research communications
a]pyridin-6-yl)methanone with an unknown solvent
and Hirshfeld surface analysis of phenyl(5,7,8a-triphenyl-1,2,3,7,8,8a-hexahydroimidazo[1,2-aOrganic Chemistry Department, Baku State University, Z. Xalilov str. 23, Az, 1148 Baku, Azerbaijan, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and cAcademy of Science of the Republic of Tadzhikistan, Kh. Yu. Yusufbekov Pamir Biological Institute, 1 Kholdorova St, Khorog 736002, Gbao, Tajikistan
*Correspondence e-mail: anzurat2003@mail.ru
In the title compound, C32H28N2O, the imidazolidine and pyridine rings of the central hexahydroimidazo[1,2-a]pyridine ring system adopt envelope and screw-boat conformations, respectively. The molecule exhibits two weak intramolecular π–π interactions between phenyl rings. In the crystal, molecules are linked via pairs of C—H⋯ O hydrogen bonds, forming inversion dimers. The dimers are further linked by pairs of C—H⋯π interactions, forming infinite chains along the c-axis direction. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (73.4%), C⋯H/H⋯C (18.8%) and O⋯H/H⋯O (5.7%) contacts. The contribution of some disordered solvent to the scattering was removed using the SQUEEZE routine [Spek (2015). Acta Cryst. C71, 9–18] in PLATON. The solvent contribution was not included in the reported molecular weight and density.
Keywords: crystal structure; cycloaddition products; hexahydroimidazo[1,2-a]pyridine ring; SQUEEZE.
CCDC reference: 2017791
1. Chemical context
Carbon–carbon and carbon–heteroatom bond-forming reactions are the most powerful and fundamental tools in synthetic organic chemistry. These synthetic approaches have successfully found applications in the construction of carbo- and heterocyclic ring systems (Khalilov et al., 2011; Yin et al., 2020). The use of nitrogen as the bridgehead atom is being assessed extensively. Bridgehead nitrogen heterocycles comprising imidazole rings are prevalent structural motifs in many compounds having applications in medicinal chemistry, coordination chemistry and material science (Afkhami et al., 2017; Mahmoudi et al., 2017a,b; Mahmudov et al., 2019, 2020). Various imidazo[1,2-a]pyridine moieties are included in synthetic drugs, such as alpidem, olprinone, saripidem, necopidem, miroprofen, zolimidine and zolpidem, which have already found use in medicinal practice. On the other hand, the imidazo[1,2-a]pyridine motif is also found in a series of natural products, such as oxaline and neoxaline (Koizumi et al., 2004). As a result of the considerable interest to this field, there have been significant developments in the synthesis of imidazo[1,2-a]pyridine derivatives. In the framework of our ongoing structural studies (Akkurt et al., 2018; Khalilov et al., 2019), we report herein the and Hirshfeld surface analysis of the title compound.
2. Structural commentary
In the title compound (Fig. 1), the imidazolidine ring (N1/C1/C2/N2/C3) of the central hexahydroimidazo[1,2-a]pyridine ring system (N1/C1/C2/N2/C3–C7) adopts an with atom C2 as the flap lying 0.222 (2) Å from the mean plane of the remaining four atoms, while the pyridine ring (N1/C3–C7) is puckered with the puckering parameters QT = 0.4970 (15) Å, θ = 62.27 (17)° and φ = 96.49 (19)°. The dihedral angles between phenyl rings are A/B = 34.51 (8), A/C = 48.27 (8), A/D = 74.89 (8), B/C = 37.27 (8), B/D = 56.29 (8) and C/D = 26.72 (8)°, where A, B, C and D are the phenyl rings C9–C14, C15–C20, C21–C26 and C27–C32, respectively. The A, B, C and D ring planes are inclined to the central hexahydroimidazo[1,2-a]pyridine ring system, making dihedral angles of 60.24 (7), 61.73 (7), 81.91 (7) and 63.08 (7)°, respectively, with the mean plane of the central ring system. There are two weak intramolecular π–π interactions [Cg3⋯Cg4 = 3.7628 (11) Å and Cg5⋯Cg6 = 3.9822 (10) Å; Cg3, Cg4, Cg5 and Cg6 are the centroids of rings A, B, C and D, respectively].
3. Supramolecular features and Hirshfeld surface analysis
In the crystal, molecules are linked via pairs of C—H⋯ O hydrogen bonds, forming inversion dimers. The dimers are further linked by pairs of C—H⋯π interactions, forming an infinite chain along the c-axis direction (Table 1 and Fig. 2).
In order to obtain further insight into the intermolecular interactions, we used Crystal Explorer (Turner et al., 2017). The Hirshfeld surface of the title compound mapped over dnorm is depicted in Fig. 3, where the red regions are apparent around atom O1, which participates in the C—H⋯O interactions (Table 1). The fingerprint plots (Fig. 4) show that the largest contribution to the overall crystal packing is from H⋯H contacts (73.4%). The second largest percentage (18.8%) can be attributed to C⋯H/H⋯C contacts, which correlate with the C—H⋯π interactions. O⋯H/H⋯O contacts (5.7%), which correlate with the C—H⋯O interactions, provide another significant contribution to the Hirshfeld surface. Other contributions include N⋯H/H⋯N (1.9%) and C⋯C (0.2%). The removal of the contribution of the disordered solvent to the scattering using the SQUEEZE routine of PLATON may be responsible for a small change in the given percentage contributions.
4. Database survey
A search in the Cambridge Structural Database (CSD, Version 5.41, updated to March 2020; Groom et al., 2016) gave three hits for the 1,2,3,7,8,8a-hexahydroimidazo[1,2-a]pyridine moiety, viz. 5,7,8a-triphenyl-1,2,3,7,8,8a-hexahydroimidazo[1,2-a]pyridine (KICJUE; Alvim et al., 2018), 7-(4-bromophenyl)-5,8a-diphenyl-1,2,3,7,8,8a-hexahydroimidazo[1,2-a]pyridine (TEZJOZ; Wang et al., 2013) and 8-benzyloxy-8a-methyl-1,2,3,7,8,8a-hexahydroimidazo[1,2-a]pyridin-7-one monohydrate (YUYREP; Wireko et al., 1995). In KICJUE, single crystal X-ray analysis confirmed the trans derivative as the only isomer. The structure of TEZJOZ shows that the aromatic ring of the aldehyde is on the other plane of the ketone in the purposed mechanism for the reaction. In the crystal of YUYREP, each water molecule bridges two molecules of the compound, hydrogen bonding with the carbonyl O atom of one molecule [O⋯OW = 2.796 (4) Å] and with the N atom of the other [N⋯OW = 2.903 (4) Å]. The methyl group at the bridgehead is axially located in a trans position with respect to the bulky benzyloxy group. The pyridone ring assumes a slightly distorted half-chair conformation.
5. Synthesis and crystallization
To a solution of 2-benzoyl-1,3,5-triphenylpentane-1,5-dione (3.5 mmol) in ethanol (35 ml) was added ethylenediamine (3.7 mmol) and 5 drops of concentrated HCl. The mixture was stirred at room temperature for 15 min, then refluxed for 4 h and cooled down to room temperature. The reaction product precipitated from the reaction mixture as colourless single crystals, which were collected by filtration and purified by recrystallization from ethanol (yield 76%; m.p. 465–466 K).
1H NMR (300 MHz, DMSO-d6): δ 2.28 (dd, 2H, CH2N), 2.77 (dd, 2H, CH2N), 3.02 (t, 1H, CH), 3.41–3.63 (dd, 2H, CH2), 5.34 (s, 1H, NH), 6.82–7.78 (m, 20H, 4Ar-H). 13C NMR (75 MHz, DMSO-d6): δ 37.63, 45.55, 48.71, 48.98, 75.80, 125.99, 126.72, 127.53, 128.06, 128.18, 128.43, 128.54, 128.99, 133.34, 136.99, 145.47, 146.49, 170.71, 199.38.
6. details
Crystal data, data collection and structure . The N-bound H atom was located in a difference-Fourier map and refined freely [N2—H2N = 0.908 (16) Å]. The remaining H atoms were placed in calculated positions (C—H = 0.95–1.00 Å) and allowed to ride on their carrier atoms, with Uiso = 1.2Ueq(C). The residual electron density was difficult to model and therefore the SQUEEZE routine (Spek, 2015) in PLATON (Spek, 2020) was used to remove the contribution of the electron density in the solvent region from the intensity data and the solvent-free model was employed for the final The solvent formula mass and unit-cell characteristics were not taken into account during The cavity of volume ca 119 Å3 (ca 9.4% of the unit-cell volume) contains approximately 28 electrons.
details are summarized in Table 2
|
Supporting information
CCDC reference: 2017791
https://doi.org/10.1107/S2056989020009871/is5547sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020009871/is5547Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989020009871/is5547Isup3.cml
Data collection: XSCANS (Bruker, 2007); cell
XSCANS (Bruker, 2007); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).C32H28N2O | Z = 2 |
Mr = 456.56 | F(000) = 484 |
Triclinic, P1 | Dx = 1.195 Mg m−3 |
a = 8.7807 (9) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.9566 (12) Å | Cell parameters from 2538 reflections |
c = 12.9121 (13) Å | θ = 2.2–24.2° |
α = 77.982 (1)° | µ = 0.07 mm−1 |
β = 78.711 (1)° | T = 150 K |
γ = 75.612 (1)° | Prism, colourless |
V = 1269.4 (2) Å3 | 0.28 × 0.25 × 0.23 mm |
Bruker P4 diffractometer | 6472 independent reflections |
Radiation source: sealed tube | 4328 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.042 |
ω scans | θmax = 29.6°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −12→12 |
Tmin = 0.980, Tmax = 0.984 | k = −16→16 |
16061 measured reflections | l = −17→17 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.051 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.117 | w = 1/[σ2(Fo2) + (0.0474P)2 + 0.0165P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
6472 reflections | Δρmax = 0.25 e Å−3 |
320 parameters | Δρmin = −0.23 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.44939 (17) | 0.02866 (13) | 0.83139 (12) | 0.0254 (3) | |
H1A | 0.417532 | 0.092805 | 0.874131 | 0.031* | |
H1B | 0.532449 | 0.047058 | 0.770600 | 0.031* | |
C2 | 0.50577 (18) | −0.08820 (13) | 0.89972 (12) | 0.0268 (3) | |
H2A | 0.620705 | −0.101848 | 0.903228 | 0.032* | |
H2B | 0.446137 | −0.091719 | 0.973388 | 0.032* | |
C3 | 0.32476 (16) | −0.11911 (12) | 0.80213 (11) | 0.0207 (3) | |
C4 | 0.18403 (17) | −0.15217 (12) | 0.88356 (11) | 0.0228 (3) | |
H4A | 0.188777 | −0.236789 | 0.889250 | 0.027* | |
H4B | 0.193319 | −0.138146 | 0.954753 | 0.027* | |
C5 | 0.02321 (16) | −0.08252 (12) | 0.85304 (11) | 0.0210 (3) | |
H5 | −0.054074 | −0.085719 | 0.921116 | 0.025* | |
C6 | 0.02583 (16) | 0.04591 (12) | 0.81466 (11) | 0.0195 (3) | |
C7 | 0.16526 (16) | 0.08404 (12) | 0.80012 (11) | 0.0198 (3) | |
C8 | −0.13267 (17) | 0.12259 (12) | 0.81093 (11) | 0.0215 (3) | |
C9 | −0.16490 (17) | 0.23969 (12) | 0.74001 (12) | 0.0229 (3) | |
C10 | −0.29651 (18) | 0.32328 (14) | 0.77432 (13) | 0.0316 (4) | |
H10 | −0.360310 | 0.305622 | 0.841463 | 0.038* | |
C11 | −0.3348 (2) | 0.43204 (14) | 0.71104 (14) | 0.0390 (4) | |
H11 | −0.423388 | 0.489185 | 0.735723 | 0.047* | |
C12 | −0.2450 (2) | 0.45780 (14) | 0.61222 (14) | 0.0373 (4) | |
H12 | −0.271383 | 0.532550 | 0.569140 | 0.045* | |
C13 | −0.1165 (2) | 0.37451 (14) | 0.57624 (13) | 0.0331 (4) | |
H13 | −0.055757 | 0.391481 | 0.507747 | 0.040* | |
C14 | −0.07625 (18) | 0.26622 (13) | 0.63998 (12) | 0.0257 (3) | |
H14 | 0.012783 | 0.209572 | 0.615064 | 0.031* | |
C15 | 0.17191 (16) | 0.20907 (12) | 0.78945 (11) | 0.0206 (3) | |
C16 | 0.07779 (18) | 0.27811 (13) | 0.86290 (12) | 0.0262 (3) | |
H16 | 0.010893 | 0.244616 | 0.922039 | 0.031* | |
C17 | 0.0815 (2) | 0.39533 (14) | 0.84988 (14) | 0.0377 (4) | |
H17 | 0.017135 | 0.441920 | 0.900193 | 0.045* | |
C18 | 0.1783 (2) | 0.44495 (14) | 0.76422 (15) | 0.0409 (4) | |
H18 | 0.179183 | 0.525745 | 0.754894 | 0.049* | |
C19 | 0.27404 (19) | 0.37652 (14) | 0.69207 (14) | 0.0361 (4) | |
H19 | 0.341594 | 0.410217 | 0.633493 | 0.043* | |
C20 | 0.27169 (17) | 0.25941 (13) | 0.70494 (12) | 0.0267 (3) | |
H20 | 0.338866 | 0.212733 | 0.655604 | 0.032* | |
C21 | 0.33725 (16) | −0.15426 (12) | 0.69346 (11) | 0.0211 (3) | |
C22 | 0.34714 (18) | −0.07518 (13) | 0.59878 (12) | 0.0264 (3) | |
H22 | 0.341812 | 0.004668 | 0.600857 | 0.032* | |
C23 | 0.36476 (18) | −0.11116 (14) | 0.50068 (12) | 0.0306 (4) | |
H23 | 0.371794 | −0.055874 | 0.436337 | 0.037* | |
C24 | 0.37210 (18) | −0.22659 (14) | 0.49615 (13) | 0.0297 (4) | |
H24 | 0.382339 | −0.251013 | 0.429194 | 0.036* | |
C25 | 0.36436 (19) | −0.30625 (13) | 0.59033 (13) | 0.0322 (4) | |
H25 | 0.370629 | −0.386175 | 0.587958 | 0.039* | |
C26 | 0.34759 (18) | −0.27082 (13) | 0.68784 (12) | 0.0292 (4) | |
H26 | 0.343066 | −0.326753 | 0.751869 | 0.035* | |
C27 | −0.03918 (16) | −0.13787 (12) | 0.77793 (12) | 0.0221 (3) | |
C28 | −0.05435 (18) | −0.08759 (13) | 0.67303 (12) | 0.0275 (3) | |
H28 | −0.024649 | −0.014775 | 0.644757 | 0.033* | |
C29 | −0.1118 (2) | −0.14096 (15) | 0.60841 (14) | 0.0363 (4) | |
H29 | −0.120172 | −0.104929 | 0.536272 | 0.044* | |
C30 | −0.15699 (19) | −0.24589 (15) | 0.64757 (15) | 0.0378 (4) | |
H30 | −0.197606 | −0.281885 | 0.603040 | 0.045* | |
C31 | −0.14290 (18) | −0.29836 (14) | 0.75188 (15) | 0.0350 (4) | |
H31 | −0.172882 | −0.371193 | 0.779443 | 0.042* | |
C32 | −0.08480 (18) | −0.24458 (13) | 0.81661 (13) | 0.0292 (4) | |
H32 | −0.075911 | −0.281070 | 0.888577 | 0.035* | |
N1 | 0.31103 (13) | 0.00872 (10) | 0.79395 (9) | 0.0209 (3) | |
N2 | 0.47413 (15) | −0.17512 (11) | 0.84545 (11) | 0.0263 (3) | |
H2N | 0.553 (2) | −0.1864 (13) | 0.7890 (13) | 0.033 (4)* | |
O1 | −0.24961 (12) | 0.08722 (9) | 0.86497 (8) | 0.0286 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0190 (8) | 0.0297 (8) | 0.0306 (8) | −0.0071 (6) | −0.0052 (6) | −0.0079 (7) |
C2 | 0.0208 (8) | 0.0331 (9) | 0.0278 (8) | −0.0051 (7) | −0.0058 (6) | −0.0068 (7) |
C3 | 0.0187 (7) | 0.0172 (7) | 0.0251 (8) | −0.0023 (6) | −0.0034 (6) | −0.0029 (6) |
C4 | 0.0237 (8) | 0.0212 (7) | 0.0227 (8) | −0.0056 (6) | −0.0024 (6) | −0.0019 (6) |
C5 | 0.0191 (7) | 0.0217 (7) | 0.0214 (7) | −0.0069 (6) | 0.0006 (6) | −0.0027 (6) |
C6 | 0.0199 (7) | 0.0207 (7) | 0.0186 (7) | −0.0049 (6) | −0.0011 (6) | −0.0055 (6) |
C7 | 0.0214 (7) | 0.0222 (7) | 0.0161 (7) | −0.0049 (6) | −0.0008 (6) | −0.0056 (6) |
C8 | 0.0209 (7) | 0.0236 (7) | 0.0222 (7) | −0.0060 (6) | −0.0010 (6) | −0.0095 (6) |
C9 | 0.0197 (7) | 0.0240 (8) | 0.0279 (8) | −0.0047 (6) | −0.0063 (6) | −0.0083 (6) |
C10 | 0.0263 (9) | 0.0321 (9) | 0.0346 (9) | 0.0008 (7) | −0.0043 (7) | −0.0103 (7) |
C11 | 0.0374 (10) | 0.0297 (9) | 0.0488 (11) | 0.0051 (8) | −0.0142 (8) | −0.0123 (8) |
C12 | 0.0440 (11) | 0.0256 (9) | 0.0463 (11) | −0.0066 (8) | −0.0222 (9) | −0.0016 (7) |
C13 | 0.0378 (10) | 0.0328 (9) | 0.0314 (9) | −0.0127 (8) | −0.0096 (7) | −0.0013 (7) |
C14 | 0.0241 (8) | 0.0266 (8) | 0.0282 (8) | −0.0055 (6) | −0.0058 (6) | −0.0068 (6) |
C15 | 0.0185 (7) | 0.0211 (7) | 0.0244 (8) | −0.0057 (6) | −0.0061 (6) | −0.0040 (6) |
C16 | 0.0271 (8) | 0.0270 (8) | 0.0264 (8) | −0.0075 (7) | −0.0023 (6) | −0.0080 (6) |
C17 | 0.0416 (10) | 0.0283 (9) | 0.0455 (10) | −0.0085 (8) | 0.0022 (8) | −0.0182 (8) |
C18 | 0.0419 (11) | 0.0203 (8) | 0.0618 (12) | −0.0120 (7) | −0.0029 (9) | −0.0083 (8) |
C19 | 0.0311 (9) | 0.0282 (9) | 0.0476 (11) | −0.0130 (7) | 0.0008 (8) | −0.0013 (8) |
C20 | 0.0228 (8) | 0.0256 (8) | 0.0316 (9) | −0.0072 (6) | 0.0000 (6) | −0.0058 (7) |
C21 | 0.0158 (7) | 0.0230 (7) | 0.0246 (8) | −0.0039 (6) | −0.0015 (6) | −0.0057 (6) |
C22 | 0.0290 (8) | 0.0226 (8) | 0.0280 (8) | −0.0082 (6) | 0.0001 (7) | −0.0059 (6) |
C23 | 0.0326 (9) | 0.0338 (9) | 0.0241 (8) | −0.0094 (7) | 0.0014 (7) | −0.0047 (7) |
C24 | 0.0252 (8) | 0.0390 (9) | 0.0278 (8) | −0.0104 (7) | 0.0016 (7) | −0.0134 (7) |
C25 | 0.0357 (9) | 0.0250 (8) | 0.0381 (9) | −0.0093 (7) | −0.0001 (7) | −0.0120 (7) |
C26 | 0.0346 (9) | 0.0232 (8) | 0.0288 (8) | −0.0061 (7) | −0.0020 (7) | −0.0050 (6) |
C27 | 0.0158 (7) | 0.0209 (7) | 0.0295 (8) | −0.0034 (6) | 0.0001 (6) | −0.0078 (6) |
C28 | 0.0297 (9) | 0.0244 (8) | 0.0304 (9) | −0.0072 (7) | −0.0036 (7) | −0.0083 (6) |
C29 | 0.0391 (10) | 0.0367 (10) | 0.0355 (9) | −0.0026 (8) | −0.0095 (8) | −0.0148 (8) |
C30 | 0.0320 (9) | 0.0373 (10) | 0.0518 (11) | −0.0033 (8) | −0.0096 (8) | −0.0263 (9) |
C31 | 0.0271 (9) | 0.0233 (8) | 0.0576 (12) | −0.0075 (7) | −0.0029 (8) | −0.0143 (8) |
C32 | 0.0253 (8) | 0.0228 (8) | 0.0389 (9) | −0.0061 (6) | −0.0027 (7) | −0.0045 (7) |
N1 | 0.0177 (6) | 0.0212 (6) | 0.0255 (6) | −0.0057 (5) | −0.0032 (5) | −0.0061 (5) |
N2 | 0.0206 (7) | 0.0289 (7) | 0.0289 (7) | −0.0016 (5) | −0.0042 (6) | −0.0080 (6) |
O1 | 0.0201 (5) | 0.0320 (6) | 0.0333 (6) | −0.0078 (5) | 0.0015 (5) | −0.0069 (5) |
C1—N1 | 1.4794 (18) | C15—C20 | 1.3910 (19) |
C1—C2 | 1.513 (2) | C15—C16 | 1.3943 (19) |
C1—H1A | 0.9900 | C16—C17 | 1.384 (2) |
C1—H1B | 0.9900 | C16—H16 | 0.9500 |
C2—N2 | 1.4736 (18) | C17—C18 | 1.381 (2) |
C2—H2A | 0.9900 | C17—H17 | 0.9500 |
C2—H2B | 0.9900 | C18—C19 | 1.383 (2) |
C3—N2 | 1.4752 (18) | C18—H18 | 0.9500 |
C3—N1 | 1.4859 (17) | C19—C20 | 1.380 (2) |
C3—C21 | 1.5231 (19) | C19—H19 | 0.9500 |
C3—C4 | 1.5328 (18) | C20—H20 | 0.9500 |
C4—C5 | 1.530 (2) | C21—C22 | 1.384 (2) |
C4—H4A | 0.9900 | C21—C26 | 1.3901 (19) |
C4—H4B | 0.9900 | C22—C23 | 1.389 (2) |
C5—C6 | 1.5166 (18) | C22—H22 | 0.9500 |
C5—C27 | 1.5279 (19) | C23—C24 | 1.379 (2) |
C5—H5 | 1.0000 | C23—H23 | 0.9500 |
C6—C7 | 1.3761 (19) | C24—C25 | 1.381 (2) |
C6—C8 | 1.4675 (19) | C24—H24 | 0.9500 |
C7—N1 | 1.3685 (17) | C25—C26 | 1.380 (2) |
C7—C15 | 1.4872 (18) | C25—H25 | 0.9500 |
C8—O1 | 1.2379 (16) | C26—H26 | 0.9500 |
C8—C9 | 1.500 (2) | C27—C28 | 1.380 (2) |
C9—C14 | 1.390 (2) | C27—C32 | 1.3957 (19) |
C9—C10 | 1.393 (2) | C28—C29 | 1.380 (2) |
C10—C11 | 1.385 (2) | C28—H28 | 0.9500 |
C10—H10 | 0.9500 | C29—C30 | 1.376 (2) |
C11—C12 | 1.382 (2) | C29—H29 | 0.9500 |
C11—H11 | 0.9500 | C30—C31 | 1.378 (2) |
C12—C13 | 1.381 (2) | C30—H30 | 0.9500 |
C12—H12 | 0.9500 | C31—C32 | 1.388 (2) |
C13—C14 | 1.386 (2) | C31—H31 | 0.9500 |
C13—H13 | 0.9500 | C32—H32 | 0.9500 |
C14—H14 | 0.9500 | N2—H2N | 0.908 (16) |
N1—C1—C2 | 101.91 (11) | C16—C15—C7 | 120.90 (12) |
N1—C1—H1A | 111.4 | C17—C16—C15 | 120.18 (14) |
C2—C1—H1A | 111.4 | C17—C16—H16 | 119.9 |
N1—C1—H1B | 111.4 | C15—C16—H16 | 119.9 |
C2—C1—H1B | 111.4 | C18—C17—C16 | 120.41 (15) |
H1A—C1—H1B | 109.3 | C18—C17—H17 | 119.8 |
N2—C2—C1 | 104.60 (12) | C16—C17—H17 | 119.8 |
N2—C2—H2A | 110.8 | C17—C18—C19 | 119.71 (15) |
C1—C2—H2A | 110.8 | C17—C18—H18 | 120.1 |
N2—C2—H2B | 110.8 | C19—C18—H18 | 120.1 |
C1—C2—H2B | 110.8 | C20—C19—C18 | 120.19 (15) |
H2A—C2—H2B | 108.9 | C20—C19—H19 | 119.9 |
N2—C3—N1 | 105.07 (11) | C18—C19—H19 | 119.9 |
N2—C3—C21 | 108.59 (11) | C19—C20—C15 | 120.63 (14) |
N1—C3—C21 | 112.32 (11) | C19—C20—H20 | 119.7 |
N2—C3—C4 | 109.35 (11) | C15—C20—H20 | 119.7 |
N1—C3—C4 | 107.36 (11) | C22—C21—C26 | 118.31 (13) |
C21—C3—C4 | 113.77 (11) | C22—C21—C3 | 122.27 (12) |
C5—C4—C3 | 112.67 (11) | C26—C21—C3 | 119.33 (13) |
C5—C4—H4A | 109.1 | C21—C22—C23 | 120.79 (14) |
C3—C4—H4A | 109.1 | C21—C22—H22 | 119.6 |
C5—C4—H4B | 109.1 | C23—C22—H22 | 119.6 |
C3—C4—H4B | 109.1 | C24—C23—C22 | 120.40 (15) |
H4A—C4—H4B | 107.8 | C24—C23—H23 | 119.8 |
C6—C5—C27 | 114.32 (12) | C22—C23—H23 | 119.8 |
C6—C5—C4 | 110.99 (11) | C23—C24—C25 | 119.08 (14) |
C27—C5—C4 | 113.18 (11) | C23—C24—H24 | 120.5 |
C6—C5—H5 | 105.9 | C25—C24—H24 | 120.5 |
C27—C5—H5 | 105.9 | C26—C25—C24 | 120.62 (14) |
C4—C5—H5 | 105.9 | C26—C25—H25 | 119.7 |
C7—C6—C8 | 124.93 (12) | C24—C25—H25 | 119.7 |
C7—C6—C5 | 120.66 (12) | C25—C26—C21 | 120.79 (14) |
C8—C6—C5 | 113.82 (12) | C25—C26—H26 | 119.6 |
N1—C7—C6 | 122.21 (12) | C21—C26—H26 | 119.6 |
N1—C7—C15 | 114.14 (12) | C28—C27—C32 | 117.59 (14) |
C6—C7—C15 | 123.64 (12) | C28—C27—C5 | 123.52 (13) |
O1—C8—C6 | 118.86 (13) | C32—C27—C5 | 118.89 (13) |
O1—C8—C9 | 116.85 (13) | C29—C28—C27 | 121.33 (15) |
C6—C8—C9 | 124.17 (12) | C29—C28—H28 | 119.3 |
C14—C9—C10 | 118.77 (14) | C27—C28—H28 | 119.3 |
C14—C9—C8 | 123.47 (13) | C30—C29—C28 | 120.55 (16) |
C10—C9—C8 | 117.65 (13) | C30—C29—H29 | 119.7 |
C11—C10—C9 | 120.35 (15) | C28—C29—H29 | 119.7 |
C11—C10—H10 | 119.8 | C29—C30—C31 | 119.46 (15) |
C9—C10—H10 | 119.8 | C29—C30—H30 | 120.3 |
C12—C11—C10 | 120.33 (16) | C31—C30—H30 | 120.3 |
C12—C11—H11 | 119.8 | C30—C31—C32 | 119.85 (15) |
C10—C11—H11 | 119.8 | C30—C31—H31 | 120.1 |
C13—C12—C11 | 119.80 (16) | C32—C31—H31 | 120.1 |
C13—C12—H12 | 120.1 | C31—C32—C27 | 121.21 (16) |
C11—C12—H12 | 120.1 | C31—C32—H32 | 119.4 |
C12—C13—C14 | 120.08 (16) | C27—C32—H32 | 119.4 |
C12—C13—H13 | 120.0 | C7—N1—C1 | 123.36 (11) |
C14—C13—H13 | 120.0 | C7—N1—C3 | 120.74 (11) |
C13—C14—C9 | 120.64 (14) | C1—N1—C3 | 109.49 (11) |
C13—C14—H14 | 119.7 | C2—N2—C3 | 105.65 (11) |
C9—C14—H14 | 119.7 | C2—N2—H2N | 107.9 (10) |
C20—C15—C16 | 118.84 (13) | C3—N2—H2N | 107.7 (10) |
C20—C15—C7 | 120.26 (12) | ||
N1—C1—C2—N2 | 34.54 (14) | N2—C3—C21—C22 | −110.98 (15) |
N2—C3—C4—C5 | 170.85 (11) | N1—C3—C21—C22 | 4.78 (18) |
N1—C3—C4—C5 | 57.36 (15) | C4—C3—C21—C22 | 127.01 (14) |
C21—C3—C4—C5 | −67.56 (15) | N2—C3—C21—C26 | 65.54 (16) |
C3—C4—C5—C6 | −43.64 (15) | N1—C3—C21—C26 | −178.70 (12) |
C3—C4—C5—C27 | 86.46 (14) | C4—C3—C21—C26 | −56.47 (17) |
C27—C5—C6—C7 | −122.71 (14) | C26—C21—C22—C23 | 0.9 (2) |
C4—C5—C6—C7 | 6.78 (18) | C3—C21—C22—C23 | 177.43 (14) |
C27—C5—C6—C8 | 65.67 (15) | C21—C22—C23—C24 | 0.2 (2) |
C4—C5—C6—C8 | −164.83 (11) | C22—C23—C24—C25 | −1.1 (2) |
C8—C6—C7—N1 | −173.38 (13) | C23—C24—C25—C26 | 0.8 (2) |
C5—C6—C7—N1 | 16.0 (2) | C24—C25—C26—C21 | 0.4 (2) |
C8—C6—C7—C15 | 6.4 (2) | C22—C21—C26—C25 | −1.2 (2) |
C5—C6—C7—C15 | −164.19 (12) | C3—C21—C26—C25 | −177.83 (14) |
C7—C6—C8—O1 | −150.77 (14) | C6—C5—C27—C28 | 15.65 (19) |
C5—C6—C8—O1 | 20.43 (18) | C4—C5—C27—C28 | −112.74 (15) |
C7—C6—C8—C9 | 33.3 (2) | C6—C5—C27—C32 | −163.87 (12) |
C5—C6—C8—C9 | −155.55 (13) | C4—C5—C27—C32 | 67.74 (16) |
O1—C8—C9—C14 | −144.49 (14) | C32—C27—C28—C29 | −0.3 (2) |
C6—C8—C9—C14 | 31.6 (2) | C5—C27—C28—C29 | −179.83 (14) |
O1—C8—C9—C10 | 31.66 (19) | C27—C28—C29—C30 | 0.6 (2) |
C6—C8—C9—C10 | −152.29 (14) | C28—C29—C30—C31 | −0.7 (2) |
C14—C9—C10—C11 | −2.0 (2) | C29—C30—C31—C32 | 0.6 (2) |
C8—C9—C10—C11 | −178.33 (14) | C30—C31—C32—C27 | −0.3 (2) |
C9—C10—C11—C12 | 1.4 (3) | C28—C27—C32—C31 | 0.2 (2) |
C10—C11—C12—C13 | 0.2 (3) | C5—C27—C32—C31 | 179.72 (13) |
C11—C12—C13—C14 | −1.2 (2) | C6—C7—N1—C1 | −148.49 (13) |
C12—C13—C14—C9 | 0.6 (2) | C15—C7—N1—C1 | 31.67 (18) |
C10—C9—C14—C13 | 1.0 (2) | C6—C7—N1—C3 | 0.4 (2) |
C8—C9—C14—C13 | 177.12 (13) | C15—C7—N1—C3 | −179.42 (11) |
N1—C7—C15—C20 | 50.14 (18) | C2—C1—N1—C7 | 130.66 (13) |
C6—C7—C15—C20 | −129.69 (15) | C2—C1—N1—C3 | −21.25 (14) |
N1—C7—C15—C16 | −130.46 (14) | N2—C3—N1—C7 | −152.67 (12) |
C6—C7—C15—C16 | 49.7 (2) | C21—C3—N1—C7 | 89.46 (14) |
C20—C15—C16—C17 | 1.5 (2) | C4—C3—N1—C7 | −36.33 (16) |
C7—C15—C16—C17 | −177.90 (14) | N2—C3—N1—C1 | 0.10 (14) |
C15—C16—C17—C18 | 0.0 (3) | C21—C3—N1—C1 | −117.77 (12) |
C16—C17—C18—C19 | −1.1 (3) | C4—C3—N1—C1 | 116.44 (12) |
C17—C18—C19—C20 | 0.7 (3) | C1—C2—N2—C3 | −35.78 (14) |
C18—C19—C20—C15 | 0.9 (3) | N1—C3—N2—C2 | 22.05 (14) |
C16—C15—C20—C19 | −1.9 (2) | C21—C3—N2—C2 | 142.42 (11) |
C7—C15—C20—C19 | 177.47 (14) | C4—C3—N2—C2 | −92.91 (13) |
Cg3 is the centroid of the C9–C14 phenyl ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2B···O1i | 0.99 | 2.43 | 3.4084 (19) | 168 |
C24—H24···Cg3ii | 0.95 | 2.83 | 3.5886 (18) | 138 |
Symmetry codes: (i) −x, −y, −z+2; (ii) −x, −y, −z+1. |
References
Afkhami, F. A., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888–14896. Web of Science PubMed Google Scholar
Akkurt, M., Duruskari, G. S., Toze, F. A. A., Khalilov, A. N. & Huseynova, A. T. (2018). Acta Cryst. E74, 1168–1172. Web of Science CSD CrossRef IUCr Journals Google Scholar
Alvim, H. G. O., Correa, J. R., Assumpção, J. A. F., da Silva, W. A., Rodrigues, M. O., de Macedo, J. L., Fioramonte, M., Gozzo, F. C., Gatto, C. C. & Neto, B. A. D. (2018). J. Org. Chem. 83, 4044–4053. CSD CrossRef CAS PubMed Google Scholar
Bruker (2007). XSCANS . Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Khalilov, A. N., Abdelhamid, A. A., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o1146. Web of Science CSD CrossRef IUCr Journals Google Scholar
Khalilov, A. N., Atioğlu, Z., Akkurt, M., Duruskari, G. S., Toze, F. A. A. & Huseynova, A. T. (2019). Acta Cryst. E75, 662–666. Web of Science CSD CrossRef IUCr Journals Google Scholar
Koizumi, Y., Arai, M., Tomoda, H. & Ōmura, S. (2004). Biochim. Biophys. Acta, 1693, 47–55. CrossRef PubMed CAS Google Scholar
Mahmoudi, G., Gurbanov, A. V., Rodríguez-Hermida, S., Carballo, R., Amini, M., Bacchi, A., Mitoraj, M. P., Sagan, F., Kukułka, M. & Safin, D. A. (2017b). Inorg. Chem. 56, 9698–9709. Web of Science CSD CrossRef CAS PubMed Google Scholar
Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017a). Eur. J. Inorg. Chem. 40, 4763–4772. CSD CrossRef Google Scholar
Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381. CrossRef Google Scholar
Mahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32–46. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2015). Acta Cryst. C71, 9–18. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17.5. University of Western Australia. https://hirshfeldsurface.net. Google Scholar
Wang, R.-L., Zhu, P., Lu, Y., Huang, F.-P. & Hui, X.-P. (2013). Adv. Synth. Catal. 355, 87–92. CSD CrossRef CAS Google Scholar
Wireko, F. C., Matthews, R. S., Thoman, S. M., Hennes, D. H. & Sickman, L. H. (1995). Acta Cryst. C51, 1404–1407. CSD CrossRef CAS IUCr Journals Google Scholar
Yin, J., Khalilov, A. N., Muthupandi, P., Ladd, R. & Birman, V. B. (2020). J. Am. Chem. Soc. 142, 60–63. CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.