research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of phen­yl(5,7,8a-tri­phenyl-1,2,3,7,8,8a-hexa­hydro­imidazo[1,2-a]pyridin-6-yl)methanone with an unknown solvent

CROSSMARK_Color_square_no_text.svg

aOrganic Chemistry Department, Baku State University, Z. Xalilov str. 23, Az, 1148 Baku, Azerbaijan, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and cAcademy of Science of the Republic of Tadzhikistan, Kh. Yu. Yusufbekov Pamir Biological Institute, 1 Kholdorova St, Khorog 736002, Gbao, Tajikistan
*Correspondence e-mail: anzurat2003@mail.ru

Edited by H. Ishida, Okayama University, Japan (Received 6 July 2020; accepted 19 July 2020; online 24 July 2020)

In the title compound, C32H28N2O, the imidazolidine and pyridine rings of the central hexa­hydro­imidazo[1,2-a]pyridine ring system adopt envelope and screw-boat conformations, respectively. The mol­ecule exhibits two weak intra­molecular ππ inter­actions between phenyl rings. In the crystal, mol­ecules are linked via pairs of C—H⋯ O hydrogen bonds, forming inversion dimers. The dimers are further linked by pairs of C—H⋯π inter­actions, forming infinite chains along the c-axis direction. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (73.4%), C⋯H/H⋯C (18.8%) and O⋯H/H⋯O (5.7%) contacts. The contribution of some disordered solvent to the scattering was removed using the SQUEEZE routine [Spek (2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). Acta Cryst. C71, 9–18] in PLATON. The solvent contribution was not included in the reported mol­ecular weight and density.

1. Chemical context

Carbon–carbon and carbon–heteroatom bond-forming reactions are the most powerful and fundamental tools in synthetic organic chemistry. These synthetic approaches have successfully found applications in the construction of carbo- and heterocyclic ring systems (Khalilov et al., 2011[Khalilov, A. N., Abdelhamid, A. A., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o1146.]; Yin et al., 2020[Yin, J., Khalilov, A. N., Muthupandi, P., Ladd, R. & Birman, V. B. (2020). J. Am. Chem. Soc. 142, 60-63.]). The use of nitro­gen as the bridgehead atom is being assessed extensively. Bridgehead nitro­gen heterocycles comprising imidazole rings are prevalent structural motifs in many compounds having applications in medicinal chemistry, coordination chemistry and material science (Afkhami et al., 2017[Afkhami, F. A., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888-14896.]; Mahmoudi et al., 2017a[Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017a). Eur. J. Inorg. Chem. 40, 4763-4772.],b[Mahmoudi, G., Gurbanov, A. V., Rodríguez-Hermida, S., Carballo, R., Amini, M., Bacchi, A., Mitoraj, M. P., Sagan, F., Kukułka, M. & Safin, D. A. (2017b). Inorg. Chem. 56, 9698-9709.]; Mahmudov et al., 2019[Mahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32-46.], 2020[Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381.]). Various imidazo[1,2-a]pyridine moieties are included in synthetic drugs, such as alpidem, olprinone, saripidem, necopidem, miroprofen, zolimidine and zolpidem, which have already found use in medicinal practice. On the other hand, the imidazo[1,2-a]pyridine motif is also found in a series of natural products, such as oxaline and neoxaline (Koizumi et al., 2004[Koizumi, Y., Arai, M., Tomoda, H. & Ōmura, S. (2004). Biochim. Biophys. Acta, 1693, 47-55.]). As a result of the considerable inter­est to this field, there have been significant developments in the synthesis of imidazo[1,2-a]pyridine derivatives. In the framework of our ongoing structural studies (Akkurt et al., 2018[Akkurt, M., Duruskari, G. S., Toze, F. A. A., Khalilov, A. N. & Huseynova, A. T. (2018). Acta Cryst. E74, 1168-1172.]; Khalilov et al., 2019[Khalilov, A. N., Atioğlu, Z., Akkurt, M., Duruskari, G. S., Toze, F. A. A. & Huseynova, A. T. (2019). Acta Cryst. E75, 662-666.]), we report herein the crystal structure and Hirshfeld surface analysis of the title compound.

[Scheme 1]

2. Structural commentary

In the title compound (Fig. 1[link]), the imidazolidine ring (N1/C1/C2/N2/C3) of the central hexa­hydro­imidazo[1,2-a]pyridine ring system (N1/C1/C2/N2/C3–C7) adopts an envelope conformation with atom C2 as the flap lying 0.222 (2) Å from the mean plane of the remaining four atoms, while the pyridine ring (N1/C3–C7) is puckered with the puckering parameters QT = 0.4970 (15) Å, θ = 62.27 (17)° and φ = 96.49 (19)°. The dihedral angles between phenyl rings are A/B = 34.51 (8), A/C = 48.27 (8), A/D = 74.89 (8), B/C = 37.27 (8), B/D = 56.29 (8) and C/D = 26.72 (8)°, where A, B, C and D are the phenyl rings C9–C14, C15–C20, C21–C26 and C27–C32, respectively. The A, B, C and D ring planes are inclined to the central hexa­hydro­imidazo[1,2-a]pyridine ring system, making dihedral angles of 60.24 (7), 61.73 (7), 81.91 (7) and 63.08 (7)°, respectively, with the mean plane of the central ring system. There are two weak intra­molecular ππ inter­actions [Cg3⋯Cg4 = 3.7628 (11) Å and Cg5⋯Cg6 = 3.9822 (10) Å; Cg3, Cg4, Cg5 and Cg6 are the centroids of rings A, B, C and D, respectively].

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, mol­ecules are linked via pairs of C—H⋯ O hydrogen bonds, forming inversion dimers. The dimers are further linked by pairs of C—H⋯π inter­actions, forming an infinite chain along the c-axis direction (Table 1[link] and Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C9–C14 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2B⋯O1i 0.99 2.43 3.4084 (19) 168
C24—H24⋯Cg3ii 0.95 2.83 3.5886 (18) 138
Symmetry codes: (i) -x, -y, -z+2; (ii) -x, -y, -z+1.
[Figure 2]
Figure 2
The crystal packing of the title compound. Dashed lines indicate C—H⋯O, C—H⋯π and ππ stacking inter­actions. Cg3, Cg4, Cg5 and Cg6 are the centroids of the C9–C14, C15–C20, C21–C26 and C27–C32 phenyl rings, respectively. [Symmetry codes: (a) −x, −y, −z + 1; (b) −x, −y, −z + 2.]

In order to obtain further insight into the inter­molecular inter­actions, we used Crystal Explorer (Turner et al., 2017[Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17.5. University of Western Australia. https://hirshfeldsurface.net.]). The Hirshfeld surface of the title compound mapped over dnorm is depicted in Fig. 3[link], where the red regions are apparent around atom O1, which participates in the C—H⋯O inter­actions (Table 1[link]). The fingerprint plots (Fig. 4[link]) show that the largest contribution to the overall crystal packing is from H⋯H contacts (73.4%). The second largest percentage (18.8%) can be attributed to C⋯H/H⋯C contacts, which correlate with the C—H⋯π inter­actions. O⋯H/H⋯O contacts (5.7%), which correlate with the C—H⋯O inter­actions, provide another significant contribution to the Hirshfeld surface. Other contributions include N⋯H/H⋯N (1.9%) and C⋯C (0.2%). The removal of the contribution of the disordered solvent to the scattering using the SQUEEZE routine of PLATON may be responsible for a small change in the given percentage contributions.

[Figure 3]
Figure 3
A view of the Hirshfeld surface of the title compound plotted over dnorm, showing the C—H⋯O inter­actions.
[Figure 4]
Figure 4
(a) A full two-dimensional fingerprint plot for the title compound, together with those delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) O⋯H/H⋯O, (e) N⋯H/H⋯N and (f) C⋯C contacts.

4. Database survey

A search in the Cambridge Structural Database (CSD, Version 5.41, updated to March 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave three hits for the 1,2,3,7,8,8a-hexa­hydro­imidazo[1,2-a]pyridine moiety, viz. 5,7,8a-triphenyl-1,2,3,7,8,8a-hexa­hydro­imidazo[1,2-a]pyridine (KICJUE; Alvim et al., 2018[Alvim, H. G. O., Correa, J. R., Assumpção, J. A. F., da Silva, W. A., Rodrigues, M. O., de Macedo, J. L., Fioramonte, M., Gozzo, F. C., Gatto, C. C. & Neto, B. A. D. (2018). J. Org. Chem. 83, 4044-4053.]), 7-(4-bromo­phen­yl)-5,8a-diphenyl-1,2,3,7,8,8a-hexa­hydro­imidazo[1,2-a]pyridine (TEZJOZ; Wang et al., 2013[Wang, R.-L., Zhu, P., Lu, Y., Huang, F.-P. & Hui, X.-P. (2013). Adv. Synth. Catal. 355, 87-92.]) and 8-benz­yloxy-8a-methyl-1,2,3,7,8,8a-hexa­hydro­imidazo[1,2-a]pyridin-7-one monohydrate (YUYREP; Wireko et al., 1995[Wireko, F. C., Matthews, R. S., Thoman, S. M., Hennes, D. H. & Sickman, L. H. (1995). Acta Cryst. C51, 1404-1407.]). In KICJUE, single crystal X-ray analysis confirmed the trans derivative as the only isomer. The structure of TEZJOZ shows that the aromatic ring of the aldehyde is on the other plane of the ketone in the purposed mechanism for the reaction. In the crystal of YUYREP, each water mol­ecule bridges two mol­ecules of the compound, hydrogen bonding with the carbonyl O atom of one mol­ecule [O⋯OW = 2.796 (4) Å] and with the N atom of the other [N⋯OW = 2.903 (4) Å]. The methyl group at the bridgehead is axially located in a trans position with respect to the bulky benz­yloxy group. The pyridone ring assumes a slightly distorted half-chair conformation.

5. Synthesis and crystallization

To a solution of 2-benzoyl-1,3,5-tri­phenyl­pentane-1,5-dione (3.5 mmol) in ethanol (35 ml) was added ethyl­enedi­amine (3.7 mmol) and 5 drops of concentrated HCl. The mixture was stirred at room temperature for 15 min, then refluxed for 4 h and cooled down to room temperature. The reaction product precipitated from the reaction mixture as colourless single crystals, which were collected by filtration and purified by recrystallization from ethanol (yield 76%; m.p. 465–466 K).

1H NMR (300 MHz, DMSO-d6): δ 2.28 (dd, 2H, CH2N), 2.77 (dd, 2H, CH2N), 3.02 (t, 1H, CH), 3.41–3.63 (dd, 2H, CH2), 5.34 (s, 1H, NH), 6.82–7.78 (m, 20H, 4Ar-H). 13C NMR (75 MHz, DMSO-d6): δ 37.63, 45.55, 48.71, 48.98, 75.80, 125.99, 126.72, 127.53, 128.06, 128.18, 128.43, 128.54, 128.99, 133.34, 136.99, 145.47, 146.49, 170.71, 199.38.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The N-bound H atom was located in a difference-Fourier map and refined freely [N2—H2N = 0.908 (16) Å]. The remaining H atoms were placed in calculated positions (C—H = 0.95–1.00 Å) and allowed to ride on their carrier atoms, with Uiso = 1.2Ueq(C). The residual electron density was difficult to model and therefore the SQUEEZE routine (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) in PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) was used to remove the contribution of the electron density in the solvent region from the intensity data and the solvent-free model was employed for the final refinement. The solvent formula mass and unit-cell characteristics were not taken into account during refinement. The cavity of volume ca 119 Å3 (ca 9.4% of the unit-cell volume) contains approximately 28 electrons.

Table 2
Experimental details

Crystal data
Chemical formula C32H28N2O
Mr 456.56
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 8.7807 (9), 11.9566 (12), 12.9121 (13)
α, β, γ (°) 77.982 (1), 78.711 (1), 75.612 (1)
V3) 1269.4 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.28 × 0.25 × 0.23
 
Data collection
Diffractometer Bruker P4
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.980, 0.984
No. of measured, independent and observed [I > 2σ(I)] reflections 16061, 6472, 4328
Rint 0.042
(sin θ/λ)max−1) 0.695
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.117, 1.03
No. of reflections 6472
No. of parameters 320
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.25, −0.23
Computer programs: XSCANS (Bruker, 2007[Bruker (2007). XSCANS . Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: XSCANS (Bruker, 2007); cell refinement: XSCANS (Bruker, 2007); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

Phenyl(5,7,8a-triphenyl-1,2,3,7,8,8a-hexahydroimidazo[1,2-a]pyridin-6-yl)methanone top
Crystal data top
C32H28N2OZ = 2
Mr = 456.56F(000) = 484
Triclinic, P1Dx = 1.195 Mg m3
a = 8.7807 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.9566 (12) ÅCell parameters from 2538 reflections
c = 12.9121 (13) Åθ = 2.2–24.2°
α = 77.982 (1)°µ = 0.07 mm1
β = 78.711 (1)°T = 150 K
γ = 75.612 (1)°Prism, colourless
V = 1269.4 (2) Å30.28 × 0.25 × 0.23 mm
Data collection top
Bruker P4
diffractometer
6472 independent reflections
Radiation source: sealed tube4328 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω scansθmax = 29.6°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.980, Tmax = 0.984k = 1616
16061 measured reflectionsl = 1717
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0474P)2 + 0.0165P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
6472 reflectionsΔρmax = 0.25 e Å3
320 parametersΔρmin = 0.23 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.44939 (17)0.02866 (13)0.83139 (12)0.0254 (3)
H1A0.4175320.0928050.8741310.031*
H1B0.5324490.0470580.7706000.031*
C20.50577 (18)0.08820 (13)0.89972 (12)0.0268 (3)
H2A0.6207050.1018480.9032280.032*
H2B0.4461370.0917190.9733880.032*
C30.32476 (16)0.11911 (12)0.80213 (11)0.0207 (3)
C40.18403 (17)0.15217 (12)0.88356 (11)0.0228 (3)
H4A0.1887770.2367890.8892500.027*
H4B0.1933190.1381460.9547530.027*
C50.02321 (16)0.08252 (12)0.85304 (11)0.0210 (3)
H50.0540740.0857190.9211160.025*
C60.02583 (16)0.04591 (12)0.81466 (11)0.0195 (3)
C70.16526 (16)0.08404 (12)0.80012 (11)0.0198 (3)
C80.13267 (17)0.12259 (12)0.81093 (11)0.0215 (3)
C90.16490 (17)0.23969 (12)0.74001 (12)0.0229 (3)
C100.29651 (18)0.32328 (14)0.77432 (13)0.0316 (4)
H100.3603100.3056220.8414630.038*
C110.3348 (2)0.43204 (14)0.71104 (14)0.0390 (4)
H110.4233880.4891850.7357230.047*
C120.2450 (2)0.45780 (14)0.61222 (14)0.0373 (4)
H120.2713830.5325500.5691400.045*
C130.1165 (2)0.37451 (14)0.57624 (13)0.0331 (4)
H130.0557570.3914810.5077470.040*
C140.07625 (18)0.26622 (13)0.63998 (12)0.0257 (3)
H140.0127830.2095720.6150640.031*
C150.17191 (16)0.20907 (12)0.78945 (11)0.0206 (3)
C160.07779 (18)0.27811 (13)0.86290 (12)0.0262 (3)
H160.0108930.2446160.9220390.031*
C170.0815 (2)0.39533 (14)0.84988 (14)0.0377 (4)
H170.0171350.4419200.9001930.045*
C180.1783 (2)0.44495 (14)0.76422 (15)0.0409 (4)
H180.1791830.5257450.7548940.049*
C190.27404 (19)0.37652 (14)0.69207 (14)0.0361 (4)
H190.3415940.4102170.6334930.043*
C200.27169 (17)0.25941 (13)0.70494 (12)0.0267 (3)
H200.3388660.2127330.6556040.032*
C210.33725 (16)0.15426 (12)0.69346 (11)0.0211 (3)
C220.34714 (18)0.07518 (13)0.59878 (12)0.0264 (3)
H220.3418120.0046680.6008570.032*
C230.36476 (18)0.11116 (14)0.50068 (12)0.0306 (4)
H230.3717940.0558740.4363370.037*
C240.37210 (18)0.22659 (14)0.49615 (13)0.0297 (4)
H240.3823390.2510130.4291940.036*
C250.36436 (19)0.30625 (13)0.59033 (13)0.0322 (4)
H250.3706290.3861750.5879580.039*
C260.34759 (18)0.27082 (13)0.68784 (12)0.0292 (4)
H260.3430660.3267530.7518690.035*
C270.03918 (16)0.13787 (12)0.77793 (12)0.0221 (3)
C280.05435 (18)0.08759 (13)0.67303 (12)0.0275 (3)
H280.0246490.0147750.6447570.033*
C290.1118 (2)0.14096 (15)0.60841 (14)0.0363 (4)
H290.1201720.1049290.5362720.044*
C300.15699 (19)0.24589 (15)0.64757 (15)0.0378 (4)
H300.1976060.2818850.6030400.045*
C310.14290 (18)0.29836 (14)0.75188 (15)0.0350 (4)
H310.1728820.3711930.7794430.042*
C320.08480 (18)0.24458 (13)0.81661 (13)0.0292 (4)
H320.0759110.2810700.8885770.035*
N10.31103 (13)0.00872 (10)0.79395 (9)0.0209 (3)
N20.47413 (15)0.17512 (11)0.84545 (11)0.0263 (3)
H2N0.553 (2)0.1864 (13)0.7890 (13)0.033 (4)*
O10.24961 (12)0.08722 (9)0.86497 (8)0.0286 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0190 (8)0.0297 (8)0.0306 (8)0.0071 (6)0.0052 (6)0.0079 (7)
C20.0208 (8)0.0331 (9)0.0278 (8)0.0051 (7)0.0058 (6)0.0068 (7)
C30.0187 (7)0.0172 (7)0.0251 (8)0.0023 (6)0.0034 (6)0.0029 (6)
C40.0237 (8)0.0212 (7)0.0227 (8)0.0056 (6)0.0024 (6)0.0019 (6)
C50.0191 (7)0.0217 (7)0.0214 (7)0.0069 (6)0.0006 (6)0.0027 (6)
C60.0199 (7)0.0207 (7)0.0186 (7)0.0049 (6)0.0011 (6)0.0055 (6)
C70.0214 (7)0.0222 (7)0.0161 (7)0.0049 (6)0.0008 (6)0.0056 (6)
C80.0209 (7)0.0236 (7)0.0222 (7)0.0060 (6)0.0010 (6)0.0095 (6)
C90.0197 (7)0.0240 (8)0.0279 (8)0.0047 (6)0.0063 (6)0.0083 (6)
C100.0263 (9)0.0321 (9)0.0346 (9)0.0008 (7)0.0043 (7)0.0103 (7)
C110.0374 (10)0.0297 (9)0.0488 (11)0.0051 (8)0.0142 (8)0.0123 (8)
C120.0440 (11)0.0256 (9)0.0463 (11)0.0066 (8)0.0222 (9)0.0016 (7)
C130.0378 (10)0.0328 (9)0.0314 (9)0.0127 (8)0.0096 (7)0.0013 (7)
C140.0241 (8)0.0266 (8)0.0282 (8)0.0055 (6)0.0058 (6)0.0068 (6)
C150.0185 (7)0.0211 (7)0.0244 (8)0.0057 (6)0.0061 (6)0.0040 (6)
C160.0271 (8)0.0270 (8)0.0264 (8)0.0075 (7)0.0023 (6)0.0080 (6)
C170.0416 (10)0.0283 (9)0.0455 (10)0.0085 (8)0.0022 (8)0.0182 (8)
C180.0419 (11)0.0203 (8)0.0618 (12)0.0120 (7)0.0029 (9)0.0083 (8)
C190.0311 (9)0.0282 (9)0.0476 (11)0.0130 (7)0.0008 (8)0.0013 (8)
C200.0228 (8)0.0256 (8)0.0316 (9)0.0072 (6)0.0000 (6)0.0058 (7)
C210.0158 (7)0.0230 (7)0.0246 (8)0.0039 (6)0.0015 (6)0.0057 (6)
C220.0290 (8)0.0226 (8)0.0280 (8)0.0082 (6)0.0001 (7)0.0059 (6)
C230.0326 (9)0.0338 (9)0.0241 (8)0.0094 (7)0.0014 (7)0.0047 (7)
C240.0252 (8)0.0390 (9)0.0278 (8)0.0104 (7)0.0016 (7)0.0134 (7)
C250.0357 (9)0.0250 (8)0.0381 (9)0.0093 (7)0.0001 (7)0.0120 (7)
C260.0346 (9)0.0232 (8)0.0288 (8)0.0061 (7)0.0020 (7)0.0050 (6)
C270.0158 (7)0.0209 (7)0.0295 (8)0.0034 (6)0.0001 (6)0.0078 (6)
C280.0297 (9)0.0244 (8)0.0304 (9)0.0072 (7)0.0036 (7)0.0083 (6)
C290.0391 (10)0.0367 (10)0.0355 (9)0.0026 (8)0.0095 (8)0.0148 (8)
C300.0320 (9)0.0373 (10)0.0518 (11)0.0033 (8)0.0096 (8)0.0263 (9)
C310.0271 (9)0.0233 (8)0.0576 (12)0.0075 (7)0.0029 (8)0.0143 (8)
C320.0253 (8)0.0228 (8)0.0389 (9)0.0061 (6)0.0027 (7)0.0045 (7)
N10.0177 (6)0.0212 (6)0.0255 (6)0.0057 (5)0.0032 (5)0.0061 (5)
N20.0206 (7)0.0289 (7)0.0289 (7)0.0016 (5)0.0042 (6)0.0080 (6)
O10.0201 (5)0.0320 (6)0.0333 (6)0.0078 (5)0.0015 (5)0.0069 (5)
Geometric parameters (Å, º) top
C1—N11.4794 (18)C15—C201.3910 (19)
C1—C21.513 (2)C15—C161.3943 (19)
C1—H1A0.9900C16—C171.384 (2)
C1—H1B0.9900C16—H160.9500
C2—N21.4736 (18)C17—C181.381 (2)
C2—H2A0.9900C17—H170.9500
C2—H2B0.9900C18—C191.383 (2)
C3—N21.4752 (18)C18—H180.9500
C3—N11.4859 (17)C19—C201.380 (2)
C3—C211.5231 (19)C19—H190.9500
C3—C41.5328 (18)C20—H200.9500
C4—C51.530 (2)C21—C221.384 (2)
C4—H4A0.9900C21—C261.3901 (19)
C4—H4B0.9900C22—C231.389 (2)
C5—C61.5166 (18)C22—H220.9500
C5—C271.5279 (19)C23—C241.379 (2)
C5—H51.0000C23—H230.9500
C6—C71.3761 (19)C24—C251.381 (2)
C6—C81.4675 (19)C24—H240.9500
C7—N11.3685 (17)C25—C261.380 (2)
C7—C151.4872 (18)C25—H250.9500
C8—O11.2379 (16)C26—H260.9500
C8—C91.500 (2)C27—C281.380 (2)
C9—C141.390 (2)C27—C321.3957 (19)
C9—C101.393 (2)C28—C291.380 (2)
C10—C111.385 (2)C28—H280.9500
C10—H100.9500C29—C301.376 (2)
C11—C121.382 (2)C29—H290.9500
C11—H110.9500C30—C311.378 (2)
C12—C131.381 (2)C30—H300.9500
C12—H120.9500C31—C321.388 (2)
C13—C141.386 (2)C31—H310.9500
C13—H130.9500C32—H320.9500
C14—H140.9500N2—H2N0.908 (16)
N1—C1—C2101.91 (11)C16—C15—C7120.90 (12)
N1—C1—H1A111.4C17—C16—C15120.18 (14)
C2—C1—H1A111.4C17—C16—H16119.9
N1—C1—H1B111.4C15—C16—H16119.9
C2—C1—H1B111.4C18—C17—C16120.41 (15)
H1A—C1—H1B109.3C18—C17—H17119.8
N2—C2—C1104.60 (12)C16—C17—H17119.8
N2—C2—H2A110.8C17—C18—C19119.71 (15)
C1—C2—H2A110.8C17—C18—H18120.1
N2—C2—H2B110.8C19—C18—H18120.1
C1—C2—H2B110.8C20—C19—C18120.19 (15)
H2A—C2—H2B108.9C20—C19—H19119.9
N2—C3—N1105.07 (11)C18—C19—H19119.9
N2—C3—C21108.59 (11)C19—C20—C15120.63 (14)
N1—C3—C21112.32 (11)C19—C20—H20119.7
N2—C3—C4109.35 (11)C15—C20—H20119.7
N1—C3—C4107.36 (11)C22—C21—C26118.31 (13)
C21—C3—C4113.77 (11)C22—C21—C3122.27 (12)
C5—C4—C3112.67 (11)C26—C21—C3119.33 (13)
C5—C4—H4A109.1C21—C22—C23120.79 (14)
C3—C4—H4A109.1C21—C22—H22119.6
C5—C4—H4B109.1C23—C22—H22119.6
C3—C4—H4B109.1C24—C23—C22120.40 (15)
H4A—C4—H4B107.8C24—C23—H23119.8
C6—C5—C27114.32 (12)C22—C23—H23119.8
C6—C5—C4110.99 (11)C23—C24—C25119.08 (14)
C27—C5—C4113.18 (11)C23—C24—H24120.5
C6—C5—H5105.9C25—C24—H24120.5
C27—C5—H5105.9C26—C25—C24120.62 (14)
C4—C5—H5105.9C26—C25—H25119.7
C7—C6—C8124.93 (12)C24—C25—H25119.7
C7—C6—C5120.66 (12)C25—C26—C21120.79 (14)
C8—C6—C5113.82 (12)C25—C26—H26119.6
N1—C7—C6122.21 (12)C21—C26—H26119.6
N1—C7—C15114.14 (12)C28—C27—C32117.59 (14)
C6—C7—C15123.64 (12)C28—C27—C5123.52 (13)
O1—C8—C6118.86 (13)C32—C27—C5118.89 (13)
O1—C8—C9116.85 (13)C29—C28—C27121.33 (15)
C6—C8—C9124.17 (12)C29—C28—H28119.3
C14—C9—C10118.77 (14)C27—C28—H28119.3
C14—C9—C8123.47 (13)C30—C29—C28120.55 (16)
C10—C9—C8117.65 (13)C30—C29—H29119.7
C11—C10—C9120.35 (15)C28—C29—H29119.7
C11—C10—H10119.8C29—C30—C31119.46 (15)
C9—C10—H10119.8C29—C30—H30120.3
C12—C11—C10120.33 (16)C31—C30—H30120.3
C12—C11—H11119.8C30—C31—C32119.85 (15)
C10—C11—H11119.8C30—C31—H31120.1
C13—C12—C11119.80 (16)C32—C31—H31120.1
C13—C12—H12120.1C31—C32—C27121.21 (16)
C11—C12—H12120.1C31—C32—H32119.4
C12—C13—C14120.08 (16)C27—C32—H32119.4
C12—C13—H13120.0C7—N1—C1123.36 (11)
C14—C13—H13120.0C7—N1—C3120.74 (11)
C13—C14—C9120.64 (14)C1—N1—C3109.49 (11)
C13—C14—H14119.7C2—N2—C3105.65 (11)
C9—C14—H14119.7C2—N2—H2N107.9 (10)
C20—C15—C16118.84 (13)C3—N2—H2N107.7 (10)
C20—C15—C7120.26 (12)
N1—C1—C2—N234.54 (14)N2—C3—C21—C22110.98 (15)
N2—C3—C4—C5170.85 (11)N1—C3—C21—C224.78 (18)
N1—C3—C4—C557.36 (15)C4—C3—C21—C22127.01 (14)
C21—C3—C4—C567.56 (15)N2—C3—C21—C2665.54 (16)
C3—C4—C5—C643.64 (15)N1—C3—C21—C26178.70 (12)
C3—C4—C5—C2786.46 (14)C4—C3—C21—C2656.47 (17)
C27—C5—C6—C7122.71 (14)C26—C21—C22—C230.9 (2)
C4—C5—C6—C76.78 (18)C3—C21—C22—C23177.43 (14)
C27—C5—C6—C865.67 (15)C21—C22—C23—C240.2 (2)
C4—C5—C6—C8164.83 (11)C22—C23—C24—C251.1 (2)
C8—C6—C7—N1173.38 (13)C23—C24—C25—C260.8 (2)
C5—C6—C7—N116.0 (2)C24—C25—C26—C210.4 (2)
C8—C6—C7—C156.4 (2)C22—C21—C26—C251.2 (2)
C5—C6—C7—C15164.19 (12)C3—C21—C26—C25177.83 (14)
C7—C6—C8—O1150.77 (14)C6—C5—C27—C2815.65 (19)
C5—C6—C8—O120.43 (18)C4—C5—C27—C28112.74 (15)
C7—C6—C8—C933.3 (2)C6—C5—C27—C32163.87 (12)
C5—C6—C8—C9155.55 (13)C4—C5—C27—C3267.74 (16)
O1—C8—C9—C14144.49 (14)C32—C27—C28—C290.3 (2)
C6—C8—C9—C1431.6 (2)C5—C27—C28—C29179.83 (14)
O1—C8—C9—C1031.66 (19)C27—C28—C29—C300.6 (2)
C6—C8—C9—C10152.29 (14)C28—C29—C30—C310.7 (2)
C14—C9—C10—C112.0 (2)C29—C30—C31—C320.6 (2)
C8—C9—C10—C11178.33 (14)C30—C31—C32—C270.3 (2)
C9—C10—C11—C121.4 (3)C28—C27—C32—C310.2 (2)
C10—C11—C12—C130.2 (3)C5—C27—C32—C31179.72 (13)
C11—C12—C13—C141.2 (2)C6—C7—N1—C1148.49 (13)
C12—C13—C14—C90.6 (2)C15—C7—N1—C131.67 (18)
C10—C9—C14—C131.0 (2)C6—C7—N1—C30.4 (2)
C8—C9—C14—C13177.12 (13)C15—C7—N1—C3179.42 (11)
N1—C7—C15—C2050.14 (18)C2—C1—N1—C7130.66 (13)
C6—C7—C15—C20129.69 (15)C2—C1—N1—C321.25 (14)
N1—C7—C15—C16130.46 (14)N2—C3—N1—C7152.67 (12)
C6—C7—C15—C1649.7 (2)C21—C3—N1—C789.46 (14)
C20—C15—C16—C171.5 (2)C4—C3—N1—C736.33 (16)
C7—C15—C16—C17177.90 (14)N2—C3—N1—C10.10 (14)
C15—C16—C17—C180.0 (3)C21—C3—N1—C1117.77 (12)
C16—C17—C18—C191.1 (3)C4—C3—N1—C1116.44 (12)
C17—C18—C19—C200.7 (3)C1—C2—N2—C335.78 (14)
C18—C19—C20—C150.9 (3)N1—C3—N2—C222.05 (14)
C16—C15—C20—C191.9 (2)C21—C3—N2—C2142.42 (11)
C7—C15—C20—C19177.47 (14)C4—C3—N2—C292.91 (13)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C9–C14 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C2—H2B···O1i0.992.433.4084 (19)168
C24—H24···Cg3ii0.952.833.5886 (18)138
Symmetry codes: (i) x, y, z+2; (ii) x, y, z+1.
 

References

First citationAfkhami, F. A., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888–14896.  Web of Science PubMed Google Scholar
First citationAkkurt, M., Duruskari, G. S., Toze, F. A. A., Khalilov, A. N. & Huseynova, A. T. (2018). Acta Cryst. E74, 1168–1172.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAlvim, H. G. O., Correa, J. R., Assumpção, J. A. F., da Silva, W. A., Rodrigues, M. O., de Macedo, J. L., Fioramonte, M., Gozzo, F. C., Gatto, C. C. & Neto, B. A. D. (2018). J. Org. Chem. 83, 4044–4053.  CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2007). XSCANS . Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKhalilov, A. N., Abdelhamid, A. A., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o1146.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhalilov, A. N., Atioğlu, Z., Akkurt, M., Duruskari, G. S., Toze, F. A. A. & Huseynova, A. T. (2019). Acta Cryst. E75, 662–666.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKoizumi, Y., Arai, M., Tomoda, H. & Ōmura, S. (2004). Biochim. Biophys. Acta, 1693, 47–55.  CrossRef PubMed CAS Google Scholar
First citationMahmoudi, G., Gurbanov, A. V., Rodríguez-Hermida, S., Carballo, R., Amini, M., Bacchi, A., Mitoraj, M. P., Sagan, F., Kukułka, M. & Safin, D. A. (2017b). Inorg. Chem. 56, 9698–9709.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017a). Eur. J. Inorg. Chem. 40, 4763–4772.  CSD CrossRef Google Scholar
First citationMahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381.  CrossRef Google Scholar
First citationMahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32–46.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17.5. University of Western Australia. https://hirshfeldsurface.net.  Google Scholar
First citationWang, R.-L., Zhu, P., Lu, Y., Huang, F.-P. & Hui, X.-P. (2013). Adv. Synth. Catal. 355, 87–92.  CSD CrossRef CAS Google Scholar
First citationWireko, F. C., Matthews, R. S., Thoman, S. M., Hennes, D. H. & Sickman, L. H. (1995). Acta Cryst. C51, 1404–1407.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationYin, J., Khalilov, A. N., Muthupandi, P., Ladd, R. & Birman, V. B. (2020). J. Am. Chem. Soc. 142, 60–63.  CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds