research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[(Z)-N-(3-Fluoro­phen­yl)-O-methyl­thio­carbamato-κS](tri­phenyl­phosphane-κP)gold(I): crystal structure, Hirshfeld surface analysis and computational study

CROSSMARK_Color_square_no_text.svg

aResearch Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: edwardt@sunway.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 9 July 2020; accepted 10 July 2020; online 17 July 2020)

The title phosphanegold(I) thiol­ate, C26H22AuFNOPS or [Au(C8H7FNOS)(C18H15P)], has the AuI centre coordinated by phosphane-P [2.2494 (8) Å] and thiol­ate-S [2.3007 (8) Å] atoms to define a close to linear geometry [P—Au—S = 176.10 (3)°]. The thiol­ate ligand is orientated so that the meth­oxy-O atom is directed towards the Au atom, forming an Au⋯O close contact of 2.986 (2) Å. In the crystal, a variety of inter­molecular contacts are discerned with fluoro­benzene-C—H⋯O(meth­oxy) and phenyl-C—H⋯F inter­actions leading to dimeric aggregates. These are assembled into a three-dimensional architecture by phenyl-C—H⋯S(thiol­ate) and phenyl-C—H⋯π(fluorobenzene, phen­yl) inter­actions. Accordingly, the analysis of the calculated Hirshfeld surface shows 30.8% of all contacts are of the type C⋯H/H⋯C but this is less than the H⋯H contacts, at 44.9%. Other significant contributions to the surface come from H⋯F/F⋯H [8.1%], H⋯S/S⋯H [6.9%] and H⋯O/O⋯H [3.2%] contacts. Two major stabilization energies have contributions from the phenyl-C—H⋯π(fluoro­benzene) and fluoro­benzene-C—H⋯C(imine) inter­actions (−37.2 kcal mol−1), and from the fluoro­benzene-C—H⋯F and phenyl-C—H⋯O inter­actions (−34.9 kcal mol−1), the latter leading to the dimeric aggregate.

1. Chemical context

In common with many other phosphanegold(I) thiol­ates (Yeo et al., 2018[Yeo, C. I., Ooi, K. K. & Tiekink, E. R. T. (2018). Molecules, 23, article no. 1410.]), mol­ecules of the general formula R3PAu[SC(OR′)=NAr] have proven to exhibit anti-cancer potential (Ooi et al., 2017[Ooi, K. K., Yeo, C. I., Mahandaran, T., Ang, K. P., Akim, A. M., Cheah, Y.-K., Seng, H.-L. & Tiekink, E. R. T. (2017). J. Inorg. Biochem. 166, 173-181.]). Complimenting this activity is anti-bacterial potential against Gram-positive bacteria based on in vitro assays and time-kill profiles (Yeo et al., 2013[Yeo, C. I., Sim, J.-H., Khoo, C.-H., Goh, Z.-J., Ang, K.-P., Cheah, Y.-K., Fairuz, Z. A., Halim, S. N. B. A., Ng, S. W., Seng, H.-L. & Tiekink, E. R. T. (2013). Gold Bull. 46, 145-152.]) but not anti-amoebic effects, i.e. against Acanthamoeba castellanii (Siddiqui et al., 2017[Siddiqui, R., Abjani, F., Yeo, C. I., Tiekink, E. R. T. & Khan, N. A. (2017). J. Neg. Res. Biomed. 16 article no. 6.]). In keeping with suggestions that the incorporation of fluorine atoms into mol­ecules can enhance their pharmaceutical utility (Müller et al., 2007[Müller, K., Faeh, C. & Diederich, F. (2007). Science, 317, 1881-1886.]; Meanwell, 2018[Meanwell, N. A. (2018). J. Med. Chem. 61, 5822-5880.]), it was thought of inter­est to synthesize fluoro analogues of R3PAu[SC(OR′)=NAr].

[Scheme 1]

Herein, the compound with R = Ph, R′ = Me and Ar = 3-fluoro­benzene, (I)[link], is described: synthesis, spectroscopic characterization, crystal structure determination, analysis of the calculated Hirshfeld surfaces and inter­action energies.

2. Structural commentary

The mol­ecular structure of (I)[link], Fig. 1[link], features a linearly coordinated AuI centre defined by phosphane-P1 [2.2494 (8) Å] and thiol­ate-S1 [2.3007 (8) Å] atoms. The deviation of the P1—Au—S1 angle of 176.10 (3)° from the ideal 180° is related to the close approach of the O1 atom, i.e. Au⋯O1 = 2.986 (2) Å, as the O1 atom is directed towards the gold atom. The elongation of the C1—S1 bond to 1.762 (3) Å and the shortening of the C1—N1 bond to 1.262 (4) Å with respect to the comparable bonds in the neutral thio­carbamide mol­ecules, i.e. S=C(OMe)N(H)Ar (Ho et al., 2005[Ho, S. Y., Bettens, R. P. A., Dakternieks, D., Duthie, A. & Tiekink, E. R. T. (2005). CrystEngComm, 7, 682-689.]), i.e. ca 1.66 and 1.34 Å, respectively, are consistent with the formation of thiol­ate and imine bonds, respectively.

[Figure 1]
Figure 1
The mol­ecular structures of (I)[link] showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.

The overall mol­ecular conformation of (I)[link] is as usually found in mol­ecules formulated as R3PAu[SC(OR′)=NAr]. However, a less common form is known whereby the N-bound aryl ring is orientated towards the gold atom rather than the alk­oxy-oxygen atom (Kuan et al., 2008[Kuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548-564.]). So, rather than an intra­molecular Au⋯O contact, an intra­molecular Au⋯π contact is formed. The observation of both forms in Ph3PAu[SC(OEt)=NPh], i.e. with Au⋯O (Hall & Tiekink, 1993[Hall, V. J. & Tiekink, E. R. T. (1993). Z. Kristallogr. Cryst. Mater. 203, 313-315.]) or Au⋯π (Yeo et al., 2016[Yeo, C. I., Tan, S. L., Otero-de-la-Roza, A. & Tiekink, E. R. T. (2016). Z. Kristallogr. Cryst. Mater. 231, 653-661.]), suggests the energy difference between the conformations is relatively small. In related binuclear species, DFT calculations suggest that a Au⋯π inter­action is about 6 kcal mol−1 more stable than a Au⋯O contact (Yeo et al., 2015[Yeo, C. I., Khoo, C.-H., Chu, W.-C., Chen, B.-J., Chu, P.-L., Sim, J.-H., Cheah, Y.-K., Ahmad, J., Halim, S. N. A., Seng, H.-L., Ng, S., Otero-de-la-Roza, A. & Tiekink, E. R. T. (2015). RSC Adv. 5, 41401-41411.]).

3. Supra­molecular features

Several directional inter­molecular points of contact between mol­ecules are noted in the extended structure of (I)[link]; see Table 1[link] for a listing of the geometric parameters characterizing these. Centrosymmetrically related mol­ecules are connected via pairwise fluoro­benzene-C—H⋯O1 and phenyl-C—H⋯F1 contacts Fig. 2[link](a). The dimeric aggregates are connected into a three-dimensional architecture by phenyl-C—H⋯S1 inter­actions, with the phenyl-H atom involved in the latter inter­action, i.e. H13, also participating in a C—H⋯π(fluoro­benzene) inter­action and so may be considered bifurcated. The two remaining contacts are of the type phenyl-C—H⋯π(fluoro­benzene, phen­yl) so the fluoro­benzene ring accepts two contacts, one to either side of the ring. A view of the unit-cell contents is shown in Fig. 2[link](b).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the (C2–C7) and (C11–C16) rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.95 2.42 3.269 (3) 148
C36—H36⋯F1i 0.95 2.51 3.218 (4) 131
C13—H13⋯S1ii 0.95 2.83 3.519 (3) 130
C13—H13⋯Cg1ii 0.95 2.74 3.500 (3) 137
C22—H22⋯Cg1iii 0.95 2.63 3.397 (3) 138
C24—H24⋯Cg2iv 0.95 2.80 3.552 (3) 137
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x, -y+1, -z+1; (iv) x-1, y, z.
[Figure 2]
Figure 2
Mol­ecular packing in the crystal of (I)[link]: (a) the two-mol­ecule aggregate sustained by fluoro­benzene-C—H⋯O and phenyl-C—H⋯F contacts shown as blue and green dashed lines, respectively (non-participating H atoms are omitted) and (b) a view of the unit-cell contents down the a axis with phenyl-C—H⋯S and phenyl-C—H⋯π(fluoro­benzene, phen­yl) inter­actions shown as orange and purple dashed lines, respectively.

4. Hirshfeld surface analysis

In order to understand further the inter­actions operating in the mol­ecular packing of (I)[link], the Hirshfeld surfaces mapped over normalized contact distance dnorm (McKinnon et al., 2004[McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627-668.]) and two-dimensional fingerprint plots (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]) for (I)[link] were generated using Crystal Explorer 17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.]) following literature procedures (Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]). The bright-red spots near the fluoro­benzene-H3 and meth­oxy-O1 atoms on the Hirshfeld surface mapped over dnorm in Fig. 3[link], correspond to the fluoro­benzene-C3—H3⋯O1 contacts. These contacts are associated with phenyl-C36—H36⋯F1 contacts, which appear as faint red spots in Fig. 3[link], being ∼0.24 Å shorter than the respective sums of their van der Waals radii, Table 2[link]. The phenyl-C13—H13⋯S1 inter­action is observed as faint red spots on the dnorm surface in Fig. 4[link](a), where the cooperative phenyl-C13—H13⋯π(C2–C7) inter­action is shown as a distinctive orange `pothole' on the shape-index-mapped Hirshfeld surface in Fig. 4[link](b). Although the phenyl-C22—H22⋯π(C2–C7) inter­action was not manifested on the Hirshfeld surface mapped over dnorm, this inter­action shows up as blue `bump' and orange `pothole' near the H22 atom and Cg1(C2–C7) centroid, respectively, in Fig. 5[link](a). Simultaneously, a fluoro­benzene-C7—H7⋯C1(imine) contact, Table 2[link], is observed through faint red spots near atoms C1 and H7 on the dnorm surface in Fig. 5[link](b). The presence of the phenyl-C24—H24⋯π(C11–C16) contact is evidenced through faint red spots in Fig. 6[link](a) and the orange `pothole' in Fig. 6[link](b) on the dnorm and shape-index mapped Hirshfeld surface, respectively. In addition to the C—H⋯π contacts listed in Table 1[link], weak phenyl-C32—H32⋯π(C11–C16) and phenyl-C15—H15⋯π(C21–C26) contacts, Table 2[link], are observed as an orange `hollow' on the Hirshfeld surface mapped over shape-index property in Fig. 7[link].

Table 2
A summary of short inter­atomic contacts (Å) for (I)a

Contact Distance Symmetry operation
C3—H3⋯O1b 2.31 x + 1, −y + 1, −z + 1
C36—H36⋯F1b 2.43 x + 1, −y + 1, −z + 1
C13—H13⋯S1b 2.74 x + [{1\over 2}], y − [{1\over 2}], −z + [{1\over 2}]
C7—H7⋯C1 2.66 x, −y + 1, −z + 1
H8C⋯H33 2.31 x + [{1\over 2}], y + [{1\over 2}], −z + [{3\over 2}]
C15—H15⋯Cg(C21–C26) 3.23 x, −y, −z + 1
C32—H32⋯Cg(C11–C16) 3.22 x, −y, −z + 1
Notes: (a) The inter­atomic distances are calculated in Crystal Explorer 17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.]) whereby the X—H bond lengths are adjusted to their neutron values; (b) these inter­actions correspond to those discussed above in Supra­molecular features.
[Figure 3]
Figure 3
Views of the Hirshfeld surface for (I)[link] mapped over dnorm in the range −0.222 to +1.382 arbitrary units, highlighting C—H⋯O/F inter­actions.
[Figure 4]
Figure 4
Views of the Hirshfeld surface mapped for (I)[link] over (a) dnorm in the range of −0.222 to +1.382 arbitrary units and (b) the shape-index property. The C—H⋯S and C—H⋯π inter­action are highlighted within red circles.
[Figure 5]
Figure 5
Views of the Hirshfeld surface mapped for (I)[link] over (a) the shape-index property and (b) dnorm in the range of −0.222 to +1.382 arbitrary units.
[Figure 6]
Figure 6
Views of the Hirshfeld surface mapped for (I)[link] over (a) dnorm in the range of −0.222 to +1.382 arbitrary units and (b) the shape-index property, each highlighting the phenyl-C24—H24⋯π(C11–C16) inter­action.
[Figure 7]
Figure 7
A view of the Hirshfeld surface mapped for (I)[link] over the shape-index property highlighting weak C15—H15⋯π(C21–C26) and C32—H32⋯π(C11–C16) inter­actions.

The overall two-dimensional fingerprint plot of (I)[link] is shown in Fig. 8[link](a), and those delineated into H⋯H, H⋯C/C⋯H, H⋯F/F⋯H, H⋯S/S⋯H and H⋯O/O⋯H contacts are shown in Fig. 8[link](b)–(f), respectively. The percentage contributions for the different inter­atomic contacts to the Hirshfeld surface are summarized in Table 3[link]. The H⋯H contacts are the most prominent of all contacts and contribute 44.9% to the entire surface. The delineated fingerprint plot in Fig. 8[link](b) features a beak-shaped peak tipped at de + di ∼2.3 Å. This tip corresponds to a methyl-H8C⋯H33(phen­yl) contact and has a distance 0.1 Å shorter than the sum of their van de Waals radii, Table 2[link]. Consistent with the many C—H⋯π inter­actions evident in the mol­ecular packing, H⋯C/C⋯H contacts contribute 30.8% to the total surface contacts. The H⋯C/C⋯H contacts shows a distinctive feature in the fingerprint plot of Fig. 8[link](c) with two symmetric spikes at de + di ∼2.4 Å. The tips of pseudo-mirrored sharp spikes at de + di ∼2.4 Å represent the shortest H⋯F/F⋯H contacts (8.1%), Fig. 8[link](d), and correspond to the phenyl-C36—H36⋯F1 contact in Table 1[link]. While the C—H⋯O1 and C—H⋯S1 inter­actions are reflected through two sharp-symmetric wings at de + di ∼2.7 and ∼2.5 Å, respectively, Fig. 8[link](e) and (f), these types of contacts only contribute 6.9 and 3.2%, respectively, to the total inter­atomic contacts. The accumulated contribution of the remaining six different inter­atomic contacts is around 6.0% and these do not have a significant influence on the mol­ecular packing.

Table 3
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for (I)

Contact Percentage contribution
H⋯H 44.9
H⋯C/C⋯H 30.8
H⋯F/F⋯H 8.1
H⋯S/S⋯H 6.9
H⋯O/O⋯H 3.2
Others 6.1
[Figure 8]
Figure 8
(a) The overall two-dimensional fingerprint plots for (I)[link], and those delineated into (b) H⋯O/O⋯H, (c) H⋯C/C⋯H, (d) H⋯F/F⋯H, (e) H⋯S/S⋯H and (f) H⋯O/O⋯H contacts, with the percentage contributions specified within each plot.

5. Computational chemistry

The inter­action energies in the crystal of (I)[link] were calculated based on the procedures reported previously (Yusof et al., 2017[Yusof, E. N. M., Tahir, M. I. M., Ravoof, T. B. S. A., Tan, S. L. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 543-549.]). Briefly, the corresponding pairwise mol­ecules were subjected to the calculation via the long-range corrected ωB97XD functional combining the D2 version of Grimme's dispersion model (Chai & Head-Gordon, 2008[Chai, J. D. & Head-Gordon, M. (2008). Phys. Chem. Chem. Phys. 10, 6615-6620.]), with Pople's 6-31+G(d,p) basis set (Petersson et al., 1988[Petersson, G. A., Bennett, A., Tensfeldt, T. G., Al-Laham, M. A., Shirley, W. A. & Mantzaris, J. (1988). J. Chem. Phys. 89, 2193-2218.]; Petersson & Al-Laham, 1991[Petersson, G. A. & Al-Laham, M. A. (1991). J. Chem. Phys. 94, 6081-6090.]) comprising the polarization and diffuse functions being employed for C, H, N, O, F, P and S while the effective core potential LANL2DZ (Hay & Wadt, 1985[Hay, P. J. & Wadt, W. R. (1985). J. Chem. Phys. 82, 270-283.]) was applied for Au. Counterpoise methods (Boys & Bernardi, 1970[Boys, S. F. & Bernardi, F. (1970). Mol. Phys. 19, 553-566.]; Simon et al., 1996[Simon, S., Duran, M. & Dannenberg, J. J. (1996). J. Chem. Phys. 105, 11024-11031.]) were applied to correct for basis set superposition error (BSSE) in the obtained energies. The BSSE corrected inter­action energies (E) are listed in Table 4[link].

Table 4
A summary of inter­action energies (kcal mol−1) calculated for (I)

Contact EBSSEint Symmetry operation
C22—H22⋯π(C2–C7) (×2) +    
C7—H7⋯C1 (×2) −37.2 x, −y + 1, −z + 1
C36—H36⋯F1 (×2) +    
C3—H3⋯O1 (×2) −34.9 x + 1, −y + 1, −z + 1
C32—H32⋯π(C11–C16) (×2) +    
C15—H15⋯π(C21–C26) (×2) −15.6 x, −y, −z + 1
C13—H13⋯π(C2–C7) +    
C13—H13⋯S1 −8.9 x + [{1\over 2}], y − [{1\over 2}], −z + [{1\over 2}]
C24—H24⋯π(C11–C16) −5.4 x − 1, y, z

The greatest stabilization energy arises from the phenyl-C22—H22⋯π(C2–C7) and fluoro­benzene-C7—H7⋯C1(imine) inter­actions (−37.2 kcal mol−1). This is followed by the phenyl-C36—H36⋯F1 and phenyl-C3—H3⋯O1 inter­actions (−34.9 kcal mol−1), which lead to the dimeric aggregate in Fig. 2[link](a). The other directional contacts outlined in Supra­molecular features contribute minor stabilization energies to the mol­ecular packing (−8.9 + −5.46 kcal mol−1) while the pairwise weak phenyl-C15—H15⋯π(C21–C26) and phenyl-C32—H32⋯π(C11–C16) inter­actions, which were identified through the Hirshfeld surface analysis, have a greater stabilization energy (−15.6 kcal mol−1).

6. Database survey

There are several literature precedents for (I)[link], i.e. mol­ecules of the general formula Ph3PAu[SC(OMe)=NC6H4Y-3]. Selected geometric parameters for these are given in Table 5[link]. To a first approximation, the mol­ecules adopt similar conformations and each features a short intra­molecular Au⋯O inter­action. This being stated, the two overlay diagrams in Fig. 9[link] indicate differences in the relative dispositions of the terminal arene rings, as reflected in the differences in the dihedral angles between the planes through the CNOS and C6 residues, which vary by up to nearly 15°. Finally, there is an isostructural relationship between (I)[link] and the monoclinic form of the Y = Cl compound (Yeo et al., 2016[Yeo, C. I., Tan, S. L., Otero-de-la-Roza, A. & Tiekink, E. R. T. (2016). Z. Kristallogr. Cryst. Mater. 231, 653-661.]).

Table 5
A summary of key geometric parameters (Å, °) for structures related to (I)

Y Au—S Au—P P—Au—S Au⋯O CNOS/C6 REFCODE Ref.
H 2.3005 (14) 2.2578 (12) 177.72 (4) 3.045 (4) 87.18 (18) HADZAN Hall & Tiekink (1993[Hall, V. J. & Tiekink, E. R. T. (1993). Z. Kristallogr. Cryst. Mater. 203, 313-315.])
Ha 2.3102 (14) 2.2613 (12) 175.96 (5) 3.140 (3) 78.4 (2) COCRUI Kuan et al. (2008[Kuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548-564.])
Me 2.2968 (15) 2.2479 (11) 175.12 (4) 2.954 (3) 74.69 (16) COCROC Kuan et al. (2008[Kuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548-564.])
Clb 2.2903 (17) 2.2416 (14) 174.61 (5) 2.988 (3) 75.01 (14) VUYKOQ Tadbuppa & Tiekink (2010[Tadbuppa, P. P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, m664.])
Clc 2.3071 (15) 2.2535 (15) 175.62 (5) 3.052 (3) 73.95 (16) VUYKOQ01 Yeo et al. (2016[Yeo, C. I., Tan, S. L., Otero-de-la-Roza, A. & Tiekink, E. R. T. (2016). Z. Kristallogr. Cryst. Mater. 231, 653-661.])
F 2.3007 (8) 2.2494 (8) 176.10 (3) 2.986 (2) 78.73 (9) This work
Notes: (a) chloro­form solvate; (b) P[\overline{1}] polymorph; (c) P21/c polymorph.
[Figure 9]
Figure 9
Overlay diagram for (I)[link] (red image) and Ph3PAu[SC(OMe)=NC6H4Y-3] for Y = H (green), H (chloro­form solvate, aqua), Me (blue), Cl (triclinic form, pink) and Cl (monoclinic form, yellow). The mol­ecules have been overlapped so the Au, S1 and C1 atoms are coincident.

7. Synthesis and crystallization

All chemicals and solvents were used as sourced without further purification. Melting points were determined on a Biobase automatic melting point apparatus MP450 (Jinan, Shandong Province, China). 1H and 13C{1H} NMR spectra were recorded in CDCl3 solution on a Bruker Ascend 400 MHz NMR spectrometer (Billerica, MA, USA) with chemical shifts relative to tetra­methyl­silane; the 31P{1H} NMR spectrum was recorded in CDCl3 solution on the same instrument but with the chemical shift recorded relative to 85% aqueous H3PO4 as the external reference. IR spectra were measured on a Bruker Vertex 70v FTIR spectrophotometer (Billerica, MA, USA) from 4000 to 400 cm−1. Elemental analyses were performed on a Leco TruSpec MicroCHN Elemental Analyser (St Joseph, MI, USA).

The thiol precursor, LH, was prepared from the reaction of 3-fluoro­phenyl iso­thio­cyanate (Sigma–Aldrich, St. Louis, MO, USA; 2.50 mmol, 0.38 g) and MeOH (Merck, Kenilworth, NJ, USA; 100 ml) in the presence of NaOH (Merck, Kenilworth, NJ, USA; 2.50 mmol, 0.10 g) followed by the addition of excess 1 M HCl. The resulting mixture was extracted using chloro­form, yielding colourless crystals after 3 weeks standing. Yield: 0.421 g (91%), m.p. 334.0–334.5 K. Analysis calculated for C8H8FNOS: C, 51.88; H, 4.35; N, 7.56%. Found: C, 51.49; H, 4.46; N, 7.42%. IR (cm−1): 3241 (br) ν(N—H), 1438 (s) ν(C—N), 1150 (s) ν(C—O), 1048 (s) ν (C=S). 1H NMR (400 MHz, CDCl3, 298 K): δ 8.88 (s, br, 1H, NH), 7.29–6.87 (m, 4H, aryl-H), 4.15 (s, 3H, OCH3) ppm. 13C{1H} NMR (400 MHz, CDCl3, 298 K): δ 189.4 (Cq), 162.8 (d, aryl-C3, 1JCF = 245.80 Hz), 138.5 (aryl-C1), 130.2 (d, aryl-C5, 3JCF = 9.25 Hz), 116.8 (aryl-C6), 112.2 (d, aryl-C4, 2JCF = 21.25 Hz), 109.1 (aryl-C2), 58.9 (OCH3) ppm.

The Ph3PAuCl precursor was prepared from the reduction of KAuCl4 using sodium sulfite, followed by the addition of a stoichiometric amount of tri­phenyl­phosphane. The precipitate was used as isolated.

NaOH (Merck, Kenilworth, NJ, USA; 0.50 mmol, 0.020 g) in water (5 ml) was added to a suspension of Ph3PAuCl (0.50 mmol, 0.247 g) in aceto­nitrile (20 ml), LH (0.50 mmol, 0.093 g) in aceto­nitrile (20 ml) was added and the solution was stirred for 3 h. The solution was left for slow evaporation at room temperature, yielding colourless crystals after 2 weeks. Yield: 0.273 g (85%), m.p. 408.0–408.5 K. Analysis calculated for C26H22AuFNOPS: C, 48.53; H, 3.45; N, 2.18%. Found: C, 48.73; H, 3.56; N, 1.97%. IR (cm−1): 1575 (s) ν(C=N), 1122 (s) ν(C—O), 1100 (s) ν(C—S). 1H NMR (400 MHz, CDCl3, 298 K): δ 7.55–7.43 (m, br, 15H, Ph3P), 6.95–6.89 (m, br, 1H, aryl-H5), 6.63–6.61 (m, br, 2H, aryl-H2,6), 6.39–6.36 (m, br, 1H, aryl-H4), 3.90 (s, 3H, OCH3) ppm. 13C{1H} NMR (400 MHz, CDCl3, 298 K): δ 165.4 (Cq), 163.2 (d, aryl-C3, 1JCF = 244.45 Hz), 152.8 (d, aryl-C1, 3JCF = 9.93 Hz), 134.3 (d, 2-PC6H5, 3JCP = 13.86 Hz), 131.7 (d, 4-PC6H5, 4JCP = 2.30 Hz), 129.7 (d, aryl-C5, 3JCF = 9.62 Hz), 129.3 (d, 3-PC6H5, 1JCP = 57.41 Hz), 129.1 (d, 2-PC6H5, 2JCP = 11.64 Hz), 117.8 (d, aryl-C6, 4JCF = 2.57 Hz), 109.3 (d, aryl-C2, 2JCF = 21.95 Hz), 109.1 (d, aryl-C4, 2JCF = 21.27 Hz), 55.5 (OCH3) ppm. 31P{1H} NMR (400 MHz, CDCl3, 298 K): δ 38.8 ppm.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 6[link]. The carbon-bound H atoms were placed in calculated positions (C—H = 0.95–0.98 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) set to 1.2–1.5Ueq(C). The maximum and minimum electron density peaks of 1.17 and 1.22 e Å−3, respectively, are located 0.97 and 0.69 Å, respectively, from the Au atom.

Table 6
Experimental details

Crystal data
Chemical formula [Au(C8H7FNOS)(C18H15P)]
Mr 643.44
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 8.9311 (3), 17.2458 (6), 15.6857 (5)
β (°) 99.361 (3)
V3) 2383.80 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 6.35
Crystal size (mm) 0.30 × 0.30 × 0.30
 
Data collection
Diffractometer Agilent Technologies SuperNova Dual diffractometer with Atlas detector
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.])
Tmin, Tmax 0.252, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 25800, 5429, 5017
Rint 0.045
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.050, 1.08
No. of reflections 5429
No. of parameters 290
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.17, −1.22
Computer programs: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]), SHELXS97 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

[(Z)-N-(3-Fluorophenyl)-O-methylthiocarbamato-κS](triphenylphosphane-κP)gold(I) top
Crystal data top
[Au(C8H7FNOS)(C18H15P)]F(000) = 1248
Mr = 643.44Dx = 1.793 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.9311 (3) ÅCell parameters from 12325 reflections
b = 17.2458 (6) Åθ = 3.9–29.4°
c = 15.6857 (5) ŵ = 6.35 mm1
β = 99.361 (3)°T = 100 K
V = 2383.80 (14) Å3Block, colourless
Z = 40.30 × 0.30 × 0.30 mm
Data collection top
Agilent Technologies SuperNova Dual
diffractometer with Atlas detector
5429 independent reflections
Radiation source: SuperNova (Mo) X-ray Source5017 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.045
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.8°
ω scanh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 1922
Tmin = 0.252, Tmax = 1.000l = 2020
25800 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.050H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.019P)2 + 0.9042P]
where P = (Fo2 + 2Fc2)/3
5429 reflections(Δ/σ)max = 0.002
290 parametersΔρmax = 1.17 e Å3
0 restraintsΔρmin = 1.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au0.19089 (2)0.29511 (2)0.43142 (2)0.01422 (5)
S10.25242 (9)0.42032 (5)0.40015 (4)0.02170 (17)
P10.11477 (8)0.17558 (4)0.46267 (4)0.01214 (15)
F10.3783 (2)0.74491 (12)0.34520 (12)0.0342 (5)
O10.3182 (2)0.40907 (13)0.56743 (11)0.0174 (4)
N10.2716 (3)0.53368 (14)0.52214 (14)0.0166 (5)
C10.2802 (3)0.46274 (18)0.50373 (17)0.0166 (6)
C20.2227 (3)0.58863 (18)0.45714 (17)0.0168 (6)
C30.3275 (3)0.63954 (18)0.43078 (18)0.0196 (6)
H30.4326290.6353220.4531680.023*
C40.2749 (4)0.69595 (18)0.3716 (2)0.0220 (7)
C50.1236 (4)0.70522 (18)0.3365 (2)0.0224 (7)
H50.0917050.7446060.2952360.027*
C60.0213 (3)0.65520 (19)0.36383 (18)0.0214 (7)
H60.0836640.6604870.3414750.026*
C70.0685 (3)0.59706 (18)0.42351 (18)0.0200 (6)
H70.0039070.5629990.4415100.024*
C80.3549 (4)0.4400 (2)0.65366 (18)0.0259 (7)
H8A0.3829560.3974370.6945990.039*
H8B0.2666090.4673330.6686200.039*
H8C0.4402460.4761080.6564120.039*
C110.2043 (3)0.09645 (17)0.41333 (16)0.0137 (6)
C120.2005 (3)0.09928 (18)0.32403 (16)0.0157 (6)
H120.1543290.1419570.2915780.019*
C130.2641 (3)0.03972 (18)0.28306 (18)0.0186 (6)
H130.2611790.0415300.2222760.022*
C140.3322 (3)0.02258 (18)0.32988 (18)0.0197 (6)
H140.3750620.0635430.3012760.024*
C150.3376 (3)0.02491 (18)0.41910 (18)0.0198 (6)
H150.3843660.0674880.4514880.024*
C160.2747 (3)0.03502 (18)0.46069 (17)0.0165 (6)
H160.2799280.0338670.5216600.020*
C210.0875 (3)0.16265 (17)0.42616 (16)0.0139 (6)
C220.1844 (3)0.22366 (19)0.43861 (18)0.0190 (6)
H220.1441290.2700540.4658620.023*
C230.3395 (4)0.2166 (2)0.4112 (2)0.0233 (7)
H230.4056160.2578360.4202610.028*
C240.3976 (3)0.1491 (2)0.37058 (18)0.0220 (7)
H240.5037540.1442480.3517650.026*
C250.3024 (3)0.08884 (19)0.35728 (17)0.0197 (6)
H250.3431720.0430870.3287360.024*
C260.1474 (3)0.09489 (18)0.38545 (16)0.0161 (6)
H260.0822020.0530350.3770650.019*
C310.1488 (3)0.15679 (17)0.57834 (16)0.0140 (6)
C320.0449 (3)0.11807 (17)0.61907 (17)0.0177 (6)
H320.0478920.1003920.5865160.021*
C330.0759 (3)0.10496 (18)0.70764 (17)0.0206 (6)
H330.0041610.0784540.7355680.025*
C340.2111 (4)0.13046 (19)0.75517 (18)0.0255 (7)
H340.2327320.1210700.8156050.031*
C350.3144 (4)0.1695 (2)0.71456 (19)0.0274 (8)
H350.4072580.1868510.7473360.033*
C360.2843 (4)0.1838 (2)0.62661 (19)0.0232 (7)
H360.3550460.2117650.5992820.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au0.01968 (7)0.01105 (8)0.01111 (7)0.00252 (4)0.00000 (4)0.00008 (4)
S10.0393 (5)0.0135 (4)0.0121 (3)0.0044 (3)0.0039 (3)0.0002 (3)
P10.0144 (3)0.0121 (4)0.0093 (3)0.0020 (3)0.0002 (3)0.0002 (3)
F10.0338 (11)0.0293 (12)0.0403 (11)0.0116 (9)0.0089 (9)0.0050 (9)
O10.0231 (11)0.0158 (12)0.0122 (10)0.0007 (8)0.0002 (8)0.0017 (8)
N10.0174 (12)0.0141 (14)0.0176 (12)0.0003 (10)0.0005 (9)0.0050 (10)
C10.0123 (13)0.0215 (18)0.0161 (14)0.0016 (12)0.0024 (11)0.0005 (12)
C20.0187 (14)0.0165 (17)0.0154 (13)0.0013 (12)0.0029 (11)0.0048 (12)
C30.0174 (15)0.0193 (18)0.0208 (15)0.0017 (12)0.0001 (12)0.0085 (13)
C40.0259 (17)0.0181 (18)0.0239 (16)0.0059 (13)0.0097 (13)0.0038 (13)
C50.0287 (18)0.0176 (18)0.0201 (16)0.0058 (13)0.0018 (13)0.0018 (12)
C60.0168 (15)0.0229 (19)0.0231 (15)0.0057 (13)0.0009 (12)0.0043 (13)
C70.0159 (15)0.0204 (18)0.0238 (15)0.0006 (12)0.0039 (12)0.0021 (13)
C80.0304 (18)0.032 (2)0.0130 (14)0.0037 (15)0.0039 (12)0.0030 (13)
C110.0150 (14)0.0132 (16)0.0121 (12)0.0042 (11)0.0002 (10)0.0028 (11)
C120.0176 (14)0.0169 (17)0.0119 (13)0.0014 (12)0.0000 (10)0.0010 (11)
C130.0193 (15)0.0225 (18)0.0137 (13)0.0038 (12)0.0022 (11)0.0046 (12)
C140.0171 (15)0.0193 (18)0.0233 (15)0.0007 (12)0.0050 (12)0.0091 (13)
C150.0202 (15)0.0161 (17)0.0219 (15)0.0021 (12)0.0002 (12)0.0015 (12)
C160.0182 (14)0.0179 (17)0.0135 (13)0.0018 (12)0.0026 (11)0.0013 (12)
C210.0155 (14)0.0192 (17)0.0068 (12)0.0026 (11)0.0013 (10)0.0020 (11)
C220.0192 (15)0.0182 (17)0.0186 (15)0.0017 (12)0.0002 (12)0.0039 (12)
C230.0192 (15)0.027 (2)0.0227 (15)0.0059 (13)0.0008 (12)0.0003 (14)
C240.0157 (15)0.034 (2)0.0151 (14)0.0024 (13)0.0010 (11)0.0014 (13)
C250.0227 (16)0.0212 (18)0.0141 (14)0.0094 (13)0.0007 (11)0.0019 (12)
C260.0174 (14)0.0169 (17)0.0135 (13)0.0018 (12)0.0007 (11)0.0000 (12)
C310.0186 (14)0.0114 (16)0.0111 (13)0.0008 (11)0.0006 (10)0.0028 (11)
C320.0202 (15)0.0146 (16)0.0175 (14)0.0008 (12)0.0006 (11)0.0005 (12)
C330.0312 (17)0.0159 (17)0.0153 (14)0.0003 (13)0.0051 (12)0.0028 (12)
C340.042 (2)0.0215 (19)0.0117 (14)0.0042 (15)0.0012 (13)0.0003 (13)
C350.0310 (18)0.031 (2)0.0163 (15)0.0063 (15)0.0088 (13)0.0016 (14)
C360.0239 (16)0.0272 (19)0.0181 (15)0.0089 (14)0.0017 (12)0.0048 (14)
Geometric parameters (Å, º) top
Au—P12.2494 (8)C13—H130.9500
Au—S12.3007 (8)C14—C151.393 (4)
S1—C11.762 (3)C14—H140.9500
P1—C111.817 (3)C15—C161.389 (4)
P1—C211.818 (3)C15—H150.9500
P1—C311.819 (3)C16—H160.9500
F1—C41.365 (3)C21—C261.396 (4)
O1—C11.364 (3)C21—C221.396 (4)
O1—C81.441 (3)C22—C231.387 (4)
N1—C11.262 (4)C22—H220.9500
N1—C21.408 (4)C23—C241.387 (5)
C2—C31.394 (4)C23—H230.9500
C2—C71.400 (4)C24—C251.379 (4)
C3—C41.374 (4)C24—H240.9500
C3—H30.9500C25—C261.387 (4)
C4—C51.382 (4)C25—H250.9500
C5—C61.375 (4)C26—H260.9500
C5—H50.9500C31—C321.382 (4)
C6—C71.390 (4)C31—C361.399 (4)
C6—H60.9500C32—C331.390 (4)
C7—H70.9500C32—H320.9500
C8—H8A0.9800C33—C341.384 (4)
C8—H8B0.9800C33—H330.9500
C8—H8C0.9800C34—C351.379 (5)
C11—C161.385 (4)C34—H340.9500
C11—C121.397 (4)C35—C361.384 (4)
C12—C131.382 (4)C35—H350.9500
C12—H120.9500C36—H360.9500
C13—C141.385 (4)
P1—Au—S1176.10 (3)C13—C14—C15119.7 (3)
C1—S1—Au101.30 (10)C13—C14—H14120.1
C11—P1—C21104.91 (13)C15—C14—H14120.1
C11—P1—C31106.09 (13)C16—C15—C14120.0 (3)
C21—P1—C31106.78 (12)C16—C15—H15120.0
C11—P1—Au115.21 (9)C14—C15—H15120.0
C21—P1—Au111.34 (10)C11—C16—C15120.0 (2)
C31—P1—Au111.91 (10)C11—C16—H16120.0
C1—O1—C8115.4 (2)C15—C16—H16120.0
C1—N1—C2120.6 (2)C26—C21—C22119.7 (3)
N1—C1—O1120.5 (2)C26—C21—P1122.3 (2)
N1—C1—S1127.5 (2)C22—C21—P1118.1 (2)
O1—C1—S1112.0 (2)C23—C22—C21120.1 (3)
C3—C2—C7119.3 (3)C23—C22—H22120.0
C3—C2—N1119.6 (3)C21—C22—H22120.0
C7—C2—N1120.8 (3)C22—C23—C24119.7 (3)
C4—C3—C2118.3 (3)C22—C23—H23120.1
C4—C3—H3120.9C24—C23—H23120.1
C2—C3—H3120.9C25—C24—C23120.5 (3)
F1—C4—C3118.0 (3)C25—C24—H24119.7
F1—C4—C5118.3 (3)C23—C24—H24119.7
C3—C4—C5123.7 (3)C24—C25—C26120.2 (3)
C6—C5—C4117.4 (3)C24—C25—H25119.9
C6—C5—H5121.3C26—C25—H25119.9
C4—C5—H5121.3C25—C26—C21119.8 (3)
C5—C6—C7121.2 (3)C25—C26—H26120.1
C5—C6—H6119.4C21—C26—H26120.1
C7—C6—H6119.4C32—C31—C36119.9 (2)
C6—C7—C2120.1 (3)C32—C31—P1122.1 (2)
C6—C7—H7120.0C36—C31—P1118.0 (2)
C2—C7—H7120.0C31—C32—C33120.1 (3)
O1—C8—H8A109.5C31—C32—H32120.0
O1—C8—H8B109.5C33—C32—H32120.0
H8A—C8—H8B109.5C34—C33—C32120.1 (3)
O1—C8—H8C109.5C34—C33—H33120.0
H8A—C8—H8C109.5C32—C33—H33120.0
H8B—C8—H8C109.5C35—C34—C33119.8 (3)
C16—C11—C12120.0 (3)C35—C34—H34120.1
C16—C11—P1122.6 (2)C33—C34—H34120.1
C12—C11—P1117.4 (2)C34—C35—C36120.8 (3)
C13—C12—C11119.7 (3)C34—C35—H35119.6
C13—C12—H12120.1C36—C35—H35119.6
C11—C12—H12120.1C35—C36—C31119.4 (3)
C12—C13—C14120.6 (3)C35—C36—H36120.3
C12—C13—H13119.7C31—C36—H36120.3
C14—C13—H13119.7
C2—N1—C1—O1175.8 (2)P1—C11—C16—C15178.3 (2)
C2—N1—C1—S15.8 (4)C14—C15—C16—C111.1 (4)
C8—O1—C1—N13.5 (4)C11—P1—C21—C2612.2 (2)
C8—O1—C1—S1175.15 (19)C31—P1—C21—C26100.1 (2)
Au—S1—C1—N1157.0 (2)Au—P1—C21—C26137.4 (2)
Au—S1—C1—O124.52 (19)C11—P1—C21—C22166.8 (2)
C1—N1—C2—C3107.2 (3)C31—P1—C21—C2280.9 (2)
C1—N1—C2—C778.0 (4)Au—P1—C21—C2241.6 (2)
C7—C2—C3—C40.7 (4)C26—C21—C22—C230.5 (4)
N1—C2—C3—C4175.6 (3)P1—C21—C22—C23179.5 (2)
C2—C3—C4—F1179.1 (2)C21—C22—C23—C240.7 (5)
C2—C3—C4—C50.0 (4)C22—C23—C24—C250.1 (5)
F1—C4—C5—C6179.8 (3)C23—C24—C25—C260.8 (4)
C3—C4—C5—C60.7 (5)C24—C25—C26—C211.0 (4)
C4—C5—C6—C70.8 (4)C22—C21—C26—C250.4 (4)
C5—C6—C7—C20.1 (4)P1—C21—C26—C25178.6 (2)
C3—C2—C7—C60.6 (4)C11—P1—C31—C3294.4 (3)
N1—C2—C7—C6175.5 (3)C21—P1—C31—C3217.1 (3)
C21—P1—C11—C16109.9 (2)Au—P1—C31—C32139.2 (2)
C31—P1—C11—C162.9 (3)C11—P1—C31—C3686.5 (3)
Au—P1—C11—C16127.3 (2)C21—P1—C31—C36161.9 (2)
C21—P1—C11—C1270.2 (2)Au—P1—C31—C3639.9 (3)
C31—P1—C11—C12177.0 (2)C36—C31—C32—C331.0 (4)
Au—P1—C11—C1252.6 (2)P1—C31—C32—C33179.9 (2)
C16—C11—C12—C131.5 (4)C31—C32—C33—C340.2 (4)
P1—C11—C12—C13178.7 (2)C32—C33—C34—C350.6 (5)
C11—C12—C13—C140.3 (4)C33—C34—C35—C360.2 (5)
C12—C13—C14—C150.5 (4)C34—C35—C36—C311.3 (5)
C13—C14—C15—C160.1 (4)C32—C31—C36—C351.8 (5)
C12—C11—C16—C151.9 (4)P1—C31—C36—C35179.1 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the (C2–C7) and (C11–C16) rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.952.423.269 (3)148
C36—H36···F1i0.952.513.218 (4)131
C13—H13···S1ii0.952.833.519 (3)130
C13—H13···Cg1ii0.952.743.500 (3)137
C22—H22···Cg1iii0.952.633.397 (3)138
C24—H24···Cg2iv0.952.803.552 (3)137
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y1/2, z+1/2; (iii) x, y+1, z+1; (iv) x1, y, z.
A summary of short interatomic contacts (Å) for (I)a top
ContactDistanceSymmetry operation
C3—H3···O1b2.31-x + 1, -y + 1, -z + 1
C36—H36···F1b2.43-x + 1, -y + 1, -z + 1
C13—H13···S1b2.74-x + 1/2, y - 1/2, -z + 1/2
C7—H7···C12.66-x, -y + 1, -z + 1
H8C···H332.31-x + 1/2, y + 1/2, -z + 3/2
C15—H15···Cg(C21–C26)3.23-x, -y, -z + 1
C32—H32···Cg(C11–C16)3.22-x, -y, -z + 1
Notes: (a) The interatomic distances are calculated in Crystal Explorer 17 (Turner et al., 2017) whereby the X—H bond lengths are adjusted to their neutron values; (b) these interactions correspond to those discussed above in Supramolecular features.
Percentage contributions of interatomic contacts to the Hirshfeld surface for (I) top
ContactPercentage contribution
H···H44.9
H···C/C···H30.8
H···F/F···H8.1
H···S/S···H6.9
H···O/O···H3.2
Others6.1
A summary of interaction energies (kcal mol-1) calculated for (I) top
ContactEBSSEintSymmetry operation
C22—H22···π(C2–C7) (×2) +
C7—H7···C1 (×2)-37.2-x, -y + 1, -z + 1
C36—H36···F1 (×2) +
C3—H3···O1 (×2)-34.9-x + 1, -y + 1, -z + 1
C32—H32···π(C11–C16) (×2) +
C15—H15···π(C21–C26) (×2)-15.6-x, -y, -z + 1
C13—H13···π(C2–C7) +
C13—H13···S1-8.9-x + 1/2, y - 1/2, -z + 1/2
C24—H24···π(C11–C16)-5.4x - 1, y, z
A summary of key geometric parameters (Å, °) for structures related to (I) top
YAu—SAu—PP—Au—SAu···OCNOS/C6REFCODERef.
H2.3005 (14)2.2578 (12)177.72 (4)3.045 (4)87.18 (18)HADZANHall & Tiekink (1993)
Ha2.3102 (14)2.2613 (12)175.96 (5)3.140 (3)78.4 (2)COCRUIKuan et al. (2008)
Me2.2968 (15)2.2479 (11)175.12 (4)2.954 (3)74.69 (16)COCROCKuan et al. (2008)
Clb2.2903 (17)2.2416 (14)174.61 (5)2.988 (3)75.01 (14)VUYKOQTadbuppa & Tiekink (2010)
Clc2.3071 (15)2.2535 (15)175.62 (5)3.052 (3)73.95 (16)VUYKOQ01Yeo et al. (2016)
F2.3007 (8)2.2494 (8)176.10 (3)2.986 (2)78.73 (9)This work
Notes: (a) chloroform solvate; (b) P1 polymorph; (c) P21/c polymorph.
 

Funding information

This research was supported by the Trans-disciplinary Research Grant Scheme (TR002-2014A) provided by the Ministry of Education, Malaysia. Sunway University Sdn Bhd is thanked for financial support of this work through grant No. STR-RCTR-RCCM-001-2019.

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.  Google Scholar
First citationBoys, S. F. & Bernardi, F. (1970). Mol. Phys. 19, 553–566.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChai, J. D. & Head-Gordon, M. (2008). Phys. Chem. Chem. Phys. 10, 6615–6620.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHall, V. J. & Tiekink, E. R. T. (1993). Z. Kristallogr. Cryst. Mater. 203, 313–315.  CAS Google Scholar
First citationHay, P. J. & Wadt, W. R. (1985). J. Chem. Phys. 82, 270–283.  CrossRef CAS Web of Science Google Scholar
First citationHo, S. Y., Bettens, R. P. A., Dakternieks, D., Duthie, A. & Tiekink, E. R. T. (2005). CrystEngComm, 7, 682–689.  Web of Science CSD CrossRef CAS Google Scholar
First citationKuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548–564.  Web of Science CSD CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMeanwell, N. A. (2018). J. Med. Chem. 61, 5822–5880.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMüller, K., Faeh, C. & Diederich, F. (2007). Science, 317, 1881–1886.  Web of Science PubMed Google Scholar
First citationOoi, K. K., Yeo, C. I., Mahandaran, T., Ang, K. P., Akim, A. M., Cheah, Y.-K., Seng, H.-L. & Tiekink, E. R. T. (2017). J. Inorg. Biochem. 166, 173–181.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPetersson, G. A. & Al-Laham, M. A. (1991). J. Chem. Phys. 94, 6081–6090.  CrossRef CAS Web of Science Google Scholar
First citationPetersson, G. A., Bennett, A., Tensfeldt, T. G., Al-Laham, M. A., Shirley, W. A. & Mantzaris, J. (1988). J. Chem. Phys. 89, 2193–2218.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiddiqui, R., Abjani, F., Yeo, C. I., Tiekink, E. R. T. & Khan, N. A. (2017). J. Neg. Res. Biomed. 16 article no. 6.  Google Scholar
First citationSimon, S., Duran, M. & Dannenberg, J. J. (1996). J. Chem. Phys. 105, 11024–11031.  CrossRef CAS Web of Science Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationTadbuppa, P. P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, m664.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYeo, C. I., Khoo, C.-H., Chu, W.-C., Chen, B.-J., Chu, P.-L., Sim, J.-H., Cheah, Y.-K., Ahmad, J., Halim, S. N. A., Seng, H.-L., Ng, S., Otero-de-la-Roza, A. & Tiekink, E. R. T. (2015). RSC Adv. 5, 41401–41411.  Web of Science CSD CrossRef CAS Google Scholar
First citationYeo, C. I., Ooi, K. K. & Tiekink, E. R. T. (2018). Molecules, 23, article no. 1410.  Web of Science CrossRef Google Scholar
First citationYeo, C. I., Sim, J.-H., Khoo, C.-H., Goh, Z.-J., Ang, K.-P., Cheah, Y.-K., Fairuz, Z. A., Halim, S. N. B. A., Ng, S. W., Seng, H.-L. & Tiekink, E. R. T. (2013). Gold Bull. 46, 145–152.  Web of Science CSD CrossRef CAS Google Scholar
First citationYeo, C. I., Tan, S. L., Otero-de-la-Roza, A. & Tiekink, E. R. T. (2016). Z. Kristallogr. Cryst. Mater. 231, 653–661.  Web of Science CSD CrossRef CAS Google Scholar
First citationYusof, E. N. M., Tahir, M. I. M., Ravoof, T. B. S. A., Tan, S. L. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 543–549.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds