research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(1E)-[(Z)-2-({[(1Z)-[(E)-2-[(2-Hy­dr­oxy­phen­yl)methyl­­idene]hydrazin-1-yl­­idene]({[(4-methyl­phen­yl)meth­yl]sulfan­yl})meth­yl]disulfan­yl}({[(4-methyl­phen­yl)meth­yl]sulfan­yl})methyl­­idene)hydrazin-1-yl­­idene]meth­yl]phenol: crystal structure, Hirshfeld surface analysis and computational study

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia, and bResearch Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: edwardt@sunway.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 29 June 2020; accepted 30 June 2020; online 10 July 2020)

The complete mol­ecule of the title hydrazine carbodi­thio­ate derivative, C32H30N4O2S4, is generated by a crystallographic twofold axis that bis­ects the di­sulfide bond. The mol­ecule is twisted about this bond with the C—S—S—C torsion angle of 90.70 (8)° indicating an orthogonal relationship between the symmetry-related halves of the mol­ecule. The conformation about the imine bond [1.282 (2) Å] is E and there is limited delocalization of π-electron density over the CN2C residue as there is a twist about the N—N bond [C—N—N—C torsion angle = −166.57 (15)°]. An intra­molecular hydroxyl-O—H⋯N(imine) hydrogen bond closes an S(6) loop. In the crystal, methyl­ene-C—H⋯π(tol­yl) contacts assemble mol­ecules into a supra­molecular layer propagating in the ab plane: the layers stack without directional inter­actions between them. The analysis of the calculated Hirshfeld surfaces confirm the importance of H⋯H contacts, which contribute 46.7% of all contacts followed by H⋯C/C⋯H contacts [25.5%] reflecting, in part, the C—H⋯π(tol­yl) contacts. The calculation of the inter­action energies confirm the importance of the dispersion term and the influence of the stabilizing H⋯H contacts in the inter-layer region.

1. Chemical context

Schiff base mol­ecules can be derived from the condensation of S-alkyl-di­thio­carbazate derivatives with heterocyclic aldehydes and ketones to form mol­ecules of the general formula RSC(=S)N(H)N=C(R′)R′′, where R′, R′′ = alkyl and aryl. These mol­ecules are effective ligands for a variety of metals and the motivation for complexation largely stems from the promising biological activity exhibited by the derived metal complexes (Low et al., 2016[Low, M. L., Maigre, L. M., Tahir, M. I. M. T., Tiekink, E. R. T., Dorlet, P., Guillot, R., Ravoof, T. B., Rosli, R., Pagès, J.-M., Policar, C., Delsuc, N. & Crouse, K. A. (2016). Eur. J. Med. Chem. 120, 1-12.]; Ravoof et al., 2017[Ravoof, T. B. S. A., Crouse, K. A., Tiekink, E. R. T., Tahir, M. I. M., Yusof, E. N. M. & Rosli, R. (2017). Polyhedron, 133, 383-392.]; Yusof et al., 2020[Yusof, E. N. M., Ishak, N. N. M., Latif, M. A. M., Tahir, M. I. M., Sakoff, J. A., Page, A. J., Tiekink, E. R. T. & Ravoof, T. B. S. A. (2020). Res. Chem. Intermed. 46, 2351-2379.]). However, these Schiff bases are susceptible to oxidation resulting in the formation of a di­sulfide bond, as has been observed previously (Amirnasr et al., 2014[Amirnasr, M., Bagheri, M., Farrokhpour, H., Schenk, K. J., Mereiter, K. & Ford, P. C. (2014). Polyhedron, 71, 1-7.]; Sohtun et al., 2018[Sohtun, W. P., Kannan, A., Krishna, K. H., Saravanan, D., Kumar, M. S. & Velusamy, M. (2018). Acta Chim. Slov. 65, 621-629.]). This is the case in the present report where the title compound, (I)[link], was the side-product from the synthesis of the Schiff base, 4-methyl­benzyl-2-(2-hy­droxy­benzyl­idene) hydra­zinecarbodi­thio­ate (Ravoof et al., 2010[Ravoof, T. B. S. A., Crouse, K. A., Tahir, M. I. M., How, F. N. F., Rosli, R. & Watkins, D. J. (2010). Transition Met. Chem. 35, 871-876.]). After crystals of the desired Schiff base that had precipitated overnight were removed by filtration, the slow evaporation of the filtrate over a period of several days yielded crystals of (I)[link]. Herein, the crystal and mol­ecular structures of (I)[link] are described along with an analysis of the calculated Hirshfeld surfaces and computation of inter­action energies in the crystal.

[Scheme 1]

2. Structural commentary

The crystallographic asymmetric unit of (I)[link] comprises half a mol­ecule as it is disposed about a twofold axis of symmetry bis­ecting the di­sulfide bond, Fig. 1[link]. The C1, N1, S1 and S2 atoms lie in a plane with an r.m.s. deviation of 0.0020 Å. The appended N2 and C5 atoms lie 0.036 (2) and 0.052 (2) Å to one side of the plane and the S1i atom −0.1659 (16) Å to the other side; symmetry operation (i): 1 − x, y, [{3\over 2}] − z. The C1—S1 bond length of 1.7921 (17) Å is significantly longer than the C1—S2 bond of 1.7463 (17) Å, which is ascribed to the S1 atom participating in the S1—S1i bond of 2.0439 (8) Å; each C1—S bond is shorter than the C9—S2 bond length of 1.8308 (18) Å.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link] showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.

The sequence of C1=N1 (E-conformation), N1—N2 and C2=N2 bond lengths is 1.282 (2), 1.409 (2) and 1.286 (2) Å, respectively, and suggests limited delocalization of π-electron density over this residue which is consistent with a twist about the N1—N2 bond as seen in the C1—N1—N2—C2 torsion angle of −166.57 (15)°. The presence of an intra­molecular hydroxyl-O—H⋯N(imine) hydrogen bond, Table 1[link], is noted and accounts for the planarity in this region of the mol­ecule as seen in the values of the N2—C2—C3—C4 and C2—C3—C4—O1 torsion angles of 3.8 (3) and 1.8 (3)°, respectively. The dihedral angle between the hy­droxy­benzene and tolyl rings is 65.11 (6)°, indicating a significant twist in this part of the mol­ecule. Overall, the mol­ecule is twisted about the central di­sulfide bond with the C1—S1—S1i—C1i torsion angle being 90.70 (8)° and the dihedral angle between the two CNS2 planes being 88.22 (3)°.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the (C10–C15) ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯N2 0.84 (2) 1.94 (2) 2.6877 (19) 148 (2)
C9—H9ACg1i 0.99 2.93 3.9075 (18) 169
Symmetry code: (i) [x, -y-1, z-{\script{1\over 2}}].

3. Supra­molecular features

In the crystal, the only directional contact identified in the geometric analysis of the mol­ecular packing employing PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), is a methyl­ene-C—H⋯π(tol­yl) contact, Table 1[link]. As each mol­ecule donates and accepts two such contacts and these extend laterally, a supra­molecular layer in the ab plane is formed, Fig. 2[link](a). Layers stack along the c axis without directional inter­actions between them, Fig. 2[link](b).

[Figure 2]
Figure 2
Mol­ecular packing in (I)[link]: (a) the supra­molecular layer in the ab plane sustained by methyl­ene-C—H⋯π(tol­yl) inter­actions shown as purple dashed lines (the non-participating H atoms removed for clarity) and (b) a view of the unit-cell contents shown in projection down the b axis highlighting the stacking of layers.

4. Analysis of the Hirshfeld surfaces

The Hirshfeld surface analysis comprising dnorm surface, electrostatic potential (calculated using wave function at the HF/STO-3 G level of theory) and two-dimensional fingerprint plot calculations were performed for (I)[link] to qu­antify the inter­atomic inter­actions between mol­ecules. This was accomplished using Crystal Explorer 17 (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.]) and following established procedures (Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]). The bright-red spots on the Hirshfeld surface mapped over dnorm in Fig. 3[link](a), i.e. near the imine-C2 and tolyl ring, centroid designated Cg1, correspond to the C2⋯O1, C2⋯C4 short contacts (with separations ∼0.15 Å shorter than the sum of their van der Waals radii, Table 2[link]) and the methyl­ene-C9—H9Aπ(tol­yl) inter­action, Table 1[link]. In addition, this methyl­ene-C9—H9Aπ(tol­yl) inter­action shows up as a distinctive orange `pothole' on the shape-index-mapped Hirshfeld surface, Fig. 3[link](b).

Table 2
A summary of short inter­atomic contacts (Å) for (I)a

Contact Distance Symmetry operation
C2⋯O1 3.07 [{1\over 2}] − x, [{1\over 2}] + y, z
C2⋯C4 3.25 [{1\over 2}] − x, [{1\over 2}] + y+, z
C12—H12⋯S1 2.82 1 − x, 1 + y+1, [{3\over 2}] − z
C9—H9B⋯N1 2.59 [{1\over 2}] − x, [{1\over 2}] + y, z
C8—H8⋯C11 2.74 [{1\over 2}] + x, −[{1\over 2}] + y, [{3\over 2}] − z
H6⋯H14 2.39 [{1\over 2}] − x, [{1\over 2}] − y, [{1\over 2}] + z
Note: (a) The inter­atomic distances are calculated in Crystal Explorer 17 (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.]) with the X—H bond lengths adjusted to their neutron values.
[Figure 3]
Figure 3
Views of the Hirshfeld surface for (I)[link] mapped over (a) dnorm in the range −0.104 to + 1.517 arbitrary units and (b) the shape-index property.

In the views of Fig. 4[link](a), the faint red spots appearing near the tolyl-H12, methyl­ene-H9B and phenol-H8 atoms correlate with the faint red spots near the sulfanyl-S1, hydrazine-N1 and tolyl-C11 atoms, and correspond to the intra-layer tolyl-C12—H12⋯S1(sulfan­yl), methyl­ene-C9—H9B⋯N1(hydrazine) and phenol-C8—H8⋯C11(tol­yl) inter­actions, Table 2[link]. These inter­actions are also reflected in the Hirshfeld surface mapped over the calculated electrostatic potential in Fig. 4[link](b), with the blue and red regions corresponding to positive and negative electrostatic potentials, respectively.

[Figure 4]
Figure 4
Views of the Hirshfeld surface mapped for (I)[link] over (a) dnorm in the range −0.104 to + 1.517 arbitrary units and (b) the calculated electrostatic potential in the range −0.056 to 0.031 a.u. The red and blue regions represent negative and positive electrostatic potentials, respectively.

The corresponding two-dimensional fingerprint plots for the calculated Hirshfeld surface of (I)[link] are shown with characteristic pseudo-symmetric wings in the upper left and lower right sides of the de and di diagonal axes for the overall fingerprint plot, Fig. 5[link](a); those delineated into H⋯H, H⋯C/C⋯H, H⋯S/S⋯H, H⋯O/O⋯H, N⋯C/C⋯N and H⋯N/N⋯H contacts are illustrated in Fig. 5[link](b)–(g), respectively. The percentage contributions for the different inter­atomic contacts to the Hirshfeld surface are summarized in Table 3[link]. The greatest contribution to the overall Hirshfeld surface is due to H⋯H contacts, which contribute 43.9% and features a round-shaped peak tipped at de = di ∼2.4 Å, Fig. 5[link](b). The tip of this H⋯H contact corresponds to an inter-layer H6⋯H14 contact with a distance of 2.39 Å, Table 2[link]; the remaining H⋯H contacts are either around or longer than the sum of their van der Waals radii. The H⋯C/C⋯H contacts contribute 25.5% to the overall Hirshfeld surface, reflecting, in part, the significant C—H⋯π inter­actions evident in the packing, Table 1[link]. The shortest contacts are reflected as two spikes at de + di ∼2.7 Å in Fig. 5[link](c). The H⋯S/S⋯H contacts contribute 13.6% and appear as two sharp-symmetric wings at de + di ∼2.8 Å, Fig. 5[link](d). This feature reflects the intra-layer tolyl-C12—H12⋯S1(sulfan­yl) inter­action, Table 2[link]. The H⋯O/O⋯H contacts contribute 5.7% and features forceps-like tips at de + di ∼2.8 Å, Fig. 5[link](e); this separation is ∼0.08 Å longer than the sum of their van der Waals radii. Although both N⋯C/C⋯N and H⋯N/N⋯H contacts appear at de + di ∼2.6–2.8 Å in the respective fingerprint plots, Fig. 5[link](f) and (g), their contributions to the overall Hirshfeld surface are only 3.6 and 3.4%, respectively. The contributions from the other inter­atomic contacts summarized in Table 3[link] have an insignificant influence on the calculated Hirshfeld surface of (I)[link].

Table 3
The percentage contributions of inter­atomic contacts to the Hirshfeld surface for (I)

Contact Percentage contribution
H⋯H 43.9
H⋯C/C⋯H 25.5
H⋯S/S⋯H 13.6
H⋯O/O⋯H 5.7
N⋯C/C⋯N 3.6
H⋯N/N⋯H 3.4
O⋯C/C⋯O 1.7
C⋯C 1.2
S⋯C/C⋯S 1.0
N⋯N 0.4
[Figure 5]
Figure 5
(a) A comparison of the full two-dimensional fingerprint plot for (I)[link] and those delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯S/S⋯H, (e) H⋯O/O⋯H, (f) N⋯C/C⋯N and (g) H⋯N/N⋯H contacts.

5. Computational chemistry

In the present analysis, the pairwise inter­action energies between the mol­ecules in the crystal of (I)[link] were calculated by employing the 6-31G(d,p) basis set with the B3LYP function. The total energy comprises four terms: i.e. the electrostatic (Eele), polarization (Epol), dispersion (Edis) and exchange-repulsion (Erep) energies and these were calculated in Crystal Explorer 17 (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.]). The characteristics of the calculated inter­molecular inter­action energies are summarized in Table 4[link]. As postulated, in the absence of conventional hydrogen bonding in the crystal, the Edis energy term makes the major contribution to the inter­action energies. The greatest stabilization energy (–65.7 kJ mol−1) occurs within the intra-layer region and arises from the combination of C—H⋯π, C⋯O and C⋯C short contacts as well as weak C—H⋯N/C inter­actions. The second most significant energy of stabilization within the intra-layer region involves a major contribution from the tolyl-C12—H12⋯S1(sulfan­yl) inter­action (dominated by Edis) with a total energy of −29.7 kJ mol−1. In addition, a long-range H6⋯H16B contact is observed within the intra-layer region with a H⋯H separation of 2.44 Å.

Table 4
A summary of inter­action energies (kJ mol−1) calculated for (I)

Contact R (Å) Eele Epol Edis Erep Etot
Intra-layer region            
C9—H9ACg1i +            
C2⋯O1ii +            
C2⋯C4ii +            
C9—H9B⋯N1ii +            
C8—H8⋯C11iii 8.70 −19.7 −3.5 −98.9 71.0 −65.7
C12—H12⋯S1iv 7.96 −11.1 −1.9 −43.0 33.7 −29.7
H6⋯H16Bv 14.23 −0.6 −0.2 −6.7 3.0 −4.8
Inter-layer region            
H5⋯H14vi 12.44 −10.3 −2.1 −28.1 20.0 −24.6
H16A⋯H16B vii 15.29 −1.5 −0.4 −11.8 3.5 −10.0
H6⋯H14viii 14.93 −3.4 −0.5 −13.6 10.2 −9.5
H6⋯H16Cix 15.43 −1.8 −0.4 −10.9 6.2 −7.8
H6⋯H7x 21.02 −1.2 −0.2 −7.8 5.4 −4.9
Notes: Symmetry operations: (i) −x + [{1\over 2}], y − [{1\over 2}], z; (ii) −x + [{1\over 2}], y + [{1\over 2}], z; (iii) x − [{1\over 2}], y − [{1\over 2}], −z + [{3\over 2}]; (iv) −x + 1, y + 1, −z + [{3\over 2}]; (v) x − [{1\over 2}], y − [{3\over 2}], −z + [{3\over 2}]; (vi) x, −y + 1, z + [{1\over 2}]; (vii) x, −y + 2, z + [{1\over 2}]; (viii) −x + [{1\over 2}], −y + [{1\over 2}], z + [{1\over 2}]; (ix) x + [{1\over 2}], −y + [{3\over 2}], −z + 1; (x) −x, −y, −z + 2

The Edis energy term also makes the major contribution to the energies of stabilization in the inter-layer region, with the separation between mol­ecules in the inter-layer region being H⋯H contacts. The maximum energy is not found for the shortest H6⋯H14 contact (–9.5 kJ mol−1), Table 2[link], but rather a pair of phenol-H5⋯H14(tol­yl) contacts (–24.6 kJ mol−1), each with a distance of 2.51 Å. Views of the energy framework diagrams down the b axis are shown in Fig. 6[link] and emphasize the importance of Edis in the stabilization of the crystal.

[Figure 6]
Figure 6
Perspective views of the energy frameworks calculated for (I)[link] showing (a) electrostatic potential force, (b) dispersion force and (c) total energy, each plotted down the b axis. The radii of the cylinders are proportional to the relative magnitudes of the corresponding energies and were adjusted to the same scale factor of 55 with a cut-off value of 5 kJ mol−1.

6. Database survey

In the crystallographic literature, there are four precedents for (I)[link] with details collated in Table 5[link]. Derivatives (II) and (III) are most closely related to (I)[link], differing only in the nature of the S-bound R group, i.e. R = Me (MUYRIJ; Madanhire et al., 2015[Madanhire, T., Abrahams, A., Hosten, E. C. & Betz, R. (2015). Z. Kristallogr. New Cryst. Struct. 230, 89-90.]) and R = Et (DIBYOF01; Yekke-ghasemi et al., 2018[Yekke-ghasemi, Z., Takjoo, R., Ramezani, M. & Mague, J. T. (2018). RSC Adv. 8, 41795-41809.]), respectively. As shown in Fig. 7[link], (IV) is an S-benzyl ester with a methyl group on the imine-C atom as well as having the 2-hydroxyl­benzene ring (LAGLUD; Islam et al., 2016[Islam, M. A. A. A. A., Sheikh, M. C., Islam, M. H., Miyatake, R. & Zangrando, E. (2016). Acta Cryst. E72, 337-339.]) whereas (V) is an S-methyl­naphthyl ester with methyl and 2-tolyl groups bound to the imine-C atom (CUHHET; How et al., 2009[How, F. N.-F., Crouse, K. A., Tahir, M. I. M. & Watkin, D. J. (2009). J. Chem. Crystallogr. 39, 894-897.]). In common with (I)[link], the complete mol­ecules of (III) and (V) are generated by crystallographically imposed twofold symmetry. While lacking this symmetry, (II) and (IV) approximate twofold symmetry as seen in the overlay diagram of Fig. 8[link], from which is observed that to a first approximation, all five mol­ecules adopt a similar conformation. The S—S bond length in (I)[link] lies between the experimentally distinct range of 2.0373 (4) Å in (IV) and 2.0504 (7) Å in (V). In the same way, the C—S—S—C torsion angle in (I)[link] lies between the extreme values of 88.73 (6) and 104.67 (8)° in (II) and (III), respectively.

Table 5
A comparison of key geometric parameters (Å, °) in structures related to (I)

Compound Symmetry S—S C—S—S—C Refcode Ref.
(I) 2 2.0439 (8) 90.70 (8) This work
(II) 2.0386 (7) 88.73 (9) MUYRIJ Madanhire et al. (2015[Madanhire, T., Abrahams, A., Hosten, E. C. & Betz, R. (2015). Z. Kristallogr. New Cryst. Struct. 230, 89-90.])
(III) 2 2.0443 (7) 104.67 (8) DIBYOF01 Yekke-ghasemi et al. (2018[Yekke-ghasemi, Z., Takjoo, R., Ramezani, M. & Mague, J. T. (2018). RSC Adv. 8, 41795-41809.])
(IV) 2.0373 (4) 91.54 (6) LAGLUD Islam et al. (2016[Islam, M. A. A. A. A., Sheikh, M. C., Islam, M. H., Miyatake, R. & Zangrando, E. (2016). Acta Cryst. E72, 337-339.])
(V) 2 2.0504 (7) 96.2 (1) CUHHET How et al. (2009[How, F. N.-F., Crouse, K. A., Tahir, M. I. M. & Watkin, D. J. (2009). J. Chem. Crystallogr. 39, 894-897.])
[Figure 7]
Figure 7
Chemical diagrams for (IV) and (V).
[Figure 8]
Figure 8
An overlay diagram of (I)[link] red image, (II) yellow, (III) blue, (IV) aqua and (V) green. The mol­ecules have been overlapped so a CS2 residue of each mol­ecule is coincident.

7. Synthesis and crystallization

Crystals of (I)[link] were isolated from an ethanol–aceto­nitrile solution by slow evaporation and was a side-product from the synthesis of the Schiff base 4-methyl­benzyl-2-(2-hy­droxy­benzyl­idene) hydrazinecarbodi­thio­ate carried out by heating a mixture of S-4-methyl­benzyl­dithio­carbazate (10 mmol) and salicyl­aldehyde (10 mmol) in ∼30 ml of aceto­nitrile for about 2 h (Ravoof et al., 2010[Ravoof, T. B. S. A., Crouse, K. A., Tahir, M. I. M., How, F. N. F., Rosli, R. & Watkins, D. J. (2010). Transition Met. Chem. 35, 871-876.]). Slow evaporation of the remaining filtrate after removal of the desired product over a period of several days gave yellow plates of (I)[link].

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 6[link]. The carbon-bound H atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) set to 1.2Ueq(C). The O-bound H atom was located in a difference-Fourier map, but was refined with an O—H = 0.84±0.01 Å distance restraint, and with Uiso(H) set to 1.5Ueq(O).

Table 6
Experimental details

Crystal data
Chemical formula C32H30N4O2S4
Mr 630.84
Crystal system, space group Orthorhombic, Pbcn
Temperature (K) 100
a, b, c (Å) 15.4653 (4), 7.9639 (2), 24.8116 (7)
V3) 3055.90 (14)
Z 4
Radiation type Cu Kα
μ (mm−1) 3.15
Crystal size (mm) 0.27 × 0.14 × 0.07
 
Data collection
Diffractometer Agilent Xcalibur, Eos, Gemini
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.819, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 10206, 2933, 2637
Rint 0.022
(sin θ/λ)max−1) 0.614
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.102, 1.04
No. of reflections 2933
No. of parameters 194
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.45, −0.20
Computer programs: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SHELXT2014/4 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXT2014/4 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

2-[(1E)-[(Z)-2-({[(1Z)-[(E)-2-[(2-Hydroxyphenyl)methylidene]hydrazin-1-ylidene]({[(4-methylphenyl)methyl]sulfanyl})methyl]disulfanyl}({[(4-methylphenyl)methyl]sulfanyl})methylidene)hydrazin-1-ylidene]methyl]phenol top
Crystal data top
C32H30N4O2S4Dx = 1.371 Mg m3
Mr = 630.84Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, PbcnCell parameters from 4566 reflections
a = 15.4653 (4) Åθ = 3.4–71.1°
b = 7.9639 (2) ŵ = 3.15 mm1
c = 24.8116 (7) ÅT = 100 K
V = 3055.90 (14) Å3Plate, yellow
Z = 40.27 × 0.14 × 0.07 mm
F(000) = 1320
Data collection top
Agilent Xcalibur, Eos, Gemini
diffractometer
2933 independent reflections
Radiation source: Enhance (Cu) X-ray Source2637 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 16.1952 pixels mm-1θmax = 71.3°, θmin = 3.6°
ω scansh = 1818
Absorption correction: multi-scan
(CrysAlisPro; Agilent, 2012)
k = 79
Tmin = 0.819, Tmax = 1.000l = 2930
10206 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: mixed
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0662P)2 + 1.2702P]
where P = (Fo2 + 2Fc2)/3
2933 reflections(Δ/σ)max = 0.001
194 parametersΔρmax = 0.45 e Å3
1 restraintΔρmin = 0.20 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.44788 (3)0.20945 (5)0.77532 (2)0.02123 (14)
S20.41121 (3)0.47744 (6)0.69155 (2)0.02165 (14)
O10.32052 (8)0.08476 (16)0.89877 (5)0.0239 (3)
H1O0.3312 (16)0.141 (3)0.8711 (7)0.036*
N10.30058 (9)0.38409 (19)0.76780 (6)0.0210 (3)
N20.28689 (10)0.28083 (18)0.81313 (6)0.0200 (3)
C10.37582 (11)0.3625 (2)0.74728 (7)0.0188 (3)
C20.20696 (11)0.2752 (2)0.82727 (7)0.0208 (4)
H20.1660790.3399780.8076510.025*
C30.17688 (11)0.1739 (2)0.87198 (7)0.0202 (3)
C40.23359 (11)0.0816 (2)0.90530 (7)0.0197 (3)
C50.19995 (12)0.0185 (2)0.94637 (7)0.0221 (4)
H50.2378620.0805870.9689500.027*
C60.11138 (13)0.0276 (2)0.95434 (7)0.0246 (4)
H60.0891110.0972260.9821490.029*
C70.05458 (11)0.0638 (3)0.92221 (7)0.0259 (4)
H70.0060380.0575310.9280790.031*
C80.08769 (11)0.1640 (2)0.88161 (7)0.0236 (4)
H80.0491880.2273550.8597850.028*
C90.31721 (11)0.6135 (2)0.68128 (7)0.0241 (4)
H9A0.2681160.5473170.6669620.029*
H9B0.2993500.6645630.7159120.029*
C100.34232 (11)0.7481 (2)0.64183 (7)0.0206 (4)
C110.38760 (12)0.8900 (2)0.65887 (7)0.0249 (4)
H110.4026510.9017990.6957980.030*
C120.41082 (12)1.0139 (2)0.62245 (8)0.0265 (4)
H120.4414281.1098230.6348690.032*
C130.39015 (12)1.0006 (2)0.56792 (8)0.0246 (4)
C140.34520 (12)0.8595 (2)0.55108 (7)0.0252 (4)
H140.3302620.8480220.5141240.030*
C150.32150 (12)0.7340 (2)0.58738 (7)0.0234 (4)
H150.2909180.6381610.5748950.028*
C160.41484 (14)1.1379 (3)0.52889 (9)0.0370 (5)
H16A0.4080361.0970620.4918770.056*
H16B0.4751891.1703500.5349440.056*
H16C0.3773051.2355190.5345170.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0191 (2)0.0229 (2)0.0217 (2)0.00008 (15)0.00049 (14)0.00357 (16)
S20.0204 (2)0.0248 (2)0.0197 (2)0.00156 (16)0.00321 (15)0.00481 (16)
O10.0191 (6)0.0272 (7)0.0254 (6)0.0013 (5)0.0003 (5)0.0051 (5)
N10.0216 (7)0.0242 (7)0.0173 (7)0.0009 (6)0.0002 (5)0.0020 (6)
N20.0213 (7)0.0223 (8)0.0163 (7)0.0009 (6)0.0004 (5)0.0009 (5)
C10.0200 (8)0.0198 (8)0.0167 (8)0.0019 (6)0.0017 (6)0.0001 (6)
C20.0207 (8)0.0227 (9)0.0189 (8)0.0017 (7)0.0024 (6)0.0021 (6)
C30.0224 (8)0.0215 (8)0.0168 (8)0.0005 (7)0.0009 (6)0.0035 (7)
C40.0200 (8)0.0199 (8)0.0191 (8)0.0021 (7)0.0011 (6)0.0045 (6)
C50.0266 (9)0.0214 (9)0.0182 (8)0.0001 (7)0.0008 (7)0.0015 (6)
C60.0299 (10)0.0249 (9)0.0189 (8)0.0053 (7)0.0059 (7)0.0022 (7)
C70.0194 (9)0.0343 (10)0.0239 (9)0.0033 (7)0.0029 (7)0.0041 (8)
C80.0204 (9)0.0295 (9)0.0211 (9)0.0005 (7)0.0010 (6)0.0021 (7)
C90.0179 (8)0.0283 (9)0.0261 (9)0.0034 (7)0.0009 (7)0.0069 (7)
C100.0170 (8)0.0223 (8)0.0226 (9)0.0041 (6)0.0009 (6)0.0024 (7)
C110.0252 (9)0.0282 (9)0.0215 (9)0.0031 (7)0.0033 (7)0.0024 (7)
C120.0234 (9)0.0215 (9)0.0347 (11)0.0020 (7)0.0059 (7)0.0020 (7)
C130.0205 (8)0.0234 (9)0.0299 (10)0.0023 (7)0.0004 (7)0.0066 (7)
C140.0288 (9)0.0275 (9)0.0193 (8)0.0027 (7)0.0031 (7)0.0009 (7)
C150.0240 (9)0.0208 (8)0.0254 (9)0.0014 (7)0.0041 (7)0.0008 (7)
C160.0354 (11)0.0336 (11)0.0420 (12)0.0050 (9)0.0003 (9)0.0133 (9)
Geometric parameters (Å, º) top
S1—C11.7921 (17)C7—H70.9500
S1—S1i2.0439 (8)C8—H80.9500
S2—C11.7463 (17)C9—C101.503 (2)
S2—C91.8308 (18)C9—H9A0.9900
O1—C41.354 (2)C9—H9B0.9900
O1—H1O0.839 (10)C10—C151.393 (2)
N1—C11.282 (2)C10—C111.395 (3)
N1—N21.409 (2)C11—C121.385 (3)
N2—C21.286 (2)C11—H110.9500
C2—C31.448 (2)C12—C131.394 (3)
C2—H20.9500C12—H120.9500
C3—C81.402 (2)C13—C141.386 (3)
C3—C41.412 (2)C13—C161.510 (3)
C4—C51.394 (2)C14—C151.394 (3)
C5—C61.386 (3)C14—H140.9500
C5—H50.9500C15—H150.9500
C6—C71.392 (3)C16—H16A0.9800
C6—H60.9500C16—H16B0.9800
C7—C81.383 (3)C16—H16C0.9800
C1—S1—S1i104.58 (6)C10—C9—H9A110.1
C1—S2—C999.87 (8)S2—C9—H9A110.1
C4—O1—H1O107.7 (17)C10—C9—H9B110.1
C1—N1—N2112.04 (14)S2—C9—H9B110.1
C2—N2—N1112.49 (14)H9A—C9—H9B108.4
N1—C1—S2121.92 (13)C15—C10—C11118.36 (16)
N1—C1—S1120.10 (13)C15—C10—C9120.95 (16)
S2—C1—S1117.98 (10)C11—C10—C9120.68 (16)
N2—C2—C3122.48 (16)C12—C11—C10120.62 (17)
N2—C2—H2118.8C12—C11—H11119.7
C3—C2—H2118.8C10—C11—H11119.7
C8—C3—C4118.81 (16)C11—C12—C13121.29 (17)
C8—C3—C2118.54 (16)C11—C12—H12119.4
C4—C3—C2122.63 (16)C13—C12—H12119.4
O1—C4—C5117.93 (16)C14—C13—C12117.98 (17)
O1—C4—C3122.47 (15)C14—C13—C16121.39 (18)
C5—C4—C3119.59 (16)C12—C13—C16120.62 (18)
C6—C5—C4120.20 (17)C13—C14—C15121.21 (17)
C6—C5—H5119.9C13—C14—H14119.4
C4—C5—H5119.9C15—C14—H14119.4
C5—C6—C7120.98 (17)C10—C15—C14120.53 (17)
C5—C6—H6119.5C10—C15—H15119.7
C7—C6—H6119.5C14—C15—H15119.7
C8—C7—C6119.01 (17)C13—C16—H16A109.5
C8—C7—H7120.5C13—C16—H16B109.5
C6—C7—H7120.5H16A—C16—H16B109.5
C7—C8—C3121.39 (17)C13—C16—H16C109.5
C7—C8—H8119.3H16A—C16—H16C109.5
C3—C8—H8119.3H16B—C16—H16C109.5
C10—C9—S2107.91 (12)
C1—N1—N2—C2166.57 (15)C5—C6—C7—C80.4 (3)
N2—N1—C1—S2178.60 (11)C6—C7—C8—C30.6 (3)
N2—N1—C1—S12.0 (2)C4—C3—C8—C71.2 (3)
C9—S2—C1—N12.05 (17)C2—C3—C8—C7177.24 (16)
C9—S2—C1—S1178.53 (10)C1—S2—C9—C10168.30 (13)
S1i—S1—C1—N1174.92 (13)S2—C9—C10—C1597.92 (17)
S1i—S1—C1—S24.51 (11)S2—C9—C10—C1181.68 (18)
N1—N2—C2—C3178.45 (15)C15—C10—C11—C120.3 (3)
N2—C2—C3—C8174.53 (17)C9—C10—C11—C12179.90 (16)
N2—C2—C3—C43.8 (3)C10—C11—C12—C130.3 (3)
C8—C3—C4—O1179.81 (15)C11—C12—C13—C140.2 (3)
C2—C3—C4—O11.8 (3)C11—C12—C13—C16179.13 (18)
C8—C3—C4—C50.8 (3)C12—C13—C14—C150.2 (3)
C2—C3—C4—C5177.54 (16)C16—C13—C14—C15179.12 (18)
O1—C4—C5—C6179.26 (15)C11—C10—C15—C140.3 (3)
C3—C4—C5—C60.2 (3)C9—C10—C15—C14179.90 (16)
C4—C5—C6—C70.8 (3)C13—C14—C15—C100.3 (3)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the (C10–C15) ring.
D—H···AD—HH···AD···AD—H···A
O1—H1O···N20.84 (2)1.94 (2)2.6877 (19)148 (2)
C9—H9A···Cg1ii0.992.933.9075 (18)169
Symmetry code: (ii) x, y1, z1/2.
A summary of short interatomic contacts (Å) for (I)a top
ContactDistanceSymmetry operation
C2···O13.071/2 - x, 1/2 + y, z
C2···C43.251/2 - x, 1/2 + y+, z
C12—H12···S12.821 - x, 1 + y+1, 3/2 - z
C9—H9B···N12.591/2 - x, 1/2 + y, z
C8—H8···C112.74-1/2 + x, -1/2 + y, 3/2 - z
H6···H142.391/2 - x, 1/2 - y, 1/2 + z
Note: (a) The interatomic distances are calculated in Crystal Explorer 17 (Turner et al., 2017) with the X—H bond lengths adjusted to their neutron values.
The percentage contributions of interatomic contacts to the Hirshfeld surface for (I) top
ContactPercentage contribution
H···H43.9
H···C/C···H25.5
H···S/S···H13.6
H···O/O···H5.7
N···C/C···N3.6
H···N/N···H3.4
O···C/C···O1.7
C···C1.2
S···C/C···S1.0
N···N0.4
A summary of interaction energies (kJ mol-1) calculated for (I) top
ContactR (Å)EeleEpolEdisErepEtot
Intra-layer region
C9—H9A···Cg1i +
C2···O1ii +
C2···C4ii +
C9—H9B···N1ii +
C8—H8···C11iii8.70-19.7-3.5-98.971.0-65.7
C12—H12···S1iv7.96-11.1-1.9-43.033.7-29.7
H6···H16Bv14.23-0.6-0.2-6.73.0-4.8
Inter-layer region
H5···H14vi12.44-10.3-2.1-28.120.0-24.6
H16A···H16B vii15.29-1.5-0.4-11.83.5-10.0
H6···H14viii14.93-3.4-0.5-13.610.2-9.5
H6···H16Cix15.43-1.8-0.4-10.96.2-7.8
H6···H7x21.02-1.2-0.2-7.85.4-4.9
Notes: Symmetry operations: (i) -x + 1/2, y - 1/2, z; (ii) -x + 1/2, y + 1/2, z; (iii) x - 1/2, y - 1/2, -z + 3/2; (iv) -x + 1, y + 1, -z + 3/2; (v) x - 1/2, y - 3/2, -z + 3/2; (vi) x, -y + 1, z + 1/2; (vii) x, -y + 2, z + 1/2; (viii) -x + 1/2, -y + 1/2, z + 1/2; (ix) x + 1/2, -y + 3/2, -z + 1; (x) -x, -y, -z + 2
A comparison of key geometric parameters (Å, °) in structures related to (I) top
CompoundSymmetryS—SC—S—S—CRefcodeRef.
(I)22.0439 (8)90.70 (8)This work
(II)2.0386 (7)88.73 (9)MUYRIJMadanhire et al. (2015)
(III)22.0443 (7)104.67 (8)DIBYOF01Yekke-ghasemi et al. (2018)
(IV)2.0373 (4)91.54 (6)LAGLUDIslam et al. (2016)
(V)22.0504 (7)96.2 (1)CUHHETHow et al. (2009)
 

Footnotes

Additional correspondence author, e-mail: kacrouse@gmail.com.

Acknowledgements

The intensity data were collected by Mohamed I. M. Tahir, Universiti Putra Malaysia.

Funding information

Crystallographic research at Sunway University is supported by Sunway University Sdn Bhd (grant No. STR-RCTR-RCCM-001–2019).

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAmirnasr, M., Bagheri, M., Farrokhpour, H., Schenk, K. J., Mereiter, K. & Ford, P. C. (2014). Polyhedron, 71, 1–7.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHow, F. N.-F., Crouse, K. A., Tahir, M. I. M. & Watkin, D. J. (2009). J. Chem. Crystallogr. 39, 894–897.  Web of Science CSD CrossRef CAS Google Scholar
First citationIslam, M. A. A. A. A., Sheikh, M. C., Islam, M. H., Miyatake, R. & Zangrando, E. (2016). Acta Cryst. E72, 337–339.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLow, M. L., Maigre, L. M., Tahir, M. I. M. T., Tiekink, E. R. T., Dorlet, P., Guillot, R., Ravoof, T. B., Rosli, R., Pagès, J.-M., Policar, C., Delsuc, N. & Crouse, K. A. (2016). Eur. J. Med. Chem. 120, 1–12.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMadanhire, T., Abrahams, A., Hosten, E. C. & Betz, R. (2015). Z. Kristallogr. New Cryst. Struct. 230, 89–90.  Web of Science CSD CrossRef CAS Google Scholar
First citationRavoof, T. B. S. A., Crouse, K. A., Tahir, M. I. M., How, F. N. F., Rosli, R. & Watkins, D. J. (2010). Transition Met. Chem. 35, 871–876.  Web of Science CSD CrossRef CAS Google Scholar
First citationRavoof, T. B. S. A., Crouse, K. A., Tiekink, E. R. T., Tahir, M. I. M., Yusof, E. N. M. & Rosli, R. (2017). Polyhedron, 133, 383–392.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSohtun, W. P., Kannan, A., Krishna, K. H., Saravanan, D., Kumar, M. S. & Velusamy, M. (2018). Acta Chim. Slov. 65, 621–629.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYekke-ghasemi, Z., Takjoo, R., Ramezani, M. & Mague, J. T. (2018). RSC Adv. 8, 41795–41809.  CAS Google Scholar
First citationYusof, E. N. M., Ishak, N. N. M., Latif, M. A. M., Tahir, M. I. M., Sakoff, J. A., Page, A. J., Tiekink, E. R. T. & Ravoof, T. B. S. A. (2020). Res. Chem. Intermed. 46, 2351–2379.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds