research communications
Synthesis, crystal structures and Hirshfeld surface analysis of 1,4-dibenzyl-6-methyl-1,4-dihydroquinoxaline-2,3-dione
aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Samsun, 55200, Turkey, bLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, BP 2202, Fez, Morocco, cLaboratoire de Chimie Physique et Chimie Bio-organique, Faculté des Sciences et Techniques Mohammedia, Université Hassan II, Casablanca, BP 146, 28800, Mohammedia, Morocco, dInstitut Lavoisier de Versailles, UVSQ, CNRS, Université Paris-Saclay, 78035 Versailles, France, and eDepartment of Computer and Electronic Engineering Technology, Sana'a Community College, Sana'a, Yemen
*Correspondence e-mail: eiad.saif2016@gmail.com
The title quinoxaline molecule, C23H20N2O2, is not planar, the dihedral angle angle between the mean planes of the benzene rings being 72.54 (15)°. In the crystal, molecules are connected into chains extending parallel to (10) by weak C—H⋯O hydrogen bonds. Weak C—H⋯π interactions link the chains, forming a three-dimensional network structure. Hirshfeld surface analysis revealed that the most important contributions for the crystal packing are from H⋯H (48.7%), H⋯C/C⋯H (32.0%), H⋯O/O⋯H (15.4%), C⋯C (1.9%), H⋯N/N⋯H (1.1%) contacts.
Keywords: crystal structure; Hirshfeld surfaces; quinoxaline; hydrogen bonding.
CCDC reference: 1936664
1. Chemical context
Given their importance in the pharmaceutical, chemical and industrial fields, the synthesis of quinoxaline and its derivatives has been a goal of chemists in recent years. Quinoxaline derivatives find use as anticancer (Noolvi et al., 2011), antimalarial (Guillon et al., 2004), antifungal (Xu & Fan, 2011), antiviral (Cai et al., 2008) and anti-inflammatory (Yan et al., 2007) agents. Some quinoxaline derivatives have also been reported to be corrosion inhibitors for steel in an acidic medium (Zouitini et al., 2018, 2019; El Janati et al., 2020). In this work, we report the synthesis and structure of the title compound obtained by the action of benzyl chloride on 6-methyl-1,4-dihydroquinoxaline-2,3-dione in the presence of potassium carbonate and a catalytic quantity of tetra-n-butylammonium bromide. A Hirshfeld surface analysis was also performed.
2. Structural commentary
An ORTEPIII (Burnett & Johnson, 1996) view of the molecule is given in Fig. 1. The molecule is not planar, the dihedral angle angle between the mean planes of the benzene rings (C11–C16 and C24–C29) being 72.54 (15)°. The mean planes of the C1/N2/C9/C8/N1/C6 and C11–C16 rings make an angle of 73.093 (13)° while the C1–C6 and C24–C29 rings make an angle of 79.01 (14)°. The C1/N2/C9/C8/N1/C6 and C1–C6 rings are nearly coplanar, subtending a dihedral angle of only 3.07 (11)°. The C8=O1 and C9=O2 bonds show double-bond character with bond lengths of 1.222 (3) and 1.217 (3) Å, respectively. The N1—C10 and N2—C23 bond lengths are 1.476 (3) and 1.464 (3) Å, respectively while the C11—C10—N1 bond angle is 113.57 (18)° and the N2—C23—C24 bond angle is 114.05 (18)°. The C9—N2—C23—C24 and C8—N1—C10—C11 torsion angles are −96.7 (2) and −93.4 (2)°, respectively.
3. Supramolecular features
In the crystal, molecules are connected by weak C16—H16⋯O1 and C10—H10A⋯O2 hydrogen bonds into chains extending parallel to (10) (Table 1 and Fig. 2). Weak C25—H25⋯Cg3 interactions (2.83 Å; Cg3 is the centroid of the C11–C16 ring at −x + 2, −y, −z) link the chains into a three-dimensional network structure (Table 1 and Fig. 3).
4. Hirshfeld surface analysis
The CrystalExplorer17.5 (Turner et al., 2017) program was used to analyse the interactions within the crystal. The donor–acceptor groups are visualized using a standard (high) surface resolution and dnorm surfaces mapped over a fixed colour scale of −0.140 (red) to 1.358 (blue) a.u., as illustrated in Fig. 4. Red spots on the surface of the dnorm plot indicate intermolecular contacts involving the hydrogen bonds. The red spots identified in Fig. 4(a) correspond to the intermolecular C—H⋯O bonds. Regions close to the sum of the van der Waals radii are shown in white. Fig. 4(b) shows the shape-index surface, which can be used to detect the presence of π-stacking interactions. The absence of characteristic triangles indicates that no significant π–π interactions are present. Two-dimensional fingerprints were also generated in the range −1 to 1 Å (Fig. 5). As expected, H⋯H (48.7%) and H⋯C/C⋯H (32.0%) contacts dominate the intermolecular interactions, but the O⋯H/H⋯O contacts are important directional intermolecular interactions in the crystal. The C⋯C (1.9%) and H⋯N/N⋯H (1.1%) contribute minimally to the overall crystal packing.
5. Database survey
A search of the Cambridge Structural Database (CSD, version 5.40, update August 2019; Groom et al., 2016) using 1-benzyl-3,4-dihydroquinoxalin-2(1H)-one as the main skeleton revealed the presence of three structures similar to the title compound, but with different substituents. These are: 1,4,6-tribenzoyl-3-(4-bromobenzyl)-1,4-dihydroquinoxaline-2-one (LEQWIO; Abraham et al., 2006), 1,4-dibenzoyl-6-trifluoromethyl-3-(4-bromobenzyl)-1,4-dihydroquinoxaline-2-one (LEQWOU; Abraham et al., 2006) and 1,4-dibenzyl-6-chloro-1,4-dihydroquinoxaline-2,3-dione (PAWFEB; El Janati et al., 2017). In the latter study (PAWFEB) examining compounds having the same skeletal system as the 1,4-dihydroquinoxaline-2,3-dione structure in the title compound, the corrosion inhibition efficiency of 1,4-diallyl-6-chloroquinoxaline-2,3-(1H,4H)-dione and 1,4-diallyl-6-nitroquinoxaline-2,3-(1H,4H)-dione on mild steel (MS) in 1.0 M HCl solution was investigated.
6. Synthesis and crystallization
To a solution of 6-methyl-1,4-dihydroquinoxaline-2,3-dione (0.3 g, 1.73 mmol) in DMF (15 mL), were added potassium carbonate (0.47 g, 3.61 mmol) and tetra-nbutylammonium bromide (0.07g, 0.23 mmol). After stirring for 10 min, 0.5 mL (4.32 mmol) of benzyl chloride was added and the mixture was stirred at room temperature for 6 h. After filtration of the salts, the DMF was evaporated under reduced pressure and the residue obtained was dissolved in dichloromethane. The organic phase was then dried over Na2SO4 and concentrated. The mixture obtained was chromatographed on a silica gel column [eluent: hexane/ethylacetate (2/1)]. The crude product was recrystallized from ethanol as yellow crystals suitable for X-ray analysis (m.p. 493.5 K).
7. Refinement
Crystal data, data collection and structure . Hydrogen atoms treated as riding: C—H = 0.97 Å and Uiso(H) = 1.5Ueq(C) for methyl, C—H = 0.96 Å and Uiso(H) = 1.2Ueq(C) for methylene, C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic and C—H = 0.98 Å and Uiso(H) = 1.2Ueq(C) for methine H atoms.
details are summarized in Table 2Supporting information
CCDC reference: 1936664
https://doi.org/10.1107/S2056989020009895/mw2165sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020009895/mw2165Isup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989020009895/mw2165Isup3.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2018/3 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2020); software used to prepare material for publication: WinGX (Farrugia, 2012), PLATON (Spek, 2020), SHELXL2018 (Sheldrick, 2015b) and publCIF (Westrip, 2010).C23H20N2O2 | F(000) = 752 |
Mr = 356.41 | Dx = 1.278 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 9.0844 (12) Å | Cell parameters from 4963 reflections |
b = 18.7227 (18) Å | θ = 2.6–24.6° |
c = 11.2708 (14) Å | µ = 0.08 mm−1 |
β = 104.848 (4)° | T = 296 K |
V = 1853.0 (4) Å3 | Parallelepiped, yellow |
Z = 4 | 0.30 × 0.16 × 0.06 mm |
Bruker APEXII CCD diffractometer | 2487 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.054 |
φ and ω scans | θmax = 27.5°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | h = −10→11 |
Tmin = 0.677, Tmax = 0.746 | k = −17→24 |
22287 measured reflections | l = −14→14 |
4253 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.060 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.188 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0761P)2 + 0.7497P] where P = (Fo2 + 2Fc2)/3 |
4253 reflections | (Δ/σ)max < 0.001 |
244 parameters | Δρmax = 0.38 e Å−3 |
1 restraint | Δρmin = −0.24 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.6364 (2) | 0.24430 (9) | 0.60030 (16) | 0.0668 (5) | |
O2 | 0.6604 (2) | 0.34222 (11) | 0.77924 (17) | 0.0787 (6) | |
C1 | 0.3801 (2) | 0.42320 (11) | 0.5380 (2) | 0.0453 (5) | |
C2 | 0.2840 (3) | 0.48294 (13) | 0.5167 (2) | 0.0565 (6) | |
H2 | 0.290850 | 0.516663 | 0.578499 | 0.068* | |
C3 | 0.1779 (3) | 0.49239 (14) | 0.4035 (3) | 0.0606 (7) | |
C4 | 0.1685 (3) | 0.44202 (16) | 0.3149 (3) | 0.0665 (7) | |
H4 | 0.096780 | 0.447513 | 0.240048 | 0.080* | |
C5 | 0.2611 (3) | 0.38383 (14) | 0.3329 (2) | 0.0605 (7) | |
H5 | 0.253041 | 0.350819 | 0.269920 | 0.073* | |
C6 | 0.3690 (2) | 0.37294 (12) | 0.4457 (2) | 0.0463 (5) | |
C7 | 0.0744 (4) | 0.55686 (17) | 0.3816 (3) | 0.0857 (9) | |
H7A | 0.097017 | 0.586438 | 0.453541 | 0.129* | |
H7B | 0.090205 | 0.583627 | 0.313222 | 0.129* | |
H7C | −0.029766 | 0.541485 | 0.364004 | 0.129* | |
N1 | 0.4634 (2) | 0.31227 (10) | 0.46724 (17) | 0.0479 (5) | |
C8 | 0.5589 (3) | 0.29843 (12) | 0.5791 (2) | 0.0502 (6) | |
C9 | 0.5729 (3) | 0.35335 (13) | 0.6795 (2) | 0.0530 (6) | |
N2 | 0.4870 (2) | 0.41352 (10) | 0.65252 (17) | 0.0477 (5) | |
C10 | 0.4593 (3) | 0.25871 (12) | 0.3703 (2) | 0.0564 (6) | |
H10A | 0.356426 | 0.255943 | 0.318086 | 0.068* | |
H10B | 0.484757 | 0.212320 | 0.408395 | 0.068* | |
C11 | 0.5669 (3) | 0.27494 (12) | 0.2918 (2) | 0.0520 (6) | |
C12 | 0.7141 (3) | 0.29739 (15) | 0.3413 (3) | 0.0682 (7) | |
H12 | 0.746539 | 0.306858 | 0.424992 | 0.082* | |
C13 | 0.8143 (4) | 0.30607 (17) | 0.2690 (3) | 0.0839 (10) | |
H13 | 0.913384 | 0.321355 | 0.303781 | 0.101* | |
C14 | 0.7672 (5) | 0.29203 (17) | 0.1452 (4) | 0.0907 (11) | |
H14 | 0.834725 | 0.297218 | 0.096117 | 0.109* | |
C15 | 0.6232 (6) | 0.2708 (2) | 0.0954 (3) | 0.1045 (12) | |
H15 | 0.590820 | 0.262012 | 0.011500 | 0.125* | |
C16 | 0.5229 (4) | 0.26191 (17) | 0.1682 (3) | 0.0820 (9) | |
H16 | 0.423893 | 0.246823 | 0.132573 | 0.098* | |
C23 | 0.5078 (3) | 0.46790 (13) | 0.7488 (2) | 0.0561 (6) | |
H23A | 0.502294 | 0.514721 | 0.711069 | 0.067* | |
H23B | 0.608828 | 0.462678 | 0.803360 | 0.067* | |
C24 | 0.3920 (3) | 0.46424 (11) | 0.8239 (2) | 0.0486 (5) | |
C25 | 0.3412 (3) | 0.52590 (13) | 0.8661 (2) | 0.0641 (7) | |
H25 | 0.373901 | 0.569841 | 0.844097 | 0.077* | |
C26 | 0.2429 (4) | 0.52371 (16) | 0.9403 (3) | 0.0785 (9) | |
H26 | 0.208237 | 0.565956 | 0.967137 | 0.094* | |
C27 | 0.1958 (4) | 0.45942 (18) | 0.9747 (3) | 0.0799 (9) | |
H27 | 0.129675 | 0.457886 | 1.025374 | 0.096* | |
C28 | 0.2455 (4) | 0.39791 (16) | 0.9349 (3) | 0.0777 (8) | |
H28 | 0.214200 | 0.354182 | 0.959034 | 0.093* | |
C29 | 0.3424 (3) | 0.39995 (13) | 0.8588 (3) | 0.0666 (7) | |
H29 | 0.374561 | 0.357497 | 0.830698 | 0.080* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0702 (12) | 0.0659 (11) | 0.0686 (12) | 0.0218 (9) | 0.0256 (9) | 0.0050 (8) |
O2 | 0.0710 (13) | 0.1036 (15) | 0.0554 (11) | 0.0349 (11) | 0.0050 (10) | −0.0041 (10) |
C1 | 0.0359 (11) | 0.0508 (12) | 0.0539 (14) | 0.0000 (9) | 0.0197 (10) | 0.0130 (10) |
C2 | 0.0536 (14) | 0.0563 (13) | 0.0671 (16) | 0.0013 (11) | 0.0292 (13) | 0.0090 (12) |
C3 | 0.0433 (13) | 0.0678 (15) | 0.0736 (18) | 0.0060 (11) | 0.0204 (13) | 0.0259 (14) |
C4 | 0.0497 (15) | 0.089 (2) | 0.0604 (16) | 0.0034 (14) | 0.0131 (12) | 0.0162 (15) |
C5 | 0.0476 (14) | 0.0820 (17) | 0.0528 (15) | −0.0043 (13) | 0.0149 (12) | 0.0033 (13) |
C6 | 0.0370 (11) | 0.0550 (12) | 0.0514 (13) | −0.0041 (10) | 0.0197 (10) | 0.0057 (10) |
C7 | 0.071 (2) | 0.090 (2) | 0.094 (2) | 0.0186 (17) | 0.0178 (17) | 0.0233 (18) |
N1 | 0.0414 (10) | 0.0542 (11) | 0.0525 (12) | −0.0031 (8) | 0.0200 (9) | 0.0006 (9) |
C8 | 0.0458 (13) | 0.0563 (13) | 0.0540 (14) | 0.0056 (11) | 0.0231 (11) | 0.0057 (11) |
C9 | 0.0449 (13) | 0.0656 (15) | 0.0518 (14) | 0.0104 (11) | 0.0184 (12) | 0.0029 (11) |
N2 | 0.0442 (10) | 0.0510 (10) | 0.0519 (11) | 0.0002 (8) | 0.0194 (9) | −0.0012 (8) |
C10 | 0.0487 (14) | 0.0588 (14) | 0.0650 (16) | −0.0127 (11) | 0.0204 (12) | −0.0112 (12) |
C11 | 0.0514 (14) | 0.0517 (12) | 0.0570 (14) | 0.0012 (11) | 0.0213 (11) | −0.0011 (11) |
C12 | 0.0526 (15) | 0.0883 (19) | 0.0666 (17) | −0.0084 (14) | 0.0205 (13) | 0.0175 (14) |
C13 | 0.0586 (17) | 0.087 (2) | 0.117 (3) | 0.0116 (15) | 0.0420 (18) | 0.0379 (19) |
C14 | 0.116 (3) | 0.0689 (18) | 0.117 (3) | 0.0319 (19) | 0.084 (3) | 0.0182 (18) |
C15 | 0.143 (4) | 0.109 (3) | 0.082 (2) | −0.003 (3) | 0.066 (3) | −0.024 (2) |
C16 | 0.087 (2) | 0.094 (2) | 0.0682 (19) | −0.0083 (17) | 0.0272 (16) | −0.0236 (16) |
C23 | 0.0534 (14) | 0.0531 (13) | 0.0644 (15) | −0.0076 (11) | 0.0198 (12) | −0.0054 (11) |
C24 | 0.0478 (13) | 0.0474 (12) | 0.0513 (13) | −0.0012 (10) | 0.0142 (10) | −0.0025 (10) |
C25 | 0.0786 (19) | 0.0498 (13) | 0.0684 (17) | 0.0069 (12) | 0.0272 (15) | −0.0007 (12) |
C26 | 0.099 (2) | 0.0731 (18) | 0.0750 (19) | 0.0230 (17) | 0.0426 (17) | −0.0042 (15) |
C27 | 0.082 (2) | 0.106 (2) | 0.0638 (18) | 0.0093 (18) | 0.0411 (16) | 0.0004 (17) |
C28 | 0.090 (2) | 0.0710 (18) | 0.085 (2) | −0.0113 (16) | 0.0457 (17) | 0.0041 (15) |
C29 | 0.0773 (18) | 0.0492 (13) | 0.0837 (19) | −0.0066 (12) | 0.0396 (15) | −0.0059 (13) |
O1—C8 | 1.222 (3) | C16—H16 | 0.9300 |
O2—C9 | 1.217 (3) | C15—C14 | 1.345 (5) |
C1—C6 | 1.388 (3) | C15—H15 | 0.9300 |
C1—C2 | 1.401 (3) | C14—C13 | 1.376 (5) |
C1—N2 | 1.414 (3) | C14—H14 | 0.9300 |
C2—C3 | 1.400 (4) | C13—C12 | 1.378 (4) |
C2—H2 | 0.9300 | C13—H13 | 0.9300 |
C3—C4 | 1.360 (4) | C12—H12 | 0.9300 |
C3—C7 | 1.511 (4) | C23—C24 | 1.511 (3) |
C4—C5 | 1.360 (4) | C23—H23A | 0.9700 |
C4—H4 | 0.9300 | C23—H23B | 0.9700 |
C5—C6 | 1.407 (3) | C24—C25 | 1.373 (3) |
C5—H5 | 0.9300 | C24—C29 | 1.378 (3) |
C6—N1 | 1.406 (3) | C29—C28 | 1.378 (4) |
N1—C8 | 1.359 (3) | C29—H29 | 0.9300 |
N1—C10 | 1.476 (3) | C28—C27 | 1.355 (4) |
C8—C9 | 1.510 (3) | C28—H28 | 0.9300 |
C9—N2 | 1.360 (3) | C27—C26 | 1.366 (4) |
N2—C23 | 1.464 (3) | C27—H27 | 0.9300 |
C10—C11 | 1.507 (3) | C26—C25 | 1.371 (4) |
C10—H10A | 0.9700 | C26—H26 | 0.9300 |
C10—H10B | 0.9700 | C25—H25 | 0.9300 |
C11—C16 | 1.370 (4) | C7—H7A | 0.9600 |
C11—C12 | 1.376 (4) | C7—H7B | 0.9600 |
C16—C15 | 1.384 (5) | C7—H7C | 0.9600 |
C6—C1—C2 | 119.4 (2) | C14—C15—C16 | 120.4 (3) |
C6—C1—N2 | 119.92 (19) | C14—C15—H15 | 119.8 |
C2—C1—N2 | 120.7 (2) | C16—C15—H15 | 119.8 |
C3—C2—C1 | 120.7 (2) | C15—C14—C13 | 119.7 (3) |
C3—C2—H2 | 119.7 | C15—C14—H14 | 120.1 |
C1—C2—H2 | 119.7 | C13—C14—H14 | 120.1 |
C4—C3—C2 | 118.7 (2) | C14—C13—C12 | 119.8 (3) |
C4—C3—C7 | 121.0 (3) | C14—C13—H13 | 120.1 |
C2—C3—C7 | 120.3 (3) | C12—C13—H13 | 120.1 |
C5—C4—C3 | 121.7 (3) | C11—C12—C13 | 121.1 (3) |
C5—C4—H4 | 119.1 | C11—C12—H12 | 119.4 |
C3—C4—H4 | 119.1 | C13—C12—H12 | 119.4 |
C4—C5—C6 | 120.8 (3) | N2—C23—C24 | 114.05 (18) |
C4—C5—H5 | 119.6 | N2—C23—H23A | 108.7 |
C6—C5—H5 | 119.6 | C24—C23—H23A | 108.7 |
C1—C6—N1 | 119.6 (2) | N2—C23—H23B | 108.7 |
C1—C6—C5 | 118.6 (2) | C24—C23—H23B | 108.7 |
N1—C6—C5 | 121.7 (2) | H23A—C23—H23B | 107.6 |
C8—N1—C6 | 122.01 (19) | C25—C24—C29 | 118.2 (2) |
C8—N1—C10 | 116.47 (19) | C25—C24—C23 | 120.0 (2) |
C6—N1—C10 | 121.47 (19) | C29—C24—C23 | 121.7 (2) |
O1—C8—N1 | 122.6 (2) | C28—C29—C24 | 120.7 (2) |
O1—C8—C9 | 118.9 (2) | C28—C29—H29 | 119.7 |
N1—C8—C9 | 118.5 (2) | C24—C29—H29 | 119.7 |
O2—C9—N2 | 123.4 (2) | C27—C28—C29 | 120.2 (3) |
O2—C9—C8 | 119.1 (2) | C27—C28—H28 | 119.9 |
N2—C9—C8 | 117.6 (2) | C29—C28—H28 | 119.9 |
C9—N2—C1 | 122.08 (19) | C28—C27—C26 | 120.0 (3) |
C9—N2—C23 | 116.9 (2) | C28—C27—H27 | 120.0 |
C1—N2—C23 | 121.01 (19) | C26—C27—H27 | 120.0 |
N1—C10—C11 | 113.57 (18) | C27—C26—C25 | 119.9 (2) |
N1—C10—H10A | 108.9 | C27—C26—H26 | 120.0 |
C11—C10—H10A | 108.9 | C25—C26—H26 | 120.0 |
N1—C10—H10B | 108.9 | C26—C25—C24 | 121.0 (2) |
C11—C10—H10B | 108.9 | C26—C25—H25 | 119.5 |
H10A—C10—H10B | 107.7 | C24—C25—H25 | 119.5 |
C16—C11—C12 | 117.8 (2) | C3—C7—H7A | 109.5 |
C16—C11—C10 | 119.8 (2) | C3—C7—H7B | 109.5 |
C12—C11—C10 | 122.2 (2) | H7A—C7—H7B | 109.5 |
C11—C16—C15 | 121.2 (3) | C3—C7—H7C | 109.5 |
C11—C16—H16 | 119.4 | H7A—C7—H7C | 109.5 |
C15—C16—H16 | 119.4 | H7B—C7—H7C | 109.5 |
C6—C1—C2—C3 | −0.2 (3) | C6—C1—N2—C9 | −5.1 (3) |
N2—C1—C2—C3 | −179.82 (19) | C2—C1—N2—C9 | 174.47 (19) |
C1—C2—C3—C4 | 0.8 (3) | C6—C1—N2—C23 | 176.09 (18) |
C1—C2—C3—C7 | 179.8 (2) | C2—C1—N2—C23 | −4.3 (3) |
C2—C3—C4—C5 | −1.3 (4) | C8—N1—C10—C11 | −93.4 (2) |
C7—C3—C4—C5 | 179.7 (2) | C6—N1—C10—C11 | 88.9 (2) |
C3—C4—C5—C6 | 1.2 (4) | N1—C10—C11—C16 | −141.3 (2) |
C2—C1—C6—N1 | −178.95 (18) | N1—C10—C11—C12 | 44.0 (3) |
N2—C1—C6—N1 | 0.6 (3) | C12—C11—C16—C15 | 0.2 (4) |
C2—C1—C6—C5 | 0.1 (3) | C10—C11—C16—C15 | −174.7 (3) |
N2—C1—C6—C5 | 179.71 (18) | C11—C16—C15—C14 | 0.5 (5) |
C4—C5—C6—C1 | −0.6 (3) | C16—C15—C14—C13 | −1.0 (5) |
C4—C5—C6—N1 | 178.5 (2) | C15—C14—C13—C12 | 0.8 (5) |
C1—C6—N1—C8 | 4.6 (3) | C16—C11—C12—C13 | −0.4 (4) |
C5—C6—N1—C8 | −174.4 (2) | C10—C11—C12—C13 | 174.4 (2) |
C1—C6—N1—C10 | −177.85 (18) | C14—C13—C12—C11 | −0.1 (4) |
C5—C6—N1—C10 | 3.1 (3) | C9—N2—C23—C24 | −96.7 (2) |
C6—N1—C8—O1 | 176.7 (2) | C1—N2—C23—C24 | 82.2 (2) |
C10—N1—C8—O1 | −1.0 (3) | N2—C23—C24—C25 | −144.8 (2) |
C6—N1—C8—C9 | −5.3 (3) | N2—C23—C24—C29 | 39.5 (3) |
C10—N1—C8—C9 | 177.02 (19) | C25—C24—C29—C28 | −0.6 (4) |
O1—C8—C9—O2 | −0.4 (3) | C23—C24—C29—C28 | 175.1 (3) |
N1—C8—C9—O2 | −178.5 (2) | C24—C29—C28—C27 | 1.2 (5) |
O1—C8—C9—N2 | 179.0 (2) | C29—C28—C27—C26 | −0.6 (5) |
N1—C8—C9—N2 | 0.9 (3) | C28—C27—C26—C25 | −0.4 (5) |
O2—C9—N2—C1 | −176.4 (2) | C27—C26—C25—C24 | 1.0 (5) |
C8—C9—N2—C1 | 4.2 (3) | C29—C24—C25—C26 | −0.4 (4) |
O2—C9—N2—C23 | 2.4 (3) | C23—C24—C25—C26 | −176.2 (3) |
C8—C9—N2—C23 | −176.91 (19) |
Cg3 is the centroid of the C11–C16 benzene ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10A···O2i | 0.97 | 2.52 | 3.251 (3) | 132 |
C16—H16···O1i | 0.93 | 2.55 | 3.3984 (4) | 152 |
C25—H25···Cg3ii | 0.93 | 2.83 | 3.683 (3) | 153 |
Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) −x+2, −y, −z. |
Funding information
This study was supported by Ondokuz Mayıs University under project No. PYOFEN.1906.19.001.
References
Abraham, C. J., Paull, D. H., Scerba, M. T., Grebinski, J. W. & Lectka, T. (2006). J. Am. Chem. Soc. 128, 13370–13371. CSD CrossRef PubMed CAS Google Scholar
Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Cai, J., Zou, J., Pan, X. & Zhang, W. (2008). Tetrahedron Lett. 49, 7386–7390. CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
El Janati, A., Elmsellem, H., Kandri Rodi, Y., Ouzidan, Y., Ramdani, M., Mokhtari, M., Abdel-Rahman, I., Cherif Alaoui, I., Ouazzani Chahdi, F. & Kusuma, H. S. (2020). Int. J. Corros. Scale Inhib. 9, 644–660. Google Scholar
El Janati, A., Kandri Rodi, Y., Jasinski, J. P., Kaur, M., Ouzidan, Y. & Essassi, E. M. (2017). IUCrData, 2, x170901. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Guillon, J., Grellier, P., Labaied, M., Sonnet, P., Léger, J. M., Déprez-Poulain, R., Forfar-Bares, I., Dallemagne, P., Lemaître, N., Péhourcq, F., Rochette, J., Sergheraert, C. & Jarry, C. (2004). J. Med. Chem. 47, 1997–2009. Web of Science CSD CrossRef PubMed CAS Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Noolvi, M. N., Patel, H. M., Bhardwaj, V. & Chauhan, A. (2011). Eur. J. Med. Chem. 46, 2327–2346. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. The University of Western Australia. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xu, H. & Fan, L. L. (2011). Eur. J. Med. Chem. 46, 1919–1925. Web of Science CrossRef CAS PubMed Google Scholar
Yan, L., Liu, F. W., Dai, G. F. & Liu, H. M. (2007). Bioorg. Med. Chem. Lett. 17, 609–612. Web of Science CrossRef PubMed CAS Google Scholar
Zouitini, A., Kandri Rodi, Y., Elmselem, H., Ouazzani Chahdi, F., Steli, H., Ad, C., Ouzidan, Y., Essassi, E., Chetouani, A. & Hammouti, B. (2018). Moroc. J. Chem. 6, 391–403. CAS Google Scholar
Zouitini, A., Kandri Rodi, Y., Ouzidan, Y., Ouazzani Chahdi, F., Mokhtari, M., Abdel-Rahman, I., Essassi, E. M., Aouniti, A., Hammouti, B. & Elmsellem, H. (2019). Int. J. Corros. Scale Inhib. 8, 225–240. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.