research communications
Syntheses and crystal structures of the anhydride 4-oxatetracyclo[5.3.2.02,6.08,10]dodec-11-ene-3,5-dione and the related imide 4-(4-bromophenyl)-4-azatetracyclo[5.3.2.02,6.08,10]dodec-11-ene-3,5-dione
aDepartment of Chemistry, Grand Valley State University, 1 Campus Dr., Allendale, MI 49401, USA, and bCenter for Crystallographic Research, Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
*Correspondence e-mail: winchesr@gvsu.edu
The syntheses and crystal structures of the two title compounds, C11H10O3 (I) and C17H14BrNO2 (II), both containing the bicyclo[2.2.2]octene ring system, are reported here [the structure of I has been reported previously: White & Goh (2014). Private Communication (refcode HOKRIK). CCDC, Cambridge, England]. The bond lengths and angles of the bicyclo[2.2.2]octene ring system are similar for both structures. The imide of II features carbonyl C=O bond lengths of 1.209 (2) and 1.210 (2) Å, with C—N bond lengths of 1.393 (2) and 1.397 (2) Å. The five-membered imide ring is nearly planar, and it is positioned exo relative to the alkene bridgehead carbon atoms of the bicyclo[2.2.2]octene ring system. Non-covalent interactions present in the of II include a number of C—H⋯O interactions. The extended structure of II also features C—H⋯O hydrogen bonds as well as C—H⋯π and lone pair–π interactions, which combine together to create supramolecular sheets.
1. Chemical context
Cycloheptatriene, a, exhibits valence with norcaradiene, b, in solution (Fig. 1). The norcaradiene isomer readily reacts with maleic anhydride, c, to form the unique tricyclic anhydride, I (White & Goh, 2014). This reaction has been known since 1939 (Kohler et al., 1939), but the structure of the major product was not determined until 1953, when it was elucidated that the product contained a cyclopropane ring (Alder & Jacobs, 1953). The combination of a rigid tricyclic structure with alkene, anhydride and cyclopropane functional groups makes this structure interesting as a scaffold for drug design because of the ability to specifically place groups in molecular space and thus design molecules to interact selectively with protein active sites.
In a high-throughput screen of 356,000 compounds for activity against vaccinia and cowpox viruses, Bailey et al. (2007) discovered antiviral activity of imide derivatives related to I, including e (tecovirimat, C19H15F3N2O3; Fig. 2). SAR studies showed that this derivative was the most active of the entire library, and its mode of action was to inhibit extracellular virus formation. Interestingly, hydrogenation of the alkene had little effect on the activity of the compound. Tecoviramat has been approved as a treatment for smallpox, and the United States has created a stockpile of two million doses stored at the US Strategic National Stockpile (Hughes, 2019).
Substituted anilines, such as p-bromoaniline f, have also been reacted with the anhydride I to form that show insecticidal activity (Fig. 2, Brechbuhler & Petitpierre, 1975). A wide range of were synthesized, including compound II, and were shown to protect crops by inhibiting the growth of lepidoptera. Finally, we note that all of these imide derivatives will undergo a retro-Diels–Alder cycloaddition to form cycloheptatriene and a substituted maleimide. Structural investigations have shown that there is an increase in the length of the C—C bonds that are involved in the retro-Diels–Alder reaction relative to the other C—C bonds in the molecule (Birney et al., 2002; Pool et al., 2000). Herein we report the syntheses and crystal structures of the anhydride I and imide II. The structure of the anhydride was previously reported as a Private Communication to the CSD (refcode HOKRIK; White & Goh, 2014).
2. Structural commentary
The structure of the title anhydride I was solved in the monoclinic P21/n with two molecules in the The atom labeling scheme (starting with C1 and C1a for the two molecules) is shown in Fig. 3. This structure is quite similar with respect to the bond lengths and angles described below for the imide II. The bond lengths of the carbonyl groups of the anhydride are shorter than the imide, as expected, with C1=O1 = 1.1943 (18), C2=O2 = 1.1904 (17), C1—O3 = 1.3868 (17) and C2—O3 = 1.3978 (16) Å. The corresponding data for the C1a molecule are 1.1913 (17), 1.1871 (18), 1.3855 (17) and 1.3905 (18) Å, respectively. The configurations of the stereogenic centres in the arbitrarily chosen asymmetric molecules are: C3 S, C4 R, C5 R, C8 S, C9 S, C10 R and C3a R, C4a S, C5a S, C8a R, C9a R, C10a S: crystal symmetry generates a in the bulk.
The structure of the imide II was solved in the monoclinic P21/n, and its atom labeling scheme is shown in Fig. 4. The imide of this structure has C=O bond lengths of 1.209 (2) and 1.210 (2) Å, with C—N bond lengths of 1.393 (2) and 1.397 (2) Å. The O—C—N bond angles of the imide are 123.98 (17) and 123.97 (17)°. The aromatic ring, C12–C17, is oriented nearly perpendicular to the plane containing the atoms of the imide with a C1—N1—C12—C17 torsion angle of 65.0 (2)°. The five-membered ring that contains the imide (–C1—N1—C2—C4—C3–) is close to planar with a Cremer–Pople τ value of 2.8 (Cremer & Pople, 1975). When considering the bicyclo[2.2.2]octene ring system (C3–C10), both C11 and the atoms of the imide are oriented exo relative to the bridgehead alkene carbon atoms C6–C7. The length of the C6=C7 double bond is 1.324 (3) Å, and the cyclopropyl ring C9–C11 has C—C—C bond angles ranging from 59.89 (13)–60.14 (14)°. The stereogenic centres in the asymmetric molecule of II are C3 R, C4 S, C5 S, C8 R, C9 R and C10 S; again, crystal symmetry generates a racemic mixture.
3. Supramolecular features
The extended structure of the anhydride I is dominated by C—H⋯O hydrogen bonds (Sutor, 1962, 1963; Steiner, 1996) involving both carbonyl groups as acceptors (Table 1, Fig. 5). The D⋯A distances range from 3.1897 (16) to 3.4882 (17) Å with D—H⋯A angles ranging from 119 to 159°; the C9 bond is likely very weak based on its H⋯A distance of 2.73 Å. Combined together, these interactions create supramolecular sheets that lie in the ab plane.
In the crystal of the imide II, the molecules are linked by C—H⋯O hydrogen bonds as well as C—H⋯π and C—Br⋯π interactions (Table 2, Fig. 6). The C—H⋯O hydrogen bond is between C17—H17 of the aromatic ring and O2 of an imide carbonyl group. This hydrogen bond has a D⋯A distance of 3.175 (2) Å with a D—H⋯A angle of 139°. The C—H⋯π interaction is between C3—H3, which is α to the carbonyl group C1(O1), and the aromatic ring C12–C17. This interaction has a H⋯Cg distance of 3.801 (2) Å (where Cg is the centroid of the C12–C17 ring), with a C—H⋯Cg angle of 165°. The aromatic ring C12–C17 bears an electron-withdrawing bromine atom, and accepts a lone pair(LP)–π interaction from the bromine atom of a nearby molecule (Mooibroek, et al., 2008). This LP–π interaction has a Br⋯Cg distance of 3.5854 (8) Å with a C15—Br1⋯Cg angle of 87.43 (6)°. Dimers of imide II are formed via the Br⋯π interactions, and these dimers are linked into supramolecular sheets that lie along (010) by the C—H⋯O and C—H⋯π interactions (Fig. 7).
4. Database survey
The structure of the anhydride I has been deposited in the Cambridge Structural Database (CSD, Version 5.41, November, 2019; Groom et al., 2016) as a Private Communication from White & Goh (2014, refcode HOKRIK). The acquisition temperature for this data set was 130 K, versus 173 K for the structure reported here. Other than this, the structures are nearly identical. A search of the CSD for structures containing the same bicyclo[2.2.2]octene ring system bearing a cyclic anhydride shows 52 hits (including HOKRIK). Of these, an interesting structure is FAXPAV (Coxon et al., 1986), which bears a very complex fused-ring system in the place of the cyclopropane ring on anhydride I.
A search of the CSD for structures containing a bicyclo[2.2.2]octene ring system fused to a cyclic imide resulted in 125 structures related to imide II. Structure COZMAH (Wu et al., 2014) also bears a p-bromobenzene ring bonded to the imide nitrogen atom, but is derivatized with two and an indole ring on the octene portion of the ring system. The structure of tecovirimat (e, Fig. 2) has been deposited as SOKVIY (Bailey et al., 2007). Finally, structure HARNEV bears two cyclic imide groups on either side of the octene ring system (Song et al., 2012).
5. Synthesis and crystallization
Synthesis of the anhydride (I):
Cycloheptatriene (1.38 g, 15 mmol) and maleic anhydride (1.37 g, 14 mmol) were added to an oven-dried round-bottom flask containing 10 ml of xylene and the mixture was refluxed for 1.5 h. Approximately half of the xylenes were distilled off via short-path distillation and the reaction mixture was left to cool at room temperature. The round-bottom flask was fitted with a stopper and left to recrystallize for 48 h to afford large, cream-colored needles. The product was recrystallized once more by dissolving in 8 ml of xylene: after a week at room temperature, the pure product I was obtained in the form of large colorless crystals (1.13 g, 40%, m.p. = 372–374 K). 1H NMR (400 MHz, chloroform-d) δ 5.88 (dd, J = 4.8, 3.2 Hz, 2H), 3.46 (dh, J = 6.6, 2.1 Hz, 2H), 3.23 (dd, J = 2.1, 1.6 Hz, 2H), 1.17–1.04 (m, 4H). 13C NMR (101 MHz, chloroform-d) δ 172.45, 128.55, 45.88, 33.65, 9.56, 5.24.
Compound I (0.28 g, 1.47 mmol) and p-bromoaniline (0.25 g, 1.45 mmol) were added to a vial containing 5 ml of xylene and the mixture was refluxed for 5 min. The mixture was then cooled to room temperature and left for 5 days in a sealed vial. The precipitate was recrystallized from ethanol solution to yield colorless needle-like crystals of II (0.27 g, 52% yield, m.p. = 465–467 K). 1H NMR (400 MHz, chloroform-d) δ 7.54 (d, J = 8.7 Hz, 1H), 7.06 (d, J = 8.7 Hz, 1H), 5.84 (dd, J = 4.7, 3.4 Hz, 1H), 3.48 (s, 1H), 3.12 (s, 1H), 1.14 (s, 1H), 0.38–0.21 (m, 1H). 13C NMR (101 MHz, chloroform-d) δ 177.42, 132.34, 130.88, 128.11, 127.92, 122.47, 45.40, 33.90, 9.97, 4.80.
6. Refinement
Crystal data, data collection and structure . For both structures, hydrogen atoms bonded to carbon atoms were placed in calculated positions and refined to ride on their parent atoms: C—H = 0.95–1.00 Å with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 3
|
Supporting information
https://doi.org/10.1107/S2056989020009512/hb7931sup1.cif
contains datablocks global, II, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020009512/hb7931Isup3.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989020009512/hb7931IIsup4.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989020009512/hb7931Isup4.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989020009512/hb7931IIsup5.cml
For both structures, data collection: APEX2 (Bruker, 2013); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009; Bourhis et al., 2015); software used to prepare material for publication: CrystalMaker (Palmer, 2007).C11H10O3 | F(000) = 800 |
Mr = 190.19 | Dx = 1.464 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54178 Å |
a = 11.3538 (3) Å | Cell parameters from 8934 reflections |
b = 7.4062 (2) Å | θ = 3.9–72.4° |
c = 20.5398 (5) Å | µ = 0.88 mm−1 |
β = 92.6226 (15)° | T = 173 K |
V = 1725.35 (8) Å3 | Chunk, colourless |
Z = 8 | 0.53 × 0.32 × 0.22 mm |
Bruker APEXII CCD diffractometer | 3070 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.028 |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | θmax = 72.4°, θmin = 4.3° |
Tmin = 0.675, Tmax = 0.754 | h = −14→13 |
13466 measured reflections | k = −9→9 |
3353 independent reflections | l = −25→25 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.045 | H-atom parameters constrained |
wR(F2) = 0.116 | w = 1/[σ2(Fo2) + (0.0673P)2 + 0.5724P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
3353 reflections | Δρmax = 0.22 e Å−3 |
253 parameters | Δρmin = −0.40 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.92952 (11) | 0.22515 (15) | 0.01539 (5) | 0.0378 (3) | |
O2 | 0.91944 (10) | 0.21601 (15) | 0.23113 (5) | 0.0354 (3) | |
O3 | 0.92868 (9) | 0.18344 (13) | 0.12312 (5) | 0.0287 (2) | |
C1 | 0.92625 (12) | 0.29232 (19) | 0.06814 (7) | 0.0249 (3) | |
C2 | 0.92145 (12) | 0.28818 (19) | 0.17941 (7) | 0.0243 (3) | |
C3 | 0.92092 (11) | 0.48779 (18) | 0.08716 (6) | 0.0212 (3) | |
H3 | 0.9931 | 0.5521 | 0.0734 | 0.025* | |
C4 | 0.91806 (11) | 0.48510 (18) | 0.16185 (6) | 0.0206 (3) | |
H4 | 0.9892 | 0.5477 | 0.1814 | 0.025* | |
C5 | 0.80361 (12) | 0.57992 (19) | 0.18403 (6) | 0.0240 (3) | |
H5 | 0.7976 | 0.5761 | 0.2324 | 0.029* | |
C6 | 0.70138 (12) | 0.4864 (2) | 0.14922 (7) | 0.0284 (3) | |
H6 | 0.6400 | 0.4300 | 0.1717 | 0.034* | |
C7 | 0.70364 (12) | 0.4889 (2) | 0.08459 (8) | 0.0288 (3) | |
H7 | 0.6438 | 0.4348 | 0.0573 | 0.035* | |
C8 | 0.80824 (12) | 0.58391 (19) | 0.05799 (6) | 0.0245 (3) | |
H8 | 0.8054 | 0.5833 | 0.0093 | 0.029* | |
C9 | 0.81906 (12) | 0.77608 (19) | 0.08545 (7) | 0.0259 (3) | |
H9 | 0.8782 | 0.8575 | 0.0659 | 0.031* | |
C10 | 0.81589 (12) | 0.77348 (19) | 0.15890 (7) | 0.0255 (3) | |
H10 | 0.8732 | 0.8536 | 0.1835 | 0.031* | |
C11 | 0.71901 (13) | 0.8646 (2) | 0.11912 (8) | 0.0317 (3) | |
H11C | 0.7163 | 0.9982 | 0.1197 | 0.038* | |
H11D | 0.6410 | 0.8046 | 0.1159 | 0.038* | |
O1A | 0.45014 (10) | 0.77462 (14) | 0.02985 (5) | 0.0328 (3) | |
O2A | 0.12278 (10) | 0.77025 (15) | 0.13936 (6) | 0.0386 (3) | |
O3A | 0.28206 (9) | 0.73501 (13) | 0.08039 (5) | 0.0313 (3) | |
C1A | 0.36811 (12) | 0.84253 (19) | 0.05447 (6) | 0.0241 (3) | |
C2A | 0.19782 (12) | 0.8398 (2) | 0.10974 (7) | 0.0270 (3) | |
C3A | 0.34016 (11) | 1.03897 (17) | 0.06434 (6) | 0.0206 (3) | |
H3A | 0.3307 | 1.1025 | 0.0215 | 0.025* | |
C4A | 0.22267 (11) | 1.03737 (18) | 0.09904 (6) | 0.0219 (3) | |
H4A | 0.1585 | 1.0939 | 0.0710 | 0.026* | |
C5A | 0.23788 (12) | 1.13775 (19) | 0.16575 (6) | 0.0239 (3) | |
H5A | 0.1634 | 1.1373 | 0.1899 | 0.029* | |
C6A | 0.33646 (12) | 1.04165 (19) | 0.20315 (6) | 0.0254 (3) | |
H6A | 0.3267 | 0.9881 | 0.2446 | 0.031* | |
C7A | 0.43832 (12) | 1.03759 (19) | 0.17356 (6) | 0.0240 (3) | |
H7A | 0.5066 | 0.9791 | 0.1919 | 0.029* | |
C8A | 0.43686 (11) | 1.13289 (18) | 0.10893 (6) | 0.0216 (3) | |
H8A | 0.5158 | 1.1289 | 0.0893 | 0.026* | |
C9A | 0.39235 (12) | 1.32691 (19) | 0.11555 (7) | 0.0250 (3) | |
H9A | 0.4001 | 1.4080 | 0.0771 | 0.030* | |
C10A | 0.27558 (12) | 1.32973 (19) | 0.14820 (7) | 0.0260 (3) | |
H10A | 0.2131 | 1.4120 | 0.1293 | 0.031* | |
C11A | 0.38257 (13) | 1.4167 (2) | 0.18102 (7) | 0.0307 (3) | |
H11A | 0.4195 | 1.3554 | 0.2196 | 0.037* | |
H11B | 0.3854 | 1.5503 | 0.1826 | 0.037* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0524 (7) | 0.0336 (6) | 0.0279 (6) | 0.0065 (5) | 0.0060 (5) | −0.0079 (4) |
O2 | 0.0469 (7) | 0.0310 (6) | 0.0285 (5) | −0.0024 (5) | 0.0018 (5) | 0.0078 (4) |
O3 | 0.0367 (6) | 0.0208 (5) | 0.0286 (5) | 0.0005 (4) | 0.0026 (4) | −0.0004 (4) |
C1 | 0.0235 (6) | 0.0260 (7) | 0.0255 (7) | 0.0018 (5) | 0.0032 (5) | −0.0010 (5) |
C2 | 0.0223 (6) | 0.0261 (7) | 0.0246 (7) | −0.0028 (5) | 0.0009 (5) | 0.0001 (5) |
C3 | 0.0198 (6) | 0.0226 (6) | 0.0212 (6) | −0.0012 (5) | 0.0027 (5) | −0.0005 (5) |
C4 | 0.0186 (6) | 0.0226 (6) | 0.0205 (6) | −0.0031 (5) | 0.0007 (5) | −0.0005 (5) |
C5 | 0.0220 (6) | 0.0265 (7) | 0.0238 (6) | −0.0006 (5) | 0.0050 (5) | −0.0031 (5) |
C6 | 0.0192 (6) | 0.0274 (7) | 0.0391 (8) | −0.0028 (5) | 0.0066 (6) | −0.0035 (6) |
C7 | 0.0210 (7) | 0.0274 (7) | 0.0375 (8) | −0.0006 (5) | −0.0039 (6) | −0.0077 (6) |
C8 | 0.0253 (7) | 0.0258 (7) | 0.0220 (6) | 0.0028 (5) | −0.0025 (5) | −0.0014 (5) |
C9 | 0.0263 (7) | 0.0232 (7) | 0.0281 (7) | 0.0024 (5) | −0.0008 (5) | 0.0013 (5) |
C10 | 0.0245 (7) | 0.0241 (7) | 0.0279 (7) | 0.0000 (5) | 0.0004 (5) | −0.0051 (5) |
C11 | 0.0281 (7) | 0.0269 (7) | 0.0398 (8) | 0.0063 (6) | −0.0011 (6) | −0.0046 (6) |
O1A | 0.0345 (6) | 0.0312 (5) | 0.0329 (5) | 0.0046 (4) | 0.0041 (4) | −0.0083 (4) |
O2A | 0.0344 (6) | 0.0365 (6) | 0.0454 (7) | −0.0156 (5) | 0.0066 (5) | 0.0019 (5) |
O3A | 0.0321 (6) | 0.0218 (5) | 0.0399 (6) | −0.0027 (4) | 0.0022 (4) | −0.0014 (4) |
C1A | 0.0268 (7) | 0.0251 (7) | 0.0201 (6) | −0.0015 (5) | −0.0031 (5) | −0.0024 (5) |
C2A | 0.0242 (7) | 0.0278 (7) | 0.0287 (7) | −0.0053 (5) | −0.0024 (5) | −0.0007 (6) |
C3A | 0.0226 (6) | 0.0217 (6) | 0.0175 (6) | 0.0003 (5) | 0.0003 (5) | 0.0014 (5) |
C4A | 0.0188 (6) | 0.0245 (7) | 0.0221 (6) | −0.0008 (5) | −0.0009 (5) | 0.0019 (5) |
C5A | 0.0211 (6) | 0.0275 (7) | 0.0236 (6) | −0.0012 (5) | 0.0050 (5) | −0.0008 (5) |
C6A | 0.0284 (7) | 0.0299 (7) | 0.0180 (6) | −0.0031 (6) | 0.0009 (5) | 0.0014 (5) |
C7A | 0.0237 (6) | 0.0266 (7) | 0.0215 (6) | 0.0004 (5) | −0.0031 (5) | −0.0011 (5) |
C8A | 0.0194 (6) | 0.0239 (7) | 0.0218 (6) | −0.0021 (5) | 0.0031 (5) | −0.0018 (5) |
C9A | 0.0260 (7) | 0.0225 (7) | 0.0267 (7) | −0.0031 (5) | 0.0046 (5) | −0.0005 (5) |
C10A | 0.0261 (7) | 0.0239 (7) | 0.0282 (7) | 0.0029 (5) | 0.0043 (5) | −0.0021 (5) |
C11A | 0.0328 (8) | 0.0265 (7) | 0.0330 (8) | −0.0023 (6) | 0.0037 (6) | −0.0070 (6) |
O1—C1 | 1.1943 (18) | O1A—C1A | 1.1913 (17) |
O2—C2 | 1.1904 (17) | O2A—C2A | 1.1871 (18) |
O3—C1 | 1.3868 (17) | O3A—C1A | 1.3855 (17) |
O3—C2 | 1.3978 (16) | O3A—C2A | 1.3905 (18) |
C1—C3 | 1.5014 (18) | C1A—C3A | 1.5048 (18) |
C2—C4 | 1.5024 (18) | C2A—C4A | 1.5080 (19) |
C3—H3 | 1.0000 | C3A—H3A | 1.0000 |
C3—C4 | 1.5360 (17) | C3A—C4A | 1.5409 (17) |
C3—C8 | 1.5596 (18) | C3A—C8A | 1.5607 (17) |
C4—H4 | 1.0000 | C4A—H4A | 1.0000 |
C4—C5 | 1.5631 (17) | C4A—C5A | 1.5616 (18) |
C5—H5 | 1.0000 | C5A—H5A | 1.0000 |
C5—C6 | 1.5040 (19) | C5A—C6A | 1.5068 (19) |
C5—C10 | 1.5321 (19) | C5A—C10A | 1.5326 (19) |
C6—H6 | 0.9500 | C6A—H6A | 0.9500 |
C6—C7 | 1.329 (2) | C6A—C7A | 1.3312 (19) |
C7—H7 | 0.9500 | C7A—H7A | 0.9500 |
C7—C8 | 1.504 (2) | C7A—C8A | 1.5028 (18) |
C8—H8 | 1.0000 | C8A—H8A | 1.0000 |
C8—C9 | 1.5337 (19) | C8A—C9A | 1.5313 (19) |
C9—H9 | 1.0000 | C9A—H9A | 1.0000 |
C9—C10 | 1.5110 (19) | C9A—C10A | 1.5131 (18) |
C9—C11 | 1.5066 (19) | C9A—C11A | 1.5091 (19) |
C10—H10 | 1.0000 | C10A—H10A | 1.0000 |
C10—C11 | 1.500 (2) | C10A—C11A | 1.507 (2) |
C11—H11C | 0.9900 | C11A—H11A | 0.9900 |
C11—H11D | 0.9900 | C11A—H11B | 0.9900 |
C1—O3—C2 | 110.55 (11) | C1A—O3A—C2A | 110.90 (11) |
O1—C1—O3 | 119.75 (13) | O1A—C1A—O3A | 119.95 (13) |
O1—C1—C3 | 129.86 (13) | O1A—C1A—C3A | 129.73 (13) |
O3—C1—C3 | 110.39 (11) | O3A—C1A—C3A | 110.31 (11) |
O2—C2—O3 | 119.55 (13) | O2A—C2A—O3A | 120.26 (14) |
O2—C2—C4 | 130.45 (13) | O2A—C2A—C4A | 129.74 (14) |
O3—C2—C4 | 110.00 (11) | O3A—C2A—C4A | 109.97 (11) |
C1—C3—H3 | 110.1 | C1A—C3A—H3A | 110.6 |
C1—C3—C4 | 104.49 (10) | C1A—C3A—C4A | 104.31 (11) |
C1—C3—C8 | 112.48 (11) | C1A—C3A—C8A | 111.28 (11) |
C4—C3—H3 | 110.1 | C4A—C3A—H3A | 110.6 |
C4—C3—C8 | 109.58 (10) | C4A—C3A—C8A | 109.43 (10) |
C8—C3—H3 | 110.1 | C8A—C3A—H3A | 110.6 |
C2—C4—C3 | 104.53 (10) | C2A—C4A—C3A | 104.27 (11) |
C2—C4—H4 | 110.0 | C2A—C4A—H4A | 110.7 |
C2—C4—C5 | 112.25 (11) | C2A—C4A—C5A | 110.36 (11) |
C3—C4—H4 | 110.0 | C3A—C4A—H4A | 110.7 |
C3—C4—C5 | 109.95 (10) | C3A—C4A—C5A | 109.80 (10) |
C5—C4—H4 | 110.0 | C5A—C4A—H4A | 110.7 |
C4—C5—H5 | 111.9 | C4A—C5A—H5A | 111.8 |
C6—C5—C4 | 106.76 (11) | C6A—C5A—C4A | 105.79 (10) |
C6—C5—H5 | 111.9 | C6A—C5A—H5A | 111.8 |
C6—C5—C10 | 110.54 (12) | C6A—C5A—C10A | 110.44 (11) |
C10—C5—C4 | 103.44 (10) | C10A—C5A—C4A | 104.84 (10) |
C10—C5—H5 | 111.9 | C10A—C5A—H5A | 111.8 |
C5—C6—H6 | 122.6 | C5A—C6A—H6A | 122.6 |
C7—C6—C5 | 114.75 (12) | C7A—C6A—C5A | 114.74 (12) |
C7—C6—H6 | 122.6 | C7A—C6A—H6A | 122.6 |
C6—C7—H7 | 122.6 | C6A—C7A—H7A | 122.6 |
C6—C7—C8 | 114.89 (12) | C6A—C7A—C8A | 114.71 (12) |
C8—C7—H7 | 122.6 | C8A—C7A—H7A | 122.6 |
C3—C8—H8 | 111.8 | C3A—C8A—H8A | 111.7 |
C7—C8—C3 | 107.11 (11) | C7A—C8A—C3A | 106.74 (10) |
C7—C8—H8 | 111.8 | C7A—C8A—H8A | 111.7 |
C7—C8—C9 | 110.60 (11) | C7A—C8A—C9A | 110.65 (11) |
C9—C8—C3 | 103.41 (10) | C9A—C8A—C3A | 104.13 (10) |
C9—C8—H8 | 111.8 | C9A—C8A—H8A | 111.7 |
C8—C9—H9 | 117.1 | C8A—C9A—H9A | 116.9 |
C10—C9—C8 | 110.50 (11) | C10A—C9A—C8A | 110.59 (11) |
C10—C9—H9 | 117.1 | C10A—C9A—H9A | 116.9 |
C11—C9—C8 | 121.54 (12) | C11A—C9A—C8A | 122.06 (12) |
C11—C9—H9 | 117.1 | C11A—C9A—H9A | 116.9 |
C11—C9—C10 | 59.62 (9) | C11A—C9A—C10A | 59.82 (9) |
C5—C10—H10 | 116.9 | C5A—C10A—H10A | 117.1 |
C9—C10—C5 | 110.79 (11) | C9A—C10A—C5A | 110.56 (11) |
C9—C10—H10 | 116.9 | C9A—C10A—H10A | 117.1 |
C11—C10—C5 | 121.90 (12) | C11A—C10A—C5A | 121.31 (12) |
C11—C10—C9 | 60.05 (9) | C11A—C10A—C9A | 59.96 (9) |
C11—C10—H10 | 116.9 | C11A—C10A—H10A | 117.1 |
C9—C11—H11C | 117.7 | C9A—C11A—H11A | 117.7 |
C9—C11—H11D | 117.7 | C9A—C11A—H11B | 117.7 |
C10—C11—C9 | 60.33 (9) | C10A—C11A—C9A | 60.22 (9) |
C10—C11—H11C | 117.7 | C10A—C11A—H11A | 117.7 |
C10—C11—H11D | 117.7 | C10A—C11A—H11B | 117.7 |
H11C—C11—H11D | 114.9 | H11A—C11A—H11B | 114.9 |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O1i | 1.00 | 2.64 | 3.4882 (17) | 143 |
C3—H3···O2Aii | 1.00 | 2.54 | 3.2487 (17) | 128 |
C4—H4···O2Aii | 1.00 | 2.43 | 3.1897 (16) | 133 |
C7—H7···O1Aiii | 0.95 | 2.56 | 3.4652 (18) | 159 |
C8A—H8A···O1Aiv | 1.00 | 2.59 | 3.2521 (17) | 123 |
C9—H9···O3v | 1.00 | 2.73 | 3.3409 (17) | 119 |
Symmetry codes: (i) −x+2, −y+1, −z; (ii) x+1, y, z; (iii) −x+1, −y+1, −z; (iv) −x+1, −y+2, −z; (v) x, y+1, z. |
C17H14BrNO2 | F(000) = 696 |
Mr = 344.20 | Dx = 1.619 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54178 Å |
a = 12.49907 (16) Å | Cell parameters from 9902 reflections |
b = 6.41302 (8) Å | θ = 4.7–70.1° |
c = 17.8772 (2) Å | µ = 4.00 mm−1 |
β = 99.8083 (6)° | T = 173 K |
V = 1412.04 (3) Å3 | Needle, colourless |
Z = 4 | 0.42 × 0.12 × 0.04 mm |
Bruker APEXII CCD diffractometer | 2441 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.039 |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | θmax = 70.2°, θmin = 4.0° |
Tmin = 0.578, Tmax = 0.753 | h = −15→15 |
23789 measured reflections | k = −7→7 |
2683 independent reflections | l = −21→21 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.027 | H-atom parameters constrained |
wR(F2) = 0.072 | w = 1/[σ2(Fo2) + (0.033P)2 + 1.1866P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.003 |
2683 reflections | Δρmax = 0.56 e Å−3 |
190 parameters | Δρmin = −0.48 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.63472 (2) | −0.24792 (4) | 0.56752 (2) | 0.03728 (10) | |
O1 | 0.18672 (12) | −0.1467 (3) | 0.72460 (9) | 0.0360 (4) | |
O2 | 0.19184 (11) | 0.3903 (2) | 0.55825 (8) | 0.0307 (3) | |
N1 | 0.21210 (12) | 0.1061 (2) | 0.63812 (8) | 0.0204 (3) | |
C1 | 0.16094 (14) | 0.0182 (3) | 0.69397 (10) | 0.0237 (4) | |
C2 | 0.16488 (15) | 0.2941 (3) | 0.61018 (11) | 0.0218 (4) | |
C3 | 0.07071 (14) | 0.1617 (3) | 0.70770 (10) | 0.0233 (4) | |
H3 | 0.0846 | 0.2102 | 0.7616 | 0.028* | |
C4 | 0.07607 (14) | 0.3487 (3) | 0.65452 (10) | 0.0229 (4) | |
H4 | 0.0962 | 0.4777 | 0.6851 | 0.028* | |
C5 | −0.03628 (15) | 0.3789 (3) | 0.60269 (11) | 0.0257 (4) | |
H5 | −0.0355 | 0.4979 | 0.5667 | 0.031* | |
C6 | −0.06246 (15) | 0.1766 (3) | 0.56169 (11) | 0.0288 (4) | |
H6 | −0.0753 | 0.1670 | 0.5079 | 0.035* | |
C7 | −0.06639 (15) | 0.0122 (3) | 0.60590 (12) | 0.0280 (4) | |
H7 | −0.0819 | −0.1243 | 0.5864 | 0.034* | |
C8 | −0.04426 (14) | 0.0588 (3) | 0.68951 (11) | 0.0258 (4) | |
H8 | −0.0490 | −0.0694 | 0.7206 | 0.031* | |
C9 | −0.12081 (16) | 0.2311 (3) | 0.70832 (12) | 0.0285 (4) | |
H9 | −0.1212 | 0.2589 | 0.7633 | 0.034* | |
C10 | −0.11491 (16) | 0.4179 (3) | 0.65832 (12) | 0.0300 (4) | |
H10 | −0.1116 | 0.5579 | 0.6832 | 0.036* | |
C11 | −0.21970 (16) | 0.2988 (4) | 0.65312 (14) | 0.0348 (5) | |
H11A | −0.2427 | 0.2114 | 0.6076 | 0.042* | |
H11B | −0.2797 | 0.3652 | 0.6741 | 0.042* | |
C12 | 0.31028 (14) | 0.0235 (3) | 0.61886 (10) | 0.0209 (4) | |
C13 | 0.40447 (15) | 0.1405 (3) | 0.63508 (11) | 0.0262 (4) | |
H13 | 0.4030 | 0.2752 | 0.6569 | 0.031* | |
C14 | 0.50106 (16) | 0.0594 (3) | 0.61918 (11) | 0.0296 (4) | |
H14 | 0.5662 | 0.1383 | 0.6299 | 0.035* | |
C15 | 0.50157 (15) | −0.1369 (3) | 0.58771 (10) | 0.0254 (4) | |
C16 | 0.40808 (18) | −0.2541 (3) | 0.57108 (11) | 0.0284 (4) | |
H16 | 0.4098 | −0.3887 | 0.5491 | 0.034* | |
C17 | 0.31120 (15) | −0.1728 (3) | 0.58690 (11) | 0.0253 (4) | |
H17 | 0.2461 | −0.2516 | 0.5758 | 0.030* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.03088 (14) | 0.04690 (17) | 0.03609 (15) | 0.01410 (9) | 0.01146 (10) | −0.00083 (10) |
O1 | 0.0294 (7) | 0.0422 (9) | 0.0382 (8) | 0.0087 (6) | 0.0107 (6) | 0.0211 (7) |
O2 | 0.0312 (7) | 0.0263 (7) | 0.0371 (8) | 0.0002 (6) | 0.0131 (6) | 0.0095 (6) |
N1 | 0.0175 (7) | 0.0233 (8) | 0.0205 (7) | −0.0015 (6) | 0.0031 (6) | 0.0013 (6) |
C1 | 0.0184 (8) | 0.0322 (10) | 0.0197 (8) | −0.0015 (7) | 0.0008 (7) | 0.0046 (8) |
C2 | 0.0201 (8) | 0.0194 (8) | 0.0252 (9) | −0.0045 (7) | 0.0019 (7) | −0.0007 (7) |
C3 | 0.0197 (8) | 0.0319 (10) | 0.0184 (8) | −0.0016 (7) | 0.0034 (7) | 0.0010 (8) |
C4 | 0.0221 (9) | 0.0213 (9) | 0.0257 (9) | −0.0033 (7) | 0.0049 (7) | −0.0033 (7) |
C5 | 0.0235 (9) | 0.0243 (9) | 0.0295 (9) | 0.0043 (7) | 0.0049 (7) | 0.0054 (8) |
C6 | 0.0211 (9) | 0.0397 (11) | 0.0239 (9) | 0.0038 (8) | −0.0010 (7) | −0.0059 (9) |
C7 | 0.0180 (8) | 0.0260 (10) | 0.0394 (11) | −0.0015 (7) | 0.0028 (8) | −0.0097 (9) |
C8 | 0.0191 (9) | 0.0276 (10) | 0.0315 (10) | −0.0018 (7) | 0.0063 (7) | 0.0049 (8) |
C9 | 0.0210 (9) | 0.0346 (11) | 0.0312 (10) | −0.0008 (8) | 0.0083 (8) | −0.0033 (8) |
C10 | 0.0241 (9) | 0.0272 (10) | 0.0400 (11) | 0.0023 (8) | 0.0093 (8) | −0.0043 (9) |
C11 | 0.0203 (10) | 0.0382 (11) | 0.0465 (12) | 0.0036 (9) | 0.0074 (9) | −0.0021 (10) |
C12 | 0.0201 (8) | 0.0247 (9) | 0.0180 (8) | 0.0000 (7) | 0.0037 (7) | 0.0022 (7) |
C13 | 0.0248 (9) | 0.0266 (10) | 0.0284 (9) | −0.0035 (8) | 0.0080 (7) | −0.0061 (8) |
C14 | 0.0215 (9) | 0.0362 (11) | 0.0322 (10) | −0.0042 (8) | 0.0082 (8) | −0.0057 (9) |
C15 | 0.0245 (9) | 0.0315 (10) | 0.0213 (8) | 0.0084 (8) | 0.0071 (7) | 0.0025 (8) |
C16 | 0.0358 (11) | 0.0239 (10) | 0.0253 (9) | 0.0045 (8) | 0.0042 (8) | −0.0017 (8) |
C17 | 0.0244 (9) | 0.0246 (9) | 0.0259 (9) | −0.0023 (7) | 0.0011 (7) | 0.0013 (8) |
Br1—C15 | 1.9004 (18) | C8—H8 | 1.0000 |
O1—C1 | 1.210 (2) | C8—C9 | 1.536 (3) |
O2—C2 | 1.209 (2) | C9—H9 | 1.0000 |
N1—C1 | 1.393 (2) | C9—C10 | 1.504 (3) |
N1—C2 | 1.397 (2) | C9—C11 | 1.508 (3) |
N1—C12 | 1.432 (2) | C10—H10 | 1.0000 |
C1—C3 | 1.508 (3) | C10—C11 | 1.506 (3) |
C2—C4 | 1.511 (2) | C11—H11A | 0.9900 |
C3—H3 | 1.0000 | C11—H11B | 0.9900 |
C3—C4 | 1.539 (3) | C12—C13 | 1.384 (3) |
C3—C8 | 1.564 (2) | C12—C17 | 1.383 (3) |
C4—H4 | 1.0000 | C13—H13 | 0.9500 |
C4—C5 | 1.557 (3) | C13—C14 | 1.388 (3) |
C5—H5 | 1.0000 | C14—H14 | 0.9500 |
C5—C6 | 1.499 (3) | C14—C15 | 1.379 (3) |
C5—C10 | 1.533 (3) | C15—C16 | 1.379 (3) |
C6—H6 | 0.9500 | C16—H16 | 0.9500 |
C6—C7 | 1.324 (3) | C16—C17 | 1.391 (3) |
C7—H7 | 0.9500 | C17—H17 | 0.9500 |
C7—C8 | 1.503 (3) | ||
C1—N1—C2 | 112.82 (15) | C9—C8—H8 | 111.8 |
C1—N1—C12 | 122.65 (15) | C8—C9—H9 | 116.8 |
C2—N1—C12 | 124.12 (15) | C10—C9—C8 | 110.33 (16) |
O1—C1—N1 | 123.98 (17) | C10—C9—H9 | 116.8 |
O1—C1—C3 | 127.52 (17) | C10—C9—C11 | 59.97 (14) |
N1—C1—C3 | 108.50 (15) | C11—C9—C8 | 122.38 (18) |
O2—C2—N1 | 123.97 (17) | C11—C9—H9 | 116.8 |
O2—C2—C4 | 127.59 (17) | C5—C10—H10 | 116.9 |
N1—C2—C4 | 108.43 (15) | C9—C10—C5 | 110.92 (16) |
C1—C3—H3 | 109.6 | C9—C10—H10 | 116.9 |
C1—C3—C4 | 105.22 (14) | C9—C10—C11 | 60.14 (14) |
C1—C3—C8 | 113.26 (16) | C11—C10—C5 | 121.61 (18) |
C4—C3—H3 | 109.6 | C11—C10—H10 | 116.9 |
C4—C3—C8 | 109.59 (15) | C9—C11—H11A | 117.8 |
C8—C3—H3 | 109.6 | C9—C11—H11B | 117.8 |
C2—C4—C3 | 104.86 (15) | C10—C11—C9 | 59.89 (13) |
C2—C4—H4 | 109.9 | C10—C11—H11A | 117.8 |
C2—C4—C5 | 112.66 (15) | C10—C11—H11B | 117.8 |
C3—C4—H4 | 109.9 | H11A—C11—H11B | 114.9 |
C3—C4—C5 | 109.55 (14) | C13—C12—N1 | 118.82 (16) |
C5—C4—H4 | 109.9 | C17—C12—N1 | 120.27 (16) |
C4—C5—H5 | 111.8 | C17—C12—C13 | 120.88 (17) |
C6—C5—C4 | 106.45 (15) | C12—C13—H13 | 120.2 |
C6—C5—H5 | 111.8 | C12—C13—C14 | 119.50 (18) |
C6—C5—C10 | 110.37 (16) | C14—C13—H13 | 120.2 |
C10—C5—C4 | 104.30 (15) | C13—C14—H14 | 120.3 |
C10—C5—H5 | 111.8 | C15—C14—C13 | 119.34 (18) |
C5—C6—H6 | 122.4 | C15—C14—H14 | 120.3 |
C7—C6—C5 | 115.13 (17) | C14—C15—Br1 | 118.97 (15) |
C7—C6—H6 | 122.4 | C16—C15—Br1 | 119.49 (15) |
C6—C7—H7 | 122.7 | C16—C15—C14 | 121.54 (18) |
C6—C7—C8 | 114.59 (18) | C15—C16—H16 | 120.4 |
C8—C7—H7 | 122.7 | C15—C16—C17 | 119.14 (18) |
C3—C8—H8 | 111.8 | C17—C16—H16 | 120.4 |
C7—C8—C3 | 107.32 (15) | C12—C17—C16 | 119.60 (18) |
C7—C8—H8 | 111.8 | C12—C17—H17 | 120.2 |
C7—C8—C9 | 110.18 (16) | C16—C17—H17 | 120.2 |
C9—C8—C3 | 103.63 (15) |
Cg1 is the centroid of the C12–C17 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C17—H17···O2i | 0.95 | 2.40 | 3.175 (2) | 139 |
C3—H3···Cg1ii | 1.00 | 2.83 | 3.801 (2) | 165 |
Symmetry codes: (i) x, y−1, z; (ii) −x+1/2, y+1/2, −z+3/2. |
Acknowledgements
The authors are grateful to Pfizer, Inc. for the donation of the Varian INOVA 400 F T NMR spectrometer. We thank the MSU Chemistry Department for purchasing/upgrading the CCD-based X-ray diffractometers, and the National Science Foundation for support from the MRI program to purchase the Rigaku Synergy S. Diffractometer (MSU).
Funding information
Funding for this research was provided by: National Science Foundation (grant No. MRI CHE-1725699; grant No. MRI CHE-1919817; grant No. MRI CHE-1919565).
References
Alder, K. & Jacobs, G. (1953). Chem. Ber. 86, 1528–1539. CrossRef CAS Google Scholar
Bailey, T. R., Rippin, S. R., Opsitnick, E., Burns, C. J., Pevear, D. C., Collett, M. S., Rhodes, G., Tohan, S., Huggins, J. W., Baker, R. O., Kern, E. R., Keith, K. A., Dai, D., Yang, G., Hruby, D. & Jordan, R. (2007). J. Med. Chem. 50, 1442–1444. Web of Science CSD CrossRef PubMed CAS Google Scholar
Birney, D., Lim, T. K., Koh, J. H. P., Pool, B. R. & White, J. M. (2002). J. Am. Chem. Soc. 124, 5091–5099. Web of Science CSD CrossRef PubMed CAS Google Scholar
Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. Web of Science CrossRef IUCr Journals Google Scholar
Brechbuhler, H. U. & Petitpierre, C. (1975). US Patent 3,993,662. Google Scholar
Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA. Google Scholar
Coxon, J. M., O'Connell, M. J. & Steel, P. J. (1986). Acta Cryst. C42, 1773–1777. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hughes, D. L. (2019). Org. Process Res. Dev. 23, 1298–1307. Web of Science CrossRef CAS Google Scholar
Kohler, E. P., Tishler, M., Potter, H. & Thompson, H. (1939). J. Am. Chem. Soc. 61, 1057–1061. CrossRef CAS Google Scholar
Mooibroek, T. J., Gamez, P. & Reedijk, J. (2008). CrystEngComm, 10, 1501–1515. Web of Science CrossRef CAS Google Scholar
Palmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, Oxfordshire, England. Google Scholar
Pool, B. R. & White, J. M. (2000). Org. Lett. 2, 3505–3507. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Song, X.-Z., Qin, C., Guan, W., Song, S.-Y. & Zhang, H.-J. (2012). New J. Chem. 36, 877–882. Web of Science CSD CrossRef CAS Google Scholar
Steiner, T. (1996). Crystallogr. Rev. 6, 1–51. CrossRef CAS Google Scholar
Sutor, D. J. (1962). Nature, 195, 68–69. CAS Google Scholar
Sutor, D. J. (1963). J. Chem. Soc. pp. 1105–1110. CrossRef Web of Science Google Scholar
White, J. M. & Goh, R. Y. W. (2014). Private Communication (refcode HOKRIK). CCDC, Cambridge, England. Google Scholar
Wu, X., Huang, J., Guo, B., Zhao, L., Liu, Y., Chen, J. & Cao, W. (2014). Adv. Synth. Catal. 356, 3377–3382. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.