110.7 (4)O232—C237—C231116.7 (4)
C16—N11—C12—C1355.3 (6)C222—C223—C224—C2250.4 (10)
N11—C12—C13—N1457.8 (6)C222—C223—C224—F224179.0 (5)
C12—C13—N14—C121166.2 (4)C223—C224—C225—C2260.7 (10)
C12—C13—N14—C1558.5 (5)F224—C224—C225—C226178.7 (5)
C121—N14—C15—C16168.6 (4)C224—C225—C226—C2210.6 (8)
C13—N14—C15—C1657.6 (5)C222—C221—C226—C2250.3 (7)
C12—N11—C16—C1554.5 (6)N24—C221—C226—C225177.1 (5)
N14—C15—C16—N1156.1 (6)C136—C131—C132—C1330.9 (6)
C15—N14—C121—C122179.7 (4)C137—C131—C132—C133179.8 (4)
C13—N14—C121—C12248.5 (6)C136—C131—C132—I132177.2 (3)
C15—N14—C121—C1262.6 (6)C137—C131—C132—I1321.8 (6)
C13—N14—C121—C126134.4 (5)C131—C132—C133—C1340.5 (7)
C126—C121—C122—C1230.2 (8)I132—C132—C133—C134178.6 (4)
N14—C121—C122—C123177.1 (5)C132—C133—C134—C1351.0 (9)
C121—C122—C123—C1240.4 (9)C133—C134—C135—C1360.0 (10)
C122—C123—C124—C1250.2 (10)C134—C135—C136—C1311.5 (10)
C122—C123—C124—F124179.6 (5)C132—C131—C136—C1351.9 (8)
C123—C124—C125—C1261.3 (10)C137—C131—C136—C135179.1 (5)
F124—C124—C125—C126179.2 (5)C132—C131—C137—O13277.1 (6)
C124—C125—C126—C1211.9 (10)C136—C131—C137—O132103.9 (6)
C122—C121—C126—C1251.3 (8)C132—C131—C137—O131104.8 (5)
N14—C121—C126—C125175.9 (5)C136—C131—C137—O13174.1 (6)
C26—N21—C22—C2353.0 (6)C236—C231—C232—C2330.0 (7)
N21—C22—C23—N2455.1 (6)C237—C231—C232—C233179.3 (5)
C22—C23—N24—C221163.7 (4)C236—C231—C232—I232178.8 (3)
C22—C23—N24—C2558.7 (5)C237—C231—C232—I2321.8 (6)
C221—N24—C25—C26161.9 (4)C231—C232—C233—C2340.1 (8)
C23—N24—C25—C2659.8 (5)I232—C232—C233—C234178.8 (5)
C22—N21—C26—C2553.6 (6)C232—C233—C234—C2350.1 (10)
N24—C25—C26—N2156.6 (6)C233—C234—C235—C2360.4 (10)
C23—N24—C221—C2222.1 (7)C234—C235—C236—C2310.4 (9)
C25—N24—C221—C222133.2 (5)C232—C231—C236—C2350.2 (7)
C23—N24—C221—C226174.5 (4)C237—C231—C236—C235179.6 (5)
C25—N24—C221—C22650.2 (6)C236—C231—C237—O23166.0 (6)
C226—C221—C222—C2230.1 (8)C232—C231—C237—O231113.4 (5)
N24—C221—C222—C223176.7 (5)C236—C231—C237—O232112.9 (5)
C221—C222—C223—C2240.1 (9)C232—C231—C237—O23267.8 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H111···O1320.80 (6)1.89 (6)2.680 (7)168 (6)
N11—H112···O2310.90 (6)1.87 (6)2.758 (6)171 (4)
N21—H211···O2320.79 (6)1.88 (6)2.665 (6)173 (6)
N21—H212···O1310.85 (7)1.87 (7)2.714 (6)179 (8)
C13—H13A···O131i0.972.503.396 (7)154
C133—H133···Cg2ii0.932.693.433 (6)137
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z.
4-(4-Fluorophenyl)piperazin-1-ium 2,4,6-trinitrophenolate (IV) top
Crystal data top
C10H14FN2+·C6H2N3O7F(000) = 848
Mr = 409.34Dx = 1.576 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 16.658 (2) ÅCell parameters from 3865 reflections
b = 6.6734 (6) Åθ = 2.6–27.8°
c = 17.553 (3) ŵ = 0.13 mm1
β = 117.84 (2)°T = 293 K
V = 1725.4 (5) Å3Block, orange
Z = 40.48 × 0.40 × 0.40 mm
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
3865 independent reflections
Radiation source: Enhance (Mo) X-ray Source2922 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scansθmax = 27.8°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 2120
Tmin = 0.816, Tmax = 0.949k = 88
12153 measured reflectionsl = 2317
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.045 w = 1/[σ2(Fo2) + (0.069P)2 + 0.535P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.136(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.45 e Å3
3865 reflectionsΔρmin = 0.27 e Å3
269 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0063 (12)
Primary atom site location: difference Fourier map
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.40587 (10)0.4532 (3)0.63092 (10)0.0437 (4)
H110.4673 (15)0.458 (3)0.6543 (14)0.052*
H120.3839 (14)0.402 (3)0.5813 (15)0.052*
C20.37290 (12)0.6586 (3)0.62596 (14)0.0539 (5)
H2A0.38610.73530.58620.065*
H2B0.40450.72110.68220.065*
C30.27242 (12)0.6622 (3)0.59632 (15)0.0562 (5)
H3A0.25320.79960.59580.067*
H3B0.24080.61140.53780.067*
N40.24731 (9)0.5429 (2)0.65119 (9)0.0368 (3)
C50.27922 (12)0.3385 (3)0.65583 (15)0.0554 (5)
H5A0.24710.27670.59950.066*
H5B0.26560.26260.69550.066*
C60.37933 (13)0.3300 (4)0.68511 (16)0.0659 (6)
H6A0.41170.37650.74420.079*
H6B0.39690.19210.68370.079*
C210.15488 (10)0.5597 (3)0.63263 (10)0.0363 (4)
C220.10464 (13)0.7296 (3)0.59483 (14)0.0564 (5)
H220.13120.83440.57980.068*
C230.01531 (13)0.7464 (4)0.57899 (14)0.0654 (6)
H230.01760.86210.55390.078*
C240.02378 (12)0.5940 (4)0.60014 (12)0.0533 (5)
F240.11190 (7)0.6095 (3)0.58299 (9)0.0781 (4)
C250.02295 (13)0.4251 (3)0.63800 (15)0.0582 (5)
H250.00480.32180.65260.070*
C260.11240 (12)0.4082 (3)0.65464 (14)0.0530 (5)
H260.14480.29290.68110.064*
C310.66352 (10)0.5012 (2)0.76514 (10)0.0325 (3)
O310.58276 (8)0.4723 (2)0.74598 (8)0.0515 (4)
C320.69912 (10)0.5164 (2)0.70408 (9)0.0311 (3)
C330.78970 (10)0.5187 (2)0.72642 (10)0.0316 (3)
H330.80870.51950.68430.038*
C340.85232 (10)0.5198 (2)0.81288 (10)0.0310 (3)
C350.82562 (10)0.5169 (2)0.87651 (10)0.0307 (3)
H350.86860.52010.93430.037*
C360.73523 (10)0.5092 (2)0.85326 (9)0.0306 (3)
N320.63656 (10)0.5325 (2)0.61270 (9)0.0408 (3)
O320.55940 (9)0.5932 (3)0.59024 (9)0.0663 (4)
O330.66548 (10)0.4937 (3)0.56166 (9)0.0652 (4)
N340.94736 (9)0.5289 (2)0.83657 (10)0.0408 (3)
O340.97031 (9)0.4935 (2)0.78121 (10)0.0596 (4)
O351.00128 (8)0.5720 (3)0.91068 (9)0.0653 (4)
N360.71188 (10)0.5052 (2)0.92360 (9)0.0415 (3)
O360.76681 (10)0.4316 (2)0.99197 (8)0.0586 (4)
O370.64114 (10)0.5790 (3)0.91295 (10)0.0662 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0255 (7)0.0670 (10)0.0364 (7)0.0038 (7)0.0125 (6)0.0009 (7)
C20.0398 (9)0.0577 (12)0.0692 (13)0.0043 (9)0.0296 (9)0.0047 (10)
C30.0405 (10)0.0588 (12)0.0768 (14)0.0120 (9)0.0336 (10)0.0262 (10)
N40.0308 (7)0.0434 (8)0.0381 (7)0.0044 (6)0.0178 (6)0.0026 (6)
C50.0435 (10)0.0489 (11)0.0845 (14)0.0110 (8)0.0389 (10)0.0155 (10)
C60.0454 (11)0.0752 (15)0.0866 (15)0.0254 (10)0.0389 (11)0.0360 (13)
C210.0310 (8)0.0481 (9)0.0304 (7)0.0037 (7)0.0150 (6)0.0019 (7)
C220.0460 (10)0.0672 (13)0.0647 (12)0.0181 (9)0.0330 (9)0.0228 (10)
C230.0470 (11)0.0883 (17)0.0643 (13)0.0309 (11)0.0289 (10)0.0238 (12)
C240.0305 (8)0.0867 (15)0.0421 (10)0.0051 (9)0.0165 (8)0.0072 (10)
F240.0314 (6)0.1237 (12)0.0776 (9)0.0088 (7)0.0241 (6)0.0065 (8)
C250.0423 (10)0.0666 (13)0.0737 (14)0.0085 (9)0.0337 (10)0.0089 (11)
C260.0417 (10)0.0512 (11)0.0719 (13)0.0038 (8)0.0314 (10)0.0038 (10)
C310.0254 (7)0.0299 (7)0.0367 (8)0.0004 (6)0.0099 (6)0.0011 (6)
O310.0251 (6)0.0758 (9)0.0483 (7)0.0046 (6)0.0125 (5)0.0002 (6)
C320.0301 (7)0.0278 (7)0.0273 (7)0.0015 (6)0.0066 (6)0.0006 (6)
C330.0349 (8)0.0283 (7)0.0331 (7)0.0013 (6)0.0171 (6)0.0003 (6)
C340.0241 (7)0.0294 (7)0.0366 (8)0.0002 (6)0.0119 (6)0.0013 (6)
C350.0276 (7)0.0290 (7)0.0292 (7)0.0008 (6)0.0081 (6)0.0008 (6)
C360.0295 (7)0.0308 (7)0.0307 (7)0.0008 (6)0.0135 (6)0.0021 (6)
N320.0405 (8)0.0403 (8)0.0305 (7)0.0064 (6)0.0073 (6)0.0005 (6)
O320.0406 (7)0.0907 (12)0.0437 (8)0.0081 (7)0.0003 (6)0.0033 (7)
O330.0647 (9)0.0950 (12)0.0317 (7)0.0007 (8)0.0190 (6)0.0027 (7)
N340.0274 (7)0.0446 (8)0.0493 (8)0.0015 (6)0.0169 (6)0.0076 (6)
O340.0411 (7)0.0796 (10)0.0699 (9)0.0047 (7)0.0358 (7)0.0033 (8)
O350.0281 (6)0.1017 (12)0.0520 (8)0.0113 (7)0.0069 (6)0.0006 (8)
N360.0383 (7)0.0483 (8)0.0417 (8)0.0061 (6)0.0219 (6)0.0090 (6)
O360.0569 (8)0.0831 (11)0.0368 (7)0.0005 (7)0.0226 (6)0.0068 (7)
O370.0517 (8)0.0930 (12)0.0654 (9)0.0102 (8)0.0369 (7)0.0124 (8)
Geometric parameters (Å, º) top
N1—C21.464 (3)C24—C251.355 (3)
N1—C61.473 (3)C24—F241.358 (2)
N1—H110.91 (2)C25—C261.383 (2)
N1—H120.84 (2)C25—H250.9300
C2—C31.503 (2)C26—H260.9300
C2—H2A0.9700C31—O311.2398 (19)
C2—H2B0.9700C31—C361.448 (2)
C3—N41.453 (2)C31—C321.451 (2)
C3—H3A0.9700C32—C331.371 (2)
C3—H3B0.9700C32—N321.4522 (19)
N4—C211.4215 (19)C33—C341.383 (2)
N4—C51.452 (2)C33—H330.9300
C5—C61.499 (2)C34—C351.382 (2)
C5—H5A0.9700C34—N341.4383 (19)
C5—H5B0.9700C35—C361.365 (2)
C6—H6A0.9700C35—H350.9300
C6—H6B0.9700C36—N361.458 (2)
C21—C221.381 (3)N32—O321.224 (2)
C21—C261.388 (3)N32—O331.227 (2)
C22—C231.385 (3)N34—O351.221 (2)
C22—H220.9300N34—O341.222 (2)
C23—C241.350 (3)N36—O371.2084 (19)
C23—H230.9300N36—O361.222 (2)
C2—N1—C6110.09 (15)C24—C23—C22119.7 (2)
C2—N1—H11107.8 (13)C24—C23—H23120.2
C6—N1—H11110.0 (13)C22—C23—H23120.2
C2—N1—H12110.5 (15)C23—C24—C25121.43 (17)
C6—N1—H12108.8 (15)C23—C24—F24119.5 (2)
H11—N1—H12109.7 (19)C25—C24—F24119.1 (2)
N1—C2—C3111.20 (16)C24—C25—C26119.2 (2)
N1—C2—H2A109.4C24—C25—H25120.4
C3—C2—H2A109.4C26—C25—H25120.4
N1—C2—H2B109.4C25—C26—C21121.39 (19)
C3—C2—H2B109.4C25—C26—H26119.3
H2A—C2—H2B108.0C21—C26—H26119.3
N4—C3—C2112.37 (16)O31—C31—C36123.02 (15)
N4—C3—H3A109.1O31—C31—C32125.20 (15)
C2—C3—H3A109.1C36—C31—C32111.63 (13)
N4—C3—H3B109.1C33—C32—C31124.38 (14)
C2—C3—H3B109.1C33—C32—N32116.20 (14)
H3A—C3—H3B107.9C31—C32—N32119.41 (14)
C21—N4—C5114.59 (14)C32—C33—C34118.65 (14)
C21—N4—C3114.90 (13)C32—C33—H33120.7
C5—N4—C3109.90 (14)C34—C33—H33120.7
N4—C5—C6111.98 (17)C35—C34—C33121.63 (14)
N4—C5—H5A109.2C35—C34—N34119.56 (14)
C6—C5—H5A109.2C33—C34—N34118.80 (14)
N4—C5—H5B109.2C36—C35—C34119.04 (14)
C6—C5—H5B109.2C36—C35—H35120.5
H5A—C5—H5B107.9C34—C35—H35120.5
N1—C6—C5112.26 (16)C35—C36—C31124.43 (14)
N1—C6—H6A109.2C35—C36—N36116.17 (13)
C5—C6—H6A109.2C31—C36—N36119.39 (13)
N1—C6—H6B109.2O32—N32—O33123.09 (15)
C5—C6—H6B109.2O32—N32—C32118.97 (15)
H6A—C6—H6B107.9O33—N32—C32117.84 (15)
C22—C21—C26117.27 (16)O35—N34—O34123.04 (15)
C22—C21—N4121.57 (16)O35—N34—C34118.74 (15)
C26—C21—N4121.12 (15)O34—N34—C34118.22 (15)
C21—C22—C23121.1 (2)O37—N36—O36123.00 (15)
C21—C22—H22119.5O37—N36—C36119.22 (15)
C23—C22—H22119.5O36—N36—C36117.74 (14)
C6—N1—C2—C354.1 (2)C36—C31—C32—N32173.50 (13)
N1—C2—C3—N456.7 (2)C31—C32—C33—C344.4 (2)
C2—C3—N4—C21172.77 (16)N32—C32—C33—C34174.93 (13)
C2—C3—N4—C556.2 (2)C32—C33—C34—C350.6 (2)
C21—N4—C5—C6173.67 (16)C32—C33—C34—N34177.97 (14)
C3—N4—C5—C655.2 (2)C33—C34—C35—C361.2 (2)
C2—N1—C6—C553.9 (3)N34—C34—C35—C36179.69 (14)
N4—C5—C6—N155.2 (3)C34—C35—C36—C310.8 (2)
C5—N4—C21—C22155.31 (19)C34—C35—C36—N36179.64 (14)
C3—N4—C21—C2226.6 (2)O31—C31—C36—C35171.87 (16)
C5—N4—C21—C2627.0 (2)C32—C31—C36—C354.0 (2)
C3—N4—C21—C26155.66 (19)O31—C31—C36—N366.9 (2)
C26—C21—C22—C230.6 (3)C32—C31—C36—N36177.23 (13)
N4—C21—C22—C23178.38 (18)C33—C32—N32—O32157.44 (16)
C21—C22—C23—C240.5 (3)C31—C32—N32—O3221.9 (2)
C22—C23—C24—C251.1 (3)C33—C32—N32—O3319.0 (2)
C22—C23—C24—F24178.73 (19)C31—C32—N32—O33161.62 (16)
C23—C24—C25—C260.5 (3)C35—C34—N34—O3513.8 (2)
F24—C24—C25—C26179.29 (18)C33—C34—N34—O35164.79 (16)
C24—C25—C26—C210.6 (3)C35—C34—N34—O34166.42 (15)
C22—C21—C26—C251.1 (3)C33—C34—N34—O3415.0 (2)
N4—C21—C26—C25178.95 (18)C35—C36—N36—O37149.59 (16)
O31—C31—C32—C33169.91 (16)C31—C36—N36—O3731.5 (2)
C36—C31—C32—C335.8 (2)C35—C36—N36—O3628.3 (2)
O31—C31—C32—N3210.8 (2)C31—C36—N36—O36150.60 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O310.91 (3)1.85 (2)2.687 (2)153 (2)
N1—H11···O320.91 (3)2.46 (3)3.103 (3)128.2 (17)
N1—H12···O33i0.84 (2)2.35 (2)3.035 (2)138.5 (18)
C5—H5A···O36ii0.972.493.318 (3)144
C6—H6B···O34iii0.972.403.207 (3)140
C25—H25···O37iv0.932.583.365 (3)142
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1/2, y+1/2, z1/2; (iii) x+3/2, y1/2, z+3/2; (iv) x+1/2, y1/2, z+3/2.
4-(4-Fluorophenyl)piperazin-1-ium 3,5-dinitrobenzoate (V) top
Crystal data top
C10H14FN2+·C7H3N2O6F(000) = 1632
Mr = 392.34Dx = 1.362 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 19.871 (1) ÅCell parameters from 4082 reflections
b = 7.3420 (7) Åθ = 3.0–27.7°
c = 26.306 (2) ŵ = 0.11 mm1
β = 94.540 (8)°T = 293 K
V = 3825.8 (5) Å3Plate, orange
Z = 80.46 × 0.42 × 0.22 mm
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
4080 independent reflections
Radiation source: Enhance (Mo) X-ray Source2490 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ω scansθmax = 27.7°, θmin = 3.0°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 2620
Tmin = 0.832, Tmax = 0.976k = 79
7938 measured reflectionsl = 3429
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.056H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.144 w = 1/[σ2(Fo2) + (0.0501P)2 + 3.0431P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
4080 reflectionsΔρmax = 0.19 e Å3
259 parametersΔρmin = 0.18 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.50399 (11)0.4508 (4)0.58562 (8)0.0639 (7)
H110.4607 (15)0.472 (4)0.5700 (10)0.077*
H120.5386 (14)0.469 (4)0.5632 (10)0.077*
C20.50591 (13)0.2591 (4)0.60334 (10)0.0693 (8)
H2A0.50420.17850.57410.083*
H2B0.46660.23480.62190.083*
C30.56927 (12)0.2204 (4)0.63747 (9)0.0605 (7)
H3A0.56850.09570.64960.073*
H3B0.60870.23570.61840.073*
N40.57304 (9)0.3446 (3)0.68058 (7)0.0499 (5)
C50.57665 (12)0.5329 (4)0.66245 (9)0.0578 (6)
H5A0.61600.54750.64330.069*
H5B0.58110.61520.69140.069*
C60.51379 (12)0.5795 (4)0.62894 (9)0.0601 (7)
H6A0.47490.57480.64900.072*
H6B0.51750.70260.61600.072*
C210.61998 (10)0.3004 (3)0.72265 (8)0.0474 (6)
C220.66827 (12)0.1663 (4)0.72083 (9)0.0603 (7)
H220.67240.10340.69060.072*
C230.71091 (13)0.1240 (4)0.76380 (10)0.0697 (8)
H230.74290.03190.76270.084*
C240.70484 (13)0.2199 (4)0.80725 (10)0.0616 (7)
F240.74665 (9)0.1803 (3)0.84952 (6)0.0940 (6)
C250.65828 (14)0.3538 (4)0.81063 (9)0.0649 (7)
H250.65530.41730.84090.078*
C260.61553 (12)0.3937 (4)0.76819 (9)0.0596 (7)
H260.58320.48450.77010.072*
C310.28091 (10)0.5173 (3)0.49463 (8)0.0426 (5)
C320.25827 (11)0.5776 (3)0.44636 (9)0.0488 (6)
H320.28900.61640.42370.059*
C330.19032 (12)0.5798 (3)0.43210 (8)0.0504 (6)
C340.14305 (12)0.5225 (3)0.46380 (9)0.0522 (6)
H340.09720.52420.45360.063*
C350.16663 (11)0.4623 (3)0.51147 (9)0.0463 (5)
C360.23450 (10)0.4594 (3)0.52782 (8)0.0434 (5)
H360.24870.41930.56050.052*
C370.35572 (11)0.5171 (3)0.51098 (10)0.0534 (6)
O310.37215 (8)0.4790 (3)0.55607 (7)0.0824 (6)
O320.39472 (9)0.5595 (4)0.47872 (8)0.0914 (7)
N330.16661 (14)0.6480 (4)0.38107 (9)0.0734 (7)
O330.20650 (13)0.7306 (3)0.35708 (8)0.0999 (8)
O340.10817 (12)0.6161 (4)0.36557 (8)0.1032 (8)
N350.11738 (10)0.3995 (3)0.54647 (9)0.0627 (6)
O350.05802 (9)0.3917 (3)0.53021 (9)0.0903 (7)
O360.13782 (10)0.3596 (3)0.58988 (8)0.0875 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0360 (10)0.109 (2)0.0463 (12)0.0062 (12)0.0019 (9)0.0130 (13)
C20.0547 (15)0.098 (2)0.0529 (15)0.0039 (15)0.0078 (12)0.0124 (16)
C30.0596 (15)0.0713 (17)0.0491 (14)0.0025 (13)0.0045 (11)0.0097 (13)
N40.0509 (11)0.0569 (12)0.0406 (10)0.0022 (9)0.0044 (8)0.0004 (9)
C50.0530 (14)0.0640 (16)0.0548 (14)0.0015 (12)0.0050 (11)0.0042 (13)
C60.0490 (13)0.0767 (18)0.0541 (15)0.0059 (13)0.0015 (11)0.0111 (14)
C210.0441 (12)0.0557 (14)0.0418 (12)0.0004 (10)0.0001 (10)0.0037 (11)
C220.0615 (15)0.0680 (17)0.0505 (14)0.0122 (13)0.0014 (12)0.0038 (13)
C230.0647 (16)0.0760 (19)0.0663 (18)0.0187 (14)0.0085 (14)0.0054 (15)
C240.0579 (15)0.0756 (18)0.0486 (15)0.0036 (14)0.0125 (12)0.0146 (14)
F240.0917 (12)0.1160 (14)0.0683 (10)0.0006 (10)0.0323 (9)0.0193 (10)
C250.0721 (17)0.0804 (19)0.0411 (13)0.0046 (15)0.0028 (12)0.0039 (13)
C260.0602 (15)0.0706 (17)0.0474 (14)0.0122 (13)0.0006 (11)0.0045 (13)
C310.0402 (11)0.0415 (12)0.0455 (12)0.0050 (9)0.0005 (10)0.0112 (10)
C320.0497 (13)0.0487 (14)0.0485 (13)0.0029 (11)0.0064 (10)0.0074 (11)
C330.0569 (14)0.0505 (14)0.0424 (12)0.0085 (11)0.0053 (11)0.0033 (11)
C340.0440 (12)0.0507 (14)0.0595 (15)0.0059 (11)0.0111 (11)0.0070 (12)
C350.0416 (11)0.0429 (13)0.0539 (13)0.0013 (10)0.0017 (10)0.0026 (11)
C360.0417 (11)0.0429 (12)0.0448 (12)0.0050 (9)0.0020 (10)0.0039 (10)
C370.0401 (12)0.0620 (16)0.0579 (15)0.0044 (11)0.0029 (11)0.0119 (13)
O310.0419 (9)0.1330 (19)0.0699 (13)0.0026 (11)0.0099 (9)0.0154 (13)
O320.0466 (10)0.152 (2)0.0778 (13)0.0040 (12)0.0200 (10)0.0024 (14)
N330.0852 (18)0.0794 (17)0.0537 (14)0.0249 (14)0.0067 (13)0.0003 (13)
O330.1208 (19)0.1093 (18)0.0701 (14)0.0175 (15)0.0102 (13)0.0309 (14)
O340.0853 (15)0.146 (2)0.0724 (14)0.0255 (15)0.0304 (12)0.0039 (14)
N350.0465 (12)0.0626 (14)0.0795 (16)0.0019 (10)0.0081 (11)0.0074 (12)
O350.0412 (10)0.1159 (18)0.1140 (17)0.0061 (11)0.0070 (10)0.0177 (14)
O360.0689 (12)0.1166 (18)0.0783 (14)0.0009 (12)0.0146 (11)0.0302 (13)
Geometric parameters (Å, º) top
N1—C61.481 (3)C24—C251.358 (4)
N1—C21.482 (4)C24—F241.366 (3)
N1—H110.94 (3)C25—C261.380 (3)
N1—H120.95 (3)C25—H250.9300
C2—C31.514 (3)C26—H260.9300
C2—H2A0.9700C31—C321.386 (3)
C2—H2B0.9700C31—C361.386 (3)
C3—N41.453 (3)C31—C371.515 (3)
C3—H3A0.9700C32—C331.373 (3)
C3—H3B0.9700C32—H320.9300
N4—C211.427 (3)C33—C341.371 (3)
N4—C51.466 (3)C33—N331.474 (3)
C5—C61.510 (3)C34—C351.376 (3)
C5—H5A0.9700C34—H340.9300
C5—H5B0.9700C35—C361.383 (3)
C6—H6A0.9700C35—N351.470 (3)
C6—H6B0.9700C36—H360.9300
C21—C221.378 (3)C37—O321.234 (3)
C21—C261.389 (3)C37—O311.237 (3)
C22—C231.393 (3)N33—O331.214 (3)
C22—H220.9300N33—O341.223 (3)
C23—C241.356 (4)N35—O361.217 (3)
C23—H230.9300N35—O351.224 (2)
C6—N1—C2111.42 (19)C24—C23—C22118.6 (2)
C6—N1—H11107.0 (17)C24—C23—H23120.7
C2—N1—H11107.1 (17)C22—C23—H23120.7
C6—N1—H12109.2 (16)C23—C24—C25122.5 (2)
C2—N1—H12109.2 (17)C23—C24—F24119.1 (3)
H11—N1—H12113 (2)C25—C24—F24118.3 (2)
N1—C2—C3111.3 (2)C24—C25—C26118.7 (2)
N1—C2—H2A109.4C24—C25—H25120.7
C3—C2—H2A109.4C26—C25—H25120.7
N1—C2—H2B109.4C25—C26—C21121.1 (2)
C3—C2—H2B109.4C25—C26—H26119.5
H2A—C2—H2B108.0C21—C26—H26119.5
N4—C3—C2109.5 (2)C32—C31—C36119.43 (19)
N4—C3—H3A109.8C32—C31—C37120.0 (2)
C2—C3—H3A109.8C36—C31—C37120.5 (2)
N4—C3—H3B109.8C33—C32—C31119.7 (2)
C2—C3—H3B109.8C33—C32—H32120.2
H3A—C3—H3B108.2C31—C32—H32120.2
C21—N4—C3116.93 (19)C34—C33—C32122.5 (2)
C21—N4—C5114.89 (18)C34—C33—N33118.2 (2)
C3—N4—C5109.80 (19)C32—C33—N33119.3 (2)
N4—C5—C6110.1 (2)C33—C34—C35116.9 (2)
N4—C5—H5A109.6C33—C34—H34121.5
C6—C5—H5A109.6C35—C34—H34121.5
N4—C5—H5B109.6C34—C35—C36122.8 (2)
C6—C5—H5B109.6C34—C35—N35118.4 (2)
H5A—C5—H5B108.1C36—C35—N35118.8 (2)
N1—C6—C5110.9 (2)C35—C36—C31118.7 (2)
N1—C6—H6A109.5C35—C36—H36120.6
C5—C6—H6A109.5C31—C36—H36120.6
N1—C6—H6B109.5O32—C37—O31125.7 (2)
C5—C6—H6B109.5O32—C37—C31117.4 (2)
H6A—C6—H6B108.1O31—C37—C31116.8 (2)
C22—C21—C26118.3 (2)O33—N33—O34124.4 (3)
C22—C21—N4123.3 (2)O33—N33—C33117.9 (3)
C26—C21—N4118.3 (2)O34—N33—C33117.7 (3)
C21—C22—C23120.8 (2)O36—N35—O35123.9 (2)
C21—C22—H22119.6O36—N35—C35118.3 (2)
C23—C22—H22119.6O35—N35—C35117.8 (2)
C6—N1—C2—C353.0 (3)C37—C31—C32—C33179.1 (2)
N1—C2—C3—N457.3 (3)C31—C32—C33—C340.6 (4)
C2—C3—N4—C21165.3 (2)C31—C32—C33—N33178.7 (2)
C2—C3—N4—C561.5 (3)C32—C33—C34—C350.3 (4)
C21—N4—C5—C6164.08 (19)N33—C33—C34—C35179.0 (2)
C3—N4—C5—C661.7 (3)C33—C34—C35—C360.4 (3)
C2—N1—C6—C552.6 (3)C33—C34—C35—N35179.9 (2)
N4—C5—C6—N156.8 (3)C34—C35—C36—C310.8 (3)
C3—N4—C21—C2210.9 (3)N35—C35—C36—C31179.5 (2)
C5—N4—C21—C22120.0 (3)C32—C31—C36—C350.5 (3)
C3—N4—C21—C26167.2 (2)C37—C31—C36—C35179.8 (2)
C5—N4—C21—C2661.9 (3)C32—C31—C37—O325.1 (3)
C26—C21—C22—C230.8 (4)C36—C31—C37—O32175.6 (2)
N4—C21—C22—C23177.3 (2)C32—C31—C37—O31173.0 (2)
C21—C22—C23—C241.3 (4)C36—C31—C37—O316.3 (3)
C22—C23—C24—C250.8 (4)C34—C33—N33—O33166.0 (2)
C22—C23—C24—F24179.6 (2)C32—C33—N33—O3313.4 (4)
C23—C24—C25—C260.0 (4)C34—C33—N33—O3414.6 (3)
F24—C24—C25—C26179.5 (2)C32—C33—N33—O34166.0 (2)
C24—C25—C26—C210.5 (4)C34—C35—N35—O36174.5 (2)
C22—C21—C26—C250.0 (4)C36—C35—N35—O365.2 (3)
N4—C21—C26—C25178.2 (2)C34—C35—N35—O355.1 (3)
C36—C31—C32—C330.2 (3)C36—C35—N35—O35175.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O310.94 (3)1.77 (3)2.681 (3)164 (3)
N1—H12···O32i0.95 (3)1.80 (3)2.731 (3)165 (3)
C23—H23···Cg3ii0.932.883.787 (3)167
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3/2, y1/2, z+3/2.
Hydrogen bonds and short intermolecular contacts (Å, °) for compounds (I)-(V) top
Cg1, Cg2 and Cg3 represent the centroids of the rings (C31–C36), (C221–C226) and (C21–C26), respectively.
D—H···AD—HH···AD···AD—H···A
I
N1—H11···O310.975 (19)1.773 (19)2.7426 (18)173.2 (14)
N1—H12···O410.970 (16)1.793 (16)2.749 (2)167.9 (18)
O41—H41···O32i0.84 (3)1.95 (3)2.7744 (19)168 (2)
O41—H42···O31ii0.89 (3)1.80 (3)2.6693 (18)164 (2)
C3—H3A···O32iii0.972.443.317 (3)149
(II)
N1—H11···O320.78 (4)1.93 (4)2.677 (4)160 (3)
N1—H12···O3i0.91 (3)1.80 (3)2.707 (4)175 (3)
O41—H41···O310.901.762.661 (12)179
O41—H42···O31iii0.891.902.792 (12)179
C35—H35···O41iv0.932.383.257 (11)157
C2—H2A···Cg1v0.972.783.598 (3)142
(III)
N11—H111···O1320.80 (6)1.89 (6)2.680 (7)168 (6)
N11—H112···O2310.90 (6)1.87 (6)2.758 (6)171 (4)
N21—H211···O2320.79 (6)1.88 (6)2.665 (6)173 (6)
N21—H212···O1310.85 (7)1.87 (7)2.714 (6)179 (8)
C13—H13A···O131i0.972.503.396 (7)154
C133—H133···Cg2vi0.932.693.433 (6)137
(IV)
N1—H11···O310.91 (3)1.85 (2)2.687 (2)153 (2)
N1—H11···O320.91 (3)2.46 (3)3.103 (3)128.2 (17)
N1—H12···O33i0.84 (2)2.35 (2)3.035 (2)138.5 (18)
C5—H5A···O36vii0.972.493.318 (3)144
C6—H6B···O34viii0.972.403.207 (3)140
C25—H25···O37ix0.932.583.365 (3)142
(V)
N1—H11···O310.94 (3)1.77 (3)2.681 (3)164 (3)
N1—H11···O32i0.95 (3)1.80 (3)2.731 (3)165 (3)
C23—H23···Cg3viii0.932.883.787 (3)167
Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) -x, 1 - y, 1 - z; (iii) 1 - x, -y, 1 - z; (iv) 1 + x, y, z; (v) -1 + x, y, z; (vi) x, 1 + y, z; (vii) -1/2 + x, 1/2 - y, -1/2 + z; (viii) 3/2 - x, -1/2 + y, 3/2 - z; (ix) 1/2 - x, -1/2 + y, 3/2 - z.
 

Acknowledgements

CHC thanks the University of Mysore for research facilities.

Funding information

HSY thanks the University Grants Commission, New Delhi, for the award of a BSR Faculty Fellowship for three years.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBoeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317–320.  CrossRef Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationHarish Chinthal, C., Yathirajan, H. S., Archana, S. D., Foro, S. & Glidewell, C. (2020). Acta Cryst. E76, 841–847.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKeane, P. E., Benedetti, M. S. & Dow, J. (1982). Neuropharmacology, 21, 163–169.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKiran Kumar, H., Yathirajan, H. S., Foro, S. & Glidewell, C. (2019). Acta Cryst. E75, 1494–1506.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKiran Kumar, H., Yathirajan, H. S., Harish Chinthal, C., Foro, S. & Glidewell, C. (2020). Acta Cryst. E76, 488–495.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNagai, F., Nonaka, R. & Kamimura, K. S. H. (2007). Eur. J. Pharmacol. 559, 132–137.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationRossi, P. G., Posar, A., Parmeggiani, A., Pipitone, E. & D'Agata, M. (1999). J. Child Neurol. 14, 547–550.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSanjuan, M., Rovei, V., Dow, J. & Benedetti, R. S. (1983). Int. J. Mass Spectrom. Ion Phys. 48, 93–96.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563–1571.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds