research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis and DFT studies of 4-methyl-2-({[4-(tri­fluoro­meth­yl)phen­yl]imino}­meth­yl)phenol

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Langat Singh College, B.R.A. Bihar University, Muzaffarpur, Bihar-842001, India, bOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, Samsun, Turkey, cOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Chemistry, Samsun, Turkey, and dDepartment of Pharmacy, University of Science and Technology, Ibb Branch, Ibb, Yemen
*Correspondence e-mail: ashraf.yemen7@gmail.com

Edited by J. T. Mague, Tulane University, USA (Received 8 June 2020; accepted 14 July 2020; online 21 July 2020)

The title compound, C15H12F3NO, crystallizes with one mol­ecule in the asymmetric unit. The configuration of the C=N bond is E and there is an intra­molecular O—H⋯N hydrogen bond present, forming an S(6) ring motif. The dihedral angle between the mean planes of the phenol and the 4-tri­fluoro­methyl­phenyl rings is 44.77 (3)°. In the crystal, mol­ecules are linked by C—H⋯O inter­actions, forming polymeric chains extending along the a-axis direction. The Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from C⋯H/H⋯C (29.2%), H⋯H (28.6%), F⋯H/H⋯F (25.6%), O⋯H/H⋯O (5.7%) and F⋯F (4.6%) inter­actions. The density functional theory (DFT) optimized structure at the B3LYP/6-311 G(d,p) level is compared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap. The crystal studied was refined as an inversion twin.

1. Chemical context

Over the past 25 years, there has been extensive research on the synthesis and use of Schiff base compounds in organic and inorganic chemistry as they have important medicinal and pharmaceutical applications. These compounds show biological activities including anti­bacterial, anti­fungal, anti­cancer and herbicidal activities (Desai et al., 2001[Desai, S. B., Desai, P. B. & Desai, K. R. (2001). Heterocycl. Commun. 7, 83-90.]; Singh & Dash, 1988[Singh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33-37.]; Karia & Parsania, 1999[Karia, F. D. & Parsania, P. H. (1999). Asian J. Chem. 11, 991-995.]). Schiff bases are also becoming increasingly important in the dye and plastics industries, as well as in liquid-crystal technology and for the mechanistic investigation of drugs used in pharmacology, biochemistry and physiology (Sheikhshoaie & Sharif, 2006[Sheikhshoaie, I. & Sharif, M. A. (2006). Acta Cryst. E62, o3563-o3565.]). The present work is a part of an ongoing structural study of Schiff bases and their use in the synthesis of new organic, excited-state proton-transfer compounds and fluorescent chemosensors (Faizi et al., 2016[Faizi, M. S. H., Ali, A. & Potaskalov, V. A. (2016). Acta Cryst. E72, 1366-1369.], 2018[Faizi, M. S. H., Alam, M. J., Haque, A., Ahmad, S., Shahid, M. & Ahmad, M. (2018). J. Mol. Struct. 1156, 457-464.]; Kumar et al., 2018[Kumar, M., Kumar, A., Faizi, M. S. H., Kumar, S., Singh, M. K., Sahu, S. K., Kishor, S. & John, R. P. (2018). Sens. Actuators B Chem. 260, 888-899.]; Mukherjee et al., 2018[Mukherjee, P., Das, A., Faizi, M. S. H. & Sen, P. (2018). Chemistry Select, 3, 3787-3796.]). We report here on the synthesis and crystal structure as well as the Hirshfeld surface analysis of the new compound, (I)[link].

[Scheme 1]

The results of calculations by density functional theory (DFT) carried out at the B3LYP/6-311 G(d,p) level are compared with the experimentally determined mol­ecular structure of (I)[link] in the solid state.

2. Structural commentary

The mol­ecular structure of the title compound, (I)[link], is illustrated in Fig. 1[link]. There is an intra­molecular O—H⋯N hydrogen bond present (Table 1[link] and Fig. 1[link]), forming an S(6) ring motif; this is a common feature in related imine–phenol compounds. The imine group displays a C9—C8—N1—C6 torsion angle of 170.1 (4)° while the mean plane of the phenol ring (C9–C14) is inclined to that of the 4-tri­fluoro­methyl­phenyl group (C1–C6) by 44.77 (3)°. The configuration of the C8=N1 bond is E. The C10—O1 bond length [1.357 (8) Å (experimental) and 1.342 Å (calculated)] indicates single-bond character (Ozeryanskii et al., 2006[Ozeryanskii, V. A., Pozharskii, A. F., Schilf, W., Kamieński, B., Sawka-Dobrowolska, W., Sobczyk, L. & Grech, E. (2006). Eur. J. Org. Chem. pp. 782-790.]), while the imine C8=N1 bond length [1.283 (8) Å (experimental) and 1.290 Å (calculated)] indicates double-bond character. All these data support the existence of the phenol–imine tautomer for (I)[link] in its crystalline state. These features are similar to those observed in related 4-di­methyl­amino-N-salicylideneanilines (Pizzala et al., 2000[Pizzala, H., Carles, M., Stone, W. E. E. & Thevand, A. (2000). J. Chem. Soc. Perkin Trans. 2, pp. 935-939.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.90 2.620 (7) 146
C1—H1A⋯O1i 0.93 2.60 3.463 (7) 154
Symmetry code: (i) x-1, y, z.
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link] with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. The intra­molecular O—H⋯N hydrogen bond (Table 1[link]) is shown as a dashed line.

3. Supra­molecular features

In the crystal of (I)[link], mol­ecules are linked by inter­molecular C—H⋯O inter­actions, forming chains extending along the a-axis direction (Fig. 2[link] and Table 1[link]). The crystal packing along the a-axis direction is shown in Fig. 3[link].

[Figure 2]
Figure 2
A view along the b axis of the polymeric chain formed via C—H⋯O inter­actions (see Table 1[link] for details).
[Figure 3]
Figure 3
A view of the crystal packing along the a axis.

4. Hirshfeld surface analysis and two-dimensional fingerprint plots

In order to visualize the role of weak inter­molecular inter­actions in the crystal, a Hirshfeld surface (HS) analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out along with the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) generated using CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5.The University of Western Australia.]). The three-dimensional dnorm (Fig. 4[link]a) and shape-index (Fig. 4[link]c) surfaces of (I)[link] are shown with a standard surface resolution and a fixed colour scale of −0.1805 to 1.0413 a.u. The darkest red spots on the Hirshfeld surface indicate contact points with atoms participating in intra­molecular C—H⋯O (Fig. 4[link]b) inter­actions that involve C1—H1A and the oxygen atom O1 of the phenol group (Table 1[link]). As illustrated in Fig. 5[link]a, the corres­ponding fingerprint plots for (I)[link] have characteristic pseudo-symmetrical wings along the de and di diagonal axes. The presence of C—H⋯O inter­actions in the crystal is indicated by the pair of characteristic wings in the fingerprint plot delineated into C⋯H/H⋯C (Fig. 5[link]b) contacts (29.2% contributions to the Hirshfeld surface). In Fig. 5[link]c, the widely scattered points in the fingerprint plot are related to H⋯H contacts, which make a contribution of 28.6% to the Hirshfeld surface. There are also F⋯H/H⋯F (25.6%; Fig. 5[link]d), O⋯H/H⋯O (5.7%; Fig. 5[link]e) and F⋯F (4.6%; Fig. 5[link]f) contacts, with smaller contributions from N⋯H/H.·N (2.4%), O⋯C/C⋯O (2.2%), F⋯C/C⋯F (0.8%) and O⋯N/N⋯O (0.2%) contacts.

[Figure 4]
Figure 4
A view of the Hirshfeld surface of (I)[link] mapped over (a) dnorm, (b) inter­molecular C—H⋯O inter­actions and (c) shape-index.
[Figure 5]
Figure 5
(a) The overall two-dimensional finger print plot for (I)[link] and those delineated into: (b) C⋯H/H⋯C (29.2%), (c) H⋯H (28.6%), (d) F⋯H/H⋯F (25.6%), (e) O⋯H/H⋯O (5.7%) and (f) F⋯F (4.6%) contacts.

5. DFT calculations

The optimized structure of (I)[link] in the gas phase was generated theoretically via density functional theory (DFT) using the standard B3LYP functional and the 6-311G(d,p) basis-set calculations (Becke, 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]) as implemented in GAUSSIAN 09 (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN 09. Gaussian Inc., Wallingford, CT, USA.]). The theoretical and experimental results are in good agreement (Table 2[link]). The C8=N1 bond length is 1.283 (8) Å (experimental) and 1.290 Å (calculated) and the C10—O1 bond length is 1.357 (8) Å (experimental) and 1.342 Å (calculated).

Table 2
Comparison of selected observed (X-ray data) and calculated (DFT) geometric parameters (Å, °) for (I)

Parameter X-ray B3LYP/6–311G(d,p)
O1—C10 1.357 (8) 1.342
N1—C8 1.283 (8) 1.290
C3—C7 1.497 (9) 1.502
C6—N1 1.410 (7) 1.404
C8—C9 1.430 (9) 1.446
N1—C8—C9 123.9 (6) 122.6
C8—N1—C6 122.2 (5) 121.0
O1—C10—C9 122.1 (5) 122.3

The highest-occupied mol­ecular orbital (HOMO) and the lowest-unoccupied mol­ecular orbital (LUMO) are very important aspects as many electronic, optical and chemical reactivity properties of compounds can be predicted from these frontier mol­ecular orbitals (Tanak, 2019[Tanak, H. (2019). ChemistrySelect, 4, 10876-10883.]). A mol­ecule with a small HOMO–LUMO bandgap is more polarizable than one with a large gap and is considered a `soft' mol­ecule because of its high polarizibility while mol­ecules with a large bandgap are considered to be `hard' mol­ecules. To better understand the nature of (I)[link], the electron affinity (A = −EHOMO), the ionization potential (I = −ELUMO), the HOMO–LUMO energy gap (ΔE), the chemical hardness (η) and softness (S) (based on the EHOMO and ELUMO energies; Tanak, 2019[Tanak, H. (2019). ChemistrySelect, 4, 10876-10883.]) were calculated (Table 3[link]). Based on the relatively large ΔE and η values, the title compound can be classified as a hard mol­ecule.

Table 3
Inter­action energies for (I)

Mol­ecular Energy (a.u.) (eV) Compound (I)
Total Energy TE (eV) −27438.7489
EHOMO (eV) −6.2064
ELUMO (eV) −2.1307
Gap, ΔE (eV) 4.076
Dipole moment, μ (Debye) 4.466
Ionization potential, I (eV) 6.2064
Electron affinity, A 2.1307
Electronegativity, χ 4.1685
Hardness, η 2.038
Electrophilicity index, ω 4.2631
Softness, σ 0.245
Fraction of electrons transferred, ΔN 0.695

The electron distribution of the HOMO and LUMO energy levels is shown in Fig. 6[link]. The DFT study shows that the HOMO and LUMO are localized in a plane extending over the whole 4-methyl-2-[(4-tri­fluoro­methyl­phenyl­imino)­meth­yl]phenol unit. From the frontier orbital analysis, it can be concluded that a HOMO-to-LUMO excitation of (I)[link] would be a ππ* transition that would weaken the imine bond and drive the production of an excited-state keto–amine tautomer from the enol–imine ground state observed in the solid state. The calculated band gap of (I)[link] is 4.076 eV, which is similar to that reported for other Schiff base materials, such as for example (E)-2-{[(3-chloro­phen­yl)imino]­meth­yl}-6-methyl­phenol (energy gap = 4.069 eV; Faizi et al., 2019[Faizi, M. S. H., Dege, N., Çiçek, C., Agar, E. & Fritsky, I. O. (2019). Acta Cryst. E75, 987-990.]) and (E)-2-[(2-hy­droxy-5-meth­oxy­benzyl­idene)amino]­benzo­nitrile (energy gap = 3.520 eV; Saraçoğlu et al., 2020[Saraçoğlu, H., Doğan, O. E., Ağar, T., Dege, N. & Iskenderov, T. S. (2020). Acta Cryst. E76, 141-144.]).

[Figure 6]
Figure 6
The energy band gap of (I)[link].

6. Database survey

A search of the Cambridge Structural Database (CSD, version 5.40, update of November 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the (Z)-1-phenyl-N-[3-(tri­fluoro­methyl­phen­yl]methanimine skeleton yielded seven matches. Metal complexes with ligands analogous to (I)[link] are the ruthenium complex chloro-(1-methyl-4-(propan-2-yl)benzene)-(2-({[4-(tri­fluoro­meth­yl)phen­yl]im­ino}­meth­yl)phenolato)ruthenium(II) (BIHCED; Cassells et al., 2018[Cassells, I., Stringer, T., Hutton, A. T., Prince, S. & Smith, G. S. (2018). J. Biol. Inorg. Chem. 23, 763-774.]), the rhodium complex (η5-penta­methyl­cyclo­penta­dien­yl)chlorido­[2-({[4-(tri­fluoro­meth­yl)phen­yl]imino}­meth­yl)phenolato]rhodium(III) (BIHCIH; Cassells et al., 2018[Cassells, I., Stringer, T., Hutton, A. T., Prince, S. & Smith, G. S. (2018). J. Biol. Inorg. Chem. 23, 763-774.]) and the iridium complex (η5-penta­methyl­cyclo­penta­dien­yl)chlorido­[2-({[4-(tri­fluoro­meth­yl) phen­yl]imino}­meth­yl)phen­olato]iridium(III) (BIHCON; Cassells et al., 2018[Cassells, I., Stringer, T., Hutton, A. T., Prince, S. & Smith, G. S. (2018). J. Biol. Inorg. Chem. 23, 763-774.]). Other similar ligands are incorporated into the titanium complex di­chlorido­bis­(3,5-di-tert-butyl-N-(4-tri­fluoro­methyl­phen­yl)sal­icylaldiminato)titanium(IV) toluene solvate (INOTUA; Mason et al., 2002[Mason, A. F., Tian, J., Hustad, P. D., Lobkovsky, E. B. & Coates, G. W. (2002). Isr. J. Chem. 42, 301-306.]) and the copper complex bis­{4-tri­fluoro­methyl­phen­yl[(2-oxo-3H-naphth-3-yl­idene)meth­yl]amin­ato}copper(II) (POPFEF; Fernández et al., 1994[Fernández, J. M., Lembrino-Canales, J. J. & Villena, R. (1994). Monatsh. Chem. 125, 275-284.]). Two vanadium complexes with ligands similar to that in (I)[link] are di­chlorido­{2-[N-(4-tri­fluoro­methyl­phen­yl)imino­meth­yl]phenolato}bis(tetra­hydro­furan)­vanadium(III) (YOGSUJ; Wu et al., 2008[Wu, J.-Q., Pan, L., Hu, N.-H. & Li, Y.-S. (2008). Organometallics, 27, 3840-3848.]) and chlorido­bis­{2-[N-(4-tri­fluoro­methyl­phen­yl)imino­meth­yl]phenolato}(tetra­hydro­furan)­vanadium(III) (YOGTOE; Wu et al., 2008[Wu, J.-Q., Pan, L., Hu, N.-H. & Li, Y.-S. (2008). Organometallics, 27, 3840-3848.]). Similar uncomplexed Schiff base mol­ecules are N-[3,5-bis­(tri­fluoro­meth­yl)phen­yl]-3-meth­oxy­salicylaldimine (Karadayı et al., 2015[Karadayı, N., Şahin, S., Köysal, Y., Coşkun, E. & Büyükgüngör, O. (2015). Acta Cryst. E71, o466-o467.]), 2-{[3,5-bis­(tri­fluoro­meth­yl)phen­yl]carbonoimido­yl}phenol (Yıldız et al., 2015[Yıldız, M., Karpuz, O., Zeyrek, C. T., Boyacıoğlu, B., Dal, H., Demir, N., Yıldırım, N. & Ünver, H. (2015). J. Mol. Struct. 1094, 148-160.]), 2-{[3,5-bis­(tri­fluoro­meth­yl)phen­yl]carbonoimido­yl}phenol (Ünver et al., 2016[Ünver, H., Boyacıoğlu, B., Zeyrek, C. T., Yıldız, M., Demir, N., Yıldırım, N., Karaosmanoğlu, O., Sivas, H. & Elmalı, A. (2016). J. Mol. Struct. 1125, 162-176.]), (E)-3-{[3-(tri­fluoro­meth­yl)phenyl­imino]­meth­yl}benz­ene-1,2-diol (Koşar et al., 2010[Koşar, B., Albayrak, C., Odabaşoĝlu, M. & Büyükgüngör, O. (2010). Turk. J. Chem.34, 481-487.]), 2-fluoro-N-(3-nitro­benzyl­idene)-5-(tri­fluoro­meth­yl)aniline (Yang et al., 2007[Yang, M.-H., Yan, G.-B. & Zheng, Y.-F. (2007). Acta Cryst. E63, o3202.]), (E)-2-meth­yl-6-[3-(tri­fluoro­meth­yl)phenyl­imino­meth­yl]phenol (Akkaya et al., 2007[Akkaya, A., Erşahin, F., Ağar, E., Şenel, İ. & Büyükgüngör, O. (2007). Acta Cryst. E63, o3555.]), (E)-2-[(4-chloro­phen­yl)imino­meth­yl]-4-(tri­fluoro­meth­oxy)phenol (Tüfekçi et al., 2009[Tüfekçi, M., Bingöl Alpaslan, Y., Macit, M. & Erdönmez, A. (2009). Acta Cryst. E65, o2704.]) and (E)-4-methyl-2-[3-(tri­fluoro­meth­yl)phenyl­imino­meth­yl]phenol (Gül et al., 2007[Gül, Z. S., Erşah˙in, F., Ağar, E. & Işık, Ş. (2007). Acta Cryst. E63, o2854.]). The C=N bond lengths in these structures vary from 1.270 (3) to 1.295 (5) Å and the C—O bond lengths from 1.336 (5) to 1.366 (2) Å. The mol­ecular configurations of these structures are also not planar, with dihedral angles between the phenyl rings varying between 5.00 (5) and 47.62 (9)°. It is likely that the intra­molecular O—H⋯N hydrogen bond, where the imine N atom acts as an hydrogen-bond acceptor, is an important prerequisite for the tautomeric shift toward the phenol–imine form. In fact, in all eight structures of the phenol–imine tautomers, hydrogen bonds of this type are observed.

7. Synthesis and crystallization

The title compound was prepared by combining solutions of 2-hy­droxy-5-methyl­benzaldehyde (38.0 mg, 0.28 mmol) in ethanol (15 mL) and 4-tri­fluoro­methyl­phenyl­amine (42.0 mg, 0.28 mmol) in ethanol (15 mL) and stirring the mixture for 8 h under reflux. Single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution (yield 65%, m.p. 425–427K).

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. All C-bound H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2–1.5Ueq(C). The hydrogen atom of the phenol group was located in a difference map and also included as a riding contributor with O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O). During refinement, the twin transformation matrix (−1.0 0.0 0.0, 0.0 −1.0 0.0, 0.0 0.0 −1.0), was used.

Table 4
Experimental details

Crystal data
Chemical formula C15H12F3NO
Mr 279.26
Crystal system, space group Orthorhombic, Pca21
Temperature (K) 296
a, b, c (Å) 6.2592 (5), 7.2229 (6), 28.551 (3)
V3) 1290.77 (19)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.12
Crystal size (mm) 0.72 × 0.55 × 0.22
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.936, 0.982
No. of measured, independent and observed [I > 2σ(I)] reflections 6209, 2135, 1517
Rint 0.111
(sin θ/λ)max−1) 0.622
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.213, 0.99
No. of reflections 2135
No. of parameters 182
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.24, −0.22
Absolute structure Refined as an inversion twin
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXT2018/3 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2018/3 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2020); software used to prepare material for publication: WinGX (Farrugia, 2012), PLATON (Spek, 2020), SHELXL2018 (Sheldrick, 2015b) and publCIF (Westrip, 2010).

4-Methyl-2-({[4-(trifluoromethyl)phenyl]imino}methyl)phenol top
Crystal data top
C15H12F3NODx = 1.437 Mg m3
Mr = 279.26Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21Cell parameters from 7251 reflections
a = 6.2592 (5) Åθ = 2.8–26.8°
b = 7.2229 (6) ŵ = 0.12 mm1
c = 28.551 (3) ÅT = 296 K
V = 1290.77 (19) Å3Prism, yellow
Z = 40.72 × 0.55 × 0.22 mm
F(000) = 576
Data collection top
Stoe IPDS 2
diffractometer
2135 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus1517 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.111
Detector resolution: 6.67 pixels mm-1θmax = 26.2°, θmin = 2.8°
rotation method scansh = 76
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 88
Tmin = 0.936, Tmax = 0.982l = 2834
6209 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.073H-atom parameters constrained
wR(F2) = 0.213 w = 1/[σ2(Fo2) + (0.1465P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
2135 reflectionsΔρmax = 0.24 e Å3
182 parametersΔρmin = 0.22 e Å3
1 restraintAbsolute structure: Refined as an inversion twin
Primary atom site location: dualAbsolute structure parameter: 0 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a two-component inversion twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2713 (8)0.7682 (6)0.49830 (18)0.0645 (11)
O10.0688 (7)0.6785 (7)0.54674 (17)0.0809 (12)
H10.0007410.7054840.5231690.121*
F20.8837 (9)0.7711 (8)0.3228 (2)0.1216 (18)
C100.0518 (9)0.7125 (6)0.5853 (2)0.0630 (13)
C60.3839 (8)0.7631 (6)0.4556 (2)0.0570 (12)
F10.6915 (9)0.5479 (6)0.30622 (18)0.1272 (19)
C50.2780 (10)0.8240 (7)0.4157 (2)0.0655 (14)
H50.1416660.8741190.4182070.079*
C30.5758 (10)0.7369 (7)0.3684 (2)0.0626 (13)
C40.3737 (10)0.8105 (7)0.3725 (2)0.0657 (14)
H40.3017580.8511920.3459520.079*
C140.3760 (10)0.8129 (7)0.6233 (2)0.0640 (13)
H140.5134150.8611460.6211310.077*
C70.6847 (12)0.7213 (8)0.3219 (2)0.0744 (16)
C90.2636 (9)0.7789 (6)0.5821 (2)0.0628 (13)
C80.3645 (10)0.8001 (7)0.5375 (2)0.0657 (14)
H80.5059300.8393570.5368970.079*
F30.5971 (13)0.8224 (11)0.29008 (19)0.160 (3)
C120.0825 (12)0.7083 (8)0.6683 (2)0.0719 (16)
H120.0209030.6832180.6972110.086*
C10.5870 (9)0.6869 (7)0.4518 (2)0.0638 (13)
H1A0.6584050.6462740.4784550.077*
C110.0350 (11)0.6758 (7)0.6286 (3)0.0745 (15)
H110.1730050.6289980.6309030.089*
C20.6836 (10)0.6716 (7)0.40787 (19)0.0627 (13)
H20.8182720.6185230.4049420.075*
C130.2928 (12)0.7782 (7)0.6671 (2)0.0706 (15)
C150.4146 (15)0.8082 (10)0.7111 (3)0.089 (2)
H15A0.3268640.7754230.7374390.134*
H15B0.4548280.9361050.7134500.134*
H15C0.5405600.7324140.7109490.134*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.069 (3)0.072 (2)0.053 (3)0.0016 (18)0.003 (2)0.002 (2)
O10.067 (3)0.109 (3)0.067 (3)0.016 (2)0.006 (2)0.002 (2)
F20.110 (3)0.159 (4)0.096 (3)0.050 (3)0.031 (3)0.024 (3)
C100.058 (3)0.065 (3)0.066 (3)0.001 (2)0.002 (3)0.001 (2)
C60.058 (3)0.056 (2)0.057 (3)0.0059 (19)0.004 (2)0.003 (2)
F10.176 (5)0.098 (3)0.108 (3)0.023 (3)0.049 (4)0.037 (2)
C50.068 (3)0.068 (3)0.060 (3)0.006 (2)0.001 (3)0.002 (2)
C30.070 (4)0.062 (3)0.056 (3)0.002 (2)0.003 (3)0.006 (2)
C40.074 (4)0.065 (3)0.059 (3)0.001 (2)0.006 (3)0.009 (2)
C140.063 (3)0.071 (2)0.059 (3)0.000 (2)0.004 (3)0.005 (2)
C70.092 (4)0.073 (3)0.058 (3)0.003 (3)0.000 (3)0.003 (3)
C90.065 (3)0.059 (2)0.064 (3)0.002 (2)0.005 (3)0.005 (2)
C80.065 (4)0.067 (3)0.064 (4)0.005 (2)0.005 (3)0.002 (2)
F30.200 (7)0.207 (6)0.072 (3)0.102 (5)0.042 (3)0.052 (3)
C120.089 (5)0.069 (3)0.058 (3)0.003 (3)0.007 (3)0.000 (2)
C10.066 (3)0.072 (3)0.054 (3)0.001 (2)0.008 (2)0.005 (2)
C110.074 (4)0.072 (3)0.078 (4)0.001 (2)0.006 (3)0.002 (3)
C20.060 (3)0.069 (3)0.060 (3)0.003 (2)0.006 (3)0.001 (2)
C130.085 (4)0.067 (3)0.060 (3)0.001 (3)0.002 (3)0.000 (2)
C150.113 (6)0.095 (4)0.060 (4)0.007 (4)0.011 (3)0.002 (3)
Geometric parameters (Å, º) top
N1—C81.283 (8)C14—C91.391 (9)
N1—C61.410 (7)C14—H140.9300
O1—C101.357 (8)C7—F31.289 (8)
O1—H10.8200C9—C81.430 (9)
F2—C71.297 (9)C8—H80.9300
C10—C111.376 (10)C12—C111.371 (10)
C10—C91.412 (8)C12—C131.410 (10)
C6—C51.389 (8)C12—H120.9300
C6—C11.389 (8)C1—C21.397 (8)
F1—C71.331 (7)C1—H1A0.9300
C5—C41.374 (8)C11—H110.9300
C5—H50.9300C2—H20.9300
C3—C41.377 (9)C13—C151.487 (10)
C3—C21.395 (8)C15—H15A0.9600
C3—C71.497 (9)C15—H15B0.9600
C4—H40.9300C15—H15C0.9600
C14—C131.377 (9)
C8—N1—C6122.2 (5)C14—C9—C8120.7 (5)
C10—O1—H1109.5C10—C9—C8120.5 (6)
O1—C10—C11118.3 (5)N1—C8—C9123.9 (6)
O1—C10—C9122.2 (6)N1—C8—H8118.0
C11—C10—C9119.5 (6)C9—C8—H8118.0
C5—C6—C1119.9 (5)C11—C12—C13122.8 (6)
C5—C6—N1117.6 (5)C11—C12—H12118.6
C1—C6—N1122.3 (5)C13—C12—H12118.6
C4—C5—C6120.3 (5)C6—C1—C2119.8 (5)
C4—C5—H5119.8C6—C1—H1A120.1
C6—C5—H5119.8C2—C1—H1A120.1
C4—C3—C2120.4 (6)C12—C11—C10119.8 (6)
C4—C3—C7121.5 (6)C12—C11—H11120.1
C2—C3—C7118.1 (6)C10—C11—H11120.1
C5—C4—C3120.3 (6)C3—C2—C1119.3 (5)
C5—C4—H4119.9C3—C2—H2120.4
C3—C4—H4119.9C1—C2—H2120.4
C13—C14—C9122.9 (6)C14—C13—C12116.1 (6)
C13—C14—H14118.6C14—C13—C15123.2 (7)
C9—C14—H14118.6C12—C13—C15120.7 (6)
F3—C7—F2105.4 (7)C13—C15—H15A109.5
F3—C7—F1108.0 (7)C13—C15—H15B109.5
F2—C7—F1103.7 (6)H15A—C15—H15B109.5
F3—C7—C3112.9 (6)C13—C15—H15C109.5
F2—C7—C3113.5 (5)H15A—C15—H15C109.5
F1—C7—C3112.6 (5)H15B—C15—H15C109.5
C14—C9—C10118.8 (5)
C8—N1—C6—C5147.0 (5)O1—C10—C9—C84.5 (7)
C8—N1—C6—C138.2 (7)C11—C10—C9—C8173.6 (5)
C1—C6—C5—C40.5 (7)C6—N1—C8—C9170.1 (4)
N1—C6—C5—C4175.5 (4)C14—C9—C8—N1178.8 (5)
C6—C5—C4—C30.2 (8)C10—C9—C8—N12.6 (8)
C2—C3—C4—C51.4 (8)C5—C6—C1—C20.1 (7)
C7—C3—C4—C5179.7 (5)N1—C6—C1—C2174.7 (5)
C4—C3—C7—F316.4 (9)C13—C12—C11—C100.3 (8)
C2—C3—C7—F3164.6 (7)O1—C10—C11—C12179.9 (5)
C4—C3—C7—F2136.3 (6)C9—C10—C11—C121.7 (8)
C2—C3—C7—F244.7 (7)C4—C3—C2—C12.0 (8)
C4—C3—C7—F1106.3 (7)C7—C3—C2—C1179.1 (5)
C2—C3—C7—F172.7 (7)C6—C1—C2—C31.3 (8)
C13—C14—C9—C102.5 (7)C9—C14—C13—C121.1 (8)
C13—C14—C9—C8173.8 (5)C9—C14—C13—C15177.9 (5)
O1—C10—C9—C14179.1 (5)C11—C12—C13—C140.0 (8)
C11—C10—C9—C142.7 (7)C11—C12—C13—C15179.0 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.902.620 (7)146
C1—H1A···O1i0.932.603.463 (7)154
Symmetry code: (i) x1, y, z.
Comparison of selected observed (X-ray data) and calculated (DFT) geometric parameters (Å, °) for (I) top
ParameterX-rayB3LYP/6–311G(d,p)
O1—C101.357 (8)1.342
N1—C81.283 (8)1.290
C3—C71.497 (9)1.502
C6—N11.410 (7)1.404
C8—C91.430 (9)1.446
N1—C8—C9123.9 (6)122.6
C8—N1—C6122.2 (5)121.0
O1—C10—C9122.1 (5)122.3
Interaction energies for (I) top
Molecular Energy (a.u.) (eV)Compound (I)
Total Energy TE (eV)-27438.7489
EHOMO (eV)-6.2064
ELUMO (eV)-2.1307
Gap, ΔE (eV)4.076
Dipole moment, µ (Debye)4.466
Ionization potential, I (eV)6.2064
Electron affinity, A2.1307
Electronegativity, χ4.1685
Hardness, η2.038
Electrophilicity index, ω4.2631
Softness, σ0.245
Fraction of electrons transferred, ΔN0.695
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

Funding information

Funding for this research was provided by start-up grants from the University Grants Commission, India.

References

First citationAkkaya, A., Erşahin, F., Ağar, E., Şenel, İ. & Büyükgüngör, O. (2007). Acta Cryst. E63, o3555.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationCassells, I., Stringer, T., Hutton, A. T., Prince, S. & Smith, G. S. (2018). J. Biol. Inorg. Chem. 23, 763–774.  CSD CrossRef CAS PubMed Google Scholar
First citationDesai, S. B., Desai, P. B. & Desai, K. R. (2001). Heterocycl. Commun. 7, 83–90.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFaizi, M. S. H., Alam, M. J., Haque, A., Ahmad, S., Shahid, M. & Ahmad, M. (2018). J. Mol. Struct. 1156, 457–464.  Web of Science CSD CrossRef CAS Google Scholar
First citationFaizi, M. S. H., Ali, A. & Potaskalov, V. A. (2016). Acta Cryst. E72, 1366–1369.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFaizi, M. S. H., Dege, N., Çiçek, C., Agar, E. & Fritsky, I. O. (2019). Acta Cryst. E75, 987–990.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFernández, J. M., Lembrino-Canales, J. J. & Villena, R. (1994). Monatsh. Chem. 125, 275–284.  Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN 09. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGül, Z. S., Erşah˙in, F., Ağar, E. & Işık, Ş. (2007). Acta Cryst. E63, o2854.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKaradayı, N., Şahin, S., Köysal, Y., Coşkun, E. & Büyükgüngör, O. (2015). Acta Cryst. E71, o466–o467.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKaria, F. D. & Parsania, P. H. (1999). Asian J. Chem. 11, 991–995.  CAS Google Scholar
First citationKoşar, B., Albayrak, C., Odabaşoĝlu, M. & Büyükgüngör, O. (2010). Turk. J. Chem.34, 481–487.  Google Scholar
First citationKumar, M., Kumar, A., Faizi, M. S. H., Kumar, S., Singh, M. K., Sahu, S. K., Kishor, S. & John, R. P. (2018). Sens. Actuators B Chem. 260, 888–899.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMason, A. F., Tian, J., Hustad, P. D., Lobkovsky, E. B. & Coates, G. W. (2002). Isr. J. Chem. 42, 301–306.  CSD CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMukherjee, P., Das, A., Faizi, M. S. H. & Sen, P. (2018). Chemistry Select, 3, 3787–3796.  CAS Google Scholar
First citationOzeryanskii, V. A., Pozharskii, A. F., Schilf, W., Kamieński, B., Sawka-Dobrowolska, W., Sobczyk, L. & Grech, E. (2006). Eur. J. Org. Chem. pp. 782–790.  Web of Science CSD CrossRef Google Scholar
First citationPizzala, H., Carles, M., Stone, W. E. E. & Thevand, A. (2000). J. Chem. Soc. Perkin Trans. 2, pp. 935–939.  CSD CrossRef Google Scholar
First citationSaraçoğlu, H., Doğan, O. E., Ağar, T., Dege, N. & Iskenderov, T. S. (2020). Acta Cryst. E76, 141–144.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheikhshoaie, I. & Sharif, M. A. (2006). Acta Cryst. E62, o3563–o3565.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33–37.  Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTanak, H. (2019). ChemistrySelect, 4, 10876–10883.  CrossRef CAS Google Scholar
First citationTüfekçi, M., Bingöl Alpaslan, Y., Macit, M. & Erdönmez, A. (2009). Acta Cryst. E65, o2704.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5.The University of Western Australia.  Google Scholar
First citationÜnver, H., Boyacıoğlu, B., Zeyrek, C. T., Yıldız, M., Demir, N., Yıldırım, N., Karaosmanoğlu, O., Sivas, H. & Elmalı, A. (2016). J. Mol. Struct. 1125, 162–176.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, J.-Q., Pan, L., Hu, N.-H. & Li, Y.-S. (2008). Organometallics, 27, 3840–3848.  CSD CrossRef CAS Google Scholar
First citationYang, M.-H., Yan, G.-B. & Zheng, Y.-F. (2007). Acta Cryst. E63, o3202.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYıldız, M., Karpuz, O., Zeyrek, C. T., Boyacıoğlu, B., Dal, H., Demir, N., Yıldırım, N. & Ünver, H. (2015). J. Mol. Struct. 1094, 148–160.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds