research communications
of 7,7′-[(pyridin-2-yl)methylene]bis(5-chloroquinolin-8-ol)
aOsaka Research Institute of Industrial Science and Technology, Joto-ku, Osaka, 536-8553, Japan, and bOsaka Kyoiku University, Kashiwara, Osaka 582-8582, Japan
*Correspondence e-mail: kasiwagi@omtri.or.jp
In the title compound, C24H15Cl2N3O2, one quinoline ring system is essentially planar and the other is slightly bent. An intramolecular O—H⋯N hydrogen bond involving the hydroxy group and a pyridine N atom forms an S(5) ring motif. In the crystal, two molecules are associated into an inversion dimer with two R22(7) ring motifs through intermolecular O—H⋯N and O—H⋯O hydrogen bonds. The dimers are further linked by an intermolecular C—H⋯O hydrogen bond and four C—H⋯π interactions, forming a two-dimensional network parallel to (001).
CCDC reference: 2014831
1. Chemical context
8-Quinolinol and its derivatives are well-known chelating agents in analytical chemistry and bidentate ligands to metal ions in structural chemistry. Recently, multinuclear metal complexes based on the dimeric 8-quinolinol ligand, 1,1-bis(8-hydroxyquinolin-7-yl)ethane, have been investigated (Zhu et al., 2012; Zhang et al., 2014; Wu et al., 2017; Gao et al., 2018). On the other hand, Yamato et al. (1986, 1987) reported the aromatic-group-substituted dimeric 8-quinolinol derivatives, 1,1-bis(8-hydroxyquinolin-7-yl)-1-(4-methoxyphenyl)methane, 1,1-bis(8-hydroxyquinolin-7-yl)-1-(furan-2-yl)methane and 1,1-bis(8-hydroxyquinolin-7-yl)-1-(thiophen-2-yl)methane, to be candidates for antitumor agents. We are attempting to develop a 2-pyridyl group-introduced dimeric 8-quinolinol-based ligand for mono- and multi-nuclear metal complexes, and report here the of the title compound.
2. Structural commentary
The molecular structure of the title compound is shown in Fig. 1. One quinoline ring system is essentially planar, the dihedral angle between the mean planes through C22–C24/N6 and C26/C18–C20 being 0.5 (2)°. The other quinoline ring system is slightly bent, the dihedral angle between the mean planes through N5/C10–C12 and C14–C16/C8 being 5.77 (18)°. There are two intramolecular O—H⋯N hydrogen bonds involving the hydroxy groups and quinoline N atoms (O3—H3⋯N5 and O4—H4⋯N6; Table 1) generating S(5) ring motifs (Fig. 1). The arrangement of the 2-pyridyl and two quinoline rings is propeller-wise, which is a common arrangement for Ar3C-H fragments. The bond angles C16—C17—C18, C16—C17—C27, and C18—C17—C27 are 112.21 (16), 112.64 (16) and 112.94 (16)°, respectively. The torsion angles C8—C16—C17—C18, C26—C18—C17—C27, and C28—C27—C17—C16 are −88.6 (2), −101.2 (2) and −87.8 (2)°, respectively.
3. Supramolecular features
In the crystal, molecules are linked by intermolecular O—H⋯O and O—H⋯N hydrogen bonds [O3—H3⋯O4i and O4—H4⋯N5i; symmetry code: (i) –x + 1, –y + 2, –z + 2], forming an inversion dimer with two (7) ring motifs (Fig. 2 and Table 1). In contrast, the of 1,1-bis(8-hydroxyquinolin-7-yl)methane, an analogue of the title compound with the 2-pyridyl group omitted, exhibits a supramolecular 1D-polymeric structure with intermolecular hydrogen bonding between each 8-quinolinol unit and two other molecules (CSD refcode CIBCEV; Albrecht et al., 1999). The dimers of the title compound are linked by complementary C—H⋯π interactions [C10—H10⋯Cg1iii and C24—H24⋯Cg3v; Cg1 is the centroid of the C18–C21/C25/C26 ring and Cg3 is the centroid of the N7/C27–C31 ring; symmetry codes: (iii) x + 1, y + 1, z; (v) –x, –y + 1, –z + 2], forming a ribbon structure along [110] (Fig. 3). Considered separately, the 1D-chain structure propagates along the a-axis direction through a C—H⋯O hydrogen bond [C29—H29⋯O3ii; symmetry code: (ii) x – 1, y, z] and a C—H⋯π interaction [C30—H30⋯Cg1ii; Cg1 is the centroid of the C18–C21/C25/C26 ring]. The chains are linked by two C—H⋯π interactions [C10—H10⋯Cg1iii and C22—H22⋯Cg2iv; Cg2 is the centroid of the C8/C9/C13–C16 ring; symmetry code: (iv) x, y – 1, z], generating a two-dimensional network parallel to (001) (Fig. 4).
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.41, update of March 2020; Groom et al., 2016) for compounds containing the bis(phenol-2-yl)methane skeleton gave 9360 hits, and for those containing the 8-quinolinol skeleton gave 3200 hits. A search for the fragment of 1,1-bis(8-hydroxyquinolin-7-yl)methane gave 23 hits (21 compounds), which included only one organic compound, 1,1-bis(8-hydroxyquinolin-7-yl)methane (CIBCEV; Albrecht et al., 1999), and 20 metal complexes with 1,1-bis(8-hydroxyquinolin-7-yl)ethane as bridging ligands. The 20 metal complexes include two dinuclear complexes, Zn2 (Wu et al., 2017; Gao et al., 2018) and Cd2 (Gao et al., 2018), one homo-trinuclear La3 complex (Wu et al., 2017), 16 hetero-trinuclear complexes, Co2Sm, Ni2Sm, Zn2Sm, Co2Eu, Ni2Eu, Zn2Eu, Cd2Eu, Co2Gd, Ni2Gd, Cd2Gd, Co2Tb, Ni2Tb, Zn2Tb, Fe2Dy, Co2Dy, Cd2Dy (Zhu et al., 2012) and one hexanuclear Na2Co4 complex (Zhang et al., 2014). The of 1,1-bis(8-hydroxyquinolin-7-yl)ethane itself has not been reported.
5. Synthesis and crystallization
The title compound was prepared by a modification of the reported K2CO3-catalysed synthetic method for 1,1-bis(5-chloro-8-hydroxyquinolin-7-yl)methane (Ozawa & Shibuya, 1963a,b). 5-Chloro-8-hydroxyquinoline (898 mg, 5.0 mmol), 2-pyridinecarboxaldehyde (321 mg, 3.0 mmol), K2CO3 (100 mg, 0.72 mmol) and ethanol (6 mL) were placed in a 15 mL capped pressure tube. It was heated at 353 K for 96 h. The generated pale-white precipitate was filtered to give a pale-white solid (806 mg, 1.80 mmol; yield 72%). Single crystals of title compound suitable for X-ray diffraction were grown by slow evaporation of a solution in CHCl3/n-hexane (2:1, v/v) at ambient temperature. 1H NMR (CDCl3, 600 MHz) δ = 6.63 (s, 1H), 7.21 (ddd, 1H, J = 7.8, 4.8, 1.8 Hz), 7.33 (d, 1H, J = 7.8 Hz), 7.52 (s, 2H), 7.52 (dd, 2H, J = 8.4, 4.2 Hz), 7.67 (td, 1H, J = 7.8, 1.8 Hz), 8.48 (dd, 2H, J = 8.4, 1.2 Hz), 8.64 (d, 1H, J = 4.8 Hz), 8.81 (dd, 2H, J = 4.2, 1.2 Hz), 8.84 (br, 2H).
6. Refinement
Crystal data, data collection and structure . Hydroxy H atoms were located in a difference-Fourier map and freely refined. C-bound H atoms were placed in geometrically calculated positions (C—H = 0.95–1.00 Å) and refined as part of a riding model with Uiso(H) = 1.2Ueq (C). One outlier (11) was omitted from the refinement.
details are summarized in Table 2
|
Supporting information
CCDC reference: 2014831
https://doi.org/10.1107/S2056989020009317/is5545sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020009317/is5545Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989020009317/is5545Isup3.cml
Data collection: RAPID-AUTO (Rigaku, 2006); cell
RAPID-AUTO (Rigaku, 2006); data reduction: RAPID-AUTO (Rigaku, 2006); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: CrystalStructure (Rigaku, 2016).C24H15Cl2N3O2 | Z = 2 |
Mr = 448.31 | F(000) = 460.00 |
Triclinic, P1 | Dx = 1.510 Mg m−3 |
a = 8.7077 (8) Å | Mo Kα radiation, λ = 0.71075 Å |
b = 10.4281 (10) Å | Cell parameters from 7587 reflections |
c = 12.1329 (11) Å | θ = 3.0–27.5° |
α = 101.111 (7)° | µ = 0.36 mm−1 |
β = 92.087 (7)° | T = 173 K |
γ = 113.161 (8)° | Chunk, colorless |
V = 986.23 (17) Å3 | 0.40 × 0.15 × 0.10 mm |
Rigaku R-AXIS RAPID diffractometer | 3536 reflections with F2 > 2.0σ(F2) |
Detector resolution: 10.000 pixels mm-1 | Rint = 0.027 |
ω scans | θmax = 27.5°, θmin = 3.1° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −11→11 |
Tmin = 0.710, Tmax = 0.965 | k = −13→13 |
9484 measured reflections | l = −15→15 |
4475 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.050 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.119 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0532P)2 + 0.572P] where P = (Fo2 + 2Fc2)/3 |
4475 reflections | (Δ/σ)max < 0.001 |
288 parameters | Δρmax = 0.43 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
Primary atom site location: structure-invariant direct methods |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt). |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.19486 (7) | 0.99797 (7) | 0.42458 (5) | 0.03826 (17) | |
Cl2 | 0.17365 (8) | 0.39091 (6) | 0.56639 (5) | 0.03966 (17) | |
O3 | 0.44767 (19) | 1.04439 (17) | 0.89332 (12) | 0.0268 (3) | |
O4 | 0.1923 (2) | 0.75295 (16) | 1.00827 (13) | 0.0305 (3) | |
N5 | 0.6459 (2) | 1.23152 (19) | 0.77548 (15) | 0.0269 (4) | |
N6 | 0.2352 (3) | 0.5120 (2) | 1.00448 (15) | 0.0328 (4) | |
N7 | −0.1639 (2) | 0.6963 (2) | 0.71721 (16) | 0.0306 (4) | |
C8 | 0.3918 (2) | 1.0343 (2) | 0.78420 (16) | 0.0216 (4) | |
C9 | 0.4946 (2) | 1.1297 (2) | 0.72083 (16) | 0.0220 (4) | |
C10 | 0.7377 (3) | 1.3256 (2) | 0.7197 (2) | 0.0340 (5) | |
H10 | 0.8414 | 1.3988 | 0.7577 | 0.041* | |
C11 | 0.6909 (3) | 1.3234 (3) | 0.6073 (2) | 0.0367 (5) | |
H11 | 0.7630 | 1.3927 | 0.5706 | 0.044* | |
C12 | 0.5418 (3) | 1.2218 (2) | 0.55110 (19) | 0.0322 (5) | |
H12 | 0.5093 | 1.2188 | 0.4747 | 0.039* | |
C13 | 0.4351 (3) | 1.1202 (2) | 0.60802 (17) | 0.0246 (4) | |
C14 | 0.2728 (3) | 1.0141 (2) | 0.56284 (17) | 0.0260 (4) | |
C15 | 0.1743 (3) | 0.9261 (2) | 0.62662 (17) | 0.0257 (4) | |
H15 | 0.0646 | 0.8576 | 0.5945 | 0.031* | |
C16 | 0.2326 (2) | 0.9353 (2) | 0.73891 (16) | 0.0217 (4) | |
C17 | 0.1239 (2) | 0.8422 (2) | 0.81349 (17) | 0.0218 (4) | |
H17 | 0.1639 | 0.8989 | 0.8932 | 0.026* | |
C18 | 0.1510 (2) | 0.7059 (2) | 0.80759 (16) | 0.0207 (4) | |
C19 | 0.1464 (2) | 0.6152 (2) | 0.70280 (17) | 0.0235 (4) | |
H19 | 0.1239 | 0.6396 | 0.6343 | 0.028* | |
C20 | 0.1734 (3) | 0.4941 (2) | 0.69780 (17) | 0.0261 (4) | |
C21 | 0.2042 (3) | 0.4507 (2) | 0.79740 (18) | 0.0263 (4) | |
C22 | 0.2328 (3) | 0.3278 (3) | 0.8022 (2) | 0.0369 (5) | |
H22 | 0.2312 | 0.2638 | 0.7344 | 0.044* | |
C23 | 0.2627 (4) | 0.3015 (3) | 0.9047 (2) | 0.0436 (6) | |
H23 | 0.2833 | 0.2196 | 0.9091 | 0.052* | |
C24 | 0.2627 (3) | 0.3965 (3) | 1.0039 (2) | 0.0401 (6) | |
H24 | 0.2839 | 0.3763 | 1.0746 | 0.048* | |
C25 | 0.2070 (2) | 0.5402 (2) | 0.90232 (17) | 0.0243 (4) | |
C26 | 0.1822 (2) | 0.6680 (2) | 0.90558 (17) | 0.0231 (4) | |
C27 | −0.0611 (2) | 0.8146 (2) | 0.79228 (16) | 0.0227 (4) | |
C28 | −0.1171 (3) | 0.9116 (2) | 0.8521 (2) | 0.0342 (5) | |
H28 | −0.0398 | 0.9966 | 0.9023 | 0.041* | |
C29 | −0.2853 (3) | 0.8838 (3) | 0.8384 (2) | 0.0414 (6) | |
H29 | −0.3263 | 0.9482 | 0.8799 | 0.050* | |
C30 | −0.3934 (3) | 0.7608 (3) | 0.7633 (2) | 0.0390 (6) | |
H30 | −0.5106 | 0.7378 | 0.7530 | 0.047* | |
C31 | −0.3284 (3) | 0.6725 (3) | 0.7037 (2) | 0.0356 (5) | |
H31 | −0.4031 | 0.5899 | 0.6498 | 0.043* | |
H3 | 0.541 (3) | 1.112 (3) | 0.909 (2) | 0.030 (7)* | |
H4 | 0.214 (4) | 0.718 (3) | 1.060 (3) | 0.052 (9)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0417 (3) | 0.0466 (3) | 0.0227 (3) | 0.0125 (3) | −0.0028 (2) | 0.0125 (2) |
Cl2 | 0.0575 (4) | 0.0339 (3) | 0.0246 (3) | 0.0183 (3) | 0.0078 (2) | 0.0000 (2) |
O3 | 0.0222 (8) | 0.0304 (8) | 0.0230 (7) | 0.0050 (7) | −0.0010 (6) | 0.0086 (6) |
O4 | 0.0446 (9) | 0.0283 (8) | 0.0195 (7) | 0.0161 (7) | 0.0020 (6) | 0.0051 (6) |
N5 | 0.0237 (9) | 0.0269 (9) | 0.0270 (9) | 0.0066 (7) | 0.0032 (7) | 0.0071 (7) |
N6 | 0.0452 (11) | 0.0309 (10) | 0.0254 (9) | 0.0176 (9) | 0.0036 (8) | 0.0088 (8) |
N7 | 0.0249 (9) | 0.0330 (10) | 0.0300 (10) | 0.0097 (8) | 0.0007 (7) | 0.0033 (8) |
C8 | 0.0229 (10) | 0.0233 (9) | 0.0208 (9) | 0.0112 (8) | 0.0030 (7) | 0.0058 (8) |
C9 | 0.0225 (9) | 0.0219 (9) | 0.0226 (10) | 0.0102 (8) | 0.0043 (7) | 0.0049 (8) |
C10 | 0.0273 (11) | 0.0328 (12) | 0.0346 (12) | 0.0032 (10) | 0.0044 (9) | 0.0107 (10) |
C11 | 0.0352 (12) | 0.0351 (12) | 0.0362 (13) | 0.0058 (10) | 0.0110 (10) | 0.0176 (10) |
C12 | 0.0395 (13) | 0.0355 (12) | 0.0244 (11) | 0.0150 (10) | 0.0086 (9) | 0.0130 (9) |
C13 | 0.0269 (10) | 0.0250 (10) | 0.0238 (10) | 0.0117 (9) | 0.0059 (8) | 0.0070 (8) |
C14 | 0.0312 (11) | 0.0284 (10) | 0.0196 (10) | 0.0136 (9) | 0.0007 (8) | 0.0054 (8) |
C15 | 0.0247 (10) | 0.0246 (10) | 0.0245 (10) | 0.0072 (8) | −0.0002 (8) | 0.0046 (8) |
C16 | 0.0229 (10) | 0.0206 (9) | 0.0232 (10) | 0.0091 (8) | 0.0036 (7) | 0.0075 (8) |
C17 | 0.0198 (9) | 0.0225 (9) | 0.0215 (9) | 0.0063 (8) | 0.0020 (7) | 0.0063 (7) |
C18 | 0.0164 (9) | 0.0209 (9) | 0.0231 (10) | 0.0051 (8) | 0.0028 (7) | 0.0064 (8) |
C19 | 0.0203 (9) | 0.0259 (10) | 0.0208 (9) | 0.0045 (8) | 0.0034 (7) | 0.0077 (8) |
C20 | 0.0256 (10) | 0.0268 (10) | 0.0208 (10) | 0.0071 (9) | 0.0040 (8) | 0.0018 (8) |
C21 | 0.0254 (10) | 0.0245 (10) | 0.0280 (11) | 0.0084 (8) | 0.0053 (8) | 0.0067 (8) |
C22 | 0.0492 (14) | 0.0313 (11) | 0.0344 (12) | 0.0212 (11) | 0.0090 (10) | 0.0058 (10) |
C23 | 0.0650 (17) | 0.0361 (13) | 0.0433 (14) | 0.0318 (13) | 0.0115 (12) | 0.0145 (11) |
C24 | 0.0578 (16) | 0.0375 (13) | 0.0341 (13) | 0.0254 (12) | 0.0057 (11) | 0.0154 (11) |
C25 | 0.0235 (10) | 0.0244 (10) | 0.0249 (10) | 0.0084 (8) | 0.0030 (8) | 0.0083 (8) |
C26 | 0.0222 (10) | 0.0223 (9) | 0.0214 (9) | 0.0061 (8) | 0.0027 (7) | 0.0036 (8) |
C27 | 0.0210 (9) | 0.0251 (10) | 0.0229 (10) | 0.0086 (8) | 0.0035 (7) | 0.0095 (8) |
C28 | 0.0341 (12) | 0.0300 (11) | 0.0366 (13) | 0.0137 (10) | 0.0016 (9) | 0.0025 (9) |
C29 | 0.0428 (14) | 0.0507 (15) | 0.0446 (14) | 0.0324 (12) | 0.0123 (11) | 0.0122 (12) |
C30 | 0.0205 (11) | 0.0566 (15) | 0.0473 (14) | 0.0167 (11) | 0.0079 (9) | 0.0257 (12) |
C31 | 0.0244 (11) | 0.0373 (12) | 0.0388 (13) | 0.0067 (10) | −0.0035 (9) | 0.0086 (10) |
Cl1—C14 | 1.738 (2) | C16—C17 | 1.528 (3) |
Cl2—C20 | 1.744 (2) | C17—C18 | 1.519 (3) |
O3—C8 | 1.364 (2) | C17—C27 | 1.524 (3) |
O3—H3 | 0.82 (3) | C17—H17 | 1.0000 |
O4—C26 | 1.360 (2) | C18—C26 | 1.373 (3) |
O4—H4 | 0.84 (3) | C18—C19 | 1.420 (3) |
N5—C10 | 1.319 (3) | C19—C20 | 1.364 (3) |
N5—C9 | 1.366 (3) | C19—H19 | 0.9500 |
N6—C24 | 1.316 (3) | C20—C21 | 1.421 (3) |
N6—C25 | 1.363 (3) | C21—C22 | 1.410 (3) |
N7—C27 | 1.338 (3) | C21—C25 | 1.419 (3) |
N7—C31 | 1.352 (3) | C22—C23 | 1.362 (3) |
C8—C16 | 1.374 (3) | C22—H22 | 0.9500 |
C8—C9 | 1.423 (3) | C23—C24 | 1.403 (4) |
C9—C13 | 1.417 (3) | C23—H23 | 0.9500 |
C10—C11 | 1.402 (3) | C24—H24 | 0.9500 |
C10—H10 | 0.9500 | C25—C26 | 1.425 (3) |
C11—C12 | 1.360 (3) | C27—C28 | 1.385 (3) |
C11—H11 | 0.9500 | C28—C29 | 1.373 (3) |
C12—C13 | 1.420 (3) | C28—H28 | 0.9500 |
C12—H12 | 0.9500 | C29—C30 | 1.378 (4) |
C13—C14 | 1.415 (3) | C29—H29 | 0.9500 |
C14—C15 | 1.371 (3) | C30—C31 | 1.369 (4) |
C15—C16 | 1.409 (3) | C30—H30 | 0.9500 |
C15—H15 | 0.9500 | C31—H31 | 0.9500 |
C8—O3—H3 | 106.4 (17) | C19—C18—C17 | 121.94 (17) |
C26—O4—H4 | 110 (2) | C20—C19—C18 | 121.80 (18) |
C10—N5—C9 | 117.43 (18) | C20—C19—H19 | 119.1 |
C24—N6—C25 | 117.4 (2) | C18—C19—H19 | 119.1 |
C27—N7—C31 | 117.0 (2) | C19—C20—C21 | 121.58 (19) |
O3—C8—C16 | 118.84 (17) | C19—C20—Cl2 | 119.47 (16) |
O3—C8—C9 | 120.08 (17) | C21—C20—Cl2 | 118.94 (16) |
C16—C8—C9 | 121.02 (18) | C22—C21—C25 | 116.8 (2) |
N5—C9—C13 | 123.10 (17) | C22—C21—C20 | 126.4 (2) |
N5—C9—C8 | 116.96 (17) | C25—C21—C20 | 116.81 (19) |
C13—C9—C8 | 119.88 (17) | C23—C22—C21 | 119.5 (2) |
N5—C10—C11 | 123.6 (2) | C23—C22—H22 | 120.3 |
N5—C10—H10 | 118.2 | C21—C22—H22 | 120.3 |
C11—C10—H10 | 118.2 | C22—C23—C24 | 119.4 (2) |
C12—C11—C10 | 119.7 (2) | C22—C23—H23 | 120.3 |
C12—C11—H11 | 120.1 | C24—C23—H23 | 120.3 |
C10—C11—H11 | 120.1 | N6—C24—C23 | 123.7 (2) |
C11—C12—C13 | 119.2 (2) | N6—C24—H24 | 118.1 |
C11—C12—H12 | 120.4 | C23—C24—H24 | 118.1 |
C13—C12—H12 | 120.4 | N6—C25—C21 | 123.20 (19) |
C14—C13—C9 | 117.62 (17) | N6—C25—C26 | 116.15 (19) |
C14—C13—C12 | 125.45 (19) | C21—C25—C26 | 120.64 (18) |
C9—C13—C12 | 116.90 (19) | O4—C26—C18 | 120.59 (18) |
C15—C14—C13 | 121.40 (19) | O4—C26—C25 | 118.42 (18) |
C15—C14—Cl1 | 119.35 (16) | C18—C26—C25 | 120.99 (18) |
C13—C14—Cl1 | 119.23 (15) | N7—C27—C28 | 122.48 (19) |
C14—C15—C16 | 121.20 (18) | N7—C27—C17 | 118.58 (18) |
C14—C15—H15 | 119.4 | C28—C27—C17 | 118.94 (18) |
C16—C15—H15 | 119.4 | C29—C28—C27 | 119.5 (2) |
C8—C16—C15 | 118.83 (17) | C29—C28—H28 | 120.3 |
C8—C16—C17 | 118.67 (17) | C27—C28—H28 | 120.3 |
C15—C16—C17 | 122.48 (17) | C28—C29—C30 | 118.7 (2) |
C18—C17—C27 | 112.94 (16) | C28—C29—H29 | 120.7 |
C18—C17—C16 | 112.21 (16) | C30—C29—H29 | 120.7 |
C27—C17—C16 | 112.64 (16) | C31—C30—C29 | 118.7 (2) |
C18—C17—H17 | 106.1 | C31—C30—H30 | 120.6 |
C27—C17—H17 | 106.1 | C29—C30—H30 | 120.6 |
C16—C17—H17 | 106.1 | N7—C31—C30 | 123.6 (2) |
C26—C18—C19 | 118.16 (18) | N7—C31—H31 | 118.2 |
C26—C18—C17 | 119.90 (17) | C30—C31—H31 | 118.2 |
C10—N5—C9—C13 | 1.1 (3) | C18—C19—C20—C21 | 1.3 (3) |
C10—N5—C9—C8 | −176.2 (2) | C18—C19—C20—Cl2 | −177.68 (15) |
O3—C8—C9—N5 | −1.8 (3) | C19—C20—C21—C22 | 179.7 (2) |
C16—C8—C9—N5 | 175.27 (19) | Cl2—C20—C21—C22 | −1.3 (3) |
O3—C8—C9—C13 | −179.15 (18) | C19—C20—C21—C25 | −0.6 (3) |
C16—C8—C9—C13 | −2.0 (3) | Cl2—C20—C21—C25 | 178.43 (15) |
C9—N5—C10—C11 | −2.1 (3) | C25—C21—C22—C23 | −0.6 (3) |
N5—C10—C11—C12 | 1.3 (4) | C20—C21—C22—C23 | 179.2 (2) |
C10—C11—C12—C13 | 0.6 (4) | C21—C22—C23—C24 | 0.7 (4) |
N5—C9—C13—C14 | −177.04 (19) | C25—N6—C24—C23 | −0.7 (4) |
C8—C9—C13—C14 | 0.1 (3) | C22—C23—C24—N6 | 0.0 (4) |
N5—C9—C13—C12 | 0.7 (3) | C24—N6—C25—C21 | 0.7 (3) |
C8—C9—C13—C12 | 177.9 (2) | C24—N6—C25—C26 | −178.3 (2) |
C11—C12—C13—C14 | 176.0 (2) | C22—C21—C25—N6 | −0.1 (3) |
C11—C12—C13—C9 | −1.5 (3) | C20—C21—C25—N6 | −179.89 (19) |
C9—C13—C14—C15 | 1.7 (3) | C22—C21—C25—C26 | 178.89 (19) |
C12—C13—C14—C15 | −175.8 (2) | C20—C21—C25—C26 | −0.9 (3) |
C9—C13—C14—Cl1 | −179.77 (16) | C19—C18—C26—O4 | 178.27 (17) |
C12—C13—C14—Cl1 | 2.7 (3) | C17—C18—C26—O4 | −1.2 (3) |
C13—C14—C15—C16 | −1.7 (3) | C19—C18—C26—C25 | −0.9 (3) |
Cl1—C14—C15—C16 | 179.83 (16) | C17—C18—C26—C25 | 179.60 (17) |
O3—C8—C16—C15 | 179.29 (18) | N6—C25—C26—O4 | 1.5 (3) |
C9—C8—C16—C15 | 2.1 (3) | C21—C25—C26—O4 | −177.55 (18) |
O3—C8—C16—C17 | 1.0 (3) | N6—C25—C26—C18 | −179.29 (18) |
C9—C8—C16—C17 | −176.17 (18) | C21—C25—C26—C18 | 1.6 (3) |
C14—C15—C16—C8 | −0.3 (3) | C31—N7—C27—C28 | −1.7 (3) |
C14—C15—C16—C17 | 177.9 (2) | C31—N7—C27—C17 | 177.57 (18) |
C8—C16—C17—C18 | −88.6 (2) | C18—C17—C27—N7 | −35.5 (2) |
C15—C16—C17—C18 | 93.1 (2) | C16—C17—C27—N7 | 92.9 (2) |
C8—C16—C17—C27 | 142.58 (19) | C18—C17—C27—C28 | 143.83 (19) |
C15—C16—C17—C27 | −35.7 (3) | C16—C17—C27—C28 | −87.8 (2) |
C27—C17—C18—C26 | −101.2 (2) | N7—C27—C28—C29 | 2.8 (3) |
C16—C17—C18—C26 | 130.17 (19) | C17—C27—C28—C29 | −176.4 (2) |
C27—C17—C18—C19 | 79.3 (2) | C27—C28—C29—C30 | −1.3 (4) |
C16—C17—C18—C19 | −49.3 (2) | C28—C29—C30—C31 | −1.2 (4) |
C26—C18—C19—C20 | −0.6 (3) | C27—N7—C31—C30 | −1.0 (3) |
C17—C18—C19—C20 | 178.93 (18) | C29—C30—C31—N7 | 2.5 (4) |
Cg1, Cg2 and Cg3 are the centroids of the C18–C21/C25/C26, C8/C9/C13–C16 and N7/C27–C31 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···N5 | 0.82 (2) | 2.23 (3) | 2.727 (2) | 119 (2) |
O3—H3···O4i | 0.83 (3) | 2.26 (3) | 3.044 (2) | 159 (2) |
O4—H4···N5i | 0.84 (4) | 2.16 (3) | 2.878 (3) | 144 (2) |
O4—H4···N6 | 0.84 (4) | 2.20 (4) | 2.674 (3) | 115 (3) |
C29—H29···O3ii | 0.95 | 2.53 | 3.377 (3) | 148 |
C10—H10···Cg1iii | 0.95 | 2.75 | 3.659 (3) | 161 |
C22—H22···Cg2iv | 0.95 | 2.92 | 3.667 (3) | 136 |
C24—H24···Cg3v | 0.95 | 2.65 | 3.528 (3) | 153 |
C30—H30···Cg1ii | 0.95 | 2.73 | 3.562 (3) | 147 |
Symmetry codes: (i) −x+1, −y+2, −z+2; (ii) x−1, y, z; (iii) x+1, y+1, z; (iv) x, y−1, z; (v) −x, −y+1, −z+2. |
Funding information
Funding for this research was provided by: JSPS KAKENHI (grant No. JP20K05565).
References
Albrecht, M., Blau, O., Witt, K., Wegelius, E., Nissinen, M., Risssanen, K. & Fröhlich, R. (1999). Synthesis, pp. 1819–1829. CSD CrossRef Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Gao, X., Xu, W., Wu, C.-L., Zhu, X.-M., Ou, Y.-C. & Wu, J.-Z. (2018). Chin. J. Inorg. Chem. 34, 1768–1774. CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Ozawa, T. & Shibuya, K. (1963a). Yakugaku Zasshi, 83, 498–502. CrossRef PubMed CAS Google Scholar
Ozawa, T. & Shibuya, K. (1963b). Chem. Abstr. 59, 7481. Google Scholar
Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2016). CrystalStructure. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Wu, M.-M., Wang, J.-Y., Sun, R., Zhao, C., Zhao, J.-P., Che, G.-B. & Liu, F.-C. (2017). Inorg. Chem. 56, 9555–9562. Web of Science CSD CrossRef CAS PubMed Google Scholar
Yamato, M., Hashigaki, K., Yasumoto, Y., Sakai, J., Luduena, R. F., Banerjee, A., Tsukagoshi, S., Tashiro, T. & Tsuruo, T. (1987). J. Med. Chem. 30, 1897–1900. CrossRef CAS PubMed Web of Science Google Scholar
Yamato, M., Hashigaki, K., Yasumoto, Y., Sakai, J., Tsukagoshi, S., Tashiro, T. & Tsuruo, T. (1986). Chem. Pharm. Bull. 34, 3496–3498. CrossRef CAS PubMed Google Scholar
Zhang, X.-M., Li, J.-Q., Liu, S.-J., Luo, M.-B., Xu, W.-Y. & Luo, F. (2014). CrystEngComm, 16, 2570–2573. Web of Science CSD CrossRef CAS Google Scholar
Zhu, Y., Luo, F., Song, Y.-M., Feng, X.-F., Luo, M.-B., Liao, Z.-W., Sun, G.-M., Tian, X.-Z. & Yuan, Z.-J. (2012). Cryst. Growth Des. 12, 2158–2161. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.