research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2,3-dimeth­­oxy-meso-tetra­kis(penta­fluoro­phen­yl)morpholino­chlorin methyl­ene chloride 0.44-solvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, USA, and bDepartment of Chemistry, Purdue University, 560 Oval Dr., W. Lafayette, IN 47907-2084, USA
*Correspondence e-mail: zeller4@purdue.edu

Edited by H. Ishida, Okayama University, Japan (Received 19 June 2020; accepted 2 July 2020; online 7 July 2020)

The title morpholino­chlorin, C46H16F20N4O3, was crystallized from hexa­ne/methyl­ene chloride as its 0.44 methyl­ene chloride solvate, C46H16F20N4O3·0.44CH2Cl2. The morpholino­chlorin was synthesized by stepwise oxygen insertion into a porphyrin using a `breaking and mending strategy': NaIO4-induced diol cleavage of the corresponding 2,3-di­hydroxy­chlorin with in situ methanol-induced, acid-catalyzed intra­molecular ring closure of the inter­mediate secochlorins bis­aldehyde. Formally, one of the pyrrolic building blocks was thus replaced by a 2,3-di­meth­oxy­morpholine moiety. Like other morpholino­chlorins, the macrocycle of the title compound adopts a ruffled conformation, and the modulation of the porphyrinic π-system chromophore induces a red-shift of its optical spectrum compared to its corresponding chlorin analog. Packing in the crystal is governed by inter­actions involving the fluorine atoms of the penta­fluoro­phenyl substituents, dominated by C—H⋯F inter­actions, and augmented by short fluorine⋯fluorine contacts, C—F⋯π inter­actions, and one severely slipped π-stacking inter­action between two penta­fluoro­phenyl rings. The solvate methyl­ene chloride mol­ecule is disordered over two independent positions around an inversion center with occupancies of two × 0.241 (5) and two × 0.199 (4), for a total site occupancy of 88%.

1. Chemical context

A major aim in contemporary porphyrin chemistry is the generation of NIR (>650 nm) absorbing or fluorescing chromophores for a variety of biomedical and technical applications, such as photodynamic therapy (Dolmans et al., 2003[Dolmans, D. E. J. G. J., Fukumura, D. & Jain, R. K. (2003). Nat. Rev. Cancer, 3, 380-387.]), solar-energy conversion (Hedley et al., 2017[Hedley, G. J., Ruseckas, A. & Samuel, I. D. W. (2017). Chem. Rev. 117, 796-837.]), or photoacoustic or fluorescence imaging (Gujrati et al., 2017[Gujrati, V., Mishra, A. & Ntziachristos, V. (2017). Chem. Commun. 53, 4653-4672.]; Borg & Rochford, 2018[Borg, R. E. & Rochford, J. (2018). Photochem. Photobiol. 94, 1175-1209.]). Inter alia, this gave rise to the synthesis of a wide array of porphyrin analogues, including porphyrinoids incorporating non-pyrrolic heterocycles (Brückner et al., 2014[Brückner, C., Akhigbe, J. & Samankumara, L. (2014). Handbook of Porphyrin Science, edited by K. M. Kadish, K. M. Smith & R. Guilard, pp. 1-276. River Edge, NY: World Scientific.]; Lash, 2017[Lash, T. D. (2017). Chem. Rev. 117, 2313-2446.]; Chatterjee et al., 2017[Chatterjee, T., Shetti, V. S., Sharma, R. & Ravikanth, M. (2017). Chem. Rev. 117, 3254-3328.]).

One member of the family of porphyrinoids incorporating non-pyrrolic heterocycles are the morpholino­chlorins (1) (Fig. 1[link]) in which one pyrrolic building block is replaced by a morpholine (Brückner et al., 1998[Brückner, C., Rettig, S. J. & Dolphin, D. (1998). J. Org. Chem. 63, 2094-2098.], 2011[Brückner, C., Götz, D. C. G., Fox, S. P., Ryppa, C., McCarthy, J. R., Bruhn, T., Akhigbe, J., Banerjee, S., Daddario, P., Daniell, H. W., Zeller, M., Boyle, R. W. & Bringmann, G. (2011). J. Am. Chem. Soc. 133, 8740-8752.]; McCarthy et al., 2003[McCarthy, J. R., Jenkins, H. A. & Brückner, C. (2003). Org. Lett. 5, 19-22.]). This formal replacement is achieved by a stepwise oxygen insertion into a porphyrin using a so-called `breaking and mending' strategy (Brückner, 2016[Brückner, C. (2016). Acc. Chem. Res. 49, 1080-1092.]). As a consequence of the atom insertion, morpholino­chlorins are non-planar (McCarthy et al., 2003[McCarthy, J. R., Jenkins, H. A. & Brückner, C. (2003). Org. Lett. 5, 19-22.]; Brückner et al., 2011[Brückner, C., Götz, D. C. G., Fox, S. P., Ryppa, C., McCarthy, J. R., Bruhn, T., Akhigbe, J., Banerjee, S., Daddario, P., Daniell, H. W., Zeller, M., Boyle, R. W. & Bringmann, G. (2011). J. Am. Chem. Soc. 133, 8740-8752.]; Sharma et al., 2017[Sharma, M., Ticho, A. L., Samankumara, L., Zeller, M. & Brückner, C. (2017). Inorg. Chem. 56, 11490-11502.]). The twisted (ruffled) conformation of helimeric chirality of the morpholino­chlorins was found to be affected by the size and number of alk­oxy substituents, the presence of covalent links between the morpholine unit and the flanking aryl group, and the presence and type of central metal (Daniell & Brückner, 2004[Daniell, H. W. & Brückner, C. (2004). Angew. Chem. Int. Ed. 43, 1688-1691.]; Brückner et al., 2011[Brückner, C., Götz, D. C. G., Fox, S. P., Ryppa, C., McCarthy, J. R., Bruhn, T., Akhigbe, J., Banerjee, S., Daddario, P., Daniell, H. W., Zeller, M., Boyle, R. W. & Bringmann, G. (2011). J. Am. Chem. Soc. 133, 8740-8752.]; Sharma et al., 2017[Sharma, M., Ticho, A. L., Samankumara, L., Zeller, M. & Brückner, C. (2017). Inorg. Chem. 56, 11490-11502.]). Porphyrinoids containing two morpholine moieties are known (Daniell & Brückner, 2004[Daniell, H. W. & Brückner, C. (2004). Angew. Chem. Int. Ed. 43, 1688-1691.]; Guberman-Pfeffer et al., 2017[Guberman-Pfeffer, M. J., Greco, J. A., Samankumara, L. P., Zeller, M., Birge, R. R., Gascón, J. A. & Brückner, C. (2017). J. Am. Chem. Soc. 139, 548-560.]), as well as other porphyrinoids containing morpholine building blocks (Lara et al., 2005[Lara, K. K., Rinaldo, C. K. & Brückner, C. (2005). Tetrahedron, 61, 2529-2539.]; Samankumara et al., 2015[Samankumara, L. P., Dorazio, S. J., Akhigbe, J., Li, R., Nimthong-Roldán, A., Zeller, M. & Brückner, C. (2015). Chem. Eur. J. 21, 11118-11128.]; Akhigbe et al., 2016[Akhigbe, J., Yang, M., Luciano, M. & Brückner, C. (2016). J. Porphyrins Phthalocyanines, 20, 265-273.]). The modulation of the conformation of the porphyrinic π-system also affects their electronic properties; morpholino­chlorins are more red-shifted than a corresponding chlorin (Brückner et al., 2011[Brückner, C., Götz, D. C. G., Fox, S. P., Ryppa, C., McCarthy, J. R., Bruhn, T., Akhigbe, J., Banerjee, S., Daddario, P., Daniell, H. W., Zeller, M., Boyle, R. W. & Bringmann, G. (2011). J. Am. Chem. Soc. 133, 8740-8752.]; Guberman-Pfeffer et al., 2017[Guberman-Pfeffer, M. J., Greco, J. A., Samankumara, L. P., Zeller, M., Birge, R. R., Gascón, J. A. & Brückner, C. (2017). J. Am. Chem. Soc. 139, 548-560.]). The influence of the meso-substituents on the conformation and electronics of the morpholino­chlorins has not been investigated.

[Figure 1]
Figure 1
Structures of select morpholino­chlorins

For porphyrinoids at large, the introduction of meso-penta­fluoro­phenyl-groups (or fluorine atoms, in general) has long been known to alter their electronic properties (Spellane et al., 1980[Spellane, P. J., Gouterman, M., Antipas, A., Kim, S. & Liu, Y. C. (1980). Inorg. Chem. 19, 386-391.]; Leroy & Bondon, 2008[Leroy, J. & Bondon, A. (2008). Eur. J. Org. Chem. pp. 417-433.]; Nardi et al., 2013[Nardi, M., Verucchi, R., Aversa, L., Casarin, M., Vittadini, A., Mahne, N., Giglia, A., Nannarone, S. & Iannotta, S. (2013). New J. Chem. 37, 1036-1045.]); they often become slightly blue-shifted compared to their non-fluorinated analogues and are harder to oxidize. Also, the meso-penta­fluoro­phenyl-groups are very convenient handles for the further synthetic manipulation of the porphyrinoids (Costa et al., 2011[Costa, J. I. T., Tomé, A. C., Neves, M. G. P. M. S. & Cavaleiro, J. A. S. (2011). J. Porphyrins Phthalocyanines, 15, 1116-1133.]; Golf et al., 2015[Golf, H. R. A., Reissig, H.-U. & Wiehe, A. (2015). Eur. J. Org. Chem. pp 1548-1568.]; Hewage et al., 2015[Hewage, N., Yang, B., Agrios, A. G. & Brückner, C. (2015). Dyes Pigments, 121, 159-169.]; Bhupathiraju et al., 2016[Bhupathiraju, N. V. S. D. K., Rizvi, W., Batteas, J. D. & Drain, C. M. (2016). Org. Biomol. Chem. 14, 389-408.]). Their effect on the conformation of the mol­ecules, when compared to their hydrogen analogs, has been shown to be frequently minimal (Leroy & Bondon, 2008[Leroy, J. & Bondon, A. (2008). Eur. J. Org. Chem. pp. 417-433.]).

[Scheme 1]

2. Structural commentary

The title compound 1d was obtained in crystalline form from hexa­ne/methyl­ene chloride as its 0.44 methyl­ene chloride solvate (Fig. 2[link]). 1d crystallizes as a racemic mixture of two helimers in the monoclinic space group C2/c, and its structure is generally in line with that of the other three free base morpholino­chlorins that have been structurally described (Fig. 1[link]): the meso-tolyl derivative 1b with two eth­oxy substit­uents in the 2,3 positions of the morpholine (McCarthy et al., 2003[McCarthy, J. R., Jenkins, H. A. & Brückner, C. (2003). Org. Lett. 5, 19-22.]); the meso-phenyl derivative 1e with a single meth­oxy substituent (Brückner et al., 2011[Brückner, C., Götz, D. C. G., Fox, S. P., Ryppa, C., McCarthy, J. R., Bruhn, T., Akhigbe, J., Banerjee, S., Daddario, P., Daniell, H. W., Zeller, M., Boyle, R. W. & Bringmann, G. (2011). J. Am. Chem. Soc. 133, 8740-8752.]), and the meso-phenyl derivative 1f lacking any morpholine substitution (Brückner et al., 2011[Brückner, C., Götz, D. C. G., Fox, S. P., Ryppa, C., McCarthy, J. R., Bruhn, T., Akhigbe, J., Banerjee, S., Daddario, P., Daniell, H. W., Zeller, M., Boyle, R. W. & Bringmann, G. (2011). J. Am. Chem. Soc. 133, 8740-8752.]). The macrocycle in all morpholino­chlorins is non-planar. In the symmetrically substituted morpholino­chlorins, 1b, 1d and 1f, individual mol­ecules are ruffled (Shelnutt et al., 1998[Shelnutt, J. A., Song, X.-Z., Ma, J.-G., Jentzen, W. & Medforth, C. J. (1998). Chem. Soc. Rev. 27, 31-42.]), feature a chiral axis and are helimeric. Derivative 1e with only a single meth­oxy substit­uent on the morpholine (Brückner et al., 2011[Brückner, C., Götz, D. C. G., Fox, S. P., Ryppa, C., McCarthy, J. R., Bruhn, T., Akhigbe, J., Banerjee, S., Daddario, P., Daniell, H. W., Zeller, M., Boyle, R. W. & Bringmann, G. (2011). J. Am. Chem. Soc. 133, 8740-8752.]) features a more saddled conformation of its macrocycle (Brückner et al., 2011[Brückner, C., Götz, D. C. G., Fox, S. P., Ryppa, C., McCarthy, J. R., Bruhn, T., Akhigbe, J., Banerjee, S., Daddario, P., Daniell, H. W., Zeller, M., Boyle, R. W. & Bringmann, G. (2011). J. Am. Chem. Soc. 133, 8740-8752.]). The geometries of the morpholino rings also vary between the four structures. In the two 2,3-substituted derivatives, title compound 1d and meso-tolyl derivative 1b, the substituents are arranged anti to each other, and the morpholino rings adopt a conformation that is best described as half-twist. This stereoselective arrangement had been rationalized on steric and stereoelectronic grounds (Brückner et al., 2011[Brückner, C., Götz, D. C. G., Fox, S. P., Ryppa, C., McCarthy, J. R., Bruhn, T., Akhigbe, J., Banerjee, S., Daddario, P., Daniell, H. W., Zeller, M., Boyle, R. W. & Bringmann, G. (2011). J. Am. Chem. Soc. 133, 8740-8752.]). The morpholine moiety in the mono-alk­oxy derivative 1e adopts a half-boat conformation (Brückner et al., 2011[Brückner, C., Götz, D. C. G., Fox, S. P., Ryppa, C., McCarthy, J. R., Bruhn, T., Akhigbe, J., Banerjee, S., Daddario, P., Daniell, H. W., Zeller, M., Boyle, R. W. & Bringmann, G. (2011). J. Am. Chem. Soc. 133, 8740-8752.]).

[Figure 2]
Figure 2
The structure of 1d with the atom-labeling scheme. Probability ellipsoids are drawn at the 50% level. Symmetry-created atoms are shown in capped-stick mode and are unlabeled. Dashed bonds indicate minor moiety disordered and symmetry-related atoms. Some carbon atom labels are omitted for clarity.

Out-of-plane plots of the macrocycle conformations of 1b and 1d directly compare their ruffled conformation that allows the central nitro­gen atoms to remain idealized in the central plane (Fig. 3[link]). The conformation of the C20N4O morpholino­chlorin macrocycle in 1d is slightly more ruffled (r.m.s. = 0.323 Å) (Shelnutt et al., 1998[Shelnutt, J. A., Song, X.-Z., Ma, J.-G., Jentzen, W. & Medforth, C. J. (1998). Chem. Soc. Rev. 27, 31-42.]) than in 1b (r.m.s. = 0.276 Å; Sharma et al., 2017[Sharma, M., Ticho, A. L., Samankumara, L., Zeller, M. & Brückner, C. (2017). Inorg. Chem. 56, 11490-11502.]). While the tripyrrolic portion of 1d is significantly more ruffled than the corresponding section of 1b, the morpholine moieties are, except for the position of the ring oxygen, rather similar.

[Figure 3]
Figure 3
Out-of-plane displacement plots of macrocycles of the title compound 1d (black trace) and morpholino­chlorin 1b (gray trace).

Similar to other meso-aryl porphyrinoids, the torsion angles in the morpholino­chlorins between the meso-aryl substituents and the mean plane of the macrocycle vary with the steric demand of the groups flanking the aryl substituents. The meso-penta­fluoro­phenyl groups neighboring the pyrrolic units (C5F6 rings of C27 and C33) face little steric constraints and adopt dihedral angles of 71.92 (2) and 74.95 (3)°, respectively. Those adjacent to the morpholine moiety (C6F5 rings of C21 and C39) are more sterically encumbered and are about 10° closer to perpendicular to the macrocycle plane, with values of 82.70 (3) and 81.44 (2)°. The corresponding values for compound 1b are very similar, with values of 71.89 and 73.73°, and 89.55 and 86.32°, respectively.

The close structural relationship between the 2,3-disubstituted derivatives 1b and 1d allows us to investigate how minor conformational changes might affect the optical properties of the morpholino­chlorins. The torsion angles between the two C—C bonds in the morpholine units [Ca—Cb–(N)–Cb—Ca, C2—C1—(N1)—C4—C3 in 1d] in the two morpholino­chlorins 1b and 1d vary slightly, with this angle being smaller in the title compound [35.2° in 1b and 25.5 (4)° 1d]. This angle is important as it strongly affects the λmax of the morpholino­chlorins (Guberman-Pfeffer et al., 2017[Guberman-Pfeffer, M. J., Greco, J. A., Samankumara, L. P., Zeller, M., Birge, R. R., Gascón, J. A. & Brückner, C. (2017). J. Am. Chem. Soc. 139, 548-560.]), with a larger torsion angle being correlated to a longer λmax in their UV–vis absorption spectra. However, while the UV–vis spectra of the two species show distinct differences, their λmax values are essentially the same (680 nm in 1d vs 678 nm in 1b; Fig. 4[link]), likely as the result of the combination of their differing conformation and electron-withdrawing natures of their meso-substituents (phenyl in 1b and penta­fluoro­phenyl in 1d).

[Figure 4]
Figure 4
Normalized UV–vis spectra (CH2Cl2) of the compounds indicated.

3. Supra­molecular features

Inter­actions involving fluorine atoms play a dominant role in facilitating the arrangement of mol­ecules of 1d in the crystal. Dominant are C—H⋯F hydrogen-bond-like inter­actions, involving both methyl as well as pyrrole moieties as the hydrogen-atom donor. Weak C—H⋯F inter­actions involving the solvent are also present. The most prominent of these inter­actions are given in Table 1[link] and are discussed below. Also present are a number of short fluorine⋯fluorine contacts, C—F⋯π inter­actions (towards the π system of a the macrocycle), and one severely slipped π-stacking inter­action between two penta­fluoro­phenyl rings.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯F18i 0.95 2.59 3.424 (3) 147
C18—H18⋯F8ii 0.95 2.51 3.319 (3) 143
C45—H45A⋯F12iii 0.98 2.55 3.519 (3) 169
C45—H45B⋯F19iv 0.98 2.66 3.389 (3) 132
C45—H45A⋯F20 0.98 2.82 3.184 (3) 103
C46—H46A⋯F10v 0.98 2.63 3.496 (4) 148
C46—H46C⋯F1vi 0.98 2.60 3.505 (4) 153
C48—H48B⋯F12iii 0.99 2.42 3.25 (5) 141
N2—H2A⋯N1 0.85 (3) 2.56 (3) 3.040 (3) 117 (3)
N2—H2A⋯N3 0.85 (3) 2.33 (3) 2.858 (3) 121 (3)
N4—H4⋯N1 0.79 (3) 2.61 (3) 3.040 (3) 116 (2)
N4—H4⋯N3 0.79 (3) 2.33 (3) 2.852 (3) 125 (3)
Symmetry codes: (i) x, y+1, z; (ii) x, y-1, z; (iii) [-x+1, y, -z+{\script{1\over 2}}]; (iv) -x+1, -y+1, -z+1; (v) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (vi) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

The most prominent C—H⋯F inter­actions (Levina et al., 2019[Levina, E. O., Chernyshov, I. Y., Voronin, A. P., Alekseiko, L. N., Stash, A. I. & Vener, M. V. (2019). RSC Adv. 9, 12520-12537.]) involve the two methyl groups of the 2,3-di­meth­oxy­morpholino unit (Fig. 5[link]a). Both meth­oxy substituents are engaged in several of these inter­actions: C45 exhibits inter­actions with fluorine atoms from three different penta­fluoro­phenyl groups: with meta fluorine atoms F12iii and F19iv [symmetry codes: (iii) −x + 1, y, −z + [{1\over 2}]; (iv) −x + 1, −y + 1, −z + 1], and one intra­molecular inter­action with F20, an ortho-fluorine atom. Angular and H⋯F distance values for this intra­molecular inter­action appear quite unfavorable: the C—H⋯F angle is only 103°, and the H⋯F distance is 2.82 Å. However, only a slight rotation of the methyl H atoms is required to create a much more favorable geometry, and the C⋯F distance between C45 and F20 is at 3.184 (3) quite short (the shortest of all C—H⋯F inter­actions observed in 1d). Inter­actions involving the meth­oxy group of C46 involve F10v and F1vi, two ortho-fluorine atoms [symmetry codes: (v) x − [{1\over 2}], y − [{1\over 2}], z; (vi) −x + [{1\over 2}], −y + [{3\over 2}], −z + 1]. Two C—H⋯F inter­actions originate from pyrrole moieties, involving H atoms at the pyrrole moieties flanking the morpholine unit: H8 towards F18i, and H18 towards F8ii, with both F8 and F18 being para-fluorine atoms [symmetry codes: (i) x, y + 1, z; (ii) x, y − 1, z]. These two inter­actions work in tandem with each other and with a severely slipped ππ stacking inter­action, between the rings of F6–F10 and F16i–F20i, connecting two opposite ends of the morpholino­chlorin mol­ecule with its neighbors to create infinite chains connected via C—H⋯F and slipped ππ stacking inter­actions (Fig. 5[link]b). The centroid-to-centroid distance of the π-stacking inter­action is 4.3551 (15) Å, with a ring slippage of 2.795 Å and a centroid-to-mean-plane distance of 3.1661 (12) Å. The last C—H⋯F inter­action involves the methyl­ene group of the minor moiety solvate methyl­ene chloride mol­ecule. Given the degree of disorder of the solvate mol­ecules (see Refinement section), this inter­action is probably vaguely defined at best and will not be discussed in detail.

[Figure 5]
Figure 5
(a) C—H⋯F inter­actions involving the meth­oxy hydrogen atoms (turquoise dashed lines). Accepting moieties are truncated to their penta­fluoro­phenyl groups, and symmetry-related atoms not directly involved in an inter­action are shown in stick mode for clarity. (b) C—H⋯F and slipped ππ stacking inter­actions (turquoise dashed lines) connecting mol­ecules into infinite chains. Red spheres indicate the centroids of the respective aromatic rings, green dashed lines the distance between centroids (in Å). For symmetry codes, see Table 1[link].

Besides C—H⋯F inter­actions, which are generally considered as directional inter­actions similar in strength to the better investigated C—H⋯O inter­actions, 1d also features a number of short F⋯F contacts. In contrast to halogen⋯halogen bonds involving chlorine, and especially bromine and iodine (the classical halogen bonds), inter­actions between two fluorine atoms are different and much weaker in nature (Cavallo et al., 2016[Cavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. & Terraneo, G. (2016). Chem. Rev. 116, 2478-2601.]). C—F⋯F—C inter­actions are generally not directional and do usually not play any structure-directing role. The energy of inter­molecular C—F⋯F—C inter­actions in mol­ecular compounds is estimated at <4 kJ mol−1, substanti­ally lower that of C—H⋯F inter­actions, which tend to range from 5 to 7 kJ mol−1. They are, however, still regarded as weakly attractive and contributing to the overall stability of the packing arrangement (Levina et al., 2019[Levina, E. O., Chernyshov, I. Y., Voronin, A. P., Alekseiko, L. N., Stash, A. I. & Vener, M. V. (2019). RSC Adv. 9, 12520-12537.]). Three distinct inter­actions of this kind with F⋯F distances under 3.0 Å are observed in 1d. Fluorine atom F5 forms close contacts with F7 and F8 located at the C6F5 ring of a neighboring mol­ecule. The F⋯F distances are 2.797 (2) Å (F5⋯F7vii) and 2.828 (3) Å (F5⋯F8vii) [symmetry code: (vii) [{1\over 2}] − x, −[{1\over 2}] + y, [{1\over 2}] − z]. With the intra­molecular distance between F7 and F8 being 2.726 (2) Å, this leads to the formation of a nearly equilateral triangle of F atoms (Fig. 6[link]a). It should be noted that atom F8 of this F3-triangle also acts as the acceptor of the C18—H18⋯F8ii contact and the backside of the aromatic ring of F8 is involved in the slipped ππ stacking inter­action (see discussion above). Fluorine atom F11 features a close contact with a symmetry-created copy of itself, created by a twofold axis. The F⋯Fiii distance here is 2.783 (3) Å, and the C—F⋯Fiii angle is 125.5 (2)° [symmetry code: (iii) −x + 1, y, −z + [{1\over 2}]]. F11 also inter­acts with the π system of the macrocycle created by the same twofold axis, with F⋯C distances towards C14iii and C15iii of 3.046 (3) and 3.035 (3) Å, and F12 acts as the acceptor of the C45—H45C⋯F12iii inter­action, thus creating a larger multi-inter­action contact between the two neighboring mol­ecules with mutually stabilizing inter­actions (Fig. 7[link]a). The last clearly recognizable inter­action between fluorine atoms is an inversion-symmetric pair of two F⋯F contacts, involving F14 and F15 of one C6F5 ring and their symmetry-related counterparts across a crystallographic inversion center (Fig. 6[link]b). The F14⋯F15viii distance is 7.248 (2) Å. The C37—F14⋯F15viii angle here is 168.6 (2)° [symmetry code: (viii) [{1\over 2}] − x, [{3\over 2}] − y, −z].

[Figure 6]
Figure 6
F⋯F inter­actions (turquoise dashed lines) creating a triangular motif. Symmetry-related moieties are truncated to their penta­fluoro­phenyl groups, and atoms not directly involved in an inter­action are shown in stick mode for clarity. Symmetry codes: (vii) −x + [{1\over 2}], y − [{1\over 2}], −z + [{1\over 2}]; (viii) −x + [{1\over 2}], −y + [{3\over 2}], −z + 1.
[Figure 7]
Figure 7
F⋯F, C—F⋯π and C—H⋯F inter­actions (turquoise dashed lines) connecting mol­ecules into dimers. Penta­fluoro­phenyl groups not involved in the shown inter­actions are shown in wireframe mode for clarity. For symmetry codes, see Table 1[link].

Besides F11, F2 and F3 are also involved in inter­molecular C—F⋯π inter­actions, pointing nearly perpendicularly towards C atoms (C41vi and C42vi) of another penta­fluoro­phenyl ring [symmetry code: (vi) −x + [{1\over 2}], −y + [{3\over 2}], −z + 1]. The F⋯C distances are 3.034 (3) and 2.978 (3) Å for F2 and F3, respectively. There are two inter­actions of this kind per mol­ecule, one as the C—F donor and one as the π-density moiety accepting the C—F⋯π bond, connecting mol­ecules into centrosymmetric dimers. One of the methyl C—H⋯F contacts (towards F1) is also involved in the formation of these dimers (Fig. 7[link]b).

4. Database survey

A CSD search (Version 5.41 with updates up to May 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for porphyrinic macrocyles of three pyrroles and a single six-membered ring while retaining the porphyrin-like architecture of four central nitro­gen atoms reveals 24 structures: six pyriporphyrins (i.e., porphyrinoids containing a pyridine building block), fifteen morpholino­chlorins, two thio­morpholines [UCIKOJ and UCILIE (Sharma et al., 2016[Sharma, M., Banerjee, S., Zeller, M. & Brückner, C. (2016). J. Org. Chem. 81, 12350-12356.])], and a single 1,3-oxazinochlorin (WUDMIT; Meehan et al., 2015[Meehan, E., Li, R., Zeller, M. & Brückner, C. (2015). Org. Lett. 17, 2210-2213.]). Among the 1,4-morpholino­chlorins, six are free base structures, the remainder are metal complexes [of CuII, NiII – most frequently, ZnII, AgII and PdII, see Fig. 1[link] for CSD codes]. Only a single structure, (1b, RUXJUP; McCarthy et al., 2003[McCarthy, J. R., Jenkins, H. A. & Brückner, C. (2003). Org. Lett. 5, 19-22.]) is directly comparable to 1d; all the others contain either covalent morpholine-to-meso-aryl linkages (AVICAK; Daniell & Brückner, 2004[Daniell, H. W. & Brückner, C. (2004). Angew. Chem. Int. Ed. 43, 1688-1691.]; Brückner et al., 2011[Brückner, C., Götz, D. C. G., Fox, S. P., Ryppa, C., McCarthy, J. R., Bruhn, T., Akhigbe, J., Banerjee, S., Daddario, P., Daniell, H. W., Zeller, M., Boyle, R. W. & Bringmann, G. (2011). J. Am. Chem. Soc. 133, 8740-8752.]), a reduced pyrrole moiety (KECFEF; Samankumara et al., 2012[Samankumara, L. P., Wells, S., Zeller, M., Acuña, A. M., Röder, B. & Brückner, C. (2012). Angew. Chem. Int. Ed. 51, 5757-5760.]; Guberman-Pfeffer et al., 2017[Guberman-Pfeffer, M. J., Greco, J. A., Samankumara, L. P., Zeller, M., Birge, R. R., Gascón, J. A. & Brückner, C. (2017). J. Am. Chem. Soc. 139, 548-560.]), or both (KECDUT; Samankumara et al., 2012[Samankumara, L. P., Wells, S., Zeller, M., Acuña, A. M., Röder, B. & Brückner, C. (2012). Angew. Chem. Int. Ed. 51, 5757-5760.]; Guberman-Pfeffer et al., 2017[Guberman-Pfeffer, M. J., Greco, J. A., Samankumara, L. P., Zeller, M., Birge, R. R., Gascón, J. A. & Brückner, C. (2017). J. Am. Chem. Soc. 139, 548-560.]), or only one (1e, AVICEO; Brückner et al., 2011[Brückner, C., Götz, D. C. G., Fox, S. P., Ryppa, C., McCarthy, J. R., Bruhn, T., Akhigbe, J., Banerjee, S., Daddario, P., Daniell, H. W., Zeller, M., Boyle, R. W. & Bringmann, G. (2011). J. Am. Chem. Soc. 133, 8740-8752.]) or no alk­oxy substituents (1f, AVICOY; Brückner et al., 2011[Brückner, C., Götz, D. C. G., Fox, S. P., Ryppa, C., McCarthy, J. R., Bruhn, T., Akhigbe, J., Banerjee, S., Daddario, P., Daniell, H. W., Zeller, M., Boyle, R. W. & Bringmann, G. (2011). J. Am. Chem. Soc. 133, 8740-8752.]). These structural factors affect the conformation of the chromophore of evidently large plasticity (Brückner et al., 2011[Brückner, C., Götz, D. C. G., Fox, S. P., Ryppa, C., McCarthy, J. R., Bruhn, T., Akhigbe, J., Banerjee, S., Daddario, P., Daniell, H. W., Zeller, M., Boyle, R. W. & Bringmann, G. (2011). J. Am. Chem. Soc. 133, 8740-8752.]; Guberman-Pfeffer et al., 2017[Guberman-Pfeffer, M. J., Greco, J. A., Samankumara, L. P., Zeller, M., Birge, R. R., Gascón, J. A. & Brückner, C. (2017). J. Am. Chem. Soc. 139, 548-560.]; Sharma et al., 2017[Sharma, M., Ticho, A. L., Samankumara, L., Zeller, M. & Brückner, C. (2017). Inorg. Chem. 56, 11490-11502.]).

5. Synthesis and crystallization

We prepared the title compound 1d according to an established strategy from the corresponding 2,3-di­hydroxy­chlorin 2 (Fig. 1[link]) (Brückner et al., 2011[Brückner, C., Götz, D. C. G., Fox, S. P., Ryppa, C., McCarthy, J. R., Bruhn, T., Akhigbe, J., Banerjee, S., Daddario, P., Daniell, H. W., Zeller, M., Boyle, R. W. & Bringmann, G. (2011). J. Am. Chem. Soc. 133, 8740-8752.]): Oxidative diol cleavage is followed, in a one-pot approach, by a nucleophile-induced (methanol), acid-catalyzed intra­molecular ring closure and subsequent double-acetalization. Specifically, meso-tetra­kis­(penta­fluoro­phen­yl)-2,3-di­hydroxy­chlorin 2 (Hyland et al., 2012[Hyland, M. A., Morton, M. D. & Brückner, C. (2012). J. Org. Chem. 77, 3038-3048.]) (30 mg, 2.97 × 10 −5 mol) was dissolved in a 50 mL two-necked round-bottom flask equipped with a stir bar and gas in/outlets in CHCl3 (7 mL, amylene stabilized). The vessel was put under a protective atmosphere of N2. Freshly prepared NaIO4 heterogenized on silica (Zhong & Shing, 1997[Zhong, Y.-L. & Shing, T. K. M. (1997). J. Org. Chem. 62, 2622-2624.]) (0.30 g) and dry MeOH (∼0.3 mL) were added and the reaction was acidified with the vapors from a conc. aqueous HCl bottle (36%), delivered to the surface of the solution as puffs (3 × ∼1 mL) from a Pasteur pipette topped by a small latex bulb. The reaction was shielded from light by aluminum foil, stirred at ambient temperature and monitored by TLC (silica gel/CH2Cl2). After 24 h reaction time, no further reaction was observed; the solution was filtered (glass frit M) and the filtrate reduced to dryness by rotary evaporation. The crude product was dissolved in CH2Cl2 (∼1 mL), loaded onto a preparative TLC plate (500 µm silica gel, 10 × 20 cm) that was developed with a 1:1 CH2Cl2:hexane mixture as eluent. The main brown band was retrieved, ground into a fine powder, and extracted in a cotton-plugged small column with CH2Cl2. The addition of ∼20 vol% MeOH to the filtrate and slow removal of the CH2Cl2 by rotary evaporation precipitated the product, which could be isolated by filtration (Kontes microfiltration setup). After vacuum-drying at ambient temperature, 1d was retrieved as a dark-purple powder in 66% yield (21 mg). MW = 1052.63 g mol−1; 1H NMR (300 MHz, CDCl3, 300 K): δ 8.62 (d, J = 4.9 Hz, 2H), 8.42 (s, 2H), 8.28 (d, J = 5.4 Hz, 2H), 6.56 (s, 2H), 3.08 (s, 6H), −1.09 (s, 2H). UV–vis (CH2Cl2) λmax nm (log e): 410 (5.20), 515 (4.16), 620 (3.50), 680 (4.33). HR–MS (ESI+, 100% CH3CN, TOF): m/z calculated for C46H16F20N4O3 (MH+) 1053.0976; found 1053.0904 (error: 7 ppm). Single crystals suitable for X-ray diffraction were grown in the dark by slow vapor diffusion of hexane into a solution of 1d in CH2Cl2.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C46H16F20N4O3·0.44CH2Cl2
Mr 1090.00
Crystal system, space group Monoclinic, C2/c
Temperature (K) 150
a, b, c (Å) 23.1774 (10), 15.4767 (7), 26.0442 (13)
β (°) 113.1683 (18)
V3) 8588.9 (7)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.22
Crystal size (mm) 0.11 × 0.08 × 0.07
 
Data collection
Diffractometer Bruker D8 Quest CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.671, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 52998, 10495, 6698
Rint 0.082
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.164, 1.03
No. of reflections 10495
No. of parameters 724
No. of restraints 66
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.84, −0.46
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), shelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Crystals for diffraction analysis were taken directly out of the mother liquor (methyl­ene chloride/hexa­ne), mounted immediately on a MiTeGen micromesh mount with the help of a trace of Fomblin oil (a perfluorinated ether), and flash cooled in the cold stream of the diffractometer. Over several hours, no desolvation was observed for crystals remaining immersed in Fomblin oil on the crystal mounting microscope slide.

The solvate methyl­ene chloride mol­ecule is disordered over four positions around an inversion center (each two being symmetry equivalent). The C—Cl and Cl⋯Cl distances were restrained to target values and Uij components of ADPs for disordered atoms closer to each other than 2.0 Å were restrained to be similar. Occupancies of each of the two symmetry-equivalent sites were freely refined, resulting in a total occupancy slightly below unity [two × 0.241 (5) and two × 0.199 (4), for a total site occupancy of 88%]. Disorder with hexane, the other type of solvent used during crystallization, was excluded as a possibility due to the limited size of the solvate pocket, and it is thus assumed that 12% of void spaces in the crystal structure remained unoccupied during the crystallization process.

N-bound H atoms were located in a difference electron-density map and were freely refined. H atoms attached to carbon atoms were positioned geometrically and constrained to ride on their parent atoms. C—H bond distances were constrained to 0.95 Å for pyrrole CH moieties, and to 1.00, 0.99 and 0.98 Å for aliphatic CH, CH2 and CH3 moieties, respectively. Methyl CH3 groups were allowed to rotate but not to tip to best fit the experimental electron density. Uiso(H) values were set to a multiple of Ueq(C) with 1.5 for CH3, and 1.2 for CH and CH2 units, respectively.

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015) and shelXle (Hübschle et al., 2011); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2020).

2,3-Dimethoxy-meso-tetrakis(pentafluorophenyl)morpholinochlorin methylene chloride 0.44-solvate top
Crystal data top
C46H16F20N4O3·0.44CH2Cl2F(000) = 4340
Mr = 1090.00Dx = 1.686 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 23.1774 (10) ÅCell parameters from 9923 reflections
b = 15.4767 (7) Åθ = 3.0–28.3°
c = 26.0442 (13) ŵ = 0.22 mm1
β = 113.1683 (18)°T = 150 K
V = 8588.9 (7) Å3Block, brown
Z = 80.11 × 0.08 × 0.07 mm
Data collection top
Bruker D8 Quest CMOS
diffractometer
10495 independent reflections
Radiation source: sealed tube X-ray source6698 reflections with I > 2σ(I)
Triumph curved graphite crystal monochromatorRint = 0.082
ω and phi scansθmax = 28.3°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 3028
Tmin = 0.671, Tmax = 0.746k = 1920
52998 measured reflectionsl = 3234
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: mixed
wR(F2) = 0.164H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0789P)2 + 8.847P]
where P = (Fo2 + 2Fc2)/3
10495 reflections(Δ/σ)max < 0.001
724 parametersΔρmax = 0.84 e Å3
66 restraintsΔρmin = 0.46 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.32635 (11)0.72878 (15)0.38040 (10)0.0219 (5)
C20.32104 (12)0.68340 (16)0.43114 (10)0.0255 (5)
H20.2961740.6292440.4174710.031*
C30.24577 (11)0.79201 (15)0.42231 (10)0.0233 (5)
H30.2293750.8286390.4452180.028*
C40.27686 (11)0.85048 (15)0.39362 (10)0.0227 (5)
C50.26559 (12)0.93899 (15)0.39395 (11)0.0247 (5)
C60.29046 (12)1.00692 (16)0.37303 (11)0.0272 (5)
C70.28844 (13)1.09651 (16)0.38542 (12)0.0321 (6)
H70.2682501.1204340.4076020.039*
C80.32024 (13)1.14180 (16)0.36019 (12)0.0313 (6)
H80.3272401.2024250.3625720.038*
C90.34121 (12)1.08218 (15)0.32952 (11)0.0268 (5)
C100.37142 (11)1.10000 (15)0.29387 (11)0.0256 (5)
C110.38331 (11)1.03995 (15)0.25895 (10)0.0236 (5)
C120.40467 (13)1.06396 (17)0.21565 (12)0.0324 (6)
H120.4173301.1198360.2091040.039*
C130.40309 (13)0.99144 (17)0.18644 (11)0.0321 (6)
H130.4131100.9863120.1545350.039*
C140.38299 (11)0.92292 (15)0.21356 (10)0.0231 (5)
C150.37907 (11)0.83510 (15)0.19838 (10)0.0215 (5)
C160.36755 (11)0.76756 (15)0.22787 (10)0.0226 (5)
C170.37311 (13)0.67770 (16)0.21961 (11)0.0318 (6)
H170.3801120.6523050.1893550.038*
C180.36671 (13)0.63440 (16)0.26236 (12)0.0323 (6)
H180.3690610.5735020.2673330.039*
C190.35586 (11)0.69561 (15)0.29864 (10)0.0231 (5)
C200.34768 (11)0.67585 (14)0.34804 (10)0.0214 (5)
C210.22315 (12)0.97069 (15)0.42126 (11)0.0271 (5)
C220.24512 (13)0.99038 (17)0.47767 (12)0.0320 (6)
C230.20658 (14)1.02359 (18)0.50208 (12)0.0360 (6)
C240.14432 (15)1.0389 (2)0.46966 (13)0.0405 (7)
C250.12069 (14)1.0214 (2)0.41347 (13)0.0417 (7)
C260.16036 (13)0.98641 (18)0.39028 (12)0.0333 (6)
C270.38931 (12)1.19202 (15)0.29033 (11)0.0256 (5)
C280.34468 (12)1.25553 (16)0.26532 (10)0.0263 (5)
C290.36086 (13)1.34043 (16)0.26142 (11)0.0287 (5)
C300.42335 (13)1.36344 (15)0.28171 (11)0.0300 (6)
C310.46876 (13)1.30227 (18)0.30576 (13)0.0338 (6)
C320.45121 (12)1.21796 (16)0.30977 (12)0.0299 (6)
C330.39339 (11)0.81235 (15)0.14862 (10)0.0229 (5)
C340.45380 (11)0.81801 (17)0.15011 (10)0.0282 (5)
C350.46780 (12)0.79981 (18)0.10433 (11)0.0313 (6)
C360.42068 (13)0.77496 (19)0.05528 (11)0.0337 (6)
C370.36041 (13)0.7670 (2)0.05249 (11)0.0365 (6)
C380.34730 (12)0.78505 (17)0.09886 (11)0.0301 (6)
C390.36233 (11)0.58285 (15)0.36504 (10)0.0219 (5)
C400.31708 (12)0.51876 (16)0.34665 (11)0.0270 (5)
C410.33125 (13)0.43302 (16)0.36056 (11)0.0291 (6)
C420.39189 (14)0.41008 (15)0.39319 (11)0.0311 (6)
C430.43823 (13)0.47182 (17)0.41231 (11)0.0302 (6)
C440.42281 (11)0.55716 (15)0.39797 (11)0.0254 (5)
C450.42137 (13)0.7312 (2)0.49423 (12)0.0377 (6)
H45A0.4311080.7578830.4644460.057*
H45B0.4601790.7102360.5236990.057*
H45C0.4016720.7741040.5098430.057*
C460.15720 (16)0.7051 (3)0.40359 (14)0.0538 (9)
H46A0.1192270.6840730.3731520.081*
H46B0.1454430.7438030.4276720.081*
H46C0.1809230.6560050.4255700.081*
N10.31243 (9)0.81349 (13)0.36912 (9)0.0229 (4)
N20.32301 (10)1.00102 (14)0.33927 (9)0.0263 (5)
H2A0.3274 (14)0.954 (2)0.3242 (13)0.039 (8)*
N30.37108 (9)0.95377 (12)0.25756 (8)0.0210 (4)
N40.35551 (9)0.77493 (13)0.27530 (9)0.0211 (4)
H40.3538 (13)0.8197 (19)0.2894 (12)0.028 (8)*
O10.37925 (9)0.66032 (12)0.47187 (8)0.0325 (4)
O20.29008 (8)0.73396 (11)0.45788 (7)0.0258 (4)
O30.19528 (8)0.75125 (12)0.38073 (8)0.0309 (4)
F10.30561 (9)0.97758 (13)0.50994 (7)0.0508 (5)
F20.23007 (9)1.04108 (13)0.55689 (7)0.0536 (5)
F30.10730 (9)1.07298 (14)0.49265 (8)0.0587 (5)
F40.06062 (9)1.03781 (17)0.38111 (9)0.0701 (7)
F50.13564 (8)0.97084 (13)0.33525 (7)0.0483 (5)
F60.28370 (7)1.23508 (10)0.24473 (7)0.0360 (4)
F70.31630 (7)1.40025 (10)0.23865 (7)0.0377 (4)
F80.43987 (8)1.44566 (10)0.27921 (8)0.0423 (4)
F90.52959 (8)1.32485 (11)0.32567 (9)0.0519 (5)
F100.49729 (7)1.15998 (10)0.33406 (8)0.0446 (4)
F110.50098 (7)0.84265 (13)0.19692 (6)0.0448 (4)
F120.52687 (7)0.80701 (13)0.10779 (7)0.0463 (4)
F130.43327 (8)0.75890 (13)0.01025 (7)0.0493 (5)
F140.31452 (8)0.74177 (15)0.00464 (7)0.0586 (6)
F150.28789 (7)0.77668 (12)0.09439 (7)0.0429 (4)
F160.25774 (7)0.54003 (10)0.31493 (7)0.0408 (4)
F170.28647 (8)0.37195 (10)0.34199 (8)0.0424 (4)
F180.40620 (9)0.32672 (9)0.40659 (7)0.0430 (4)
F190.49691 (8)0.44860 (11)0.44487 (8)0.0477 (5)
F200.46884 (7)0.61620 (9)0.41722 (7)0.0355 (4)
C470.4785 (12)0.980 (4)0.4881 (10)0.154 (6)0.241 (5)
H47A0.4764820.9221710.4708430.184*0.241 (5)
H47B0.4541121.0216060.4588930.184*0.241 (5)
Cl10.5576 (3)1.0144 (6)0.5239 (4)0.160 (4)0.241 (5)
Cl20.4511 (5)0.9757 (6)0.5439 (5)0.144 (3)0.241 (5)
C480.508 (3)0.962 (3)0.4834 (13)0.142 (7)0.199 (4)
H48A0.5538670.9534040.4981440.171*0.199 (4)
H48B0.4891080.9051240.4688720.171*0.199 (4)
Cl30.4912 (6)1.0246 (8)0.4255 (4)0.127 (4)0.199 (4)
Cl40.4918 (11)0.9784 (13)0.5413 (7)0.204 (6)0.199 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0229 (11)0.0192 (11)0.0273 (12)0.0013 (9)0.0139 (10)0.0007 (9)
C20.0324 (13)0.0225 (12)0.0275 (13)0.0032 (10)0.0180 (11)0.0033 (10)
C30.0278 (12)0.0205 (11)0.0256 (12)0.0020 (9)0.0150 (10)0.0001 (9)
C40.0286 (12)0.0208 (11)0.0240 (12)0.0006 (9)0.0162 (10)0.0005 (9)
C50.0317 (12)0.0213 (12)0.0291 (13)0.0020 (10)0.0206 (11)0.0003 (10)
C60.0349 (13)0.0215 (12)0.0341 (14)0.0035 (10)0.0232 (11)0.0009 (10)
C70.0477 (16)0.0201 (12)0.0413 (16)0.0035 (11)0.0312 (13)0.0032 (11)
C80.0456 (15)0.0173 (12)0.0409 (15)0.0003 (11)0.0276 (13)0.0024 (11)
C90.0332 (13)0.0195 (12)0.0341 (14)0.0005 (10)0.0202 (11)0.0006 (10)
C100.0304 (13)0.0189 (11)0.0321 (14)0.0009 (10)0.0174 (11)0.0009 (10)
C110.0264 (12)0.0220 (12)0.0266 (13)0.0007 (10)0.0149 (10)0.0025 (10)
C120.0484 (16)0.0232 (13)0.0366 (15)0.0022 (11)0.0286 (13)0.0029 (11)
C130.0486 (16)0.0278 (13)0.0309 (14)0.0008 (12)0.0273 (13)0.0019 (11)
C140.0268 (12)0.0232 (12)0.0216 (12)0.0021 (10)0.0121 (10)0.0029 (9)
C150.0233 (11)0.0243 (12)0.0182 (11)0.0027 (9)0.0097 (9)0.0012 (9)
C160.0258 (11)0.0221 (11)0.0217 (12)0.0008 (9)0.0112 (10)0.0023 (9)
C170.0474 (16)0.0232 (13)0.0322 (14)0.0019 (11)0.0238 (13)0.0030 (11)
C180.0511 (16)0.0186 (12)0.0359 (15)0.0031 (11)0.0263 (13)0.0012 (11)
C190.0278 (12)0.0170 (11)0.0264 (13)0.0023 (9)0.0128 (10)0.0005 (9)
C200.0240 (11)0.0171 (11)0.0242 (12)0.0004 (9)0.0108 (10)0.0004 (9)
C210.0405 (14)0.0181 (11)0.0333 (14)0.0028 (10)0.0260 (12)0.0015 (10)
C220.0390 (15)0.0302 (13)0.0330 (14)0.0031 (11)0.0209 (12)0.0024 (11)
C230.0560 (18)0.0325 (14)0.0324 (15)0.0008 (13)0.0314 (14)0.0034 (12)
C240.0498 (17)0.0415 (16)0.0476 (18)0.0070 (14)0.0377 (15)0.0023 (14)
C250.0423 (16)0.0501 (18)0.0452 (18)0.0093 (14)0.0306 (14)0.0005 (14)
C260.0436 (16)0.0339 (14)0.0322 (15)0.0060 (12)0.0254 (13)0.0010 (12)
C270.0355 (13)0.0199 (12)0.0301 (13)0.0014 (10)0.0224 (11)0.0004 (10)
C280.0307 (12)0.0275 (13)0.0247 (13)0.0023 (10)0.0152 (10)0.0001 (10)
C290.0434 (15)0.0195 (12)0.0288 (13)0.0045 (11)0.0203 (12)0.0036 (10)
C300.0466 (15)0.0171 (11)0.0339 (14)0.0043 (11)0.0241 (12)0.0004 (10)
C310.0326 (14)0.0279 (14)0.0460 (17)0.0065 (11)0.0209 (12)0.0019 (12)
C320.0314 (13)0.0223 (12)0.0417 (16)0.0025 (10)0.0206 (12)0.0016 (11)
C330.0297 (12)0.0215 (11)0.0196 (11)0.0028 (10)0.0119 (10)0.0010 (9)
C340.0268 (12)0.0361 (14)0.0201 (12)0.0006 (11)0.0074 (10)0.0036 (10)
C350.0271 (12)0.0414 (15)0.0294 (14)0.0032 (11)0.0156 (11)0.0019 (12)
C360.0384 (14)0.0458 (16)0.0228 (13)0.0008 (12)0.0183 (11)0.0065 (12)
C370.0350 (14)0.0501 (17)0.0222 (13)0.0022 (13)0.0088 (11)0.0097 (12)
C380.0268 (12)0.0374 (15)0.0266 (13)0.0001 (11)0.0110 (11)0.0016 (11)
C390.0296 (12)0.0176 (11)0.0241 (12)0.0027 (9)0.0165 (10)0.0005 (9)
C400.0301 (13)0.0240 (12)0.0301 (13)0.0002 (10)0.0153 (11)0.0000 (10)
C410.0421 (15)0.0210 (12)0.0318 (14)0.0065 (11)0.0227 (12)0.0039 (10)
C420.0544 (17)0.0161 (12)0.0323 (14)0.0055 (11)0.0272 (13)0.0055 (10)
C430.0356 (14)0.0252 (13)0.0303 (14)0.0103 (11)0.0135 (11)0.0049 (11)
C440.0307 (13)0.0192 (12)0.0314 (14)0.0004 (10)0.0178 (11)0.0003 (10)
C450.0331 (14)0.0481 (17)0.0335 (15)0.0003 (13)0.0148 (12)0.0001 (13)
C460.0450 (17)0.076 (2)0.0431 (19)0.0305 (17)0.0199 (15)0.0035 (17)
N10.0264 (10)0.0187 (9)0.0280 (11)0.0008 (8)0.0152 (9)0.0009 (8)
N20.0383 (12)0.0163 (10)0.0344 (12)0.0005 (9)0.0251 (10)0.0020 (9)
N30.0259 (10)0.0159 (9)0.0242 (10)0.0022 (8)0.0129 (8)0.0002 (8)
N40.0273 (10)0.0157 (10)0.0237 (11)0.0018 (8)0.0138 (8)0.0008 (8)
O10.0378 (10)0.0317 (10)0.0316 (10)0.0101 (8)0.0175 (8)0.0083 (8)
O20.0320 (9)0.0261 (9)0.0256 (9)0.0062 (7)0.0180 (7)0.0042 (7)
O30.0312 (9)0.0353 (10)0.0300 (10)0.0064 (8)0.0162 (8)0.0016 (8)
F10.0498 (10)0.0691 (13)0.0357 (10)0.0102 (9)0.0193 (8)0.0037 (9)
F20.0713 (13)0.0666 (13)0.0349 (10)0.0013 (10)0.0337 (9)0.0103 (9)
F30.0654 (12)0.0743 (14)0.0595 (12)0.0142 (10)0.0494 (11)0.0088 (10)
F40.0427 (10)0.1148 (19)0.0596 (13)0.0267 (12)0.0274 (10)0.0053 (12)
F50.0441 (10)0.0728 (13)0.0338 (9)0.0099 (9)0.0215 (8)0.0069 (9)
F60.0310 (8)0.0342 (8)0.0413 (9)0.0022 (7)0.0125 (7)0.0042 (7)
F70.0466 (9)0.0273 (8)0.0419 (9)0.0083 (7)0.0205 (8)0.0107 (7)
F80.0551 (10)0.0225 (8)0.0540 (11)0.0077 (7)0.0265 (9)0.0035 (7)
F90.0364 (9)0.0377 (10)0.0837 (15)0.0099 (8)0.0257 (9)0.0041 (9)
F100.0337 (9)0.0302 (8)0.0734 (13)0.0042 (7)0.0248 (8)0.0083 (8)
F110.0279 (8)0.0814 (13)0.0246 (8)0.0061 (8)0.0096 (6)0.0144 (8)
F120.0317 (8)0.0777 (13)0.0365 (9)0.0014 (8)0.0209 (7)0.0114 (9)
F130.0494 (10)0.0786 (13)0.0279 (9)0.0028 (9)0.0238 (8)0.0149 (9)
F140.0414 (10)0.1027 (17)0.0276 (9)0.0118 (10)0.0092 (8)0.0243 (10)
F150.0287 (8)0.0689 (12)0.0319 (9)0.0071 (8)0.0127 (7)0.0102 (8)
F160.0297 (8)0.0322 (8)0.0525 (11)0.0023 (7)0.0076 (7)0.0015 (7)
F170.0542 (10)0.0242 (8)0.0542 (11)0.0136 (7)0.0271 (9)0.0056 (7)
F180.0712 (12)0.0176 (7)0.0433 (10)0.0076 (7)0.0259 (9)0.0083 (7)
F190.0432 (10)0.0335 (9)0.0568 (12)0.0156 (7)0.0095 (8)0.0088 (8)
F200.0267 (8)0.0258 (8)0.0528 (10)0.0011 (6)0.0146 (7)0.0007 (7)
C470.138 (10)0.139 (9)0.151 (9)0.007 (9)0.021 (10)0.007 (9)
Cl10.101 (5)0.140 (6)0.162 (8)0.006 (5)0.030 (5)0.009 (5)
Cl20.108 (6)0.111 (5)0.203 (9)0.013 (5)0.051 (6)0.024 (5)
C480.131 (10)0.137 (10)0.135 (10)0.007 (10)0.027 (10)0.003 (9)
Cl30.160 (9)0.138 (7)0.074 (5)0.005 (6)0.038 (5)0.033 (5)
Cl40.154 (9)0.190 (9)0.205 (10)0.002 (9)0.004 (10)0.027 (10)
Geometric parameters (Å, º) top
C1—N11.354 (3)C26—F51.339 (3)
C1—C201.398 (3)C27—C321.380 (4)
C1—C21.544 (3)C27—C281.389 (4)
C2—O11.395 (3)C28—F61.338 (3)
C2—O21.416 (3)C28—C291.381 (3)
C2—H21.0000C29—F71.339 (3)
C3—O31.394 (3)C29—C301.379 (4)
C3—O21.404 (3)C30—F81.338 (3)
C3—C41.523 (3)C30—C311.370 (4)
C3—H31.0000C31—F91.343 (3)
C4—N11.352 (3)C31—C321.383 (4)
C4—C51.395 (3)C32—F101.347 (3)
C5—C61.408 (3)C33—C381.382 (4)
C5—C211.505 (3)C33—C341.388 (3)
C6—N21.368 (3)C34—F111.334 (3)
C6—C71.429 (3)C34—C351.382 (4)
C7—C81.359 (4)C35—F121.341 (3)
C7—H70.9500C35—C361.369 (4)
C8—C91.425 (3)C36—F131.338 (3)
C8—H80.9500C36—C371.376 (4)
C9—N21.380 (3)C37—F141.339 (3)
C9—C101.393 (3)C37—C381.385 (4)
C10—C111.401 (3)C38—F151.342 (3)
C10—C271.496 (3)C39—C441.383 (3)
C11—N31.361 (3)C39—C401.385 (3)
C11—C121.447 (3)C40—F161.337 (3)
C12—C131.348 (4)C40—C411.381 (4)
C12—H120.9500C41—F171.345 (3)
C13—C141.449 (3)C41—C421.372 (4)
C13—H130.9500C42—F181.344 (3)
C14—N31.366 (3)C42—C431.376 (4)
C14—C151.409 (3)C43—F191.338 (3)
C15—C161.384 (3)C43—C441.381 (3)
C15—C331.501 (3)C44—F201.343 (3)
C16—N41.374 (3)C45—O11.432 (3)
C16—C171.421 (3)C45—H45A0.9800
C17—C181.357 (4)C45—H45B0.9800
C17—H170.9500C45—H45C0.9800
C18—C191.429 (3)C46—O31.434 (3)
C18—H180.9500C46—H46A0.9800
C19—N41.368 (3)C46—H46B0.9800
C19—C201.406 (3)C46—H46C0.9800
C20—C391.505 (3)N2—H2A0.85 (3)
C21—C261.380 (4)N4—H40.79 (3)
C21—C221.386 (4)C47—Cl11.781 (19)
C22—F11.336 (3)C47—Cl21.80 (2)
C22—C231.383 (4)C47—H47A0.9900
C23—F21.340 (3)C47—H47B0.9900
C23—C241.376 (4)C48—Cl31.705 (19)
C24—F31.333 (3)C48—Cl41.708 (18)
C24—C251.373 (4)C48—H48A0.9900
C25—F41.338 (4)C48—H48B0.9900
C25—C261.393 (4)
N1—C1—C20123.2 (2)F6—C28—C29118.1 (2)
N1—C1—C2122.3 (2)F6—C28—C27119.7 (2)
C20—C1—C2114.6 (2)C29—C28—C27122.3 (2)
O1—C2—O2107.04 (19)F7—C29—C30120.1 (2)
O1—C2—C1112.86 (19)F7—C29—C28120.4 (2)
O2—C2—C1113.33 (19)C30—C29—C28119.5 (2)
O1—C2—H2107.8F8—C30—C31119.8 (2)
O2—C2—H2107.8F8—C30—C29120.3 (2)
C1—C2—H2107.8C31—C30—C29119.9 (2)
O3—C3—O2113.30 (19)F9—C31—C30119.8 (2)
O3—C3—C4107.60 (19)F9—C31—C32120.8 (2)
O2—C3—C4109.84 (19)C30—C31—C32119.4 (2)
O3—C3—H3108.7F10—C32—C27119.8 (2)
O2—C3—H3108.7F10—C32—C31117.5 (2)
C4—C3—H3108.7C27—C32—C31122.7 (2)
N1—C4—C5124.7 (2)C38—C33—C34116.4 (2)
N1—C4—C3118.3 (2)C38—C33—C15122.0 (2)
C5—C4—C3117.0 (2)C34—C33—C15121.6 (2)
C4—C5—C6128.7 (2)F11—C34—C35117.4 (2)
C4—C5—C21118.8 (2)F11—C34—C33119.9 (2)
C6—C5—C21112.5 (2)C35—C34—C33122.7 (2)
N2—C6—C5127.7 (2)F12—C35—C36120.3 (2)
N2—C6—C7106.6 (2)F12—C35—C34120.3 (2)
C5—C6—C7125.6 (2)C36—C35—C34119.4 (2)
C8—C7—C6108.6 (2)F13—C36—C35120.1 (2)
C8—C7—H7125.7F13—C36—C37120.3 (2)
C6—C7—H7125.7C35—C36—C37119.7 (2)
C7—C8—C9107.8 (2)F14—C37—C36119.6 (2)
C7—C8—H8126.1F14—C37—C38120.3 (2)
C9—C8—H8126.1C36—C37—C38120.2 (2)
N2—C9—C10125.0 (2)F15—C38—C33119.9 (2)
N2—C9—C8106.8 (2)F15—C38—C37118.3 (2)
C10—C9—C8128.1 (2)C33—C38—C37121.7 (2)
C9—C10—C11125.5 (2)C44—C39—C40117.0 (2)
C9—C10—C27117.0 (2)C44—C39—C20120.9 (2)
C11—C10—C27117.5 (2)C40—C39—C20122.1 (2)
N3—C11—C10125.1 (2)F16—C40—C41118.6 (2)
N3—C11—C12111.2 (2)F16—C40—C39119.5 (2)
C10—C11—C12123.4 (2)C41—C40—C39121.9 (2)
C13—C12—C11106.5 (2)F17—C41—C42119.9 (2)
C13—C12—H12126.7F17—C41—C40120.7 (2)
C11—C12—H12126.7C42—C41—C40119.4 (2)
C12—C13—C14106.1 (2)F18—C42—C41119.8 (2)
C12—C13—H13127.0F18—C42—C43119.7 (2)
C14—C13—H13127.0C41—C42—C43120.5 (2)
N3—C14—C15124.1 (2)F19—C43—C42119.8 (2)
N3—C14—C13111.3 (2)F19—C43—C44121.2 (2)
C15—C14—C13124.5 (2)C42—C43—C44119.0 (2)
C16—C15—C14125.3 (2)F20—C44—C43117.8 (2)
C16—C15—C33117.3 (2)F20—C44—C39119.9 (2)
C14—C15—C33117.2 (2)C43—C44—C39122.3 (2)
N4—C16—C15126.0 (2)O1—C45—H45A109.5
N4—C16—C17106.3 (2)O1—C45—H45B109.5
C15—C16—C17127.3 (2)H45A—C45—H45B109.5
C18—C17—C16108.3 (2)O1—C45—H45C109.5
C18—C17—H17125.9H45A—C45—H45C109.5
C16—C17—H17125.9H45B—C45—H45C109.5
C17—C18—C19108.6 (2)O3—C46—H46A109.5
C17—C18—H18125.7O3—C46—H46B109.5
C19—C18—H18125.7H46A—C46—H46B109.5
N4—C19—C20128.5 (2)O3—C46—H46C109.5
N4—C19—C18105.8 (2)H46A—C46—H46C109.5
C20—C19—C18125.7 (2)H46B—C46—H46C109.5
C1—C20—C19129.1 (2)C4—N1—C1116.4 (2)
C1—C20—C39118.4 (2)C6—N2—C9110.1 (2)
C19—C20—C39112.42 (19)C6—N2—H2A123 (2)
C26—C21—C22116.4 (2)C9—N2—H2A126 (2)
C26—C21—C5121.1 (2)C11—N3—C14104.84 (19)
C22—C21—C5122.5 (2)C19—N4—C16110.9 (2)
F1—C22—C23118.3 (3)C19—N4—H4125 (2)
F1—C22—C21119.4 (2)C16—N4—H4124 (2)
C23—C22—C21122.3 (3)C2—O1—C45114.4 (2)
F2—C23—C24120.5 (2)C3—O2—C2114.19 (18)
F2—C23—C22120.0 (3)C3—O3—C46111.6 (2)
C24—C23—C22119.5 (3)Cl1—C47—Cl2101.8 (12)
F3—C24—C25120.0 (3)Cl1—C47—H47A111.4
F3—C24—C23119.8 (3)Cl2—C47—H47A111.4
C25—C24—C23120.2 (2)Cl1—C47—H47B111.4
F4—C25—C24120.9 (2)Cl2—C47—H47B111.4
F4—C25—C26120.1 (3)H47A—C47—H47B109.3
C24—C25—C26119.0 (3)Cl3—C48—Cl4130 (2)
F5—C26—C21120.2 (2)Cl3—C48—H48A104.7
F5—C26—C25117.2 (3)Cl4—C48—H48A104.7
C21—C26—C25122.6 (3)Cl3—C48—H48B104.7
C32—C27—C28116.2 (2)Cl4—C48—H48B104.7
C32—C27—C10121.8 (2)H48A—C48—H48B105.7
C28—C27—C10121.9 (2)
N1—C1—C2—O1111.2 (2)C28—C29—C30—F8178.8 (2)
C20—C1—C2—O167.6 (3)F7—C29—C30—C31179.0 (2)
N1—C1—C2—O210.7 (3)C28—C29—C30—C310.3 (4)
C20—C1—C2—O2170.5 (2)F8—C30—C31—F91.3 (4)
O3—C3—C4—N174.8 (3)C29—C30—C31—F9179.8 (2)
O2—C3—C4—N149.0 (3)F8—C30—C31—C32178.0 (2)
O3—C3—C4—C5104.3 (2)C29—C30—C31—C320.5 (4)
O2—C3—C4—C5131.9 (2)C28—C27—C32—F10179.4 (2)
N1—C4—C5—C64.2 (4)C10—C27—C32—F101.8 (4)
C3—C4—C5—C6176.8 (3)C28—C27—C32—C310.9 (4)
N1—C4—C5—C21177.9 (2)C10—C27—C32—C31178.5 (3)
C3—C4—C5—C211.1 (3)F9—C31—C32—F100.3 (4)
C4—C5—C6—N212.1 (5)C30—C31—C32—F10179.5 (2)
C21—C5—C6—N2169.9 (3)F9—C31—C32—C27179.4 (3)
C4—C5—C6—C7165.1 (3)C30—C31—C32—C270.2 (4)
C21—C5—C6—C712.9 (4)C16—C15—C33—C3874.6 (3)
N2—C6—C7—C81.1 (3)C14—C15—C33—C38109.9 (3)
C5—C6—C7—C8176.6 (3)C16—C15—C33—C34105.7 (3)
C6—C7—C8—C92.1 (3)C14—C15—C33—C3469.8 (3)
C7—C8—C9—N22.3 (3)C38—C33—C34—F11179.0 (2)
C7—C8—C9—C10174.6 (3)C15—C33—C34—F111.2 (4)
N2—C9—C10—C115.7 (4)C38—C33—C34—C351.7 (4)
C8—C9—C10—C11170.7 (3)C15—C33—C34—C35178.1 (2)
N2—C9—C10—C27178.0 (2)F11—C34—C35—F120.1 (4)
C8—C9—C10—C275.6 (4)C33—C34—C35—F12179.4 (2)
C9—C10—C11—N34.9 (4)F11—C34—C35—C36179.5 (3)
C27—C10—C11—N3178.7 (2)C33—C34—C35—C360.1 (4)
C9—C10—C11—C12168.7 (3)F12—C35—C36—F131.0 (4)
C27—C10—C11—C127.6 (4)C34—C35—C36—F13178.6 (3)
N3—C11—C12—C132.2 (3)F12—C35—C36—C37179.3 (3)
C10—C11—C12—C13172.2 (2)C34—C35—C36—C371.1 (4)
C11—C12—C13—C142.1 (3)F13—C36—C37—F141.0 (4)
C12—C13—C14—N31.5 (3)C35—C36—C37—F14179.3 (3)
C12—C13—C14—C15175.6 (2)F13—C36—C37—C38178.9 (3)
N3—C14—C15—C165.2 (4)C35—C36—C37—C380.8 (5)
C13—C14—C15—C16171.5 (2)C34—C33—C38—F15179.0 (2)
N3—C14—C15—C33179.7 (2)C15—C33—C38—F151.3 (4)
C13—C14—C15—C333.5 (4)C34—C33—C38—C372.0 (4)
C14—C15—C16—N42.9 (4)C15—C33—C38—C37177.8 (3)
C33—C15—C16—N4177.9 (2)F14—C37—C38—F150.0 (4)
C14—C15—C16—C17169.0 (3)C36—C37—C38—F15179.8 (3)
C33—C15—C16—C176.1 (4)F14—C37—C38—C33179.1 (3)
N4—C16—C17—C182.1 (3)C36—C37—C38—C330.8 (4)
C15—C16—C17—C18171.0 (3)C1—C20—C39—C4494.8 (3)
C16—C17—C18—C190.9 (3)C19—C20—C39—C4487.5 (3)
C17—C18—C19—N40.6 (3)C1—C20—C39—C4088.2 (3)
C17—C18—C19—C20179.1 (2)C19—C20—C39—C4089.5 (3)
N1—C1—C20—C193.4 (4)C44—C39—C40—F16179.6 (2)
C2—C1—C20—C19177.8 (2)C20—C39—C40—F163.2 (4)
N1—C1—C20—C39179.3 (2)C44—C39—C40—C410.3 (4)
C2—C1—C20—C390.5 (3)C20—C39—C40—C41177.4 (2)
N4—C19—C20—C112.6 (4)F16—C40—C41—F170.9 (4)
C18—C19—C20—C1167.7 (3)C39—C40—C41—F17179.8 (2)
N4—C19—C20—C39170.0 (2)F16—C40—C41—C42179.8 (2)
C18—C19—C20—C399.7 (3)C39—C40—C41—C420.5 (4)
C4—C5—C21—C2695.9 (3)F17—C41—C42—F180.2 (4)
C6—C5—C21—C2685.8 (3)C40—C41—C42—F18179.5 (2)
C4—C5—C21—C2287.8 (3)F17—C41—C42—C43179.7 (2)
C6—C5—C21—C2290.4 (3)C40—C41—C42—C430.4 (4)
C26—C21—C22—F1179.3 (2)F18—C42—C43—F191.2 (4)
C5—C21—C22—F12.9 (4)C41—C42—C43—F19178.9 (2)
C26—C21—C22—C230.3 (4)F18—C42—C43—C44179.7 (2)
C5—C21—C22—C23176.7 (2)C41—C42—C43—C440.2 (4)
F1—C22—C23—F20.8 (4)F19—C43—C44—F200.8 (4)
C21—C22—C23—F2179.6 (2)C42—C43—C44—F20179.9 (2)
F1—C22—C23—C24178.8 (3)F19—C43—C44—C39179.1 (2)
C21—C22—C23—C240.8 (4)C42—C43—C44—C390.0 (4)
F2—C23—C24—F31.4 (4)C40—C39—C44—F20179.9 (2)
C22—C23—C24—F3178.3 (3)C20—C39—C44—F202.9 (3)
F2—C23—C24—C25179.5 (3)C40—C39—C44—C430.0 (4)
C22—C23—C24—C250.1 (4)C20—C39—C44—C43177.2 (2)
F3—C24—C25—F40.2 (5)C5—C4—N1—C1169.9 (2)
C23—C24—C25—F4178.4 (3)C3—C4—N1—C111.1 (3)
F3—C24—C25—C26179.5 (3)C20—C1—N1—C4162.6 (2)
C23—C24—C25—C261.3 (5)C2—C1—N1—C418.7 (3)
C22—C21—C26—F5178.6 (2)C5—C6—N2—C9178.0 (3)
C5—C21—C26—F52.2 (4)C7—C6—N2—C90.4 (3)
C22—C21—C26—C251.0 (4)C10—C9—N2—C6175.4 (3)
C5—C21—C26—C25175.5 (3)C8—C9—N2—C61.6 (3)
F4—C25—C26—F50.2 (4)C10—C11—N3—C14173.1 (2)
C24—C25—C26—F5179.5 (3)C12—C11—N3—C141.2 (3)
F4—C25—C26—C21177.9 (3)C15—C14—N3—C11177.0 (2)
C24—C25—C26—C211.8 (5)C13—C14—N3—C110.1 (3)
C9—C10—C27—C32113.0 (3)C20—C19—N4—C16177.7 (2)
C11—C10—C27—C3270.3 (3)C18—C19—N4—C162.1 (3)
C9—C10—C27—C2869.5 (3)C15—C16—N4—C19170.6 (2)
C11—C10—C27—C28107.1 (3)C17—C16—N4—C192.6 (3)
C32—C27—C28—F6179.1 (2)O2—C2—O1—C4566.4 (2)
C10—C27—C28—F61.5 (4)C1—C2—O1—C4559.0 (3)
C32—C27—C28—C291.8 (4)O3—C3—O2—C264.5 (2)
C10—C27—C28—C29179.4 (2)C4—C3—O2—C255.9 (3)
F6—C28—C29—F71.4 (4)O1—C2—O2—C3153.83 (19)
C27—C28—C29—F7177.8 (2)C1—C2—O2—C328.8 (3)
F6—C28—C29—C30179.3 (2)O2—C3—O3—C4667.4 (3)
C27—C28—C29—C301.5 (4)C4—C3—O3—C46171.0 (2)
F7—C29—C30—F80.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···F18i0.952.593.424 (3)147
C18—H18···F8ii0.952.513.319 (3)143
C45—H45A···F12iii0.982.553.519 (3)169
C45—H45B···F19iv0.982.663.389 (3)132
C45—H45A···F200.982.823.184 (3)103
C46—H46A···F10v0.982.633.496 (4)148
C46—H46C···F1vi0.982.603.505 (4)153
C48—H48B···F12iii0.992.423.25 (5)141
N2—H2A···N10.85 (3)2.56 (3)3.040 (3)117 (3)
N2—H2A···N30.85 (3)2.33 (3)2.858 (3)121 (3)
N4—H4···N10.79 (3)2.61 (3)3.040 (3)116 (2)
N4—H4···N30.79 (3)2.33 (3)2.852 (3)125 (3)
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x+1, y, z+1/2; (iv) x+1, y+1, z+1; (v) x1/2, y1/2, z; (vi) x+1/2, y+3/2, z+1.
 

Acknowledgements

This material is based upon work supported by the National Science Foundation through the Major Research Instrumentation Program under grant No. CHE 1625543 (funding for the single-crystal X-ray diffractometer).

Funding information

Funding for this research was provided by: National Science Foundation (grant No. CHE-1625543 to M. Zeller; grant No. CHE-1800361 to C. Brückner).

References

First citationAkhigbe, J., Yang, M., Luciano, M. & Brückner, C. (2016). J. Porphyrins Phthalocyanines, 20, 265–273.  Web of Science CrossRef CAS Google Scholar
First citationBhupathiraju, N. V. S. D. K., Rizvi, W., Batteas, J. D. & Drain, C. M. (2016). Org. Biomol. Chem. 14, 389–408.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBorg, R. E. & Rochford, J. (2018). Photochem. Photobiol. 94, 1175–1209.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBrückner, C. (2016). Acc. Chem. Res. 49, 1080–1092.  Web of Science PubMed Google Scholar
First citationBrückner, C., Akhigbe, J. & Samankumara, L. (2014). Handbook of Porphyrin Science, edited by K. M. Kadish, K. M. Smith & R. Guilard, pp. 1–276. River Edge, NY: World Scientific.  Google Scholar
First citationBrückner, C., Götz, D. C. G., Fox, S. P., Ryppa, C., McCarthy, J. R., Bruhn, T., Akhigbe, J., Banerjee, S., Daddario, P., Daniell, H. W., Zeller, M., Boyle, R. W. & Bringmann, G. (2011). J. Am. Chem. Soc. 133, 8740–8752.  Web of Science PubMed Google Scholar
First citationBrückner, C., Rettig, S. J. & Dolphin, D. (1998). J. Org. Chem. 63, 2094–2098.  Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationCavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. & Terraneo, G. (2016). Chem. Rev. 116, 2478–2601.  Web of Science CrossRef CAS PubMed Google Scholar
First citationChatterjee, T., Shetti, V. S., Sharma, R. & Ravikanth, M. (2017). Chem. Rev. 117, 3254–3328.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCosta, J. I. T., Tomé, A. C., Neves, M. G. P. M. S. & Cavaleiro, J. A. S. (2011). J. Porphyrins Phthalocyanines, 15, 1116–1133.  Web of Science CrossRef CAS Google Scholar
First citationDaniell, H. W. & Brückner, C. (2004). Angew. Chem. Int. Ed. 43, 1688–1691.  Web of Science CrossRef CAS Google Scholar
First citationDolmans, D. E. J. G. J., Fukumura, D. & Jain, R. K. (2003). Nat. Rev. Cancer, 3, 380–387.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGolf, H. R. A., Reissig, H.-U. & Wiehe, A. (2015). Eur. J. Org. Chem. pp 1548–1568.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuberman-Pfeffer, M. J., Greco, J. A., Samankumara, L. P., Zeller, M., Birge, R. R., Gascón, J. A. & Brückner, C. (2017). J. Am. Chem. Soc. 139, 548–560.  Web of Science CAS PubMed Google Scholar
First citationGujrati, V., Mishra, A. & Ntziachristos, V. (2017). Chem. Commun. 53, 4653–4672.  Web of Science CrossRef CAS Google Scholar
First citationHedley, G. J., Ruseckas, A. & Samuel, I. D. W. (2017). Chem. Rev. 117, 796–837.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHewage, N., Yang, B., Agrios, A. G. & Brückner, C. (2015). Dyes Pigments, 121, 159–169.  Web of Science CrossRef CAS Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHyland, M. A., Morton, M. D. & Brückner, C. (2012). J. Org. Chem. 77, 3038–3048.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLara, K. K., Rinaldo, C. K. & Brückner, C. (2005). Tetrahedron, 61, 2529–2539.  Web of Science CrossRef CAS Google Scholar
First citationLash, T. D. (2017). Chem. Rev. 117, 2313–2446.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLeroy, J. & Bondon, A. (2008). Eur. J. Org. Chem. pp. 417–433.  Web of Science CrossRef Google Scholar
First citationLevina, E. O., Chernyshov, I. Y., Voronin, A. P., Alekseiko, L. N., Stash, A. I. & Vener, M. V. (2019). RSC Adv. 9, 12520–12537.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcCarthy, J. R., Jenkins, H. A. & Brückner, C. (2003). Org. Lett. 5, 19–22.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMeehan, E., Li, R., Zeller, M. & Brückner, C. (2015). Org. Lett. 17, 2210–2213.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNardi, M., Verucchi, R., Aversa, L., Casarin, M., Vittadini, A., Mahne, N., Giglia, A., Nannarone, S. & Iannotta, S. (2013). New J. Chem. 37, 1036–1045.  Web of Science CrossRef CAS Google Scholar
First citationSamankumara, L. P., Dorazio, S. J., Akhigbe, J., Li, R., Nimthong-Roldán, A., Zeller, M. & Brückner, C. (2015). Chem. Eur. J. 21, 11118–11128.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSamankumara, L. P., Wells, S., Zeller, M., Acuña, A. M., Röder, B. & Brückner, C. (2012). Angew. Chem. Int. Ed. 51, 5757–5760.  Web of Science CSD CrossRef CAS Google Scholar
First citationSharma, M., Banerjee, S., Zeller, M. & Brückner, C. (2016). J. Org. Chem. 81, 12350–12356.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSharma, M., Ticho, A. L., Samankumara, L., Zeller, M. & Brückner, C. (2017). Inorg. Chem. 56, 11490–11502.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShelnutt, J. A., Song, X.-Z., Ma, J.-G., Jentzen, W. & Medforth, C. J. (1998). Chem. Soc. Rev. 27, 31–42.  CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpellane, P. J., Gouterman, M., Antipas, A., Kim, S. & Liu, Y. C. (1980). Inorg. Chem. 19, 386–391.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhong, Y.-L. & Shing, T. K. M. (1997). J. Org. Chem. 62, 2622–2624.  CrossRef PubMed CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds