research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The low-temperature triclinic crystal structure of silver 3-sulfo­benzoic acid

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, Michigan 48859, USA, and bCollege of Natural Sciences and Mathematics, University of Toledo, Toledo, OH 43606, USA
*Correspondence e-mail: p.squattrito@cmich.edu

Edited by J. T. Mague, Tulane University, USA (Received 23 June 2020; accepted 9 July 2020; online 14 July 2020)

Poly[(μ4-3-carboxybenzenesulfonato)silver(I)], Ag(O3SC6H4CO2H) or [Ag(C7H5O5S)]n, has been found to undergo a reversible phase transition from monoclinic to triclinic between 160 and 150 K. The low-temperature triclinic structure (space group P[\overline{1}]) has been determined at 100 K. In contrast to the reported room temperature monoclinic structure, in which the nearly equivalent carboxyl­ate C—O distances indicate that the acidic hydrogen is randomly distributed between the O atoms, at 100 K the C—O (protonated) and C=O (unprotonated) bonds are clearly resolved, resulting in the reduction in symmetry from C2/c to P[\overline{1}].

1. Chemical context

Over the past two decades, organo­sulfonate and organo­carboxyl­ate anions have received significant attention as building blocks for metal-organic framework (MOF) structures (Dey et al., 2014[Dey, C., Kundu, T., Biswal, B. P., Mallick, A. & Banerjee, R. (2014). Acta Cryst. B70, 3-10.]; Shimizu et al., 2009[Shimizu, G. K. H., Vaidhyanathan, R. & Taylor, J. M. (2009). Chem. Soc. Rev. 38, 1430-1449.]). As a result of its soft nature, sulfonate tends to bond well with soft cations like silver(I) so a significant chemistry of silver sulfonates has developed during this period (Côté & Shimizu, 2004[Côté, A. P. & Shimizu, G. K. H. (2004). Inorg. Chem. 43, 6663-6673.]; Hoffart et al., 2005[Hoffart, D. J., Dalrymple, S. A. & Shimizu, G. K. H. (2005). Inorg. Chem. 44, 8868-8875.]). Having previously investigated some structures of silver sulfonate salts (Downer et al., 2006[Downer, S. M., Squattrito, P. J., Bestaoui, N. & Clearfield, A. (2006). J. Chem. Crystallogr. 36, 487-501.]; Squattrito et al., 2019[Squattrito, P. J., Lambright-Mutthamsetty, K. J., Giolando, P. A. & Kirschbaum, K. (2019). Acta Cryst. E75, 1801-1807.]), we have continued this effort with the reaction of Ag+ with the bifunctional 3-sulfobenzoate anion. The resulting monobasic salt has been found to have an unexpected low-temperature structural modification that is reported here.

[Scheme 1]

2. Structural commentary

The product of the reaction of silver nitrate and sodium 3-sulfo­benzoic acid is Ag(O3SC6H4CO2H), (I)[link], an anhydrous monobasic silver(I) salt of 3-sulfo­benzoic acid. The room-temperature (293 K) structure of (I)[link] was previously reported in the monoclinic space group C2/c with one independent cation and anion in the asymmetric unit (Prochniak et al., 2008[Prochniak, G., Videnova-Adrabinska, V., Daszkiewicz, M. & Pietraszko, A. (2008). J. Mol. Struct. 891, 178-183.]). We find the structure at 100 K to be triclinic (P[\overline{1}]) with two independent cations and anions in the asymmetric unit (Fig. 1[link]). The major features of the structure at 100 K are consistent with those at 293 K. The silver ions are coordinated by six sulfonate O atoms with four shorter (ca 2.4–2.5 Å) and two longer (ca 2.7 Å) distances (Table 1[link]) in an irregular hexa­coordinate geometry [somewhat inaccurately described as tetra­hedral by Prochniak et al.; the O—Ag—O angles for the four shorter Ag—O bonds range from 71.25 (7) to 164.88 (6)° indicating at best a very distorted tetra­hedron]. Not surprisingly, the Ag—O distances are shorter by an average of 0.02 Å at 100 K than at 293 K. This kind of pseudo-tetra­hedral coordination geometry significantly distorted by two somewhat longer Ag—O inter­actions was previously observed in the silver salt of 6-ammonio­naphthalene-1,3-di­sulfonate (Downer et al., 2006[Downer, S. M., Squattrito, P. J., Bestaoui, N. & Clearfield, A. (2006). J. Chem. Crystallogr. 36, 487-501.]). The Ag—O distances are consistent with those seen in other silver arene­sulfonates (Côté & Shimizu, 2004[Côté, A. P. & Shimizu, G. K. H. (2004). Inorg. Chem. 43, 6663-6673.]). The extensive metal–sulfonate bonding is as expected given the softer nature of Ag+ relative to most d-block transition-metal ions (Parr & Pearson, 1983[Parr, R. G. & Pearson, R. G. (1983). J. Am. Chem. Soc. 105, 7512-7516.]), which generally show little tendency to bond directly to sulfonate groups (Ma et al., 2003[Ma, J.-F., Yang, J. & Liu, J.-F. (2003). Acta Cryst. E59, m478-m480.]). The carboxyl­ate group remains protonated with the acidic H atoms unambiguously located on O2 and O7. The C—O distances in the carboxyl­ate groups clearly distinguish the non-protonated (C=O) and protonated (C—O) O atoms: C7—O1 1.232 (3), C7—O2 1.312 (3) Å; C14—O6 1.231 (3), C14—O7 1.311 (3) Å.

Table 1
Selected bond lengths (Å)

Ag1—O3i 2.3868 (18) Ag2—O9ii 2.4090 (17)
Ag1—O8 2.4091 (18) Ag2—O5iv 2.4199 (18)
Ag1—O10ii 2.4406 (18) Ag2—O4v 2.4609 (18)
Ag1—O10iii 2.5249 (18) Ag2—O4 2.5295 (18)
Ag1—O5 2.6853 (19) Ag2—O8 2.6953 (19)
Ag1—O4 2.7254 (19) Ag2—O10 2.7179 (19)
Symmetry codes: (i) -x+3, -y+1, -z+1; (ii) -x+2, -y, -z+1; (iii) x+1, y, z; (iv) x-1, y, z; (v) -x+2, -y+1, -z+1.
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing the atom-numbering scheme. Displacement ellipsoids are shown at the 75% probability level and hydrogen atoms are shown as small spheres of arbitrary radii. Symmetry-equivalent oxygen atoms are included to show the complete coordination environments of the cations. [Symmetry codes: (#) 2 − x, −y, 1 − z; (@) x + 1, y, z; ($) 3 − x, 1 − y, 1 − z; (&) 2 − x, 1 − y, 1 − z; (%) x − 1, y, z.]

3. Supra­molecular features

The packing in (I)[link] features layers of metal ions in the ab plane alternating with double-layers of 3-sulfo­benzoic acid anions stacking along the c-axis direction (Fig. 2[link]). Anions in adjacent layers are linked by O—H⋯O hydrogen bonds between neighboring carb­oxy­lic acid groups in the classic dimerization of such mol­ecules (Table 2[link]; Fig. 3[link]). The symmetry-independent anions alternate in the b-axis direction within the layer. The rings of these anions are significantly out of parallel with an inter­planar angle of ca 139°. This packing motif with the sulfonate and carboxyl­ate groups directed to opposite sides of the layer is contrary to what was found in the silver salt of the isomeric 4-sulfo­benzoic acid (Squattrito et al., 2019[Squattrito, P. J., Lambright-Mutthamsetty, K. J., Giolando, P. A. & Kirschbaum, K. (2019). Acta Cryst. E75, 1801-1807.]). In that compound, both functional groups are involved in metal–oxygen bonding so the anions are positioned with both groups equally distributed with respect to each surface of the layer, in contrast to the segregated arrangement in (I)[link].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1vi 0.84 1.81 2.631 (3) 164
O7—H7⋯O6vii 0.84 1.81 2.651 (3) 176
Symmetry codes: (vi) -x+2, -y, -z; (vii) -x+2, -y+1, -z+2.
[Figure 2]
Figure 2
Packing diagram of (I)[link] with an outline of the unit cell. View is onto the (100) plane. The double-layers of 3-sulfo­benzoic acid anions are evident with the silver ions situated in between the layers. O—H⋯O hydrogen bonds connecting the carb­oxy­lic H atoms and carboxyl­ate O atoms of adjacent layers are shown as dashed bonds. H atoms bonded to C atoms have been omitted. Displacement ellipsoids are drawn at the 90% probability level.
[Figure 3]
Figure 3
Partial packing diagram of (I)[link] showing the hydrogen-bonding scheme involving the carb­oxy­lic acid groups of neighboring anions. Hydrogen bonds are shown as dashed bonds. Displacement ellipsoids are drawn at the 90% probability level. [Symmetry codes: (#) 2 − x, 1 − y, 1 − z; ($) 3 − x, 2 − y, 2 − z; (&) x + 1, y + 1, z.]

Comparison of the 100 K and 293 K structures reveals that the key difference is in the carboxyl­ate group. At 293 K, the C—O bond lengths are almost the same [1.250 (3) and 1.271 (3) Å], indicating significant disorder between the protonated and non-protonated O atoms, while at 100 K the C—O and C=O bonds are clearly distinguished and the placement of the acidic H atoms accordingly renders the two 3-sulfo­benzoic acid moieties symmetry-inequivalent. Variable-temperature single-crystal X-ray measurements between 250 and 130 K show that the monoclinic-to-triclinic transition occurs on going from 160 to 150 K and that it is reversible.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.41, update of November 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for metal 3-sulfobenzoate salts that do not contain aromatic rings containing nitro­gen (aromatic amines are popular secondary linkers in MOF systems) yielded twenty hits. Of these, eleven contain other amines. The nine reported structures containing only metal ions and 3-sulfobenzoate ions (protonated or unprotonated), with or without water mol­ecules, are the 293 K structure of (I)[link] (refcode ROJJUW; Prochniak et al., 2008[Prochniak, G., Videnova-Adrabinska, V., Daszkiewicz, M. & Pietraszko, A. (2008). J. Mol. Struct. 891, 178-183.]), sodium 3-sulfo­benzoic acid dihydrate (ROJJOQ; Prochniak et al., 2008[Prochniak, G., Videnova-Adrabinska, V., Daszkiewicz, M. & Pietraszko, A. (2008). J. Mol. Struct. 891, 178-183.]), disilver disodium bis­(3-sulfobenzoate) hepta­hydrate (EKOXUY; Zheng & Zhu, 2011[Zheng, X.-F. & Zhu, L.-G. (2011). Inorg. Chim. Acta, 365, 419-429.]), bis­muth(III) 3-sulfo­benzoic acid tetra­hydrate (LEXKAD; Senevirathna et al., 2018[Senevirathna, D. C., Werrett, M. V., Blair, V. L., Mehring, M. & Andrews, P. C. (2018). Chem. Eur. J. 24, 6722-6726.]), barium 3-sulfo­benzoic acid trihydrate (FOBXUQ; Gao et al., 2005[Gao, S., Zhu, Z.-B., Huo, L.-H. & Ng, S. W. (2005). Acta Cryst. E61, m517-m518.]), and four mixed 3-sulfobenzoate hydroxo salts of the trivalent lanthanide ions neodymium (UQOYAB; Ying et al., 2010[Ying, S.-M., Chen, W.-T., Liu, J.-H. & Li, X.-F. (2010). Chin. J. Struct. Chem. 29, 1547-1551.]), europium (EQUBOI; Li et al., 2010[Li, X., Sun, H.-L., Wu, X.-S., Qiu, X. & Du, M. (2010). Inorg. Chem. 49, 1865-1871.]), gadolinium (EQUBUO; Li et al., 2010[Li, X., Sun, H.-L., Wu, X.-S., Qiu, X. & Du, M. (2010). Inorg. Chem. 49, 1865-1871.]), and terbium (EQUBIC; Li et al., 2010[Li, X., Sun, H.-L., Wu, X.-S., Qiu, X. & Du, M. (2010). Inorg. Chem. 49, 1865-1871.]). All of these structures feature direct bonding between the sulfonate O atoms and the metal ions with resulting frameworks of varying dimensionalities.

5. Synthesis and crystallization

A 2.24 g (10.0 mmol) sample of sodium 3-sulfo­benzoic acid (Aldrich, 97%) was dissolved in 45 ml of water. To this colorless solution was added a colorless solution of 1.69 g (9.95 mmol) of AgNO3 (Baker) in 45 ml of water. The resulting clear colorless solution was stirred for about 30 minutes and transferred to a porcelain evaporating dish that was set out to evaporate in a fume hood. After several days, the water had completely evaporated leaving behind small colorless needle-shaped crystals, 0.75 g of which were collected by hand from the dish. These were identified as (I)[link] through the single crystal X-ray study.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Hydrogen atoms bonded to carbon atoms and the carb­oxy­lic hydrogen atoms were located in difference electron-density maps, refined isotropically to confirm their placement, and finally, owing to the presence of the heavy atoms, constrained on idealized positions and included in the refinement as riding atoms with C—H = 0.95 Å or O—H = 0.84 Å and their Uiso constrained to be 1.2 (C—H) or 1.5 (O—H) times the Ueq of the bonding atom. There are four relatively large peaks (1.22–1.46 e Å−3) in the final difference electron-density map that are located ca 0.9 Å on either side of the Ag atoms along the a axis. Attempted refinement of the extinction parameter resulted in a value near zero so it was not included in the final model. Although we cannot rule out an issue with the absorption correction, none is evident and the structure is otherwise well-behaved. The variable-temperature single crystal X-ray experiment was done by cooling in 10 K increments from 250 to 130 K and then heating back to 170 K. At each step once the desired temperature was reached, the crystal was maintained at that temperature for 15 minutes before data acquisition. A complete data collection and refinement were also conducted at 296 K to confirm the reported monoclinic structure (Prochniak et al., 2008[Prochniak, G., Videnova-Adrabinska, V., Daszkiewicz, M. & Pietraszko, A. (2008). J. Mol. Struct. 891, 178-183.]). Our results were essentially identical to the reported ones so they are not included here.

Table 3
Experimental details

Crystal data
Chemical formula [Ag(C7H5O5S)]
Mr 309.04
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 6.0376 (5), 8.6293 (7), 15.5903 (12)
α, β, γ (°) 92.315 (1), 99.589 (1), 90.657 (1)
V3) 800.12 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.77
Crystal size (mm) 0.10 × 0.09 × 0.02
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.675, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 11343, 3990, 3464
Rint 0.019
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.057, 1.02
No. of reflections 3990
No. of parameters 255
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.46, −0.54
Computer programs: APEX3 and SAINT (Bruker, 2015[Bruker (2015). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and CrystalMaker (Palmer, 2014[Palmer, D. (2014). CrystalMaker. CrystalMaker Software Ltd, Yarnton, England.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: CrystalMaker (Palmer, 2014).

Poly[(µ4-3-carboxybenzenesulfonato)silver(I)] top
Crystal data top
[Ag(C7H5O5S)]Z = 4
Mr = 309.04F(000) = 600
Triclinic, P1Dx = 2.565 Mg m3
a = 6.0376 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.6293 (7) ÅCell parameters from 5814 reflections
c = 15.5903 (12) Åθ = 2.7–28.4°
α = 92.315 (1)°µ = 2.77 mm1
β = 99.589 (1)°T = 100 K
γ = 90.657 (1)°Block, colorless
V = 800.12 (11) Å30.10 × 0.09 × 0.02 mm
Data collection top
Bruker APEXII CCD
diffractometer
3464 reflections with I > 2σ(I)
ω and φ scansRint = 0.019
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 28.4°, θmin = 2.4°
Tmin = 0.675, Tmax = 0.746h = 88
11343 measured reflectionsk = 1111
3990 independent reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: difference Fourier map
wR(F2) = 0.057H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0312P)2 + 0.7957P]
where P = (Fo2 + 2Fc2)/3
3990 reflections(Δ/σ)max = 0.002
255 parametersΔρmax = 1.46 e Å3
0 restraintsΔρmin = 0.54 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag11.38401 (3)0.20362 (2)0.54061 (2)0.01134 (6)
Ag20.84468 (3)0.29410 (2)0.45908 (2)0.01133 (6)
S11.30827 (10)0.44688 (7)0.38473 (4)0.00764 (12)
S20.91114 (10)0.05323 (7)0.61650 (4)0.00735 (12)
O10.8095 (3)0.0907 (2)0.04187 (13)0.0171 (4)
O21.1825 (3)0.1223 (2)0.08315 (12)0.0147 (4)
H21.1863730.0690420.0371460.022*
O31.4157 (3)0.5928 (2)0.36958 (12)0.0118 (4)
O41.1960 (3)0.4580 (2)0.46182 (12)0.0113 (4)
O51.4577 (3)0.3141 (2)0.38907 (12)0.0120 (4)
O61.0685 (3)0.3705 (2)0.92789 (12)0.0151 (4)
O70.7208 (3)0.4338 (2)0.94908 (13)0.0172 (4)
H70.7921050.4961340.9868270.026*
O81.0577 (3)0.1870 (2)0.61036 (12)0.0122 (4)
O91.0299 (3)0.0917 (2)0.63142 (12)0.0113 (4)
O100.7283 (3)0.0403 (2)0.54050 (12)0.0121 (4)
C10.9468 (4)0.2658 (3)0.16077 (16)0.0098 (5)
C21.1255 (4)0.3040 (3)0.22732 (16)0.0089 (5)
H2A1.2693230.2610070.2265310.011*
C31.0903 (4)0.4059 (3)0.29493 (16)0.0085 (5)
C40.8808 (4)0.4739 (3)0.29484 (17)0.0098 (5)
H40.8585950.5443610.3409340.012*
C50.7059 (4)0.4378 (3)0.22695 (17)0.0113 (5)
H50.5646940.4856850.2259630.014*
C60.7358 (4)0.3320 (3)0.16042 (17)0.0122 (5)
H60.6142320.3048940.1150960.015*
C70.9731 (4)0.1514 (3)0.08975 (17)0.0114 (5)
C80.7557 (4)0.2413 (3)0.84027 (16)0.0101 (5)
C90.8758 (4)0.1989 (3)0.77403 (16)0.0089 (5)
H91.0226640.2397910.7743470.011*
C100.7759 (4)0.0954 (3)0.70750 (16)0.0083 (5)
C110.5641 (4)0.0292 (3)0.70888 (16)0.0094 (5)
H110.4987620.0432940.6640350.011*
C120.4502 (4)0.0705 (3)0.77651 (17)0.0109 (5)
H120.3078950.0240140.7785230.013*
C130.5423 (4)0.1791 (3)0.84132 (17)0.0116 (5)
H130.4605340.2105090.8858910.014*
C140.8629 (4)0.3547 (3)0.91029 (16)0.0104 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.01230 (10)0.00897 (10)0.01265 (10)0.00049 (7)0.00235 (7)0.00154 (7)
Ag20.01222 (10)0.00908 (10)0.01249 (10)0.00046 (7)0.00190 (7)0.00134 (7)
S10.0092 (3)0.0059 (3)0.0076 (3)0.0002 (2)0.0012 (2)0.0016 (2)
S20.0092 (3)0.0058 (3)0.0071 (3)0.0001 (2)0.0017 (2)0.0015 (2)
O10.0147 (10)0.0189 (10)0.0160 (10)0.0011 (7)0.0001 (8)0.0103 (8)
O20.0149 (9)0.0163 (10)0.0122 (9)0.0022 (7)0.0015 (7)0.0069 (7)
O30.0131 (9)0.0091 (9)0.0124 (9)0.0021 (7)0.0005 (7)0.0006 (7)
O40.0133 (9)0.0128 (9)0.0079 (8)0.0011 (7)0.0025 (7)0.0014 (7)
O50.0121 (9)0.0079 (8)0.0151 (9)0.0026 (7)0.0003 (7)0.0016 (7)
O60.0154 (10)0.0156 (10)0.0134 (9)0.0029 (7)0.0011 (7)0.0046 (7)
O70.0188 (10)0.0173 (10)0.0150 (10)0.0009 (8)0.0041 (8)0.0104 (8)
O80.0161 (9)0.0067 (8)0.0151 (9)0.0025 (7)0.0070 (7)0.0017 (7)
O90.0132 (9)0.0087 (8)0.0128 (9)0.0037 (7)0.0049 (7)0.0006 (7)
O100.0126 (9)0.0138 (9)0.0090 (9)0.0011 (7)0.0004 (7)0.0025 (7)
C10.0139 (12)0.0069 (11)0.0087 (11)0.0001 (9)0.0025 (9)0.0011 (9)
C20.0098 (12)0.0071 (11)0.0098 (11)0.0011 (9)0.0016 (9)0.0001 (9)
C30.0093 (11)0.0087 (11)0.0071 (11)0.0002 (9)0.0005 (9)0.0006 (9)
C40.0124 (12)0.0075 (11)0.0096 (11)0.0002 (9)0.0023 (9)0.0010 (9)
C50.0097 (12)0.0105 (12)0.0143 (12)0.0020 (9)0.0034 (9)0.0018 (10)
C60.0125 (12)0.0112 (12)0.0119 (12)0.0018 (9)0.0004 (9)0.0003 (9)
C70.0170 (13)0.0092 (11)0.0083 (12)0.0014 (9)0.0023 (9)0.0011 (9)
C80.0127 (12)0.0082 (11)0.0087 (12)0.0007 (9)0.0000 (9)0.0002 (9)
C90.0087 (11)0.0064 (11)0.0112 (12)0.0002 (9)0.0004 (9)0.0012 (9)
C100.0097 (12)0.0080 (11)0.0072 (11)0.0019 (9)0.0018 (9)0.0015 (9)
C110.0117 (12)0.0069 (11)0.0091 (11)0.0006 (9)0.0005 (9)0.0003 (9)
C120.0082 (11)0.0112 (12)0.0133 (12)0.0001 (9)0.0020 (9)0.0002 (9)
C130.0120 (12)0.0131 (12)0.0097 (12)0.0013 (9)0.0021 (9)0.0006 (9)
C140.0161 (13)0.0093 (11)0.0061 (11)0.0004 (9)0.0026 (9)0.0004 (9)
Geometric parameters (Å, º) top
Ag1—O3i2.3868 (18)O7—C141.311 (3)
Ag1—O82.4091 (18)O7—H70.8400
Ag1—O10ii2.4406 (18)C1—C21.393 (3)
Ag1—O10iii2.5249 (18)C1—C61.402 (4)
Ag1—O52.6853 (19)C1—C71.483 (3)
Ag1—O42.7254 (19)C2—C31.390 (3)
Ag2—O9ii2.4090 (17)C2—H2A0.9500
Ag2—O5iv2.4199 (18)C3—C41.400 (3)
Ag2—O4v2.4609 (18)C4—C51.388 (4)
Ag2—O42.5295 (18)C4—H40.9500
Ag2—O82.6953 (19)C5—C61.389 (4)
Ag2—O102.7179 (19)C5—H50.9500
S1—O31.4556 (18)C6—H60.9500
S1—O51.4629 (18)C8—C131.393 (4)
S1—O41.4754 (18)C8—C91.397 (3)
S1—C31.776 (3)C8—C141.494 (3)
S2—O91.4560 (18)C9—C101.393 (3)
S2—O81.4624 (18)C9—H90.9500
S2—O101.4784 (19)C10—C111.399 (3)
S2—C101.778 (2)C11—C121.388 (3)
O1—C71.232 (3)C11—H110.9500
O2—C71.312 (3)C12—C131.390 (4)
O2—H20.8400C12—H120.9500
O6—C141.231 (3)C13—H130.9500
O3i—Ag1—O899.00 (6)Ag1i—O3—Ag2v67.35 (4)
O3i—Ag1—O10ii164.88 (6)S1—O3—Ag2iii68.22 (7)
O8—Ag1—O10ii89.93 (6)Ag1i—O3—Ag2iii91.87 (5)
O3i—Ag1—O10iii93.71 (6)Ag2v—O3—Ag2iii105.51 (5)
O8—Ag1—O10iii134.17 (6)S1—O4—Ag2v122.51 (10)
O10ii—Ag1—O10iii71.42 (7)S1—O4—Ag2117.62 (10)
O3i—Ag1—O595.65 (6)Ag2v—O4—Ag2108.75 (7)
O8—Ag1—O5133.72 (6)S1—O4—Ag197.01 (9)
O10ii—Ag1—O586.75 (6)Ag2v—O4—Ag1123.21 (7)
O10iii—Ag1—O587.86 (6)Ag2—O4—Ag180.66 (5)
O3i—Ag1—O479.09 (6)S1—O4—Ag1i68.13 (7)
O8—Ag1—O487.10 (6)Ag2v—O4—Ag1i59.17 (4)
O10ii—Ag1—O4113.75 (6)Ag2—O4—Ag1i164.54 (7)
O10iii—Ag1—O4138.66 (6)Ag1—O4—Ag1i113.67 (5)
O5—Ag1—O453.11 (5)S1—O5—Ag2iii129.94 (11)
O9ii—Ag2—O5iv100.47 (6)S1—O5—Ag199.04 (9)
O9ii—Ag2—O4v163.71 (6)Ag2iii—O5—Ag181.60 (5)
O5iv—Ag2—O4v88.30 (6)C14—O7—H7109.5
O9ii—Ag2—O492.99 (6)S2—O8—Ag1129.24 (10)
O5iv—Ag2—O4134.11 (6)S2—O8—Ag298.80 (9)
O4v—Ag2—O471.25 (7)Ag1—O8—Ag283.46 (6)
O9ii—Ag2—O895.18 (6)S2—O9—Ag2ii135.66 (11)
O5iv—Ag2—O8135.75 (6)S2—O9—Ag1ii79.15 (8)
O4v—Ag2—O887.79 (6)Ag2ii—O9—Ag1ii68.49 (4)
O4—Ag2—O885.39 (6)S2—O9—Ag168.85 (7)
O9ii—Ag2—O1079.91 (6)Ag2ii—O9—Ag190.55 (5)
O5iv—Ag2—O1089.29 (6)Ag1ii—O9—Ag1104.81 (5)
O4v—Ag2—O10114.18 (6)S2—O10—Ag1ii123.30 (10)
O4—Ag2—O10136.43 (6)S2—O10—Ag1iv118.98 (10)
O8—Ag2—O1053.09 (5)Ag1ii—O10—Ag1iv108.58 (7)
O3—S1—O5113.96 (11)S2—O10—Ag297.40 (9)
O3—S1—O4112.15 (11)Ag1ii—O10—Ag2121.23 (7)
O5—S1—O4110.84 (11)Ag1iv—O10—Ag279.11 (5)
O3—S1—C3107.55 (11)S2—O10—Ag2ii67.58 (7)
O5—S1—C3106.29 (11)Ag1ii—O10—Ag2ii59.96 (4)
O4—S1—C3105.45 (11)Ag1iv—O10—Ag2ii166.05 (7)
O3—S1—Ag1134.18 (8)Ag2—O10—Ag2ii113.18 (5)
O5—S1—Ag154.60 (8)C2—C1—C6120.7 (2)
O4—S1—Ag156.24 (7)C2—C1—C7121.0 (2)
C3—S1—Ag1118.27 (8)C6—C1—C7118.3 (2)
O3—S1—Ag2142.49 (8)C3—C2—C1119.0 (2)
O5—S1—Ag2101.87 (8)C3—C2—H2A120.5
C3—S1—Ag270.67 (8)C1—C2—H2A120.5
Ag1—S1—Ag260.743 (12)C2—C3—C4120.7 (2)
O3—S1—Ag2v75.89 (8)C2—C3—S1120.38 (19)
O5—S1—Ag2v133.57 (8)C4—C3—S1118.86 (19)
C3—S1—Ag2v113.59 (8)C2—C3—Ag2122.32 (16)
Ag1—S1—Ag2v85.217 (16)C4—C3—Ag267.59 (14)
Ag2—S1—Ag2v71.389 (13)S1—C3—Ag279.16 (8)
O3—S1—Ag2iii89.34 (8)C5—C4—C3119.5 (2)
O4—S1—Ag2iii105.55 (8)C5—C4—Ag2112.49 (17)
C3—S1—Ag2iii135.36 (8)C3—C4—Ag287.60 (15)
Ag1—S1—Ag2iii58.742 (11)C5—C4—H4120.2
Ag2—S1—Ag2iii118.903 (18)C3—C4—H4120.2
Ag2v—S1—Ag2iii110.509 (17)Ag2—C4—H470.2
O5—S1—Ag1i110.81 (8)C4—C5—C6120.5 (2)
O4—S1—Ag1i89.35 (7)C4—C5—Ag247.98 (13)
C3—S1—Ag1i131.60 (8)C6—C5—Ag2116.08 (17)
Ag1—S1—Ag1i108.357 (17)C4—C5—H5119.7
Ag2—S1—Ag1i127.793 (18)C6—C5—H5119.7
Ag2v—S1—Ag1i56.515 (11)Ag2—C5—H5103.4
Ag2iii—S1—Ag1i79.804 (14)C5—C6—C1119.4 (2)
O9—S2—O8114.02 (11)C5—C6—H6120.3
O9—S2—O10112.31 (11)C1—C6—H6120.3
O8—S2—O10110.71 (11)O1—C7—O2124.1 (2)
O9—S2—C10107.87 (11)O1—C7—C1121.7 (2)
O8—S2—C10106.02 (11)O2—C7—C1114.2 (2)
O10—S2—C10105.29 (11)C13—C8—C9120.9 (2)
O9—S2—Ag2134.36 (8)C13—C8—C14120.9 (2)
O8—S2—Ag254.86 (8)C9—C8—C14118.2 (2)
O10—S2—Ag255.85 (8)C10—C9—C8118.7 (2)
C10—S2—Ag2117.76 (8)C10—C9—H9120.6
O9—S2—Ag1ii76.58 (8)C8—C9—H9120.6
O8—S2—Ag1ii132.19 (8)C9—C10—C11120.9 (2)
C10—S2—Ag1ii114.74 (8)C9—C10—S2120.11 (19)
Ag2—S2—Ag1ii83.690 (15)C11—C10—S2118.95 (19)
O9—S2—Ag1iv142.72 (8)C9—C10—Ag1iv122.76 (16)
O8—S2—Ag1iv101.22 (8)C11—C10—Ag1iv67.27 (14)
C10—S2—Ag1iv71.67 (8)S2—C10—Ag1iv78.38 (8)
Ag2—S2—Ag1iv59.268 (11)C12—C11—C10119.3 (2)
Ag1ii—S2—Ag1iv70.705 (13)C12—C11—Ag1iv111.71 (16)
O9—S2—Ag188.47 (8)C10—C11—Ag1iv88.31 (15)
O10—S2—Ag1106.42 (8)C12—C11—H11120.4
C10—S2—Ag1135.01 (8)C10—C11—H11120.4
Ag2—S2—Ag160.142 (11)Ag1iv—C11—H1170.3
Ag1ii—S2—Ag1109.706 (17)C11—C12—C13120.7 (2)
Ag1iv—S2—Ag1118.896 (18)C11—C12—Ag1iv48.75 (13)
O8—S2—Ag2ii109.90 (8)C13—C12—Ag1iv116.17 (17)
O10—S2—Ag2ii90.09 (7)C11—C12—H12119.6
C10—S2—Ag2ii132.48 (8)C13—C12—H12119.6
Ag2—S2—Ag2ii108.167 (17)Ag1iv—C12—H12102.7
Ag1ii—S2—Ag2ii57.481 (11)C12—C13—C8119.4 (2)
Ag1iv—S2—Ag2ii128.036 (18)C12—C13—H13120.3
Ag1—S2—Ag2ii78.344 (13)C8—C13—H13120.3
C7—O2—H2109.5O6—C14—O7124.4 (2)
S1—O3—Ag1i135.48 (11)O6—C14—C8121.1 (2)
S1—O3—Ag2v79.83 (8)O7—C14—C8114.6 (2)
C6—C1—C2—C31.7 (4)C13—C8—C9—C101.5 (4)
C7—C1—C2—C3176.8 (2)C14—C8—C9—C10178.8 (2)
C1—C2—C3—C42.3 (4)C8—C9—C10—C113.1 (4)
C1—C2—C3—S1175.60 (19)C8—C9—C10—S2173.79 (19)
C1—C2—C3—Ag279.1 (3)C8—C9—C10—Ag1iv78.3 (3)
O3—S1—C3—C298.3 (2)O9—S2—C10—C998.0 (2)
O5—S1—C3—C224.1 (2)O8—S2—C10—C924.5 (2)
O4—S1—C3—C2141.8 (2)O10—S2—C10—C9141.9 (2)
Ag1—S1—C3—C282.2 (2)Ag2—S2—C10—C982.8 (2)
Ag2—S1—C3—C2121.2 (2)Ag1ii—S2—C10—C9178.88 (17)
Ag2v—S1—C3—C2179.76 (17)Ag1iv—S2—C10—C9121.3 (2)
Ag2iii—S1—C3—C29.3 (3)Ag1—S2—C10—C98.4 (3)
Ag1i—S1—C3—C2114.91 (19)Ag2ii—S2—C10—C9113.49 (19)
O3—S1—C3—C483.7 (2)O9—S2—C10—C1185.1 (2)
O5—S1—C3—C4153.9 (2)O8—S2—C10—C11152.4 (2)
O4—S1—C3—C436.1 (2)O10—S2—C10—C1135.0 (2)
Ag1—S1—C3—C495.7 (2)Ag2—S2—C10—C1194.1 (2)
Ag2—S1—C3—C456.71 (19)Ag1ii—S2—C10—C112.0 (2)
Ag2v—S1—C3—C41.8 (2)Ag1iv—S2—C10—C1155.63 (18)
Ag2iii—S1—C3—C4168.65 (14)Ag1—S2—C10—C11168.49 (14)
Ag1i—S1—C3—C467.1 (2)Ag2ii—S2—C10—C1169.6 (2)
O3—S1—C3—Ag2140.42 (9)O9—S2—C10—Ag1iv140.70 (9)
O5—S1—C3—Ag297.16 (9)O8—S2—C10—Ag1iv96.78 (9)
O4—S1—C3—Ag220.57 (9)O10—S2—C10—Ag1iv20.60 (9)
Ag1—S1—C3—Ag239.04 (7)Ag2—S2—C10—Ag1iv38.49 (7)
Ag2v—S1—C3—Ag258.52 (6)Ag1ii—S2—C10—Ag1iv57.59 (6)
Ag2iii—S1—C3—Ag2111.94 (8)Ag1—S2—C10—Ag1iv112.87 (8)
Ag1i—S1—C3—Ag2123.85 (7)Ag2ii—S2—C10—Ag1iv125.22 (7)
C2—C3—C4—C50.7 (4)C9—C10—C11—C121.6 (4)
S1—C3—C4—C5177.23 (19)S2—C10—C11—C12175.29 (19)
Ag2—C3—C4—C5114.6 (2)Ag1iv—C10—C11—C12114.1 (2)
C2—C3—C4—Ag2115.3 (2)C9—C10—C11—Ag1iv115.7 (2)
S1—C3—C4—Ag262.63 (17)S2—C10—C11—Ag1iv61.23 (17)
C3—C4—C5—C61.5 (4)C10—C11—C12—C131.5 (4)
Ag2—C4—C5—C699.0 (2)Ag1iv—C11—C12—C1399.3 (2)
C3—C4—C5—Ag2100.5 (3)C10—C11—C12—Ag1iv100.8 (3)
C4—C5—C6—C12.1 (4)C11—C12—C13—C83.0 (4)
Ag2—C5—C6—C156.9 (3)Ag1iv—C12—C13—C858.8 (3)
C2—C1—C6—C50.5 (4)C9—C8—C13—C121.5 (4)
C7—C1—C6—C5179.0 (2)C14—C8—C13—C12178.2 (2)
C2—C1—C7—O1163.7 (3)C13—C8—C14—O6155.1 (2)
C6—C1—C7—O114.8 (4)C9—C8—C14—O624.6 (4)
C2—C1—C7—O216.4 (3)C13—C8—C14—O725.5 (3)
C6—C1—C7—O2165.0 (2)C9—C8—C14—O7154.8 (2)
Symmetry codes: (i) x+3, y+1, z+1; (ii) x+2, y, z+1; (iii) x+1, y, z; (iv) x1, y, z; (v) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1vi0.841.812.631 (3)164
O7—H7···O6vii0.841.812.651 (3)176
C4—H4···O8v0.952.433.214 (3)140
C11—H11···O5ii0.952.483.269 (3)141
Symmetry codes: (ii) x+2, y, z+1; (v) x+2, y+1, z+1; (vi) x+2, y, z; (vii) x+2, y+1, z+2.
 

Acknowledgements

We thank Chris Gianopoulos (U. of Toledo) for helpful discussions on the refinement of the structure.

References

First citationBruker (2015). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCôté, A. P. & Shimizu, G. K. H. (2004). Inorg. Chem. 43, 6663–6673.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDey, C., Kundu, T., Biswal, B. P., Mallick, A. & Banerjee, R. (2014). Acta Cryst. B70, 3–10.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDowner, S. M., Squattrito, P. J., Bestaoui, N. & Clearfield, A. (2006). J. Chem. Crystallogr. 36, 487–501.  Web of Science CSD CrossRef CAS Google Scholar
First citationGao, S., Zhu, Z.-B., Huo, L.-H. & Ng, S. W. (2005). Acta Cryst. E61, m517–m518.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHoffart, D. J., Dalrymple, S. A. & Shimizu, G. K. H. (2005). Inorg. Chem. 44, 8868–8875.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLi, X., Sun, H.-L., Wu, X.-S., Qiu, X. & Du, M. (2010). Inorg. Chem. 49, 1865–1871.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMa, J.-F., Yang, J. & Liu, J.-F. (2003). Acta Cryst. E59, m478–m480.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPalmer, D. (2014). CrystalMaker. CrystalMaker Software Ltd, Yarnton, England.  Google Scholar
First citationParr, R. G. & Pearson, R. G. (1983). J. Am. Chem. Soc. 105, 7512–7516.  CrossRef CAS Web of Science Google Scholar
First citationProchniak, G., Videnova-Adrabinska, V., Daszkiewicz, M. & Pietraszko, A. (2008). J. Mol. Struct. 891, 178–183.  Web of Science CSD CrossRef CAS Google Scholar
First citationSenevirathna, D. C., Werrett, M. V., Blair, V. L., Mehring, M. & Andrews, P. C. (2018). Chem. Eur. J. 24, 6722–6726.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShimizu, G. K. H., Vaidhyanathan, R. & Taylor, J. M. (2009). Chem. Soc. Rev. 38, 1430–1449.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSquattrito, P. J., Lambright-Mutthamsetty, K. J., Giolando, P. A. & Kirschbaum, K. (2019). Acta Cryst. E75, 1801–1807.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYing, S.-M., Chen, W.-T., Liu, J.-H. & Li, X.-F. (2010). Chin. J. Struct. Chem. 29, 1547–1551.  CAS Google Scholar
First citationZheng, X.-F. & Zhu, L.-G. (2011). Inorg. Chim. Acta, 365, 419–429.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds