research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structures and Hirshfeld surface analysis of 1,4-di­benzyl-6-methyl-1,4-di­hydro­quinoxaline-2,3-dione

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Samsun, 55200, Turkey, bLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, BP 2202, Fez, Morocco, cLaboratoire de Chimie Physique et Chimie Bio-organique, Faculté des Sciences et Techniques Mohammedia, Université Hassan II, Casablanca, BP 146, 28800, Mohammedia, Morocco, dInstitut Lavoisier de Versailles, UVSQ, CNRS, Université Paris-Saclay, 78035 Versailles, France, and eDepartment of Computer and Electronic Engineering Technology, Sana'a Community College, Sana'a, Yemen
*Correspondence e-mail: eiad.saif2016@gmail.com

Edited by J. T. Mague, Tulane University, USA (Received 16 June 2020; accepted 19 July 2020; online 24 July 2020)

The title quinoxaline mol­ecule, C23H20N2O2, is not planar, the dihedral angle angle between the mean planes of the benzene rings being 72.54 (15)°. In the crystal, mol­ecules are connected into chains extending parallel to (10[\overline{1}]) by weak C—H⋯O hydrogen bonds. Weak C—H⋯π inter­actions link the chains, forming a three-dimensional network structure. Hirshfeld surface analysis revealed that the most important contributions for the crystal packing are from H⋯H (48.7%), H⋯C/C⋯H (32.0%), H⋯O/O⋯H (15.4%), C⋯C (1.9%), H⋯N/N⋯H (1.1%) contacts.

1. Chemical context

Given their importance in the pharmaceutical, chemical and industrial fields, the synthesis of quinoxaline and its derivatives has been a goal of chemists in recent years. Quinoxaline derivatives find use as anti­cancer (Noolvi et al., 2011[Noolvi, M. N., Patel, H. M., Bhardwaj, V. & Chauhan, A. (2011). Eur. J. Med. Chem. 46, 2327-2346.]), anti­malarial (Guillon et al., 2004[Guillon, J., Grellier, P., Labaied, M., Sonnet, P., Léger, J. M., Déprez-Poulain, R., Forfar-Bares, I., Dallemagne, P., Lemaître, N., Péhourcq, F., Rochette, J., Sergheraert, C. & Jarry, C. (2004). J. Med. Chem. 47, 1997-2009.]), anti­fungal (Xu & Fan, 2011[Xu, H. & Fan, L. L. (2011). Eur. J. Med. Chem. 46, 1919-1925.]), anti­viral (Cai et al., 2008[Cai, J., Zou, J., Pan, X. & Zhang, W. (2008). Tetrahedron Lett. 49, 7386-7390.]) and anti-inflammatory (Yan et al., 2007[Yan, L., Liu, F. W., Dai, G. F. & Liu, H. M. (2007). Bioorg. Med. Chem. Lett. 17, 609-612.]) agents. Some quinoxaline derivatives have also been reported to be corrosion inhibitors for steel in an acidic medium (Zouitini et al., 2018[Zouitini, A., Kandri Rodi, Y., Elmselem, H., Ouazzani Chahdi, F., Steli, H., Ad, C., Ouzidan, Y., Essassi, E., Chetouani, A. & Hammouti, B. (2018). Moroc. J. Chem. 6, 391-403.], 2019[Zouitini, A., Kandri Rodi, Y., Ouzidan, Y., Ouazzani Chahdi, F., Mokhtari, M., Abdel-Rahman, I., Essassi, E. M., Aouniti, A., Hammouti, B. & Elmsellem, H. (2019). Int. J. Corros. Scale Inhib. 8, 225-240.]; El Janati et al., 2020[El Janati, A., Elmsellem, H., Kandri Rodi, Y., Ouzidan, Y., Ramdani, M., Mokhtari, M., Abdel-Rahman, I., Cherif Alaoui, I., Ouazzani Chahdi, F. & Kusuma, H. S. (2020). Int. J. Corros. Scale Inhib. 9, 644-660.]). In this work, we report the synthesis and structure of the title compound obtained by the action of benzyl chloride on 6-methyl-1,4-di­hydro­quinoxaline-2,3-dione in the presence of potassium carbonate and a catalytic qu­antity of tetra-n-butyl­ammonium bromide. A Hirshfeld surface analysis was also performed.

[Scheme 1]

2. Structural commentary

An ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) view of the mol­ecule is given in Fig. 1[link]. The mol­ecule is not planar, the dihedral angle angle between the mean planes of the benzene rings (C11–C16 and C24–C29) being 72.54 (15)°. The mean planes of the C1/N2/C9/C8/N1/C6 and C11–C16 rings make an angle of 73.093 (13)° while the C1–C6 and C24–C29 rings make an angle of 79.01 (14)°. The C1/N2/C9/C8/N1/C6 and C1–C6 rings are nearly coplanar, subtending a dihedral angle of only 3.07 (11)°. The C8=O1 and C9=O2 bonds show double-bond character with bond lengths of 1.222 (3) and 1.217 (3) Å, respectively. The N1—C10 and N2—C23 bond lengths are 1.476 (3) and 1.464 (3) Å, respectively while the C11—C10—N1 bond angle is 113.57 (18)° and the N2—C23—C24 bond angle is 114.05 (18)°. The C9—N2—C23—C24 and C8—N1—C10—C11 torsion angles are −96.7 (2) and −93.4 (2)°, respectively.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 40% probability level.

3. Supra­molecular features

In the crystal, mol­ecules are connected by weak C16—H16⋯O1 and C10—H10A⋯O2 hydrogen bonds into chains extending parallel to (10[\overline{1}]) (Table 1[link] and Fig. 2[link]). Weak C25—H25⋯Cg3 inter­actions (2.83 Å; Cg3 is the centroid of the C11–C16 ring at −x + 2, −y, −z) link the chains into a three-dimensional network structure (Table 1[link] and Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C11–C16 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯O2i 0.97 2.52 3.251 (3) 132
C16—H16⋯O1i 0.93 2.55 3.3984 (4) 152
C25—H25⋯Cg3ii 0.93 2.83 3.683 (3) 153
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+2, -y, -z.
[Figure 2]
Figure 2
View of a portion of a chain along the a-axis direction with C—H⋯O hydrogen bonds depicted by dashed lines.
[Figure 3]
Figure 3
Packing viewed along the a-axis direction with C—H⋯O hydrogen bonds and C—H⋯π(ring) inter­actions depicted, respectively, by black and green dashed lines.

4. Hirshfeld surface analysis

The CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. The University of Western Australia.]) program was used to analyse the inter­actions within the crystal. The donor–acceptor groups are visualized using a standard (high) surface resolution and dnorm surfaces mapped over a fixed colour scale of −0.140 (red) to 1.358 (blue) a.u., as illustrated in Fig. 4[link]. Red spots on the surface of the dnorm plot indicate inter­molecular contacts involving the hydrogen bonds. The red spots identified in Fig. 4[link](a) correspond to the inter­molecular C—H⋯O bonds. Regions close to the sum of the van der Waals radii are shown in white. Fig. 4[link](b) shows the shape-index surface, which can be used to detect the presence of π-stacking inter­actions. The absence of characteristic triangles indicates that no significant ππ inter­actions are present. Two-dimensional fingerprints were also generated in the range −1 to 1 Å (Fig. 5[link]). As expected, H⋯H (48.7%) and H⋯C/C⋯H (32.0%) contacts dominate the inter­molecular inter­actions, but the O⋯H/H⋯O contacts are important directional inter­molecular inter­actions in the crystal. The C⋯C (1.9%) and H⋯N/N⋯H (1.1%) contribute minimally to the overall crystal packing.

[Figure 4]
Figure 4
Hirshfeld surface mapper over (a) dnorm and (b) shape-index to visualize the inter­actions in the title compound.
[Figure 5]
Figure 5
Fingerprint plot for all inter­actions and those delineated into the most important inter­actions.

5. Database survey

A search of the Cambridge Structural Database (CSD, version 5.40, update August 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using 1-benzyl-3,4-di­hydro­quinoxalin-2(1H)-one as the main skeleton revealed the presence of three structures similar to the title compound, but with different substituents. These are: 1,4,6-tribenzoyl-3-(4-bromo­benz­yl)-1,4-di­hydro­quinoxaline-2-one (LEQWIO; Abraham et al., 2006[Abraham, C. J., Paull, D. H., Scerba, M. T., Grebinski, J. W. & Lectka, T. (2006). J. Am. Chem. Soc. 128, 13370-13371.]), 1,4-dibenzoyl-6-tri­fluoro­methyl-3-(4-bromo­benz­yl)-1,4-di­hydro­quinoxaline-2-one (LEQWOU; Abraham et al., 2006[Abraham, C. J., Paull, D. H., Scerba, M. T., Grebinski, J. W. & Lectka, T. (2006). J. Am. Chem. Soc. 128, 13370-13371.]) and 1,4-dibenzyl-6-chloro-1,4-di­hydro­quinoxaline-2,3-dione (PAWFEB; El Janati et al., 2017[El Janati, A., Kandri Rodi, Y., Jasinski, J. P., Kaur, M., Ouzidan, Y. & Essassi, E. M. (2017). IUCrData, 2, x170901.]). In the latter study (PAWFEB) examining compounds having the same skeletal system as the 1,4-di­hydro­quinoxaline-2,3-dione structure in the title compound, the corrosion inhibition efficiency of 1,4-diallyl-6-chloro­quin­oxaline-2,3-(1H,4H)-dione and 1,4-diallyl-6-nitro­quinoxaline-2,3-(1H,4H)-dione on mild steel (MS) in 1.0 M HCl solution was investigated.

6. Synthesis and crystallization

To a solution of 6-methyl-1,4-di­hydro­quinoxaline-2,3-dione (0.3 g, 1.73 mmol) in DMF (15 mL), were added potassium carbonate (0.47 g, 3.61 mmol) and tetra-nbutyl­ammonium bromide (0.07g, 0.23 mmol). After stirring for 10 min, 0.5 mL (4.32 mmol) of benzyl chloride was added and the mixture was stirred at room temperature for 6 h. After filtration of the salts, the DMF was evaporated under reduced pressure and the residue obtained was dissolved in di­chloro­methane. The organic phase was then dried over Na2SO4 and concentrated. The mixture obtained was chromatographed on a silica gel column [eluent: hexa­ne/ethyl­acetate (2/1)]. The crude product was recrystallized from ethanol as yellow crystals suitable for X-ray analysis (m.p. 493.5 K).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms treated as riding: C—H = 0.97 Å and Uiso(H) = 1.5Ueq(C) for methyl, C—H = 0.96 Å and Uiso(H) = 1.2Ueq(C) for methyl­ene, C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic and C—H = 0.98 Å and Uiso(H) = 1.2Ueq(C) for methine H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C23H20N2O2
Mr 356.41
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 9.0844 (12), 18.7227 (18), 11.2708 (14)
β (°) 104.848 (4)
V3) 1853.0 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.30 × 0.16 × 0.06
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.677, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 22287, 4253, 2487
Rint 0.054
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.188, 1.04
No. of reflections 4253
No. of parameters 244
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.38, −0.25
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/3 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2018/3 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2020); software used to prepare material for publication: WinGX (Farrugia, 2012), PLATON (Spek, 2020), SHELXL2018 (Sheldrick, 2015b) and publCIF (Westrip, 2010).

1,4-Dibenzyl-6-methyl-1,4-dihydroquinoxaline-2,3-dione top
Crystal data top
C23H20N2O2F(000) = 752
Mr = 356.41Dx = 1.278 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.0844 (12) ÅCell parameters from 4963 reflections
b = 18.7227 (18) Åθ = 2.6–24.6°
c = 11.2708 (14) ŵ = 0.08 mm1
β = 104.848 (4)°T = 296 K
V = 1853.0 (4) Å3Parallelepiped, yellow
Z = 40.30 × 0.16 × 0.06 mm
Data collection top
Bruker APEXII CCD
diffractometer
2487 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.054
φ and ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1011
Tmin = 0.677, Tmax = 0.746k = 1724
22287 measured reflectionsl = 1414
4253 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.188H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0761P)2 + 0.7497P]
where P = (Fo2 + 2Fc2)/3
4253 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.38 e Å3
1 restraintΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6364 (2)0.24430 (9)0.60030 (16)0.0668 (5)
O20.6604 (2)0.34222 (11)0.77924 (17)0.0787 (6)
C10.3801 (2)0.42320 (11)0.5380 (2)0.0453 (5)
C20.2840 (3)0.48294 (13)0.5167 (2)0.0565 (6)
H20.2908500.5166630.5784990.068*
C30.1779 (3)0.49239 (14)0.4035 (3)0.0606 (7)
C40.1685 (3)0.44202 (16)0.3149 (3)0.0665 (7)
H40.0967800.4475130.2400480.080*
C50.2611 (3)0.38383 (14)0.3329 (2)0.0605 (7)
H50.2530410.3508190.2699200.073*
C60.3690 (2)0.37294 (12)0.4457 (2)0.0463 (5)
C70.0744 (4)0.55686 (17)0.3816 (3)0.0857 (9)
H7A0.0970170.5864380.4535410.129*
H7B0.0902050.5836270.3132220.129*
H7C0.0297660.5414850.3640040.129*
N10.4634 (2)0.31227 (10)0.46724 (17)0.0479 (5)
C80.5589 (3)0.29843 (12)0.5791 (2)0.0502 (6)
C90.5729 (3)0.35335 (13)0.6795 (2)0.0530 (6)
N20.4870 (2)0.41352 (10)0.65252 (17)0.0477 (5)
C100.4593 (3)0.25871 (12)0.3703 (2)0.0564 (6)
H10A0.3564260.2559430.3180860.068*
H10B0.4847570.2123200.4083950.068*
C110.5669 (3)0.27494 (12)0.2918 (2)0.0520 (6)
C120.7141 (3)0.29739 (15)0.3413 (3)0.0682 (7)
H120.7465390.3068580.4249920.082*
C130.8143 (4)0.30607 (17)0.2690 (3)0.0839 (10)
H130.9133840.3213550.3037810.101*
C140.7672 (5)0.29203 (17)0.1452 (4)0.0907 (11)
H140.8347250.2972180.0961170.109*
C150.6232 (6)0.2708 (2)0.0954 (3)0.1045 (12)
H150.5908200.2620120.0115000.125*
C160.5229 (4)0.26191 (17)0.1682 (3)0.0820 (9)
H160.4238930.2468230.1325730.098*
C230.5078 (3)0.46790 (13)0.7488 (2)0.0561 (6)
H23A0.5022940.5147210.7110690.067*
H23B0.6088280.4626780.8033600.067*
C240.3920 (3)0.46424 (11)0.8239 (2)0.0486 (5)
C250.3412 (3)0.52590 (13)0.8661 (2)0.0641 (7)
H250.3739010.5698410.8440970.077*
C260.2429 (4)0.52371 (16)0.9403 (3)0.0785 (9)
H260.2082370.5659560.9671370.094*
C270.1958 (4)0.45942 (18)0.9747 (3)0.0799 (9)
H270.1296750.4578861.0253740.096*
C280.2455 (4)0.39791 (16)0.9349 (3)0.0777 (8)
H280.2142000.3541820.9590340.093*
C290.3424 (3)0.39995 (13)0.8588 (3)0.0666 (7)
H290.3745610.3574970.8306980.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0702 (12)0.0659 (11)0.0686 (12)0.0218 (9)0.0256 (9)0.0050 (8)
O20.0710 (13)0.1036 (15)0.0554 (11)0.0349 (11)0.0050 (10)0.0041 (10)
C10.0359 (11)0.0508 (12)0.0539 (14)0.0000 (9)0.0197 (10)0.0130 (10)
C20.0536 (14)0.0563 (13)0.0671 (16)0.0013 (11)0.0292 (13)0.0090 (12)
C30.0433 (13)0.0678 (15)0.0736 (18)0.0060 (11)0.0204 (13)0.0259 (14)
C40.0497 (15)0.089 (2)0.0604 (16)0.0034 (14)0.0131 (12)0.0162 (15)
C50.0476 (14)0.0820 (17)0.0528 (15)0.0043 (13)0.0149 (12)0.0033 (13)
C60.0370 (11)0.0550 (12)0.0514 (13)0.0041 (10)0.0197 (10)0.0057 (10)
C70.071 (2)0.090 (2)0.094 (2)0.0186 (17)0.0178 (17)0.0233 (18)
N10.0414 (10)0.0542 (11)0.0525 (12)0.0031 (8)0.0200 (9)0.0006 (9)
C80.0458 (13)0.0563 (13)0.0540 (14)0.0056 (11)0.0231 (11)0.0057 (11)
C90.0449 (13)0.0656 (15)0.0518 (14)0.0104 (11)0.0184 (12)0.0029 (11)
N20.0442 (10)0.0510 (10)0.0519 (11)0.0002 (8)0.0194 (9)0.0012 (8)
C100.0487 (14)0.0588 (14)0.0650 (16)0.0127 (11)0.0204 (12)0.0112 (12)
C110.0514 (14)0.0517 (12)0.0570 (14)0.0012 (11)0.0213 (11)0.0011 (11)
C120.0526 (15)0.0883 (19)0.0666 (17)0.0084 (14)0.0205 (13)0.0175 (14)
C130.0586 (17)0.087 (2)0.117 (3)0.0116 (15)0.0420 (18)0.0379 (19)
C140.116 (3)0.0689 (18)0.117 (3)0.0319 (19)0.084 (3)0.0182 (18)
C150.143 (4)0.109 (3)0.082 (2)0.003 (3)0.066 (3)0.024 (2)
C160.087 (2)0.094 (2)0.0682 (19)0.0083 (17)0.0272 (16)0.0236 (16)
C230.0534 (14)0.0531 (13)0.0644 (15)0.0076 (11)0.0198 (12)0.0054 (11)
C240.0478 (13)0.0474 (12)0.0513 (13)0.0012 (10)0.0142 (10)0.0025 (10)
C250.0786 (19)0.0498 (13)0.0684 (17)0.0069 (12)0.0272 (15)0.0007 (12)
C260.099 (2)0.0731 (18)0.0750 (19)0.0230 (17)0.0426 (17)0.0042 (15)
C270.082 (2)0.106 (2)0.0638 (18)0.0093 (18)0.0411 (16)0.0004 (17)
C280.090 (2)0.0710 (18)0.085 (2)0.0113 (16)0.0457 (17)0.0041 (15)
C290.0773 (18)0.0492 (13)0.0837 (19)0.0066 (12)0.0396 (15)0.0059 (13)
Geometric parameters (Å, º) top
O1—C81.222 (3)C16—H160.9300
O2—C91.217 (3)C15—C141.345 (5)
C1—C61.388 (3)C15—H150.9300
C1—C21.401 (3)C14—C131.376 (5)
C1—N21.414 (3)C14—H140.9300
C2—C31.400 (4)C13—C121.378 (4)
C2—H20.9300C13—H130.9300
C3—C41.360 (4)C12—H120.9300
C3—C71.511 (4)C23—C241.511 (3)
C4—C51.360 (4)C23—H23A0.9700
C4—H40.9300C23—H23B0.9700
C5—C61.407 (3)C24—C251.373 (3)
C5—H50.9300C24—C291.378 (3)
C6—N11.406 (3)C29—C281.378 (4)
N1—C81.359 (3)C29—H290.9300
N1—C101.476 (3)C28—C271.355 (4)
C8—C91.510 (3)C28—H280.9300
C9—N21.360 (3)C27—C261.366 (4)
N2—C231.464 (3)C27—H270.9300
C10—C111.507 (3)C26—C251.371 (4)
C10—H10A0.9700C26—H260.9300
C10—H10B0.9700C25—H250.9300
C11—C161.370 (4)C7—H7A0.9600
C11—C121.376 (4)C7—H7B0.9600
C16—C151.384 (5)C7—H7C0.9600
C6—C1—C2119.4 (2)C14—C15—C16120.4 (3)
C6—C1—N2119.92 (19)C14—C15—H15119.8
C2—C1—N2120.7 (2)C16—C15—H15119.8
C3—C2—C1120.7 (2)C15—C14—C13119.7 (3)
C3—C2—H2119.7C15—C14—H14120.1
C1—C2—H2119.7C13—C14—H14120.1
C4—C3—C2118.7 (2)C14—C13—C12119.8 (3)
C4—C3—C7121.0 (3)C14—C13—H13120.1
C2—C3—C7120.3 (3)C12—C13—H13120.1
C5—C4—C3121.7 (3)C11—C12—C13121.1 (3)
C5—C4—H4119.1C11—C12—H12119.4
C3—C4—H4119.1C13—C12—H12119.4
C4—C5—C6120.8 (3)N2—C23—C24114.05 (18)
C4—C5—H5119.6N2—C23—H23A108.7
C6—C5—H5119.6C24—C23—H23A108.7
C1—C6—N1119.6 (2)N2—C23—H23B108.7
C1—C6—C5118.6 (2)C24—C23—H23B108.7
N1—C6—C5121.7 (2)H23A—C23—H23B107.6
C8—N1—C6122.01 (19)C25—C24—C29118.2 (2)
C8—N1—C10116.47 (19)C25—C24—C23120.0 (2)
C6—N1—C10121.47 (19)C29—C24—C23121.7 (2)
O1—C8—N1122.6 (2)C28—C29—C24120.7 (2)
O1—C8—C9118.9 (2)C28—C29—H29119.7
N1—C8—C9118.5 (2)C24—C29—H29119.7
O2—C9—N2123.4 (2)C27—C28—C29120.2 (3)
O2—C9—C8119.1 (2)C27—C28—H28119.9
N2—C9—C8117.6 (2)C29—C28—H28119.9
C9—N2—C1122.08 (19)C28—C27—C26120.0 (3)
C9—N2—C23116.9 (2)C28—C27—H27120.0
C1—N2—C23121.01 (19)C26—C27—H27120.0
N1—C10—C11113.57 (18)C27—C26—C25119.9 (2)
N1—C10—H10A108.9C27—C26—H26120.0
C11—C10—H10A108.9C25—C26—H26120.0
N1—C10—H10B108.9C26—C25—C24121.0 (2)
C11—C10—H10B108.9C26—C25—H25119.5
H10A—C10—H10B107.7C24—C25—H25119.5
C16—C11—C12117.8 (2)C3—C7—H7A109.5
C16—C11—C10119.8 (2)C3—C7—H7B109.5
C12—C11—C10122.2 (2)H7A—C7—H7B109.5
C11—C16—C15121.2 (3)C3—C7—H7C109.5
C11—C16—H16119.4H7A—C7—H7C109.5
C15—C16—H16119.4H7B—C7—H7C109.5
C6—C1—C2—C30.2 (3)C6—C1—N2—C95.1 (3)
N2—C1—C2—C3179.82 (19)C2—C1—N2—C9174.47 (19)
C1—C2—C3—C40.8 (3)C6—C1—N2—C23176.09 (18)
C1—C2—C3—C7179.8 (2)C2—C1—N2—C234.3 (3)
C2—C3—C4—C51.3 (4)C8—N1—C10—C1193.4 (2)
C7—C3—C4—C5179.7 (2)C6—N1—C10—C1188.9 (2)
C3—C4—C5—C61.2 (4)N1—C10—C11—C16141.3 (2)
C2—C1—C6—N1178.95 (18)N1—C10—C11—C1244.0 (3)
N2—C1—C6—N10.6 (3)C12—C11—C16—C150.2 (4)
C2—C1—C6—C50.1 (3)C10—C11—C16—C15174.7 (3)
N2—C1—C6—C5179.71 (18)C11—C16—C15—C140.5 (5)
C4—C5—C6—C10.6 (3)C16—C15—C14—C131.0 (5)
C4—C5—C6—N1178.5 (2)C15—C14—C13—C120.8 (5)
C1—C6—N1—C84.6 (3)C16—C11—C12—C130.4 (4)
C5—C6—N1—C8174.4 (2)C10—C11—C12—C13174.4 (2)
C1—C6—N1—C10177.85 (18)C14—C13—C12—C110.1 (4)
C5—C6—N1—C103.1 (3)C9—N2—C23—C2496.7 (2)
C6—N1—C8—O1176.7 (2)C1—N2—C23—C2482.2 (2)
C10—N1—C8—O11.0 (3)N2—C23—C24—C25144.8 (2)
C6—N1—C8—C95.3 (3)N2—C23—C24—C2939.5 (3)
C10—N1—C8—C9177.02 (19)C25—C24—C29—C280.6 (4)
O1—C8—C9—O20.4 (3)C23—C24—C29—C28175.1 (3)
N1—C8—C9—O2178.5 (2)C24—C29—C28—C271.2 (5)
O1—C8—C9—N2179.0 (2)C29—C28—C27—C260.6 (5)
N1—C8—C9—N20.9 (3)C28—C27—C26—C250.4 (5)
O2—C9—N2—C1176.4 (2)C27—C26—C25—C241.0 (5)
C8—C9—N2—C14.2 (3)C29—C24—C25—C260.4 (4)
O2—C9—N2—C232.4 (3)C23—C24—C25—C26176.2 (3)
C8—C9—N2—C23176.91 (19)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C11–C16 benzene ring.
D—H···AD—HH···AD···AD—H···A
C10—H10A···O2i0.972.523.251 (3)132
C16—H16···O1i0.932.553.3984 (4)152
C25—H25···Cg3ii0.932.833.683 (3)153
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+2, y, z.
 

Funding information

This study was supported by Ondokuz Mayıs University under project No. PYOFEN.1906.19.001.

References

First citationAbraham, C. J., Paull, D. H., Scerba, M. T., Grebinski, J. W. & Lectka, T. (2006). J. Am. Chem. Soc. 128, 13370–13371.  CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCai, J., Zou, J., Pan, X. & Zhang, W. (2008). Tetrahedron Lett. 49, 7386–7390.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEl Janati, A., Elmsellem, H., Kandri Rodi, Y., Ouzidan, Y., Ramdani, M., Mokhtari, M., Abdel-Rahman, I., Cherif Alaoui, I., Ouazzani Chahdi, F. & Kusuma, H. S. (2020). Int. J. Corros. Scale Inhib. 9, 644–660.  Google Scholar
First citationEl Janati, A., Kandri Rodi, Y., Jasinski, J. P., Kaur, M., Ouzidan, Y. & Essassi, E. M. (2017). IUCrData, 2, x170901.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuillon, J., Grellier, P., Labaied, M., Sonnet, P., Léger, J. M., Déprez-Poulain, R., Forfar-Bares, I., Dallemagne, P., Lemaître, N., Péhourcq, F., Rochette, J., Sergheraert, C. & Jarry, C. (2004). J. Med. Chem. 47, 1997–2009.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNoolvi, M. N., Patel, H. M., Bhardwaj, V. & Chauhan, A. (2011). Eur. J. Med. Chem. 46, 2327–2346.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. The University of Western Australia.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, H. & Fan, L. L. (2011). Eur. J. Med. Chem. 46, 1919–1925.  Web of Science CrossRef CAS PubMed Google Scholar
First citationYan, L., Liu, F. W., Dai, G. F. & Liu, H. M. (2007). Bioorg. Med. Chem. Lett. 17, 609–612.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZouitini, A., Kandri Rodi, Y., Elmselem, H., Ouazzani Chahdi, F., Steli, H., Ad, C., Ouzidan, Y., Essassi, E., Chetouani, A. & Hammouti, B. (2018). Moroc. J. Chem. 6, 391–403.  CAS Google Scholar
First citationZouitini, A., Kandri Rodi, Y., Ouzidan, Y., Ouazzani Chahdi, F., Mokhtari, M., Abdel-Rahman, I., Essassi, E. M., Aouniti, A., Hammouti, B. & Elmsellem, H. (2019). Int. J. Corros. Scale Inhib. 8, 225–240.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds