research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 7,7′-[(pyridin-2-yl)methyl­ene]bis­­(5-chloro­quinolin-8-ol)

CROSSMARK_Color_square_no_text.svg

aOsaka Research Institute of Industrial Science and Technology, Joto-ku, Osaka, 536-8553, Japan, and bOsaka Kyoiku University, Kashiwara, Osaka 582-8582, Japan
*Correspondence e-mail: kasiwagi@omtri.or.jp

Edited by H. Ishida, Okayama University, Japan (Received 1 July 2020; accepted 8 July 2020; online 14 July 2020)

In the title compound, C24H15Cl2N3O2, one quinoline ring system is essentially planar and the other is slightly bent. An intra­molecular O—H⋯N hydrogen bond involving the hy­droxy group and a pyridine N atom forms an S(5) ring motif. In the crystal, two mol­ecules are associated into an inversion dimer with two R22(7) ring motifs through inter­molecular O—H⋯N and O—H⋯O hydrogen bonds. The dimers are further linked by an inter­molecular C—H⋯O hydrogen bond and four C—H⋯π inter­actions, forming a two-dimensional network parallel to (001).

1. Chemical context

8-Quinolinol and its derivatives are well-known chelating agents in analytical chemistry and bidentate ligands to metal ions in structural chemistry. Recently, multinuclear metal complexes based on the dimeric 8-quinolinol ligand, 1,1-bis­(8-hy­droxy­quinolin-7-yl)ethane, have been investigated (Zhu et al., 2012[Zhu, Y., Luo, F., Song, Y.-M., Feng, X.-F., Luo, M.-B., Liao, Z.-W., Sun, G.-M., Tian, X.-Z. & Yuan, Z.-J. (2012). Cryst. Growth Des. 12, 2158-2161.]; Zhang et al., 2014[Zhang, X.-M., Li, J.-Q., Liu, S.-J., Luo, M.-B., Xu, W.-Y. & Luo, F. (2014). CrystEngComm, 16, 2570-2573.]; Wu et al., 2017[Wu, M.-M., Wang, J.-Y., Sun, R., Zhao, C., Zhao, J.-P., Che, G.-B. & Liu, F.-C. (2017). Inorg. Chem. 56, 9555-9562.]; Gao et al., 2018[Gao, X., Xu, W., Wu, C.-L., Zhu, X.-M., Ou, Y.-C. & Wu, J.-Z. (2018). Chin. J. Inorg. Chem. 34, 1768-1774.]). On the other hand, Yamato et al. (1986[Yamato, M., Hashigaki, K., Yasumoto, Y., Sakai, J., Tsukagoshi, S., Tashiro, T. & Tsuruo, T. (1986). Chem. Pharm. Bull. 34, 3496-3498.], 1987[Yamato, M., Hashigaki, K., Yasumoto, Y., Sakai, J., Luduena, R. F., Banerjee, A., Tsukagoshi, S., Tashiro, T. & Tsuruo, T. (1987). J. Med. Chem. 30, 1897-1900.]) reported the aromatic-group-substituted dimeric 8-quinolinol derivatives, 1,1-bis­(8-hy­droxy­quinolin-7-yl)-1-(4-meth­oxy­phen­yl)meth­ane, 1,1-bis­(8-hy­droxy­quinolin-7-yl)-1-(furan-2-yl)methane and 1,1-bis­(8-hy­droxy­quinolin-7-yl)-1-(thio­phen-2-yl)meth­ane, to be candidates for anti­tumor agents. We are attempting to develop a 2-pyridyl group-introduced dimeric 8-quinolinol-based ligand for mono- and multi-nuclear metal complexes, and report here the crystal structure of the title compound.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. One quinoline ring system is essentially planar, the dihedral angle between the mean planes through C22–C24/N6 and C26/C18–C20 being 0.5 (2)°. The other quinoline ring system is slightly bent, the dihedral angle between the mean planes through N5/C10–C12 and C14–C16/C8 being 5.77 (18)°. There are two intra­molecular O—H⋯N hydrogen bonds involving the hydroxy groups and quinoline N atoms (O3—H3⋯N5 and O4—H4⋯N6; Table 1[link]) generating S(5) ring motifs (Fig. 1[link]). The arrangement of the 2-pyridyl and two quinoline rings is propeller-wise, which is a common arrangement for Ar3C-H fragments. The bond angles C16—C17—C18, C16—C17—C27, and C18—C17—C27 are 112.21 (16), 112.64 (16) and 112.94 (16)°, respectively. The torsion angles C8—C16—C17—C18, C26—C18—C17—C27, and C28—C27—C17—C16 are −88.6 (2), −101.2 (2) and −87.8 (2)°, respectively.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the C18–C21/C25/C26, C8/C9/C13–C16 and N7/C27–C31 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯N5 0.82 (2) 2.23 (3) 2.727 (2) 119 (2)
O3—H3⋯O4i 0.83 (3) 2.26 (3) 3.044 (2) 159 (2)
O4—H4⋯N5i 0.84 (4) 2.16 (3) 2.878 (3) 144 (2)
O4—H4⋯N6 0.84 (4) 2.20 (4) 2.674 (3) 115 (3)
C29—H29⋯O3ii 0.95 2.53 3.377 (3) 148
C10—H10⋯Cg1iii 0.95 2.75 3.659 (3) 161
C22—H22⋯Cg2iv 0.95 2.92 3.667 (3) 136
C24—H24⋯Cg3v 0.95 2.65 3.528 (3) 153
C30—H30⋯Cg1ii 0.95 2.73 3.562 (3) 147
Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) x-1, y, z; (iii) x+1, y+1, z; (iv) x, y-1, z; (v) -x, -y+1, -z+2.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by spheres of arbitrary radius. The intra­molecular O—H⋯N hydrogen bonds are shown as dashed lines.

3. Supra­molecular features

In the crystal, mol­ecules are linked by inter­molecular O—H⋯O and O—H⋯N hydrogen bonds [O3—H3⋯O4i and O4—H4⋯N5i; symmetry code: (i) –x + 1, –y + 2, –z + 2], forming an inversion dimer with two [R_{2}^{2}](7) ring motifs (Fig. 2[link] and Table 1[link]). In contrast, the crystal structure of 1,1-bis­(8-hy­droxy­quinolin-7-yl)methane, an analogue of the title compound with the 2-pyridyl group omitted, exhibits a supra­molecular 1D-polymeric structure with inter­molecular hydrogen bonding between each 8-quinolinol unit and two other mol­ecules (CSD refcode CIBCEV; Albrecht et al., 1999[Albrecht, M., Blau, O., Witt, K., Wegelius, E., Nissinen, M., Risssanen, K. & Fröhlich, R. (1999). Synthesis, pp. 1819-1829.]). The dimers of the title compound are linked by complementary C—H⋯π inter­actions [C10—H10⋯Cg1iii and C24—H24⋯Cg3v; Cg1 is the centroid of the C18–C21/C25/C26 ring and Cg3 is the centroid of the N7/C27–C31 ring; symmetry codes: (iii) x + 1, y + 1, z; (v) –x, –y + 1, –z + 2], forming a ribbon structure along [110] (Fig. 3[link]). Considered separately, the 1D-chain structure propagates along the a-axis direction through a C—H⋯O hydrogen bond [C29—H29⋯O3ii; symmetry code: (ii) x – 1, y, z] and a C—H⋯π inter­action [C30—H30⋯Cg1ii; Cg1 is the centroid of the C18–C21/C25/C26 ring]. The chains are linked by two C—H⋯π inter­actions [C10—H10⋯Cg1iii and C22—H22⋯Cg2iv; Cg2 is the centroid of the C8/C9/C13–C16 ring; symmetry code: (iv) x, y – 1, z], generating a two-dimensional network parallel to (001) (Fig. 4[link]).

[Figure 2]
Figure 2
A centrosymmetric dimeric structure of the title compound. The intra- and inter­molecular hydrogen bonds are shown as dashed lines. H atoms not involved in these inter­actions have been omitted for clarity. [Symmetry code: (i) −x + 1, −y + 2, −z + 2.]
[Figure 3]
Figure 3
A packing diagram of the title compound, showing the ribbon structure. The C—H⋯π inter­actions between the dimers are shown as dashed lines. H atoms not involved in the inter­actions have been omitted for clarity.
[Figure 4]
Figure 4
A packing diagram of the title compound viewed along the c axis, showing the two-dimensional network sheet structure. The C—H⋯π inter­actions and C—H⋯O hydrogen bonds are shown as dashed lines. H atoms not involved in the inter­actions have been omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.41, update of March 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for compounds containing the bis­(phenol-2-yl)methane skeleton gave 9360 hits, and for those containing the 8-quinolinol skeleton gave 3200 hits. A search for the fragment of 1,1-bis­(8-hy­droxy­quinolin-7-yl)methane gave 23 hits (21 compounds), which included only one organic compound, 1,1-bis­(8-hy­droxy­quinolin-7-yl)methane (CIBCEV; Albrecht et al., 1999[Albrecht, M., Blau, O., Witt, K., Wegelius, E., Nissinen, M., Risssanen, K. & Fröhlich, R. (1999). Synthesis, pp. 1819-1829.]), and 20 metal complexes with 1,1-bis­(8-hy­droxy­quinolin-7-yl)ethane as bridging ligands. The 20 metal complexes include two dinuclear complexes, Zn2 (Wu et al., 2017[Wu, M.-M., Wang, J.-Y., Sun, R., Zhao, C., Zhao, J.-P., Che, G.-B. & Liu, F.-C. (2017). Inorg. Chem. 56, 9555-9562.]; Gao et al., 2018[Gao, X., Xu, W., Wu, C.-L., Zhu, X.-M., Ou, Y.-C. & Wu, J.-Z. (2018). Chin. J. Inorg. Chem. 34, 1768-1774.]) and Cd2 (Gao et al., 2018[Gao, X., Xu, W., Wu, C.-L., Zhu, X.-M., Ou, Y.-C. & Wu, J.-Z. (2018). Chin. J. Inorg. Chem. 34, 1768-1774.]), one homo-trinuclear La3 complex (Wu et al., 2017[Wu, M.-M., Wang, J.-Y., Sun, R., Zhao, C., Zhao, J.-P., Che, G.-B. & Liu, F.-C. (2017). Inorg. Chem. 56, 9555-9562.]), 16 hetero-trinuclear complexes, Co2Sm, Ni2Sm, Zn2Sm, Co2Eu, Ni2Eu, Zn2Eu, Cd2Eu, Co2Gd, Ni2Gd, Cd2Gd, Co2Tb, Ni2Tb, Zn2Tb, Fe2Dy, Co2Dy, Cd2Dy (Zhu et al., 2012[Zhu, Y., Luo, F., Song, Y.-M., Feng, X.-F., Luo, M.-B., Liao, Z.-W., Sun, G.-M., Tian, X.-Z. & Yuan, Z.-J. (2012). Cryst. Growth Des. 12, 2158-2161.]) and one hexa­nuclear Na2Co4 complex (Zhang et al., 2014[Zhang, X.-M., Li, J.-Q., Liu, S.-J., Luo, M.-B., Xu, W.-Y. & Luo, F. (2014). CrystEngComm, 16, 2570-2573.]). The crystal structure of 1,1-bis­(8-hy­droxy­quinolin-7-yl)ethane itself has not been reported.

5. Synthesis and crystallization

The title compound was prepared by a modification of the reported K2CO3-catalysed synthetic method for 1,1-bis­(5-chloro-8-hy­droxy­quinolin-7-yl)methane (Ozawa & Shibuya, 1963a[Ozawa, T. & Shibuya, K. (1963a). Yakugaku Zasshi, 83, 498-502.],b[Ozawa, T. & Shibuya, K. (1963b). Chem. Abstr. 59, 7481.]). 5-Chloro-8-hy­droxy­quinoline (898 mg, 5.0 mmol), 2-pyridine­carboxaldehyde (321 mg, 3.0 mmol), K2CO3 (100 mg, 0.72 mmol) and ethanol (6 mL) were placed in a 15 mL capped pressure tube. It was heated at 353 K for 96 h. The generated pale-white precipitate was filtered to give a pale-white solid (806 mg, 1.80 mmol; yield 72%). Single crystals of title compound suitable for X-ray diffraction were grown by slow evaporation of a solution in CHCl3/n-hexane (2:1, v/v) at ambient temperature. 1H NMR (CDCl3, 600 MHz) δ = 6.63 (s, 1H), 7.21 (ddd, 1H, J = 7.8, 4.8, 1.8 Hz), 7.33 (d, 1H, J = 7.8 Hz), 7.52 (s, 2H), 7.52 (dd, 2H, J = 8.4, 4.2 Hz), 7.67 (td, 1H, J = 7.8, 1.8 Hz), 8.48 (dd, 2H, J = 8.4, 1.2 Hz), 8.64 (d, 1H, J = 4.8 Hz), 8.81 (dd, 2H, J = 4.2, 1.2 Hz), 8.84 (br, 2H).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydroxy H atoms were located in a difference-Fourier map and freely refined. C-bound H atoms were placed in geometrically calculated positions (C—H = 0.95–1.00 Å) and refined as part of a riding model with Uiso(H) = 1.2Ueq (C). One outlier ([\overline{1}]11) was omitted from the refinement.

Table 2
Experimental details

Crystal data
Chemical formula C24H15Cl2N3O2
Mr 448.31
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 8.7077 (8), 10.4281 (10), 12.1329 (11)
α, β, γ (°) 101.111 (7), 92.087 (7), 113.161 (8)
V3) 986.23 (17)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.36
Crystal size (mm) 0.40 × 0.15 × 0.10
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.710, 0.965
No. of measured, independent and observed [F2 > 2.0σ(F2)] reflections 9484, 4475, 3536
Rint 0.027
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.119, 1.07
No. of reflections 4475
No. of parameters 288
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.43, −0.22
Computer programs: RAPID-AUTO (Rigaku, 2006[Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]), SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and CrystalStructure (Rigaku, 2016[Rigaku (2016). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]).

Supporting information


Computing details top

Data collection: RAPID-AUTO (Rigaku, 2006); cell refinement: RAPID-AUTO (Rigaku, 2006); data reduction: RAPID-AUTO (Rigaku, 2006); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: CrystalStructure (Rigaku, 2016).

7,7'-[(pyridin-2-yl)methylene]bis(5-chloroquinolin-8-ol) top
Crystal data top
C24H15Cl2N3O2Z = 2
Mr = 448.31F(000) = 460.00
Triclinic, P1Dx = 1.510 Mg m3
a = 8.7077 (8) ÅMo Kα radiation, λ = 0.71075 Å
b = 10.4281 (10) ÅCell parameters from 7587 reflections
c = 12.1329 (11) Åθ = 3.0–27.5°
α = 101.111 (7)°µ = 0.36 mm1
β = 92.087 (7)°T = 173 K
γ = 113.161 (8)°Chunk, colorless
V = 986.23 (17) Å30.40 × 0.15 × 0.10 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3536 reflections with F2 > 2.0σ(F2)
Detector resolution: 10.000 pixels mm-1Rint = 0.027
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1111
Tmin = 0.710, Tmax = 0.965k = 1313
9484 measured reflectionsl = 1515
4475 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0532P)2 + 0.572P]
where P = (Fo2 + 2Fc2)/3
4475 reflections(Δ/σ)max < 0.001
288 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.22 e Å3
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.19486 (7)0.99797 (7)0.42458 (5)0.03826 (17)
Cl20.17365 (8)0.39091 (6)0.56639 (5)0.03966 (17)
O30.44767 (19)1.04439 (17)0.89332 (12)0.0268 (3)
O40.1923 (2)0.75295 (16)1.00827 (13)0.0305 (3)
N50.6459 (2)1.23152 (19)0.77548 (15)0.0269 (4)
N60.2352 (3)0.5120 (2)1.00448 (15)0.0328 (4)
N70.1639 (2)0.6963 (2)0.71721 (16)0.0306 (4)
C80.3918 (2)1.0343 (2)0.78420 (16)0.0216 (4)
C90.4946 (2)1.1297 (2)0.72083 (16)0.0220 (4)
C100.7377 (3)1.3256 (2)0.7197 (2)0.0340 (5)
H100.84141.39880.75770.041*
C110.6909 (3)1.3234 (3)0.6073 (2)0.0367 (5)
H110.76301.39270.57060.044*
C120.5418 (3)1.2218 (2)0.55110 (19)0.0322 (5)
H120.50931.21880.47470.039*
C130.4351 (3)1.1202 (2)0.60802 (17)0.0246 (4)
C140.2728 (3)1.0141 (2)0.56284 (17)0.0260 (4)
C150.1743 (3)0.9261 (2)0.62662 (17)0.0257 (4)
H150.06460.85760.59450.031*
C160.2326 (2)0.9353 (2)0.73891 (16)0.0217 (4)
C170.1239 (2)0.8422 (2)0.81349 (17)0.0218 (4)
H170.16390.89890.89320.026*
C180.1510 (2)0.7059 (2)0.80759 (16)0.0207 (4)
C190.1464 (2)0.6152 (2)0.70280 (17)0.0235 (4)
H190.12390.63960.63430.028*
C200.1734 (3)0.4941 (2)0.69780 (17)0.0261 (4)
C210.2042 (3)0.4507 (2)0.79740 (18)0.0263 (4)
C220.2328 (3)0.3278 (3)0.8022 (2)0.0369 (5)
H220.23120.26380.73440.044*
C230.2627 (4)0.3015 (3)0.9047 (2)0.0436 (6)
H230.28330.21960.90910.052*
C240.2627 (3)0.3965 (3)1.0039 (2)0.0401 (6)
H240.28390.37631.07460.048*
C250.2070 (2)0.5402 (2)0.90232 (17)0.0243 (4)
C260.1822 (2)0.6680 (2)0.90558 (17)0.0231 (4)
C270.0611 (2)0.8146 (2)0.79228 (16)0.0227 (4)
C280.1171 (3)0.9116 (2)0.8521 (2)0.0342 (5)
H280.03980.99660.90230.041*
C290.2853 (3)0.8838 (3)0.8384 (2)0.0414 (6)
H290.32630.94820.87990.050*
C300.3934 (3)0.7608 (3)0.7633 (2)0.0390 (6)
H300.51060.73780.75300.047*
C310.3284 (3)0.6725 (3)0.7037 (2)0.0356 (5)
H310.40310.58990.64980.043*
H30.541 (3)1.112 (3)0.909 (2)0.030 (7)*
H40.214 (4)0.718 (3)1.060 (3)0.052 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0417 (3)0.0466 (3)0.0227 (3)0.0125 (3)0.0028 (2)0.0125 (2)
Cl20.0575 (4)0.0339 (3)0.0246 (3)0.0183 (3)0.0078 (2)0.0000 (2)
O30.0222 (8)0.0304 (8)0.0230 (7)0.0050 (7)0.0010 (6)0.0086 (6)
O40.0446 (9)0.0283 (8)0.0195 (7)0.0161 (7)0.0020 (6)0.0051 (6)
N50.0237 (9)0.0269 (9)0.0270 (9)0.0066 (7)0.0032 (7)0.0071 (7)
N60.0452 (11)0.0309 (10)0.0254 (9)0.0176 (9)0.0036 (8)0.0088 (8)
N70.0249 (9)0.0330 (10)0.0300 (10)0.0097 (8)0.0007 (7)0.0033 (8)
C80.0229 (10)0.0233 (9)0.0208 (9)0.0112 (8)0.0030 (7)0.0058 (8)
C90.0225 (9)0.0219 (9)0.0226 (10)0.0102 (8)0.0043 (7)0.0049 (8)
C100.0273 (11)0.0328 (12)0.0346 (12)0.0032 (10)0.0044 (9)0.0107 (10)
C110.0352 (12)0.0351 (12)0.0362 (13)0.0058 (10)0.0110 (10)0.0176 (10)
C120.0395 (13)0.0355 (12)0.0244 (11)0.0150 (10)0.0086 (9)0.0130 (9)
C130.0269 (10)0.0250 (10)0.0238 (10)0.0117 (9)0.0059 (8)0.0070 (8)
C140.0312 (11)0.0284 (10)0.0196 (10)0.0136 (9)0.0007 (8)0.0054 (8)
C150.0247 (10)0.0246 (10)0.0245 (10)0.0072 (8)0.0002 (8)0.0046 (8)
C160.0229 (10)0.0206 (9)0.0232 (10)0.0091 (8)0.0036 (7)0.0075 (8)
C170.0198 (9)0.0225 (9)0.0215 (9)0.0063 (8)0.0020 (7)0.0063 (7)
C180.0164 (9)0.0209 (9)0.0231 (10)0.0051 (8)0.0028 (7)0.0064 (8)
C190.0203 (9)0.0259 (10)0.0208 (9)0.0045 (8)0.0034 (7)0.0077 (8)
C200.0256 (10)0.0268 (10)0.0208 (10)0.0071 (9)0.0040 (8)0.0018 (8)
C210.0254 (10)0.0245 (10)0.0280 (11)0.0084 (8)0.0053 (8)0.0067 (8)
C220.0492 (14)0.0313 (11)0.0344 (12)0.0212 (11)0.0090 (10)0.0058 (10)
C230.0650 (17)0.0361 (13)0.0433 (14)0.0318 (13)0.0115 (12)0.0145 (11)
C240.0578 (16)0.0375 (13)0.0341 (13)0.0254 (12)0.0057 (11)0.0154 (11)
C250.0235 (10)0.0244 (10)0.0249 (10)0.0084 (8)0.0030 (8)0.0083 (8)
C260.0222 (10)0.0223 (9)0.0214 (9)0.0061 (8)0.0027 (7)0.0036 (8)
C270.0210 (9)0.0251 (10)0.0229 (10)0.0086 (8)0.0035 (7)0.0095 (8)
C280.0341 (12)0.0300 (11)0.0366 (13)0.0137 (10)0.0016 (9)0.0025 (9)
C290.0428 (14)0.0507 (15)0.0446 (14)0.0324 (12)0.0123 (11)0.0122 (12)
C300.0205 (11)0.0566 (15)0.0473 (14)0.0167 (11)0.0079 (9)0.0257 (12)
C310.0244 (11)0.0373 (12)0.0388 (13)0.0067 (10)0.0035 (9)0.0086 (10)
Geometric parameters (Å, º) top
Cl1—C141.738 (2)C16—C171.528 (3)
Cl2—C201.744 (2)C17—C181.519 (3)
O3—C81.364 (2)C17—C271.524 (3)
O3—H30.82 (3)C17—H171.0000
O4—C261.360 (2)C18—C261.373 (3)
O4—H40.84 (3)C18—C191.420 (3)
N5—C101.319 (3)C19—C201.364 (3)
N5—C91.366 (3)C19—H190.9500
N6—C241.316 (3)C20—C211.421 (3)
N6—C251.363 (3)C21—C221.410 (3)
N7—C271.338 (3)C21—C251.419 (3)
N7—C311.352 (3)C22—C231.362 (3)
C8—C161.374 (3)C22—H220.9500
C8—C91.423 (3)C23—C241.403 (4)
C9—C131.417 (3)C23—H230.9500
C10—C111.402 (3)C24—H240.9500
C10—H100.9500C25—C261.425 (3)
C11—C121.360 (3)C27—C281.385 (3)
C11—H110.9500C28—C291.373 (3)
C12—C131.420 (3)C28—H280.9500
C12—H120.9500C29—C301.378 (4)
C13—C141.415 (3)C29—H290.9500
C14—C151.371 (3)C30—C311.369 (4)
C15—C161.409 (3)C30—H300.9500
C15—H150.9500C31—H310.9500
C8—O3—H3106.4 (17)C19—C18—C17121.94 (17)
C26—O4—H4110 (2)C20—C19—C18121.80 (18)
C10—N5—C9117.43 (18)C20—C19—H19119.1
C24—N6—C25117.4 (2)C18—C19—H19119.1
C27—N7—C31117.0 (2)C19—C20—C21121.58 (19)
O3—C8—C16118.84 (17)C19—C20—Cl2119.47 (16)
O3—C8—C9120.08 (17)C21—C20—Cl2118.94 (16)
C16—C8—C9121.02 (18)C22—C21—C25116.8 (2)
N5—C9—C13123.10 (17)C22—C21—C20126.4 (2)
N5—C9—C8116.96 (17)C25—C21—C20116.81 (19)
C13—C9—C8119.88 (17)C23—C22—C21119.5 (2)
N5—C10—C11123.6 (2)C23—C22—H22120.3
N5—C10—H10118.2C21—C22—H22120.3
C11—C10—H10118.2C22—C23—C24119.4 (2)
C12—C11—C10119.7 (2)C22—C23—H23120.3
C12—C11—H11120.1C24—C23—H23120.3
C10—C11—H11120.1N6—C24—C23123.7 (2)
C11—C12—C13119.2 (2)N6—C24—H24118.1
C11—C12—H12120.4C23—C24—H24118.1
C13—C12—H12120.4N6—C25—C21123.20 (19)
C14—C13—C9117.62 (17)N6—C25—C26116.15 (19)
C14—C13—C12125.45 (19)C21—C25—C26120.64 (18)
C9—C13—C12116.90 (19)O4—C26—C18120.59 (18)
C15—C14—C13121.40 (19)O4—C26—C25118.42 (18)
C15—C14—Cl1119.35 (16)C18—C26—C25120.99 (18)
C13—C14—Cl1119.23 (15)N7—C27—C28122.48 (19)
C14—C15—C16121.20 (18)N7—C27—C17118.58 (18)
C14—C15—H15119.4C28—C27—C17118.94 (18)
C16—C15—H15119.4C29—C28—C27119.5 (2)
C8—C16—C15118.83 (17)C29—C28—H28120.3
C8—C16—C17118.67 (17)C27—C28—H28120.3
C15—C16—C17122.48 (17)C28—C29—C30118.7 (2)
C18—C17—C27112.94 (16)C28—C29—H29120.7
C18—C17—C16112.21 (16)C30—C29—H29120.7
C27—C17—C16112.64 (16)C31—C30—C29118.7 (2)
C18—C17—H17106.1C31—C30—H30120.6
C27—C17—H17106.1C29—C30—H30120.6
C16—C17—H17106.1N7—C31—C30123.6 (2)
C26—C18—C19118.16 (18)N7—C31—H31118.2
C26—C18—C17119.90 (17)C30—C31—H31118.2
C10—N5—C9—C131.1 (3)C18—C19—C20—C211.3 (3)
C10—N5—C9—C8176.2 (2)C18—C19—C20—Cl2177.68 (15)
O3—C8—C9—N51.8 (3)C19—C20—C21—C22179.7 (2)
C16—C8—C9—N5175.27 (19)Cl2—C20—C21—C221.3 (3)
O3—C8—C9—C13179.15 (18)C19—C20—C21—C250.6 (3)
C16—C8—C9—C132.0 (3)Cl2—C20—C21—C25178.43 (15)
C9—N5—C10—C112.1 (3)C25—C21—C22—C230.6 (3)
N5—C10—C11—C121.3 (4)C20—C21—C22—C23179.2 (2)
C10—C11—C12—C130.6 (4)C21—C22—C23—C240.7 (4)
N5—C9—C13—C14177.04 (19)C25—N6—C24—C230.7 (4)
C8—C9—C13—C140.1 (3)C22—C23—C24—N60.0 (4)
N5—C9—C13—C120.7 (3)C24—N6—C25—C210.7 (3)
C8—C9—C13—C12177.9 (2)C24—N6—C25—C26178.3 (2)
C11—C12—C13—C14176.0 (2)C22—C21—C25—N60.1 (3)
C11—C12—C13—C91.5 (3)C20—C21—C25—N6179.89 (19)
C9—C13—C14—C151.7 (3)C22—C21—C25—C26178.89 (19)
C12—C13—C14—C15175.8 (2)C20—C21—C25—C260.9 (3)
C9—C13—C14—Cl1179.77 (16)C19—C18—C26—O4178.27 (17)
C12—C13—C14—Cl12.7 (3)C17—C18—C26—O41.2 (3)
C13—C14—C15—C161.7 (3)C19—C18—C26—C250.9 (3)
Cl1—C14—C15—C16179.83 (16)C17—C18—C26—C25179.60 (17)
O3—C8—C16—C15179.29 (18)N6—C25—C26—O41.5 (3)
C9—C8—C16—C152.1 (3)C21—C25—C26—O4177.55 (18)
O3—C8—C16—C171.0 (3)N6—C25—C26—C18179.29 (18)
C9—C8—C16—C17176.17 (18)C21—C25—C26—C181.6 (3)
C14—C15—C16—C80.3 (3)C31—N7—C27—C281.7 (3)
C14—C15—C16—C17177.9 (2)C31—N7—C27—C17177.57 (18)
C8—C16—C17—C1888.6 (2)C18—C17—C27—N735.5 (2)
C15—C16—C17—C1893.1 (2)C16—C17—C27—N792.9 (2)
C8—C16—C17—C27142.58 (19)C18—C17—C27—C28143.83 (19)
C15—C16—C17—C2735.7 (3)C16—C17—C27—C2887.8 (2)
C27—C17—C18—C26101.2 (2)N7—C27—C28—C292.8 (3)
C16—C17—C18—C26130.17 (19)C17—C27—C28—C29176.4 (2)
C27—C17—C18—C1979.3 (2)C27—C28—C29—C301.3 (4)
C16—C17—C18—C1949.3 (2)C28—C29—C30—C311.2 (4)
C26—C18—C19—C200.6 (3)C27—N7—C31—C301.0 (3)
C17—C18—C19—C20178.93 (18)C29—C30—C31—N72.5 (4)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C18–C21/C25/C26, C8/C9/C13–C16 and N7/C27–C31 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O3—H3···N50.82 (2)2.23 (3)2.727 (2)119 (2)
O3—H3···O4i0.83 (3)2.26 (3)3.044 (2)159 (2)
O4—H4···N5i0.84 (4)2.16 (3)2.878 (3)144 (2)
O4—H4···N60.84 (4)2.20 (4)2.674 (3)115 (3)
C29—H29···O3ii0.952.533.377 (3)148
C10—H10···Cg1iii0.952.753.659 (3)161
C22—H22···Cg2iv0.952.923.667 (3)136
C24—H24···Cg3v0.952.653.528 (3)153
C30—H30···Cg1ii0.952.733.562 (3)147
Symmetry codes: (i) x+1, y+2, z+2; (ii) x1, y, z; (iii) x+1, y+1, z; (iv) x, y1, z; (v) x, y+1, z+2.
 

Funding information

Funding for this research was provided by: JSPS KAKENHI (grant No. JP20K05565).

References

First citationAlbrecht, M., Blau, O., Witt, K., Wegelius, E., Nissinen, M., Risssanen, K. & Fröhlich, R. (1999). Synthesis, pp. 1819–1829.  CSD CrossRef Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationGao, X., Xu, W., Wu, C.-L., Zhu, X.-M., Ou, Y.-C. & Wu, J.-Z. (2018). Chin. J. Inorg. Chem. 34, 1768–1774.  CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationOzawa, T. & Shibuya, K. (1963a). Yakugaku Zasshi, 83, 498–502.  CrossRef PubMed CAS Google Scholar
First citationOzawa, T. & Shibuya, K. (1963b). Chem. Abstr. 59, 7481.  Google Scholar
First citationRigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2016). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWu, M.-M., Wang, J.-Y., Sun, R., Zhao, C., Zhao, J.-P., Che, G.-B. & Liu, F.-C. (2017). Inorg. Chem. 56, 9555–9562.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationYamato, M., Hashigaki, K., Yasumoto, Y., Sakai, J., Luduena, R. F., Banerjee, A., Tsukagoshi, S., Tashiro, T. & Tsuruo, T. (1987). J. Med. Chem. 30, 1897–1900.  CrossRef CAS PubMed Web of Science Google Scholar
First citationYamato, M., Hashigaki, K., Yasumoto, Y., Sakai, J., Tsukagoshi, S., Tashiro, T. & Tsuruo, T. (1986). Chem. Pharm. Bull. 34, 3496–3498.  CrossRef CAS PubMed Google Scholar
First citationZhang, X.-M., Li, J.-Q., Liu, S.-J., Luo, M.-B., Xu, W.-Y. & Luo, F. (2014). CrystEngComm, 16, 2570–2573.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhu, Y., Luo, F., Song, Y.-M., Feng, X.-F., Luo, M.-B., Liao, Z.-W., Sun, G.-M., Tian, X.-Z. & Yuan, Z.-J. (2012). Cryst. Growth Des. 12, 2158–2161.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds