research communications
Hirshfeld surface analysis and DFT studies of 4-methyl-2-({[4-(trifluoromethyl)phenyl]imino}methyl)phenol
aDepartment of Chemistry, Langat Singh College, B.R.A. Bihar University, Muzaffarpur, Bihar-842001, India, bOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, Samsun, Turkey, cOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Chemistry, Samsun, Turkey, and dDepartment of Pharmacy, University of Science and Technology, Ibb Branch, Ibb, Yemen
*Correspondence e-mail: ashraf.yemen7@gmail.com
The title compound, C15H12F3NO, crystallizes with one molecule in the The configuration of the C=N bond is E and there is an intramolecular O—H⋯N hydrogen bond present, forming an S(6) ring motif. The dihedral angle between the mean planes of the phenol and the 4-trifluoromethylphenyl rings is 44.77 (3)°. In the crystal, molecules are linked by C—H⋯O interactions, forming polymeric chains extending along the a-axis direction. The Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from C⋯H/H⋯C (29.2%), H⋯H (28.6%), F⋯H/H⋯F (25.6%), O⋯H/H⋯O (5.7%) and F⋯F (4.6%) interactions. The density functional theory (DFT) optimized structure at the B3LYP/6-311 G(d,p) level is compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap. The crystal studied was refined as an inversion twin.
CCDC reference: 2016363
1. Chemical context
Over the past 25 years, there has been extensive research on the synthesis and use of Schiff base compounds in organic and inorganic chemistry as they have important medicinal and pharmaceutical applications. These compounds show biological activities including antibacterial, antifungal, anticancer and herbicidal activities (Desai et al., 2001; Singh & Dash, 1988; Karia & Parsania, 1999). are also becoming increasingly important in the dye and plastics industries, as well as in liquid-crystal technology and for the mechanistic investigation of drugs used in pharmacology, biochemistry and physiology (Sheikhshoaie & Sharif, 2006). The present work is a part of an ongoing structural study of and their use in the synthesis of new organic, excited-state proton-transfer compounds and fluorescent chemosensors (Faizi et al., 2016, 2018; Kumar et al., 2018; Mukherjee et al., 2018). We report here on the synthesis and as well as the Hirshfeld surface analysis of the new compound, (I).
The results of calculations by density functional theory (DFT) carried out at the B3LYP/6-311 G(d,p) level are compared with the experimentally determined molecular structure of (I) in the solid state.
2. Structural commentary
The molecular structure of the title compound, (I), is illustrated in Fig. 1. There is an intramolecular O—H⋯N hydrogen bond present (Table 1 and Fig. 1), forming an S(6) ring motif; this is a common feature in related imine–phenol compounds. The imine group displays a C9—C8—N1—C6 torsion angle of 170.1 (4)° while the mean plane of the phenol ring (C9–C14) is inclined to that of the 4-trifluoromethylphenyl group (C1–C6) by 44.77 (3)°. The configuration of the C8=N1 bond is E. The C10—O1 bond length [1.357 (8) Å (experimental) and 1.342 Å (calculated)] indicates single-bond character (Ozeryanskii et al., 2006), while the imine C8=N1 bond length [1.283 (8) Å (experimental) and 1.290 Å (calculated)] indicates double-bond character. All these data support the existence of the phenol–imine tautomer for (I) in its crystalline state. These features are similar to those observed in related 4-dimethylamino-N-salicylideneanilines (Pizzala et al., 2000).
3. Supramolecular features
In the crystal of (I), molecules are linked by intermolecular C—H⋯O interactions, forming chains extending along the a-axis direction (Fig. 2 and Table 1). The crystal packing along the a-axis direction is shown in Fig. 3.
4. Hirshfeld surface analysis and two-dimensional fingerprint plots
In order to visualize the role of weak intermolecular interactions in the crystal, a Hirshfeld surface (HS) analysis (Spackman & Jayatilaka, 2009) was carried out along with the associated two-dimensional fingerprint plots (McKinnon et al., 2007) generated using CrystalExplorer17.5 (Turner et al., 2017). The three-dimensional dnorm (Fig. 4a) and shape-index (Fig. 4c) surfaces of (I) are shown with a standard surface resolution and a fixed colour scale of −0.1805 to 1.0413 a.u. The darkest red spots on the Hirshfeld surface indicate contact points with atoms participating in intramolecular C—H⋯O (Fig. 4b) interactions that involve C1—H1A and the oxygen atom O1 of the phenol group (Table 1). As illustrated in Fig. 5a, the corresponding fingerprint plots for (I) have characteristic pseudo-symmetrical wings along the de and di diagonal axes. The presence of C—H⋯O interactions in the crystal is indicated by the pair of characteristic wings in the fingerprint plot delineated into C⋯H/H⋯C (Fig. 5b) contacts (29.2% contributions to the Hirshfeld surface). In Fig. 5c, the widely scattered points in the fingerprint plot are related to H⋯H contacts, which make a contribution of 28.6% to the Hirshfeld surface. There are also F⋯H/H⋯F (25.6%; Fig. 5d), O⋯H/H⋯O (5.7%; Fig. 5e) and F⋯F (4.6%; Fig. 5f) contacts, with smaller contributions from N⋯H/H.·N (2.4%), O⋯C/C⋯O (2.2%), F⋯C/C⋯F (0.8%) and O⋯N/N⋯O (0.2%) contacts.
5. DFT calculations
The optimized structure of (I) in the gas phase was generated theoretically via density functional theory (DFT) using the standard B3LYP functional and the 6-311G(d,p) basis-set calculations (Becke, 1993) as implemented in GAUSSIAN 09 (Frisch et al., 2009). The theoretical and experimental results are in good agreement (Table 2). The C8=N1 bond length is 1.283 (8) Å (experimental) and 1.290 Å (calculated) and the C10—O1 bond length is 1.357 (8) Å (experimental) and 1.342 Å (calculated).
|
The highest-occupied molecular orbital (HOMO) and the lowest-unoccupied molecular orbital (LUMO) are very important aspects as many electronic, optical and chemical reactivity properties of compounds can be predicted from these frontier molecular orbitals (Tanak, 2019). A molecule with a small HOMO–LUMO bandgap is more polarizable than one with a large gap and is considered a `soft' molecule because of its high polarizibility while molecules with a large bandgap are considered to be `hard' molecules. To better understand the nature of (I), the (A = −EHOMO), the (I = −ELUMO), the HOMO–LUMO energy gap (ΔE), the chemical hardness (η) and softness (S) (based on the EHOMO and ELUMO energies; Tanak, 2019) were calculated (Table 3). Based on the relatively large ΔE and η values, the title compound can be classified as a hard molecule.
|
The electron distribution of the HOMO and LUMO energy levels is shown in Fig. 6. The DFT study shows that the HOMO and LUMO are localized in a plane extending over the whole 4-methyl-2-[(4-trifluoromethylphenylimino)methyl]phenol unit. From the frontier orbital analysis, it can be concluded that a HOMO-to-LUMO excitation of (I) would be a π–π* transition that would weaken the imine bond and drive the production of an excited-state keto–amine tautomer from the enol–imine ground state observed in the solid state. The calculated band gap of (I) is 4.076 eV, which is similar to that reported for other Schiff base materials, such as for example (E)-2-{[(3-chlorophenyl)imino]methyl}-6-methylphenol (energy gap = 4.069 eV; Faizi et al., 2019) and (E)-2-[(2-hydroxy-5-methoxybenzylidene)amino]benzonitrile (energy gap = 3.520 eV; Saraçoğlu et al., 2020).
6. Database survey
A search of the Cambridge Structural Database (CSD, version 5.40, update of November 2018; Groom et al., 2016) for the (Z)-1-phenyl-N-[3-(trifluoromethylphenyl]methanimine skeleton yielded seven matches. Metal complexes with ligands analogous to (I) are the ruthenium complex chloro-(1-methyl-4-(propan-2-yl)benzene)-(2-({[4-(trifluoromethyl)phenyl]imino}methyl)phenolato)ruthenium(II) (BIHCED; Cassells et al., 2018), the rhodium complex (η5-pentamethylcyclopentadienyl)chlorido[2-({[4-(trifluoromethyl)phenyl]imino}methyl)phenolato]rhodium(III) (BIHCIH; Cassells et al., 2018) and the iridium complex (η5-pentamethylcyclopentadienyl)chlorido[2-({[4-(trifluoromethyl) phenyl]imino}methyl)phenolato]iridium(III) (BIHCON; Cassells et al., 2018). Other similar ligands are incorporated into the titanium complex dichloridobis(3,5-di-tert-butyl-N-(4-trifluoromethylphenyl)salicylaldiminato)titanium(IV) toluene solvate (INOTUA; Mason et al., 2002) and the copper complex bis{4-trifluoromethylphenyl[(2-oxo-3H-naphth-3-ylidene)methyl]aminato}copper(II) (POPFEF; Fernández et al., 1994). Two vanadium complexes with ligands similar to that in (I) are dichlorido{2-[N-(4-trifluoromethylphenyl)iminomethyl]phenolato}bis(tetrahydrofuran)vanadium(III) (YOGSUJ; Wu et al., 2008) and chloridobis{2-[N-(4-trifluoromethylphenyl)iminomethyl]phenolato}(tetrahydrofuran)vanadium(III) (YOGTOE; Wu et al., 2008). Similar uncomplexed Schiff base molecules are N-[3,5-bis(trifluoromethyl)phenyl]-3-methoxysalicylaldimine (Karadayı et al., 2015), 2-{[3,5-bis(trifluoromethyl)phenyl]carbonoimidoyl}phenol (Yıldız et al., 2015), 2-{[3,5-bis(trifluoromethyl)phenyl]carbonoimidoyl}phenol (Ünver et al., 2016), (E)-3-{[3-(trifluoromethyl)phenylimino]methyl}benzene-1,2-diol (Koşar et al., 2010), 2-fluoro-N-(3-nitrobenzylidene)-5-(trifluoromethyl)aniline (Yang et al., 2007), (E)-2-methyl-6-[3-(trifluoromethyl)phenyliminomethyl]phenol (Akkaya et al., 2007), (E)-2-[(4-chlorophenyl)iminomethyl]-4-(trifluoromethoxy)phenol (Tüfekçi et al., 2009) and (E)-4-methyl-2-[3-(trifluoromethyl)phenyliminomethyl]phenol (Gül et al., 2007). The C=N bond lengths in these structures vary from 1.270 (3) to 1.295 (5) Å and the C—O bond lengths from 1.336 (5) to 1.366 (2) Å. The molecular configurations of these structures are also not planar, with dihedral angles between the phenyl rings varying between 5.00 (5) and 47.62 (9)°. It is likely that the intramolecular O—H⋯N hydrogen bond, where the imine N atom acts as an hydrogen-bond acceptor, is an important prerequisite for the tautomeric shift toward the phenol–imine form. In fact, in all eight structures of the phenol–imine tautomers, hydrogen bonds of this type are observed.
7. Synthesis and crystallization
The title compound was prepared by combining solutions of 2-hydroxy-5-methylbenzaldehyde (38.0 mg, 0.28 mmol) in ethanol (15 mL) and 4-trifluoromethylphenylamine (42.0 mg, 0.28 mmol) in ethanol (15 mL) and stirring the mixture for 8 h under reflux. Single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution (yield 65%, m.p. 425–427K).
8. Refinement
Crystal data, data collection and structure . All C-bound H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2–1.5Ueq(C). The hydrogen atom of the phenol group was located in a difference map and also included as a riding contributor with O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O). During the twin transformation matrix (−1.0 0.0 0.0, 0.0 −1.0 0.0, 0.0 0.0 −1.0), was used.
details are summarized in Table 4Supporting information
CCDC reference: 2016363
https://doi.org/10.1107/S2056989020009615/mw2164sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020009615/mw2164Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989020009615/mw2164Isup3.cml
Data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2018/3 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2020); software used to prepare material for publication: WinGX (Farrugia, 2012), PLATON (Spek, 2020), SHELXL2018 (Sheldrick, 2015b) and publCIF (Westrip, 2010).C15H12F3NO | Dx = 1.437 Mg m−3 |
Mr = 279.26 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pca21 | Cell parameters from 7251 reflections |
a = 6.2592 (5) Å | θ = 2.8–26.8° |
b = 7.2229 (6) Å | µ = 0.12 mm−1 |
c = 28.551 (3) Å | T = 296 K |
V = 1290.77 (19) Å3 | Prism, yellow |
Z = 4 | 0.72 × 0.55 × 0.22 mm |
F(000) = 576 |
Stoe IPDS 2 diffractometer | 2135 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 1517 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.111 |
Detector resolution: 6.67 pixels mm-1 | θmax = 26.2°, θmin = 2.8° |
rotation method scans | h = −7→6 |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | k = −8→8 |
Tmin = 0.936, Tmax = 0.982 | l = −28→34 |
6209 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.073 | H-atom parameters constrained |
wR(F2) = 0.213 | w = 1/[σ2(Fo2) + (0.1465P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.99 | (Δ/σ)max < 0.001 |
2135 reflections | Δρmax = 0.24 e Å−3 |
182 parameters | Δρmin = −0.22 e Å−3 |
1 restraint | Absolute structure: Refined as an inversion twin |
Primary atom site location: dual | Absolute structure parameter: 0 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a two-component inversion twin |
x | y | z | Uiso*/Ueq | ||
N1 | −0.2713 (8) | −0.7682 (6) | −0.49830 (18) | 0.0645 (11) | |
O1 | 0.0688 (7) | −0.6785 (7) | −0.54674 (17) | 0.0809 (12) | |
H1 | 0.000741 | −0.705484 | −0.523169 | 0.121* | |
F2 | −0.8837 (9) | −0.7711 (8) | −0.3228 (2) | 0.1216 (18) | |
C10 | −0.0518 (9) | −0.7125 (6) | −0.5853 (2) | 0.0630 (13) | |
C6 | −0.3839 (8) | −0.7631 (6) | −0.4556 (2) | 0.0570 (12) | |
F1 | −0.6915 (9) | −0.5479 (6) | −0.30622 (18) | 0.1272 (19) | |
C5 | −0.2780 (10) | −0.8240 (7) | −0.4157 (2) | 0.0655 (14) | |
H5 | −0.141666 | −0.874119 | −0.418207 | 0.079* | |
C3 | −0.5758 (10) | −0.7369 (7) | −0.3684 (2) | 0.0626 (13) | |
C4 | −0.3737 (10) | −0.8105 (7) | −0.3725 (2) | 0.0657 (14) | |
H4 | −0.301758 | −0.851192 | −0.345952 | 0.079* | |
C14 | −0.3760 (10) | −0.8129 (7) | −0.6233 (2) | 0.0640 (13) | |
H14 | −0.513415 | −0.861146 | −0.621131 | 0.077* | |
C7 | −0.6847 (12) | −0.7213 (8) | −0.3219 (2) | 0.0744 (16) | |
C9 | −0.2636 (9) | −0.7789 (6) | −0.5821 (2) | 0.0628 (13) | |
C8 | −0.3645 (10) | −0.8001 (7) | −0.5375 (2) | 0.0657 (14) | |
H8 | −0.505930 | −0.839357 | −0.536897 | 0.079* | |
F3 | −0.5971 (13) | −0.8224 (11) | −0.29008 (19) | 0.160 (3) | |
C12 | −0.0825 (12) | −0.7083 (8) | −0.6683 (2) | 0.0719 (16) | |
H12 | −0.020903 | −0.683218 | −0.697211 | 0.086* | |
C1 | −0.5870 (9) | −0.6869 (7) | −0.4518 (2) | 0.0638 (13) | |
H1A | −0.658405 | −0.646274 | −0.478455 | 0.077* | |
C11 | 0.0350 (11) | −0.6758 (7) | −0.6286 (3) | 0.0745 (15) | |
H11 | 0.173005 | −0.628998 | −0.630903 | 0.089* | |
C2 | −0.6836 (10) | −0.6716 (7) | −0.40787 (19) | 0.0627 (13) | |
H2 | −0.818272 | −0.618523 | −0.404942 | 0.075* | |
C13 | −0.2928 (12) | −0.7782 (7) | −0.6671 (2) | 0.0706 (15) | |
C15 | −0.4146 (15) | −0.8082 (10) | −0.7111 (3) | 0.089 (2) | |
H15A | −0.326864 | −0.775423 | −0.737439 | 0.134* | |
H15B | −0.454828 | −0.936105 | −0.713450 | 0.134* | |
H15C | −0.540560 | −0.732414 | −0.710949 | 0.134* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.069 (3) | 0.072 (2) | 0.053 (3) | −0.0016 (18) | 0.003 (2) | 0.002 (2) |
O1 | 0.067 (3) | 0.109 (3) | 0.067 (3) | −0.016 (2) | −0.006 (2) | −0.002 (2) |
F2 | 0.110 (3) | 0.159 (4) | 0.096 (3) | −0.050 (3) | 0.031 (3) | −0.024 (3) |
C10 | 0.058 (3) | 0.065 (3) | 0.066 (3) | 0.001 (2) | −0.002 (3) | −0.001 (2) |
C6 | 0.058 (3) | 0.056 (2) | 0.057 (3) | −0.0059 (19) | 0.004 (2) | 0.003 (2) |
F1 | 0.176 (5) | 0.098 (3) | 0.108 (3) | −0.023 (3) | 0.049 (4) | −0.037 (2) |
C5 | 0.068 (3) | 0.068 (3) | 0.060 (3) | 0.006 (2) | −0.001 (3) | −0.002 (2) |
C3 | 0.070 (4) | 0.062 (3) | 0.056 (3) | −0.002 (2) | 0.003 (3) | 0.006 (2) |
C4 | 0.074 (4) | 0.065 (3) | 0.059 (3) | 0.001 (2) | −0.006 (3) | 0.009 (2) |
C14 | 0.063 (3) | 0.071 (2) | 0.059 (3) | 0.000 (2) | 0.004 (3) | −0.005 (2) |
C7 | 0.092 (4) | 0.073 (3) | 0.058 (3) | −0.003 (3) | 0.000 (3) | −0.003 (3) |
C9 | 0.065 (3) | 0.059 (2) | 0.064 (3) | 0.002 (2) | 0.005 (3) | 0.005 (2) |
C8 | 0.065 (4) | 0.067 (3) | 0.064 (4) | −0.005 (2) | 0.005 (3) | 0.002 (2) |
F3 | 0.200 (7) | 0.207 (6) | 0.072 (3) | 0.102 (5) | 0.042 (3) | 0.052 (3) |
C12 | 0.089 (5) | 0.069 (3) | 0.058 (3) | 0.003 (3) | 0.007 (3) | 0.000 (2) |
C1 | 0.066 (3) | 0.072 (3) | 0.054 (3) | −0.001 (2) | −0.008 (2) | 0.005 (2) |
C11 | 0.074 (4) | 0.072 (3) | 0.078 (4) | −0.001 (2) | 0.006 (3) | 0.002 (3) |
C2 | 0.060 (3) | 0.069 (3) | 0.060 (3) | 0.003 (2) | −0.006 (3) | 0.001 (2) |
C13 | 0.085 (4) | 0.067 (3) | 0.060 (3) | 0.001 (3) | −0.002 (3) | 0.000 (2) |
C15 | 0.113 (6) | 0.095 (4) | 0.060 (4) | −0.007 (4) | −0.011 (3) | −0.002 (3) |
N1—C8 | 1.283 (8) | C14—C9 | 1.391 (9) |
N1—C6 | 1.410 (7) | C14—H14 | 0.9300 |
O1—C10 | 1.357 (8) | C7—F3 | 1.289 (8) |
O1—H1 | 0.8200 | C9—C8 | 1.430 (9) |
F2—C7 | 1.297 (9) | C8—H8 | 0.9300 |
C10—C11 | 1.376 (10) | C12—C11 | 1.371 (10) |
C10—C9 | 1.412 (8) | C12—C13 | 1.410 (10) |
C6—C5 | 1.389 (8) | C12—H12 | 0.9300 |
C6—C1 | 1.389 (8) | C1—C2 | 1.397 (8) |
F1—C7 | 1.331 (7) | C1—H1A | 0.9300 |
C5—C4 | 1.374 (8) | C11—H11 | 0.9300 |
C5—H5 | 0.9300 | C2—H2 | 0.9300 |
C3—C4 | 1.377 (9) | C13—C15 | 1.487 (10) |
C3—C2 | 1.395 (8) | C15—H15A | 0.9600 |
C3—C7 | 1.497 (9) | C15—H15B | 0.9600 |
C4—H4 | 0.9300 | C15—H15C | 0.9600 |
C14—C13 | 1.377 (9) | ||
C8—N1—C6 | 122.2 (5) | C14—C9—C8 | 120.7 (5) |
C10—O1—H1 | 109.5 | C10—C9—C8 | 120.5 (6) |
O1—C10—C11 | 118.3 (5) | N1—C8—C9 | 123.9 (6) |
O1—C10—C9 | 122.2 (6) | N1—C8—H8 | 118.0 |
C11—C10—C9 | 119.5 (6) | C9—C8—H8 | 118.0 |
C5—C6—C1 | 119.9 (5) | C11—C12—C13 | 122.8 (6) |
C5—C6—N1 | 117.6 (5) | C11—C12—H12 | 118.6 |
C1—C6—N1 | 122.3 (5) | C13—C12—H12 | 118.6 |
C4—C5—C6 | 120.3 (5) | C6—C1—C2 | 119.8 (5) |
C4—C5—H5 | 119.8 | C6—C1—H1A | 120.1 |
C6—C5—H5 | 119.8 | C2—C1—H1A | 120.1 |
C4—C3—C2 | 120.4 (6) | C12—C11—C10 | 119.8 (6) |
C4—C3—C7 | 121.5 (6) | C12—C11—H11 | 120.1 |
C2—C3—C7 | 118.1 (6) | C10—C11—H11 | 120.1 |
C5—C4—C3 | 120.3 (6) | C3—C2—C1 | 119.3 (5) |
C5—C4—H4 | 119.9 | C3—C2—H2 | 120.4 |
C3—C4—H4 | 119.9 | C1—C2—H2 | 120.4 |
C13—C14—C9 | 122.9 (6) | C14—C13—C12 | 116.1 (6) |
C13—C14—H14 | 118.6 | C14—C13—C15 | 123.2 (7) |
C9—C14—H14 | 118.6 | C12—C13—C15 | 120.7 (6) |
F3—C7—F2 | 105.4 (7) | C13—C15—H15A | 109.5 |
F3—C7—F1 | 108.0 (7) | C13—C15—H15B | 109.5 |
F2—C7—F1 | 103.7 (6) | H15A—C15—H15B | 109.5 |
F3—C7—C3 | 112.9 (6) | C13—C15—H15C | 109.5 |
F2—C7—C3 | 113.5 (5) | H15A—C15—H15C | 109.5 |
F1—C7—C3 | 112.6 (5) | H15B—C15—H15C | 109.5 |
C14—C9—C10 | 118.8 (5) | ||
C8—N1—C6—C5 | 147.0 (5) | O1—C10—C9—C8 | 4.5 (7) |
C8—N1—C6—C1 | −38.2 (7) | C11—C10—C9—C8 | −173.6 (5) |
C1—C6—C5—C4 | 0.5 (7) | C6—N1—C8—C9 | 170.1 (4) |
N1—C6—C5—C4 | 175.5 (4) | C14—C9—C8—N1 | −178.8 (5) |
C6—C5—C4—C3 | 0.2 (8) | C10—C9—C8—N1 | −2.6 (8) |
C2—C3—C4—C5 | −1.4 (8) | C5—C6—C1—C2 | 0.1 (7) |
C7—C3—C4—C5 | 179.7 (5) | N1—C6—C1—C2 | −174.7 (5) |
C4—C3—C7—F3 | −16.4 (9) | C13—C12—C11—C10 | 0.3 (8) |
C2—C3—C7—F3 | 164.6 (7) | O1—C10—C11—C12 | −179.9 (5) |
C4—C3—C7—F2 | −136.3 (6) | C9—C10—C11—C12 | −1.7 (8) |
C2—C3—C7—F2 | 44.7 (7) | C4—C3—C2—C1 | 2.0 (8) |
C4—C3—C7—F1 | 106.3 (7) | C7—C3—C2—C1 | −179.1 (5) |
C2—C3—C7—F1 | −72.7 (7) | C6—C1—C2—C3 | −1.3 (8) |
C13—C14—C9—C10 | −2.5 (7) | C9—C14—C13—C12 | 1.1 (8) |
C13—C14—C9—C8 | 173.8 (5) | C9—C14—C13—C15 | −177.9 (5) |
O1—C10—C9—C14 | −179.1 (5) | C11—C12—C13—C14 | 0.0 (8) |
C11—C10—C9—C14 | 2.7 (7) | C11—C12—C13—C15 | 179.0 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1 | 0.82 | 1.90 | 2.620 (7) | 146 |
C1—H1A···O1i | 0.93 | 2.60 | 3.463 (7) | 154 |
Symmetry code: (i) x−1, y, z. |
Parameter | X-ray | B3LYP/6–311G(d,p) |
O1—C10 | 1.357 (8) | 1.342 |
N1—C8 | 1.283 (8) | 1.290 |
C3—C7 | 1.497 (9) | 1.502 |
C6—N1 | 1.410 (7) | 1.404 |
C8—C9 | 1.430 (9) | 1.446 |
N1—C8—C9 | 123.9 (6) | 122.6 |
C8—N1—C6 | 122.2 (5) | 121.0 |
O1—C10—C9 | 122.1 (5) | 122.3 |
Molecular Energy (a.u.) (eV) | Compound (I) |
Total Energy TE (eV) | -27438.7489 |
EHOMO (eV) | -6.2064 |
ELUMO (eV) | -2.1307 |
Gap, ΔE (eV) | 4.076 |
Dipole moment, µ (Debye) | 4.466 |
Ionization potential, I (eV) | 6.2064 |
Electron affinity, A | 2.1307 |
Electronegativity, χ | 4.1685 |
Hardness, η | 2.038 |
Electrophilicity index, ω | 4.2631 |
Softness, σ | 0.245 |
Fraction of electrons transferred, ΔN | 0.695 |
Acknowledgements
The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).
Funding information
Funding for this research was provided by start-up grants from the University Grants Commission, India.
References
Akkaya, A., Erşahin, F., Ağar, E., Şenel, İ. & Büyükgüngör, O. (2007). Acta Cryst. E63, o3555. Web of Science CSD CrossRef IUCr Journals Google Scholar
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Cassells, I., Stringer, T., Hutton, A. T., Prince, S. & Smith, G. S. (2018). J. Biol. Inorg. Chem. 23, 763–774. CSD CrossRef CAS PubMed Google Scholar
Desai, S. B., Desai, P. B. & Desai, K. R. (2001). Heterocycl. Commun. 7, 83–90. CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Faizi, M. S. H., Alam, M. J., Haque, A., Ahmad, S., Shahid, M. & Ahmad, M. (2018). J. Mol. Struct. 1156, 457–464. Web of Science CSD CrossRef CAS Google Scholar
Faizi, M. S. H., Ali, A. & Potaskalov, V. A. (2016). Acta Cryst. E72, 1366–1369. Web of Science CSD CrossRef IUCr Journals Google Scholar
Faizi, M. S. H., Dege, N., Çiçek, C., Agar, E. & Fritsky, I. O. (2019). Acta Cryst. E75, 987–990. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fernández, J. M., Lembrino-Canales, J. J. & Villena, R. (1994). Monatsh. Chem. 125, 275–284. Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN 09. Gaussian Inc., Wallingford, CT, USA. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gül, Z. S., Erşah˙in, F., Ağar, E. & Işık, Ş. (2007). Acta Cryst. E63, o2854. Web of Science CSD CrossRef IUCr Journals Google Scholar
Karadayı, N., Şahin, S., Köysal, Y., Coşkun, E. & Büyükgüngör, O. (2015). Acta Cryst. E71, o466–o467. Web of Science CSD CrossRef IUCr Journals Google Scholar
Karia, F. D. & Parsania, P. H. (1999). Asian J. Chem. 11, 991–995. CAS Google Scholar
Koşar, B., Albayrak, C., Odabaşoĝlu, M. & Büyükgüngör, O. (2010). Turk. J. Chem.34, 481–487. Google Scholar
Kumar, M., Kumar, A., Faizi, M. S. H., Kumar, S., Singh, M. K., Sahu, S. K., Kishor, S. & John, R. P. (2018). Sens. Actuators B Chem. 260, 888–899. Web of Science CrossRef CAS Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mason, A. F., Tian, J., Hustad, P. D., Lobkovsky, E. B. & Coates, G. W. (2002). Isr. J. Chem. 42, 301–306. CSD CrossRef CAS Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Mukherjee, P., Das, A., Faizi, M. S. H. & Sen, P. (2018). Chemistry Select, 3, 3787–3796. CAS Google Scholar
Ozeryanskii, V. A., Pozharskii, A. F., Schilf, W., Kamieński, B., Sawka-Dobrowolska, W., Sobczyk, L. & Grech, E. (2006). Eur. J. Org. Chem. pp. 782–790. Web of Science CSD CrossRef Google Scholar
Pizzala, H., Carles, M., Stone, W. E. E. & Thevand, A. (2000). J. Chem. Soc. Perkin Trans. 2, pp. 935–939. CSD CrossRef Google Scholar
Saraçoğlu, H., Doğan, O. E., Ağar, T., Dege, N. & Iskenderov, T. S. (2020). Acta Cryst. E76, 141–144. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheikhshoaie, I. & Sharif, M. A. (2006). Acta Cryst. E62, o3563–o3565. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Singh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33–37. Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Stoe & Cie (2002). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Tanak, H. (2019). ChemistrySelect, 4, 10876–10883. CrossRef CAS Google Scholar
Tüfekçi, M., Bingöl Alpaslan, Y., Macit, M. & Erdönmez, A. (2009). Acta Cryst. E65, o2704. Web of Science CSD CrossRef IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5.The University of Western Australia. Google Scholar
Ünver, H., Boyacıoğlu, B., Zeyrek, C. T., Yıldız, M., Demir, N., Yıldırım, N., Karaosmanoğlu, O., Sivas, H. & Elmalı, A. (2016). J. Mol. Struct. 1125, 162–176. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wu, J.-Q., Pan, L., Hu, N.-H. & Li, Y.-S. (2008). Organometallics, 27, 3840–3848. CSD CrossRef CAS Google Scholar
Yang, M.-H., Yan, G.-B. & Zheng, Y.-F. (2007). Acta Cryst. E63, o3202. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yıldız, M., Karpuz, O., Zeyrek, C. T., Boyacıoğlu, B., Dal, H., Demir, N., Yıldırım, N. & Ünver, H. (2015). J. Mol. Struct. 1094, 148–160. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.