research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Syntheses and crystal structures of the anhydride 4-oxa­tetra­cyclo­[5.3.2.02,6.08,10]dodec-11-ene-3,5-dione and the related imide 4-(4-bromo­phen­yl)-4-aza­tetra­cyclo­[5.3.2.02,6.08,10]dodec-11-ene-3,5-dione

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Grand Valley State University, 1 Campus Dr., Allendale, MI 49401, USA, and bCenter for Crystallographic Research, Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
*Correspondence e-mail: winchesr@gvsu.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 6 July 2020; accepted 13 July 2020; online 17 July 2020)

The syntheses and crystal structures of the two title compounds, C11H10O3 (I) and C17H14BrNO2 (II), both containing the bi­cyclo­[2.2.2]octene ring system, are reported here [the structure of I has been reported previously: White & Goh (2014[White, J. M. & Goh, R. Y. W. (2014). Private Communication (refcode HOKRIK). CCDC, Cambridge, England.]). Private Communication (refcode HOKRIK). CCDC, Cambridge, England]. The bond lengths and angles of the bi­cyclo­[2.2.2]octene ring system are similar for both structures. The imide functional group of II features carbonyl C=O bond lengths of 1.209 (2) and 1.210 (2) Å, with C—N bond lengths of 1.393 (2) and 1.397 (2) Å. The five-membered imide ring is nearly planar, and it is positioned exo relative to the alkene bridgehead carbon atoms of the bi­cyclo­[2.2.2]octene ring system. Non-covalent inter­actions present in the crystal structure of II include a number of C—H⋯O inter­actions. The extended structure of II also features C—H⋯O hydrogen bonds as well as C—H⋯π and lone pair–π inter­actions, which combine together to create supra­molecular sheets.

1. Chemical context

Cyclo­hepta­triene, a, exhibits valence isomerism with norcaradiene, b, in solution (Fig. 1[link]). The norcaradiene isomer readily reacts with maleic anhydride, c, to form the unique tricyclic anhydride, I (White & Goh, 2014[White, J. M. & Goh, R. Y. W. (2014). Private Communication (refcode HOKRIK). CCDC, Cambridge, England.]). This reaction has been known since 1939 (Kohler et al., 1939[Kohler, E. P., Tishler, M., Potter, H. & Thompson, H. (1939). J. Am. Chem. Soc. 61, 1057-1061.]), but the structure of the major product was not determined until 1953, when it was elucidated that the product contained a cyclo­propane ring (Alder & Jacobs, 1953[Alder, K. & Jacobs, G. (1953). Chem. Ber. 86, 1528-1539.]). The combination of a rigid tricyclic structure with alkene, anhydride and cyclo­propane functional groups makes this structure inter­esting as a scaffold for drug design because of the ability to specifically place groups in mol­ecular space and thus design mol­ecules to inter­act selectively with protein active sites.

[Scheme 1]
[Figure 1]
Figure 1
Valence isomerism of cyclo­hepta­triene a with norcaradiene b, then the Diels–Alder reaction with maleic anhydride c to give the title anhydride I.

In a high-throughput screen of 356,000 compounds for activity against vaccinia and cowpox viruses, Bailey et al. (2007[Bailey, T. R., Rippin, S. R., Opsitnick, E., Burns, C. J., Pevear, D. C., Collett, M. S., Rhodes, G., Tohan, S., Huggins, J. W., Baker, R. O., Kern, E. R., Keith, K. A., Dai, D., Yang, G., Hruby, D. & Jordan, R. (2007). J. Med. Chem. 50, 1442-1444.]) discovered anti­viral activity of imide derivatives related to I, including e (tecovirimat, C19H15F3N2O3; Fig. 2[link]). SAR studies showed that this derivative was the most active of the entire library, and its mode of action was to inhibit extracellular virus formation. Inter­estingly, hydrogenation of the alkene had little effect on the activity of the compound. Tecoviramat has been approved as a treatment for smallpox, and the United States has created a stockpile of two million doses stored at the US Strategic National Stockpile (Hughes, 2019[Hughes, D. L. (2019). Org. Process Res. Dev. 23, 1298-1307.]).

[Figure 2]
Figure 2
Synthesis of the smallpox anti­viral compound Tecovirimat, and the title imide II, which both use anhydride I as the starting material.

Substituted anilines, such as p-bromo­aniline f, have also been reacted with the anhydride I to form imides that show insecticidal activity (Fig. 2[link], Brechbuhler & Petitpierre, 1975[Brechbuhler, H. U. & Petitpierre, C. (1975). US Patent 3,993,662.]). A wide range of imides were synthesized, including compound II, and were shown to protect crops by inhibiting the growth of lepidoptera. Finally, we note that all of these imide derivatives will undergo a retro-Diels–Alder cyclo­addition to form cyclo­hepta­triene and a substituted male­imide. Structural investigations have shown that there is an increase in the length of the C—C bonds that are involved in the retro-Diels–Alder reaction relative to the other C—C bonds in the mol­ecule (Birney et al., 2002[Birney, D., Lim, T. K., Koh, J. H. P., Pool, B. R. & White, J. M. (2002). J. Am. Chem. Soc. 124, 5091-5099.]; Pool et al., 2000[Pool, B. R. & White, J. M. (2000). Org. Lett. 2, 3505-3507.]). Herein we report the syntheses and crystal structures of the anhydride I and imide II. The structure of the anhydride was previously reported as a Private Communication to the CSD (refcode HOKRIK; White & Goh, 2014[White, J. M. & Goh, R. Y. W. (2014). Private Communication (refcode HOKRIK). CCDC, Cambridge, England.]).

2. Structural commentary

The structure of the title anhydride I was solved in the monoclinic space group P21/n with two mol­ecules in the asymmetric unit. The atom labeling scheme (starting with C1 and C1a for the two mol­ecules) is shown in Fig. 3[link]. This structure is quite similar with respect to the bond lengths and angles described below for the imide II. The bond lengths of the carbonyl groups of the anhydride are shorter than the imide, as expected, with C1=O1 = 1.1943 (18), C2=O2 = 1.1904 (17), C1—O3 = 1.3868 (17) and C2—O3 = 1.3978 (16) Å. The corresponding data for the C1a mol­ecule are 1.1913 (17), 1.1871 (18), 1.3855 (17) and 1.3905 (18) Å, respectively. The configurations of the stereogenic centres in the arbitrarily chosen asymmetric mol­ecules are: C3 S, C4 R, C5 R, C8 S, C9 S, C10 R and C3a R, C4a S, C5a S, C8a R, C9a R, C10a S: crystal symmetry generates a racemic mixture in the bulk.

[Figure 3]
Figure 3
The mol­ecular structure of the anhydride I, with the atom-labeling scheme for both crystallographically unique mol­ecules. Displacement ellipsoids are shown at the 40% probability level using standard CPK colors.

The structure of the imide II was solved in the monoclinic space group P21/n, and its atom labeling scheme is shown in Fig. 4[link]. The imide functional group of this structure has C=O bond lengths of 1.209 (2) and 1.210 (2) Å, with C—N bond lengths of 1.393 (2) and 1.397 (2) Å. The O—C—N bond angles of the imide functional group are 123.98 (17) and 123.97 (17)°. The aromatic ring, C12–C17, is oriented nearly perpendicular to the plane containing the atoms of the imide functional group with a C1—N1—C12—C17 torsion angle of 65.0 (2)°. The five-membered ring that contains the imide functional group (–C1—N1—C2—C4—C3–) is close to planar with a Cremer–Pople τ value of 2.8 (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). When considering the bi­cyclo­[2.2.2]octene ring system (C3–C10), both C11 and the atoms of the imide functional group are oriented exo relative to the bridgehead alkene carbon atoms C6–C7. The length of the C6=C7 double bond is 1.324 (3) Å, and the cyclo­propyl ring C9–C11 has C—C—C bond angles ranging from 59.89 (13)–60.14 (14)°. The stereogenic centres in the asymmetric mol­ecule of II are C3 R, C4 S, C5 S, C8 R, C9 R and C10 S; again, crystal symmetry generates a racemic mixture.

[Figure 4]
Figure 4
The mol­ecular structure of the imide II, with the atom-labeling scheme. Displacement ellipsoids are shown at the 40% probability level using standard CPK colors.

3. Supra­molecular features

The extended structure of the anhydride I is dominated by C—H⋯O hydrogen bonds (Sutor, 1962[Sutor, D. J. (1962). Nature, 195, 68-69.], 1963[Sutor, D. J. (1963). J. Chem. Soc. pp. 1105-1110.]; Steiner, 1996[Steiner, T. (1996). Crystallogr. Rev. 6, 1-51.]) involving both carbonyl groups as acceptors (Table 1[link], Fig. 5[link]). The DA distances range from 3.1897 (16) to 3.4882 (17) Å with D—H⋯A angles ranging from 119 to 159°; the C9 bond is likely very weak based on its H⋯A distance of 2.73 Å. Combined together, these inter­actions create supra­molecular sheets that lie in the ab plane.

Table 1
Hydrogen-bond geometry (Å, °) for I[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 1.00 2.64 3.4882 (17) 143
C3—H3⋯O2Aii 1.00 2.54 3.2487 (17) 128
C4—H4⋯O2Aii 1.00 2.43 3.1897 (16) 133
C7—H7⋯O1Aiii 0.95 2.56 3.4652 (18) 159
C8A—H8A⋯O1Aiv 1.00 2.59 3.2521 (17) 123
C9—H9⋯O3v 1.00 2.73 3.3409 (17) 119
Symmetry codes: (i) -x+2, -y+1, -z; (ii) x+1, y, z; (iii) -x+1, -y+1, -z; (iv) -x+1, -y+2, -z; (v) x, y+1, z.
[Figure 5]
Figure 5
Depiction of the C—H⋯O hydrogen bonds (blue, dashed lines) present in the crystal of anhydride I, using a ball-and-stick model. For clarity, only those hydrogen atoms involved in an inter­action are shown. Symmetry codes: (i) −x + 2, −y + 1, −z; (ii) x + 1, y, z; (iii) −x + 1, −y + 1, −z; (iv) −x + 1, −y + 2, −z; (v) x, y + 1, z.

In the crystal of the imide II, the mol­ecules are linked by C—H⋯O hydrogen bonds as well as C—H⋯π and C—Br⋯π inter­actions (Table 2[link], Fig. 6[link]). The C—H⋯O hydrogen bond is between C17—H17 of the aromatic ring and O2 of an imide carbonyl group. This hydrogen bond has a D⋯A distance of 3.175 (2) Å with a D—H⋯A angle of 139°. The C—H⋯π inter­action is between C3—H3, which is α to the carbonyl group C1(O1), and the aromatic ring C12–C17. This inter­action has a H⋯Cg distance of 3.801 (2) Å (where Cg is the centroid of the C12–C17 ring), with a C—H⋯Cg angle of 165°. The aromatic ring C12–C17 bears an electron-withdrawing bromine atom, and accepts a lone pair(LP)–π inter­action from the bromine atom of a nearby mol­ecule (Mooibroek, et al., 2008[Mooibroek, T. J., Gamez, P. & Reedijk, J. (2008). CrystEngComm, 10, 1501-1515.]). This LP–π inter­action has a Br⋯Cg distance of 3.5854 (8) Å with a C15—Br1⋯Cg angle of 87.43 (6)°. Dimers of imide II are formed via the Br⋯π inter­actions, and these dimers are linked into supra­molecular sheets that lie along (010) by the C—H⋯O and C—H⋯π inter­actions (Fig. 7[link]).

Table 2
Hydrogen-bond geometry (Å, °) for II[link]

Cg1 is the centroid of the C12–C17 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯O2i 0.95 2.40 3.175 (2) 139
C3—H3⋯Cg1ii 1.00 2.83 3.801 (2) 165
Symmetry codes: (i) x, y-1, z; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 6]
Figure 6
Non-covalent inter­actions present in the crystal of imide II, using a ball-and-stick model. Only those hydrogen atoms involved in an inter­action are shown for clarity. C—H⋯O hydrogen bonds are shown with purple, dashed lines, while C—H⋯π and C—Br⋯π inter­actions are shown with green, dashed lines. Symmetry codes: (i) x, y − 1, z; (ii) −x + [{1\over 2}], y + [{1\over 2}], −z + [{3\over 2}].
[Figure 7]
Figure 7
A view of the packing in the crystal of imide II, as viewed down the b axis. C—H⋯O hydrogen bonds are shown with purple, dashed lines, while C—H⋯π and C—Br⋯π inter­actions are shown with green, dashed lines. For clarity, only those hydrogen atoms involved in a non-covalent inter­action are shown.

4. Database survey

The structure of the anhydride I has been deposited in the Cambridge Structural Database (CSD, Version 5.41, November, 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) as a Private Communication from White & Goh (2014[White, J. M. & Goh, R. Y. W. (2014). Private Communication (refcode HOKRIK). CCDC, Cambridge, England.], refcode HOKRIK). The acquisition temperature for this data set was 130 K, versus 173 K for the structure reported here. Other than this, the structures are nearly identical. A search of the CSD for structures containing the same bi­cyclo­[2.2.2]octene ring system bearing a cyclic anhydride shows 52 hits (including HOKRIK). Of these, an inter­esting structure is FAXPAV (Coxon et al., 1986[Coxon, J. M., O'Connell, M. J. & Steel, P. J. (1986). Acta Cryst. C42, 1773-1777.]), which bears a very complex fused-ring system in the place of the cyclo­propane ring on anhydride I.

A search of the CSD for structures containing a bi­cyclo[2.2.2]octene ring system fused to a cyclic imide resulted in 125 structures related to imide II. Structure COZMAH (Wu et al., 2014[Wu, X., Huang, J., Guo, B., Zhao, L., Liu, Y., Chen, J. & Cao, W. (2014). Adv. Synth. Catal. 356, 3377-3382.]) also bears a p-bromo­benzene ring bonded to the imide nitro­gen atom, but is derivatized with two esters and an indole ring on the octene portion of the ring system. The structure of tecovirimat (e, Fig. 2[link]) has been deposited as SOKVIY (Bailey et al., 2007[Bailey, T. R., Rippin, S. R., Opsitnick, E., Burns, C. J., Pevear, D. C., Collett, M. S., Rhodes, G., Tohan, S., Huggins, J. W., Baker, R. O., Kern, E. R., Keith, K. A., Dai, D., Yang, G., Hruby, D. & Jordan, R. (2007). J. Med. Chem. 50, 1442-1444.]). Finally, structure HARNEV bears two cyclic imide groups on either side of the octene ring system (Song et al., 2012[Song, X.-Z., Qin, C., Guan, W., Song, S.-Y. & Zhang, H.-J. (2012). New J. Chem. 36, 877-882.]).

5. Synthesis and crystallization

Synthesis of the anhydride (I)[link]:

Cyclo­hepta­triene (1.38 g, 15 mmol) and maleic anhydride (1.37 g, 14 mmol) were added to an oven-dried round-bottom flask containing 10 ml of xylene and the mixture was refluxed for 1.5 h. Approximately half of the xylenes were distilled off via short-path distillation and the reaction mixture was left to cool at room temperature. The round-bottom flask was fitted with a stopper and left to recrystallize for 48 h to afford large, cream-colored needles. The product was recrystallized once more by dissolving in 8 ml of xylene: after a week at room temperature, the pure product I was obtained in the form of large colorless crystals (1.13 g, 40%, m.p. = 372–374 K). 1H NMR (400 MHz, chloro­form-d) δ 5.88 (dd, J = 4.8, 3.2 Hz, 2H), 3.46 (dh, J = 6.6, 2.1 Hz, 2H), 3.23 (dd, J = 2.1, 1.6 Hz, 2H), 1.17–1.04 (m, 4H). 13C NMR (101 MHz, chloro­form-d) δ 172.45, 128.55, 45.88, 33.65, 9.56, 5.24.

Synthesis of the imide (II)[link]:

Compound I (0.28 g, 1.47 mmol) and p-bromo­aniline (0.25 g, 1.45 mmol) were added to a vial containing 5 ml of xylene and the mixture was refluxed for 5 min. The mixture was then cooled to room temperature and left for 5 days in a sealed vial. The precipitate was recrystallized from ethanol solution to yield colorless needle-like crystals of II (0.27 g, 52% yield, m.p. = 465–467 K). 1H NMR (400 MHz, chloro­form-d) δ 7.54 (d, J = 8.7 Hz, 1H), 7.06 (d, J = 8.7 Hz, 1H), 5.84 (dd, J = 4.7, 3.4 Hz, 1H), 3.48 (s, 1H), 3.12 (s, 1H), 1.14 (s, 1H), 0.38–0.21 (m, 1H). 13C NMR (101 MHz, chloro­form-d) δ 177.42, 132.34, 130.88, 128.11, 127.92, 122.47, 45.40, 33.90, 9.97, 4.80.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. For both structures, hydrogen atoms bonded to carbon atoms were placed in calculated positions and refined to ride on their parent atoms: C—H = 0.95–1.00 Å with Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

  I II
Crystal data
Chemical formula C11H10O3 C17H14BrNO2
Mr 190.19 344.20
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/n
Temperature (K) 173 173
a, b, c (Å) 11.3538 (3), 7.4062 (2), 20.5398 (5) 12.49907 (16), 6.41302 (8), 17.8772 (2)
β (°) 92.6226 (15) 99.8083 (6)
V3) 1725.35 (8) 1412.04 (3)
Z 8 4
Radiation type Cu Kα Cu Kα
μ (mm−1) 0.88 4.00
Crystal size (mm) 0.53 × 0.32 × 0.22 0.42 × 0.12 × 0.04
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.])
Tmin, Tmax 0.675, 0.754 0.578, 0.753
No. of measured, independent and observed [I > 2σ(I)] reflections 13466, 3353, 3070 23789, 2683, 2441
Rint 0.028 0.039
(sin θ/λ)max−1) 0.618 0.610
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.116, 1.06 0.027, 0.072, 1.04
No. of reflections 3353 2683
No. of parameters 253 190
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.22, −0.40 0.56, −0.48
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]; Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]) and CrystalMaker (Palmer, 2007[Palmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, Oxfordshire, England.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009; Bourhis et al., 2015); software used to prepare material for publication: CrystalMaker (Palmer, 2007).

4-Oxatetracyclo[5.3.2.02,6.08,10]dodec-11-ene-3,5-dione (I) top
Crystal data top
C11H10O3F(000) = 800
Mr = 190.19Dx = 1.464 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 11.3538 (3) ÅCell parameters from 8934 reflections
b = 7.4062 (2) Åθ = 3.9–72.4°
c = 20.5398 (5) ŵ = 0.88 mm1
β = 92.6226 (15)°T = 173 K
V = 1725.35 (8) Å3Chunk, colourless
Z = 80.53 × 0.32 × 0.22 mm
Data collection top
Bruker APEXII CCD
diffractometer
3070 reflections with I > 2σ(I)
φ and ω scansRint = 0.028
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
θmax = 72.4°, θmin = 4.3°
Tmin = 0.675, Tmax = 0.754h = 1413
13466 measured reflectionsk = 99
3353 independent reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0673P)2 + 0.5724P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3353 reflectionsΔρmax = 0.22 e Å3
253 parametersΔρmin = 0.40 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.92952 (11)0.22515 (15)0.01539 (5)0.0378 (3)
O20.91944 (10)0.21601 (15)0.23113 (5)0.0354 (3)
O30.92868 (9)0.18344 (13)0.12312 (5)0.0287 (2)
C10.92625 (12)0.29232 (19)0.06814 (7)0.0249 (3)
C20.92145 (12)0.28818 (19)0.17941 (7)0.0243 (3)
C30.92092 (11)0.48779 (18)0.08716 (6)0.0212 (3)
H30.99310.55210.07340.025*
C40.91806 (11)0.48510 (18)0.16185 (6)0.0206 (3)
H40.98920.54770.18140.025*
C50.80361 (12)0.57992 (19)0.18403 (6)0.0240 (3)
H50.79760.57610.23240.029*
C60.70138 (12)0.4864 (2)0.14922 (7)0.0284 (3)
H60.64000.43000.17170.034*
C70.70364 (12)0.4889 (2)0.08459 (8)0.0288 (3)
H70.64380.43480.05730.035*
C80.80824 (12)0.58391 (19)0.05799 (6)0.0245 (3)
H80.80540.58330.00930.029*
C90.81906 (12)0.77608 (19)0.08545 (7)0.0259 (3)
H90.87820.85750.06590.031*
C100.81589 (12)0.77348 (19)0.15890 (7)0.0255 (3)
H100.87320.85360.18350.031*
C110.71901 (13)0.8646 (2)0.11912 (8)0.0317 (3)
H11C0.71630.99820.11970.038*
H11D0.64100.80460.11590.038*
O1A0.45014 (10)0.77462 (14)0.02985 (5)0.0328 (3)
O2A0.12278 (10)0.77025 (15)0.13936 (6)0.0386 (3)
O3A0.28206 (9)0.73501 (13)0.08039 (5)0.0313 (3)
C1A0.36811 (12)0.84253 (19)0.05447 (6)0.0241 (3)
C2A0.19782 (12)0.8398 (2)0.10974 (7)0.0270 (3)
C3A0.34016 (11)1.03897 (17)0.06434 (6)0.0206 (3)
H3A0.33071.10250.02150.025*
C4A0.22267 (11)1.03737 (18)0.09904 (6)0.0219 (3)
H4A0.15851.09390.07100.026*
C5A0.23788 (12)1.13775 (19)0.16575 (6)0.0239 (3)
H5A0.16341.13730.18990.029*
C6A0.33646 (12)1.04165 (19)0.20315 (6)0.0254 (3)
H6A0.32670.98810.24460.031*
C7A0.43832 (12)1.03759 (19)0.17356 (6)0.0240 (3)
H7A0.50660.97910.19190.029*
C8A0.43686 (11)1.13289 (18)0.10893 (6)0.0216 (3)
H8A0.51581.12890.08930.026*
C9A0.39235 (12)1.32691 (19)0.11555 (7)0.0250 (3)
H9A0.40011.40800.07710.030*
C10A0.27558 (12)1.32973 (19)0.14820 (7)0.0260 (3)
H10A0.21311.41200.12930.031*
C11A0.38257 (13)1.4167 (2)0.18102 (7)0.0307 (3)
H11A0.41951.35540.21960.037*
H11B0.38541.55030.18260.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0524 (7)0.0336 (6)0.0279 (6)0.0065 (5)0.0060 (5)0.0079 (4)
O20.0469 (7)0.0310 (6)0.0285 (5)0.0024 (5)0.0018 (5)0.0078 (4)
O30.0367 (6)0.0208 (5)0.0286 (5)0.0005 (4)0.0026 (4)0.0004 (4)
C10.0235 (6)0.0260 (7)0.0255 (7)0.0018 (5)0.0032 (5)0.0010 (5)
C20.0223 (6)0.0261 (7)0.0246 (7)0.0028 (5)0.0009 (5)0.0001 (5)
C30.0198 (6)0.0226 (6)0.0212 (6)0.0012 (5)0.0027 (5)0.0005 (5)
C40.0186 (6)0.0226 (6)0.0205 (6)0.0031 (5)0.0007 (5)0.0005 (5)
C50.0220 (6)0.0265 (7)0.0238 (6)0.0006 (5)0.0050 (5)0.0031 (5)
C60.0192 (6)0.0274 (7)0.0391 (8)0.0028 (5)0.0066 (6)0.0035 (6)
C70.0210 (7)0.0274 (7)0.0375 (8)0.0006 (5)0.0039 (6)0.0077 (6)
C80.0253 (7)0.0258 (7)0.0220 (6)0.0028 (5)0.0025 (5)0.0014 (5)
C90.0263 (7)0.0232 (7)0.0281 (7)0.0024 (5)0.0008 (5)0.0013 (5)
C100.0245 (7)0.0241 (7)0.0279 (7)0.0000 (5)0.0004 (5)0.0051 (5)
C110.0281 (7)0.0269 (7)0.0398 (8)0.0063 (6)0.0011 (6)0.0046 (6)
O1A0.0345 (6)0.0312 (5)0.0329 (5)0.0046 (4)0.0041 (4)0.0083 (4)
O2A0.0344 (6)0.0365 (6)0.0454 (7)0.0156 (5)0.0066 (5)0.0019 (5)
O3A0.0321 (6)0.0218 (5)0.0399 (6)0.0027 (4)0.0022 (4)0.0014 (4)
C1A0.0268 (7)0.0251 (7)0.0201 (6)0.0015 (5)0.0031 (5)0.0024 (5)
C2A0.0242 (7)0.0278 (7)0.0287 (7)0.0053 (5)0.0024 (5)0.0007 (6)
C3A0.0226 (6)0.0217 (6)0.0175 (6)0.0003 (5)0.0003 (5)0.0014 (5)
C4A0.0188 (6)0.0245 (7)0.0221 (6)0.0008 (5)0.0009 (5)0.0019 (5)
C5A0.0211 (6)0.0275 (7)0.0236 (6)0.0012 (5)0.0050 (5)0.0008 (5)
C6A0.0284 (7)0.0299 (7)0.0180 (6)0.0031 (6)0.0009 (5)0.0014 (5)
C7A0.0237 (6)0.0266 (7)0.0215 (6)0.0004 (5)0.0031 (5)0.0011 (5)
C8A0.0194 (6)0.0239 (7)0.0218 (6)0.0021 (5)0.0031 (5)0.0018 (5)
C9A0.0260 (7)0.0225 (7)0.0267 (7)0.0031 (5)0.0046 (5)0.0005 (5)
C10A0.0261 (7)0.0239 (7)0.0282 (7)0.0029 (5)0.0043 (5)0.0021 (5)
C11A0.0328 (8)0.0265 (7)0.0330 (8)0.0023 (6)0.0037 (6)0.0070 (6)
Geometric parameters (Å, º) top
O1—C11.1943 (18)O1A—C1A1.1913 (17)
O2—C21.1904 (17)O2A—C2A1.1871 (18)
O3—C11.3868 (17)O3A—C1A1.3855 (17)
O3—C21.3978 (16)O3A—C2A1.3905 (18)
C1—C31.5014 (18)C1A—C3A1.5048 (18)
C2—C41.5024 (18)C2A—C4A1.5080 (19)
C3—H31.0000C3A—H3A1.0000
C3—C41.5360 (17)C3A—C4A1.5409 (17)
C3—C81.5596 (18)C3A—C8A1.5607 (17)
C4—H41.0000C4A—H4A1.0000
C4—C51.5631 (17)C4A—C5A1.5616 (18)
C5—H51.0000C5A—H5A1.0000
C5—C61.5040 (19)C5A—C6A1.5068 (19)
C5—C101.5321 (19)C5A—C10A1.5326 (19)
C6—H60.9500C6A—H6A0.9500
C6—C71.329 (2)C6A—C7A1.3312 (19)
C7—H70.9500C7A—H7A0.9500
C7—C81.504 (2)C7A—C8A1.5028 (18)
C8—H81.0000C8A—H8A1.0000
C8—C91.5337 (19)C8A—C9A1.5313 (19)
C9—H91.0000C9A—H9A1.0000
C9—C101.5110 (19)C9A—C10A1.5131 (18)
C9—C111.5066 (19)C9A—C11A1.5091 (19)
C10—H101.0000C10A—H10A1.0000
C10—C111.500 (2)C10A—C11A1.507 (2)
C11—H11C0.9900C11A—H11A0.9900
C11—H11D0.9900C11A—H11B0.9900
C1—O3—C2110.55 (11)C1A—O3A—C2A110.90 (11)
O1—C1—O3119.75 (13)O1A—C1A—O3A119.95 (13)
O1—C1—C3129.86 (13)O1A—C1A—C3A129.73 (13)
O3—C1—C3110.39 (11)O3A—C1A—C3A110.31 (11)
O2—C2—O3119.55 (13)O2A—C2A—O3A120.26 (14)
O2—C2—C4130.45 (13)O2A—C2A—C4A129.74 (14)
O3—C2—C4110.00 (11)O3A—C2A—C4A109.97 (11)
C1—C3—H3110.1C1A—C3A—H3A110.6
C1—C3—C4104.49 (10)C1A—C3A—C4A104.31 (11)
C1—C3—C8112.48 (11)C1A—C3A—C8A111.28 (11)
C4—C3—H3110.1C4A—C3A—H3A110.6
C4—C3—C8109.58 (10)C4A—C3A—C8A109.43 (10)
C8—C3—H3110.1C8A—C3A—H3A110.6
C2—C4—C3104.53 (10)C2A—C4A—C3A104.27 (11)
C2—C4—H4110.0C2A—C4A—H4A110.7
C2—C4—C5112.25 (11)C2A—C4A—C5A110.36 (11)
C3—C4—H4110.0C3A—C4A—H4A110.7
C3—C4—C5109.95 (10)C3A—C4A—C5A109.80 (10)
C5—C4—H4110.0C5A—C4A—H4A110.7
C4—C5—H5111.9C4A—C5A—H5A111.8
C6—C5—C4106.76 (11)C6A—C5A—C4A105.79 (10)
C6—C5—H5111.9C6A—C5A—H5A111.8
C6—C5—C10110.54 (12)C6A—C5A—C10A110.44 (11)
C10—C5—C4103.44 (10)C10A—C5A—C4A104.84 (10)
C10—C5—H5111.9C10A—C5A—H5A111.8
C5—C6—H6122.6C5A—C6A—H6A122.6
C7—C6—C5114.75 (12)C7A—C6A—C5A114.74 (12)
C7—C6—H6122.6C7A—C6A—H6A122.6
C6—C7—H7122.6C6A—C7A—H7A122.6
C6—C7—C8114.89 (12)C6A—C7A—C8A114.71 (12)
C8—C7—H7122.6C8A—C7A—H7A122.6
C3—C8—H8111.8C3A—C8A—H8A111.7
C7—C8—C3107.11 (11)C7A—C8A—C3A106.74 (10)
C7—C8—H8111.8C7A—C8A—H8A111.7
C7—C8—C9110.60 (11)C7A—C8A—C9A110.65 (11)
C9—C8—C3103.41 (10)C9A—C8A—C3A104.13 (10)
C9—C8—H8111.8C9A—C8A—H8A111.7
C8—C9—H9117.1C8A—C9A—H9A116.9
C10—C9—C8110.50 (11)C10A—C9A—C8A110.59 (11)
C10—C9—H9117.1C10A—C9A—H9A116.9
C11—C9—C8121.54 (12)C11A—C9A—C8A122.06 (12)
C11—C9—H9117.1C11A—C9A—H9A116.9
C11—C9—C1059.62 (9)C11A—C9A—C10A59.82 (9)
C5—C10—H10116.9C5A—C10A—H10A117.1
C9—C10—C5110.79 (11)C9A—C10A—C5A110.56 (11)
C9—C10—H10116.9C9A—C10A—H10A117.1
C11—C10—C5121.90 (12)C11A—C10A—C5A121.31 (12)
C11—C10—C960.05 (9)C11A—C10A—C9A59.96 (9)
C11—C10—H10116.9C11A—C10A—H10A117.1
C9—C11—H11C117.7C9A—C11A—H11A117.7
C9—C11—H11D117.7C9A—C11A—H11B117.7
C10—C11—C960.33 (9)C10A—C11A—C9A60.22 (9)
C10—C11—H11C117.7C10A—C11A—H11A117.7
C10—C11—H11D117.7C10A—C11A—H11B117.7
H11C—C11—H11D114.9H11A—C11A—H11B114.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i1.002.643.4882 (17)143
C3—H3···O2Aii1.002.543.2487 (17)128
C4—H4···O2Aii1.002.433.1897 (16)133
C7—H7···O1Aiii0.952.563.4652 (18)159
C8A—H8A···O1Aiv1.002.593.2521 (17)123
C9—H9···O3v1.002.733.3409 (17)119
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y, z; (iii) x+1, y+1, z; (iv) x+1, y+2, z; (v) x, y+1, z.
4-(4-Bromophenyl)-4-azatetracyclo[5.3.2.02,6.08,10]dodec-11-ene-3,5-dione (II) top
Crystal data top
C17H14BrNO2F(000) = 696
Mr = 344.20Dx = 1.619 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 12.49907 (16) ÅCell parameters from 9902 reflections
b = 6.41302 (8) Åθ = 4.7–70.1°
c = 17.8772 (2) ŵ = 4.00 mm1
β = 99.8083 (6)°T = 173 K
V = 1412.04 (3) Å3Needle, colourless
Z = 40.42 × 0.12 × 0.04 mm
Data collection top
Bruker APEXII CCD
diffractometer
2441 reflections with I > 2σ(I)
φ and ω scansRint = 0.039
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
θmax = 70.2°, θmin = 4.0°
Tmin = 0.578, Tmax = 0.753h = 1515
23789 measured reflectionsk = 77
2683 independent reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.072 w = 1/[σ2(Fo2) + (0.033P)2 + 1.1866P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.003
2683 reflectionsΔρmax = 0.56 e Å3
190 parametersΔρmin = 0.48 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.63472 (2)0.24792 (4)0.56752 (2)0.03728 (10)
O10.18672 (12)0.1467 (3)0.72460 (9)0.0360 (4)
O20.19184 (11)0.3903 (2)0.55825 (8)0.0307 (3)
N10.21210 (12)0.1061 (2)0.63812 (8)0.0204 (3)
C10.16094 (14)0.0182 (3)0.69397 (10)0.0237 (4)
C20.16488 (15)0.2941 (3)0.61018 (11)0.0218 (4)
C30.07071 (14)0.1617 (3)0.70770 (10)0.0233 (4)
H30.08460.21020.76160.028*
C40.07607 (14)0.3487 (3)0.65452 (10)0.0229 (4)
H40.09620.47770.68510.028*
C50.03628 (15)0.3789 (3)0.60269 (11)0.0257 (4)
H50.03550.49790.56670.031*
C60.06246 (15)0.1766 (3)0.56169 (11)0.0288 (4)
H60.07530.16700.50790.035*
C70.06639 (15)0.0122 (3)0.60590 (12)0.0280 (4)
H70.08190.12430.58640.034*
C80.04426 (14)0.0588 (3)0.68951 (11)0.0258 (4)
H80.04900.06940.72060.031*
C90.12081 (16)0.2311 (3)0.70832 (12)0.0285 (4)
H90.12120.25890.76330.034*
C100.11491 (16)0.4179 (3)0.65832 (12)0.0300 (4)
H100.11160.55790.68320.036*
C110.21970 (16)0.2988 (4)0.65312 (14)0.0348 (5)
H11A0.24270.21140.60760.042*
H11B0.27970.36520.67410.042*
C120.31028 (14)0.0235 (3)0.61886 (10)0.0209 (4)
C130.40447 (15)0.1405 (3)0.63508 (11)0.0262 (4)
H130.40300.27520.65690.031*
C140.50106 (16)0.0594 (3)0.61918 (11)0.0296 (4)
H140.56620.13830.62990.035*
C150.50157 (15)0.1369 (3)0.58771 (10)0.0254 (4)
C160.40808 (18)0.2541 (3)0.57108 (11)0.0284 (4)
H160.40980.38870.54910.034*
C170.31120 (15)0.1728 (3)0.58690 (11)0.0253 (4)
H170.24610.25160.57580.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03088 (14)0.04690 (17)0.03609 (15)0.01410 (9)0.01146 (10)0.00083 (10)
O10.0294 (7)0.0422 (9)0.0382 (8)0.0087 (6)0.0107 (6)0.0211 (7)
O20.0312 (7)0.0263 (7)0.0371 (8)0.0002 (6)0.0131 (6)0.0095 (6)
N10.0175 (7)0.0233 (8)0.0205 (7)0.0015 (6)0.0031 (6)0.0013 (6)
C10.0184 (8)0.0322 (10)0.0197 (8)0.0015 (7)0.0008 (7)0.0046 (8)
C20.0201 (8)0.0194 (8)0.0252 (9)0.0045 (7)0.0019 (7)0.0007 (7)
C30.0197 (8)0.0319 (10)0.0184 (8)0.0016 (7)0.0034 (7)0.0010 (8)
C40.0221 (9)0.0213 (9)0.0257 (9)0.0033 (7)0.0049 (7)0.0033 (7)
C50.0235 (9)0.0243 (9)0.0295 (9)0.0043 (7)0.0049 (7)0.0054 (8)
C60.0211 (9)0.0397 (11)0.0239 (9)0.0038 (8)0.0010 (7)0.0059 (9)
C70.0180 (8)0.0260 (10)0.0394 (11)0.0015 (7)0.0028 (8)0.0097 (9)
C80.0191 (9)0.0276 (10)0.0315 (10)0.0018 (7)0.0063 (7)0.0049 (8)
C90.0210 (9)0.0346 (11)0.0312 (10)0.0008 (8)0.0083 (8)0.0033 (8)
C100.0241 (9)0.0272 (10)0.0400 (11)0.0023 (8)0.0093 (8)0.0043 (9)
C110.0203 (10)0.0382 (11)0.0465 (12)0.0036 (9)0.0074 (9)0.0021 (10)
C120.0201 (8)0.0247 (9)0.0180 (8)0.0000 (7)0.0037 (7)0.0022 (7)
C130.0248 (9)0.0266 (10)0.0284 (9)0.0035 (8)0.0080 (7)0.0061 (8)
C140.0215 (9)0.0362 (11)0.0322 (10)0.0042 (8)0.0082 (8)0.0057 (9)
C150.0245 (9)0.0315 (10)0.0213 (8)0.0084 (8)0.0071 (7)0.0025 (8)
C160.0358 (11)0.0239 (10)0.0253 (9)0.0045 (8)0.0042 (8)0.0017 (8)
C170.0244 (9)0.0246 (9)0.0259 (9)0.0023 (7)0.0011 (7)0.0013 (8)
Geometric parameters (Å, º) top
Br1—C151.9004 (18)C8—H81.0000
O1—C11.210 (2)C8—C91.536 (3)
O2—C21.209 (2)C9—H91.0000
N1—C11.393 (2)C9—C101.504 (3)
N1—C21.397 (2)C9—C111.508 (3)
N1—C121.432 (2)C10—H101.0000
C1—C31.508 (3)C10—C111.506 (3)
C2—C41.511 (2)C11—H11A0.9900
C3—H31.0000C11—H11B0.9900
C3—C41.539 (3)C12—C131.384 (3)
C3—C81.564 (2)C12—C171.383 (3)
C4—H41.0000C13—H130.9500
C4—C51.557 (3)C13—C141.388 (3)
C5—H51.0000C14—H140.9500
C5—C61.499 (3)C14—C151.379 (3)
C5—C101.533 (3)C15—C161.379 (3)
C6—H60.9500C16—H160.9500
C6—C71.324 (3)C16—C171.391 (3)
C7—H70.9500C17—H170.9500
C7—C81.503 (3)
C1—N1—C2112.82 (15)C9—C8—H8111.8
C1—N1—C12122.65 (15)C8—C9—H9116.8
C2—N1—C12124.12 (15)C10—C9—C8110.33 (16)
O1—C1—N1123.98 (17)C10—C9—H9116.8
O1—C1—C3127.52 (17)C10—C9—C1159.97 (14)
N1—C1—C3108.50 (15)C11—C9—C8122.38 (18)
O2—C2—N1123.97 (17)C11—C9—H9116.8
O2—C2—C4127.59 (17)C5—C10—H10116.9
N1—C2—C4108.43 (15)C9—C10—C5110.92 (16)
C1—C3—H3109.6C9—C10—H10116.9
C1—C3—C4105.22 (14)C9—C10—C1160.14 (14)
C1—C3—C8113.26 (16)C11—C10—C5121.61 (18)
C4—C3—H3109.6C11—C10—H10116.9
C4—C3—C8109.59 (15)C9—C11—H11A117.8
C8—C3—H3109.6C9—C11—H11B117.8
C2—C4—C3104.86 (15)C10—C11—C959.89 (13)
C2—C4—H4109.9C10—C11—H11A117.8
C2—C4—C5112.66 (15)C10—C11—H11B117.8
C3—C4—H4109.9H11A—C11—H11B114.9
C3—C4—C5109.55 (14)C13—C12—N1118.82 (16)
C5—C4—H4109.9C17—C12—N1120.27 (16)
C4—C5—H5111.8C17—C12—C13120.88 (17)
C6—C5—C4106.45 (15)C12—C13—H13120.2
C6—C5—H5111.8C12—C13—C14119.50 (18)
C6—C5—C10110.37 (16)C14—C13—H13120.2
C10—C5—C4104.30 (15)C13—C14—H14120.3
C10—C5—H5111.8C15—C14—C13119.34 (18)
C5—C6—H6122.4C15—C14—H14120.3
C7—C6—C5115.13 (17)C14—C15—Br1118.97 (15)
C7—C6—H6122.4C16—C15—Br1119.49 (15)
C6—C7—H7122.7C16—C15—C14121.54 (18)
C6—C7—C8114.59 (18)C15—C16—H16120.4
C8—C7—H7122.7C15—C16—C17119.14 (18)
C3—C8—H8111.8C17—C16—H16120.4
C7—C8—C3107.32 (15)C12—C17—C16119.60 (18)
C7—C8—H8111.8C12—C17—H17120.2
C7—C8—C9110.18 (16)C16—C17—H17120.2
C9—C8—C3103.63 (15)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C12–C17 ring.
D—H···AD—HH···AD···AD—H···A
C17—H17···O2i0.952.403.175 (2)139
C3—H3···Cg1ii1.002.833.801 (2)165
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y+1/2, z+3/2.
 

Acknowledgements

The authors are grateful to Pfizer, Inc. for the donation of the Varian INOVA 400 F T NMR spectrometer. We thank the MSU Chemistry Department for purchasing/upgrading the CCD-based X-ray diffractometers, and the National Science Foundation for support from the MRI program to purchase the Rigaku Synergy S. Diffractometer (MSU).

Funding information

Funding for this research was provided by: National Science Foundation (grant No. MRI CHE-1725699; grant No. MRI CHE-1919817; grant No. MRI CHE-1919565).

References

First citationAlder, K. & Jacobs, G. (1953). Chem. Ber. 86, 1528–1539.  CrossRef CAS Google Scholar
First citationBailey, T. R., Rippin, S. R., Opsitnick, E., Burns, C. J., Pevear, D. C., Collett, M. S., Rhodes, G., Tohan, S., Huggins, J. W., Baker, R. O., Kern, E. R., Keith, K. A., Dai, D., Yang, G., Hruby, D. & Jordan, R. (2007). J. Med. Chem. 50, 1442–1444.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBirney, D., Lim, T. K., Koh, J. H. P., Pool, B. R. & White, J. M. (2002). J. Am. Chem. Soc. 124, 5091–5099.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBrechbuhler, H. U. & Petitpierre, C. (1975). US Patent 3,993,662.  Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationCoxon, J. M., O'Connell, M. J. & Steel, P. J. (1986). Acta Cryst. C42, 1773–1777.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHughes, D. L. (2019). Org. Process Res. Dev. 23, 1298–1307.  Web of Science CrossRef CAS Google Scholar
First citationKohler, E. P., Tishler, M., Potter, H. & Thompson, H. (1939). J. Am. Chem. Soc. 61, 1057–1061.  CrossRef CAS Google Scholar
First citationMooibroek, T. J., Gamez, P. & Reedijk, J. (2008). CrystEngComm, 10, 1501–1515.  Web of Science CrossRef CAS Google Scholar
First citationPalmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, Oxfordshire, England.  Google Scholar
First citationPool, B. R. & White, J. M. (2000). Org. Lett. 2, 3505–3507.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSong, X.-Z., Qin, C., Guan, W., Song, S.-Y. & Zhang, H.-J. (2012). New J. Chem. 36, 877–882.  Web of Science CSD CrossRef CAS Google Scholar
First citationSteiner, T. (1996). Crystallogr. Rev. 6, 1–51.  CrossRef CAS Google Scholar
First citationSutor, D. J. (1962). Nature, 195, 68–69.  CAS Google Scholar
First citationSutor, D. J. (1963). J. Chem. Soc. pp. 1105–1110.  CrossRef Web of Science Google Scholar
First citationWhite, J. M. & Goh, R. Y. W. (2014). Private Communication (refcode HOKRIK). CCDC, Cambridge, England.  Google Scholar
First citationWu, X., Huang, J., Guo, B., Zhao, L., Liu, Y., Chen, J. & Cao, W. (2014). Adv. Synth. Catal. 356, 3377–3382.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds