research communications
The low-temperature triclinic
of silver 3-sulfobenzoic acidaDepartment of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, Michigan 48859, USA, and bCollege of Natural Sciences and Mathematics, University of Toledo, Toledo, OH 43606, USA
*Correspondence e-mail: p.squattrito@cmich.edu
Poly[(μ4-3-carboxybenzenesulfonato)silver(I)], Ag(O3SC6H4CO2H) or [Ag(C7H5O5S)]n, has been found to undergo a reversible from monoclinic to triclinic between 160 and 150 K. The low-temperature triclinic structure (space group P) has been determined at 100 K. In contrast to the reported room temperature monoclinic structure, in which the nearly equivalent carboxylate C—O distances indicate that the acidic hydrogen is randomly distributed between the O atoms, at 100 K the C—O (protonated) and C=O (unprotonated) bonds are clearly resolved, resulting in the reduction in symmetry from C2/c to P.
CCDC reference: 2015332
1. Chemical context
Over the past two decades, organosulfonate and organocarboxylate anions have received significant attention as building blocks for metal-organic framework (MOF) structures (Dey et al., 2014; Shimizu et al., 2009). As a result of its soft nature, sulfonate tends to bond well with soft cations like silver(I) so a significant chemistry of silver sulfonates has developed during this period (Côté & Shimizu, 2004; Hoffart et al., 2005). Having previously investigated some structures of silver sulfonate salts (Downer et al., 2006; Squattrito et al., 2019), we have continued this effort with the reaction of Ag+ with the bifunctional 3-sulfobenzoate anion. The resulting monobasic salt has been found to have an unexpected low-temperature structural modification that is reported here.
2. Structural commentary
The product of the reaction of silver nitrate and sodium 3-sulfobenzoic acid is Ag(O3SC6H4CO2H), (I), an anhydrous monobasic silver(I) salt of 3-sulfobenzoic acid. The room-temperature (293 K) structure of (I) was previously reported in the monoclinic C2/c with one independent cation and anion in the (Prochniak et al., 2008). We find the structure at 100 K to be triclinic (P) with two independent cations and anions in the (Fig. 1). The major features of the structure at 100 K are consistent with those at 293 K. The silver ions are coordinated by six sulfonate O atoms with four shorter (ca 2.4–2.5 Å) and two longer (ca 2.7 Å) distances (Table 1) in an irregular hexacoordinate geometry [somewhat inaccurately described as tetrahedral by Prochniak et al.; the O—Ag—O angles for the four shorter Ag—O bonds range from 71.25 (7) to 164.88 (6)° indicating at best a very distorted tetrahedron]. Not surprisingly, the Ag—O distances are shorter by an average of 0.02 Å at 100 K than at 293 K. This kind of pseudo-tetrahedral coordination geometry significantly distorted by two somewhat longer Ag—O interactions was previously observed in the silver salt of 6-ammonionaphthalene-1,3-disulfonate (Downer et al., 2006). The Ag—O distances are consistent with those seen in other silver arenesulfonates (Côté & Shimizu, 2004). The extensive metal–sulfonate bonding is as expected given the softer nature of Ag+ relative to most d-block transition-metal ions (Parr & Pearson, 1983), which generally show little tendency to bond directly to sulfonate groups (Ma et al., 2003). The carboxylate group remains protonated with the acidic H atoms unambiguously located on O2 and O7. The C—O distances in the carboxylate groups clearly distinguish the non-protonated (C=O) and protonated (C—O) O atoms: C7—O1 1.232 (3), C7—O2 1.312 (3) Å; C14—O6 1.231 (3), C14—O7 1.311 (3) Å.
3. Supramolecular features
The packing in (I) features layers of metal ions in the ab plane alternating with double-layers of 3-sulfobenzoic acid anions stacking along the c-axis direction (Fig. 2). Anions in adjacent layers are linked by O—H⋯O hydrogen bonds between neighboring carboxylic acid groups in the classic dimerization of such molecules (Table 2; Fig. 3). The symmetry-independent anions alternate in the b-axis direction within the layer. The rings of these anions are significantly out of parallel with an interplanar angle of ca 139°. This packing motif with the sulfonate and carboxylate groups directed to opposite sides of the layer is contrary to what was found in the silver salt of the isomeric 4-sulfobenzoic acid (Squattrito et al., 2019). In that compound, both functional groups are involved in metal–oxygen bonding so the anions are positioned with both groups equally distributed with respect to each surface of the layer, in contrast to the segregated arrangement in (I).
|
Comparison of the 100 K and 293 K structures reveals that the key difference is in the carboxylate group. At 293 K, the C—O bond lengths are almost the same [1.250 (3) and 1.271 (3) Å], indicating significant disorder between the protonated and non-protonated O atoms, while at 100 K the C—O and C=O bonds are clearly distinguished and the placement of the acidic H atoms accordingly renders the two 3-sulfobenzoic acid moieties symmetry-inequivalent. Variable-temperature single-crystal X-ray measurements between 250 and 130 K show that the monoclinic-to-triclinic transition occurs on going from 160 to 150 K and that it is reversible.
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.41, update of November 2019; Groom et al., 2016) for metal 3-sulfobenzoate salts that do not contain aromatic rings containing nitrogen (aromatic are popular secondary linkers in MOF systems) yielded twenty hits. Of these, eleven contain other The nine reported structures containing only metal ions and 3-sulfobenzoate ions (protonated or unprotonated), with or without water molecules, are the 293 K structure of (I) (refcode ROJJUW; Prochniak et al., 2008), sodium 3-sulfobenzoic acid dihydrate (ROJJOQ; Prochniak et al., 2008), disilver disodium bis(3-sulfobenzoate) heptahydrate (EKOXUY; Zheng & Zhu, 2011), bismuth(III) 3-sulfobenzoic acid tetrahydrate (LEXKAD; Senevirathna et al., 2018), barium 3-sulfobenzoic acid trihydrate (FOBXUQ; Gao et al., 2005), and four mixed 3-sulfobenzoate hydroxo salts of the trivalent lanthanide ions neodymium (UQOYAB; Ying et al., 2010), europium (EQUBOI; Li et al., 2010), gadolinium (EQUBUO; Li et al., 2010), and terbium (EQUBIC; Li et al., 2010). All of these structures feature direct bonding between the sulfonate O atoms and the metal ions with resulting frameworks of varying dimensionalities.
5. Synthesis and crystallization
A 2.24 g (10.0 mmol) sample of sodium 3-sulfobenzoic acid (Aldrich, 97%) was dissolved in 45 ml of water. To this colorless solution was added a colorless solution of 1.69 g (9.95 mmol) of AgNO3 (Baker) in 45 ml of water. The resulting clear colorless solution was stirred for about 30 minutes and transferred to a porcelain evaporating dish that was set out to evaporate in a fume hood. After several days, the water had completely evaporated leaving behind small colorless needle-shaped crystals, 0.75 g of which were collected by hand from the dish. These were identified as (I) through the single crystal X-ray study.
6. Refinement
Crystal data, data collection and structure . Hydrogen atoms bonded to carbon atoms and the carboxylic hydrogen atoms were located in difference electron-density maps, refined isotropically to confirm their placement, and finally, owing to the presence of the heavy atoms, constrained on idealized positions and included in the as riding atoms with C—H = 0.95 Å or O—H = 0.84 Å and their Uiso constrained to be 1.2 (C—H) or 1.5 (O—H) times the Ueq of the bonding atom. There are four relatively large peaks (1.22–1.46 e Å−3) in the final difference electron-density map that are located ca 0.9 Å on either side of the Ag atoms along the a axis. Attempted of the extinction parameter resulted in a value near zero so it was not included in the final model. Although we cannot rule out an issue with the absorption correction, none is evident and the structure is otherwise well-behaved. The variable-temperature single crystal X-ray experiment was done by cooling in 10 K increments from 250 to 130 K and then heating back to 170 K. At each step once the desired temperature was reached, the crystal was maintained at that temperature for 15 minutes before data acquisition. A complete data collection and were also conducted at 296 K to confirm the reported monoclinic structure (Prochniak et al., 2008). Our results were essentially identical to the reported ones so they are not included here.
details are summarized in Table 3
|
Supporting information
CCDC reference: 2015332
https://doi.org/10.1107/S2056989020009408/mw2166sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020009408/mw2166Isup2.hkl
Data collection: APEX3 (Bruker, 2015); cell
SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: CrystalMaker (Palmer, 2014).[Ag(C7H5O5S)] | Z = 4 |
Mr = 309.04 | F(000) = 600 |
Triclinic, P1 | Dx = 2.565 Mg m−3 |
a = 6.0376 (5) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.6293 (7) Å | Cell parameters from 5814 reflections |
c = 15.5903 (12) Å | θ = 2.7–28.4° |
α = 92.315 (1)° | µ = 2.77 mm−1 |
β = 99.589 (1)° | T = 100 K |
γ = 90.657 (1)° | Block, colorless |
V = 800.12 (11) Å3 | 0.10 × 0.09 × 0.02 mm |
Bruker APEXII CCD diffractometer | 3464 reflections with I > 2σ(I) |
ω and φ scans | Rint = 0.019 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 28.4°, θmin = 2.4° |
Tmin = 0.675, Tmax = 0.746 | h = −8→8 |
11343 measured reflections | k = −11→11 |
3990 independent reflections | l = −20→20 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.023 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.057 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0312P)2 + 0.7957P] where P = (Fo2 + 2Fc2)/3 |
3990 reflections | (Δ/σ)max = 0.002 |
255 parameters | Δρmax = 1.46 e Å−3 |
0 restraints | Δρmin = −0.54 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ag1 | 1.38401 (3) | 0.20362 (2) | 0.54061 (2) | 0.01134 (6) | |
Ag2 | 0.84468 (3) | 0.29410 (2) | 0.45908 (2) | 0.01133 (6) | |
S1 | 1.30827 (10) | 0.44688 (7) | 0.38473 (4) | 0.00764 (12) | |
S2 | 0.91114 (10) | 0.05323 (7) | 0.61650 (4) | 0.00735 (12) | |
O1 | 0.8095 (3) | 0.0907 (2) | 0.04187 (13) | 0.0171 (4) | |
O2 | 1.1825 (3) | 0.1223 (2) | 0.08315 (12) | 0.0147 (4) | |
H2 | 1.186373 | 0.069042 | 0.037146 | 0.022* | |
O3 | 1.4157 (3) | 0.5928 (2) | 0.36958 (12) | 0.0118 (4) | |
O4 | 1.1960 (3) | 0.4580 (2) | 0.46182 (12) | 0.0113 (4) | |
O5 | 1.4577 (3) | 0.3141 (2) | 0.38907 (12) | 0.0120 (4) | |
O6 | 1.0685 (3) | 0.3705 (2) | 0.92789 (12) | 0.0151 (4) | |
O7 | 0.7208 (3) | 0.4338 (2) | 0.94908 (13) | 0.0172 (4) | |
H7 | 0.792105 | 0.496134 | 0.986827 | 0.026* | |
O8 | 1.0577 (3) | 0.1870 (2) | 0.61036 (12) | 0.0122 (4) | |
O9 | 1.0299 (3) | −0.0917 (2) | 0.63142 (12) | 0.0113 (4) | |
O10 | 0.7283 (3) | 0.0403 (2) | 0.54050 (12) | 0.0121 (4) | |
C1 | 0.9468 (4) | 0.2658 (3) | 0.16077 (16) | 0.0098 (5) | |
C2 | 1.1255 (4) | 0.3040 (3) | 0.22732 (16) | 0.0089 (5) | |
H2A | 1.269323 | 0.261007 | 0.226531 | 0.011* | |
C3 | 1.0903 (4) | 0.4059 (3) | 0.29493 (16) | 0.0085 (5) | |
C4 | 0.8808 (4) | 0.4739 (3) | 0.29484 (17) | 0.0098 (5) | |
H4 | 0.858595 | 0.544361 | 0.340934 | 0.012* | |
C5 | 0.7059 (4) | 0.4378 (3) | 0.22695 (17) | 0.0113 (5) | |
H5 | 0.564694 | 0.485685 | 0.225963 | 0.014* | |
C6 | 0.7358 (4) | 0.3320 (3) | 0.16042 (17) | 0.0122 (5) | |
H6 | 0.614232 | 0.304894 | 0.115096 | 0.015* | |
C7 | 0.9731 (4) | 0.1514 (3) | 0.08975 (17) | 0.0114 (5) | |
C8 | 0.7557 (4) | 0.2413 (3) | 0.84027 (16) | 0.0101 (5) | |
C9 | 0.8758 (4) | 0.1989 (3) | 0.77403 (16) | 0.0089 (5) | |
H9 | 1.022664 | 0.239791 | 0.774347 | 0.011* | |
C10 | 0.7759 (4) | 0.0954 (3) | 0.70750 (16) | 0.0083 (5) | |
C11 | 0.5641 (4) | 0.0292 (3) | 0.70888 (16) | 0.0094 (5) | |
H11 | 0.498762 | −0.043294 | 0.664035 | 0.011* | |
C12 | 0.4502 (4) | 0.0705 (3) | 0.77651 (17) | 0.0109 (5) | |
H12 | 0.307895 | 0.024014 | 0.778523 | 0.013* | |
C13 | 0.5423 (4) | 0.1791 (3) | 0.84132 (17) | 0.0116 (5) | |
H13 | 0.460534 | 0.210509 | 0.885891 | 0.014* | |
C14 | 0.8629 (4) | 0.3547 (3) | 0.91029 (16) | 0.0104 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag1 | 0.01230 (10) | 0.00897 (10) | 0.01265 (10) | −0.00049 (7) | 0.00235 (7) | −0.00154 (7) |
Ag2 | 0.01222 (10) | 0.00908 (10) | 0.01249 (10) | 0.00046 (7) | 0.00190 (7) | −0.00134 (7) |
S1 | 0.0092 (3) | 0.0059 (3) | 0.0076 (3) | 0.0002 (2) | 0.0012 (2) | −0.0016 (2) |
S2 | 0.0092 (3) | 0.0058 (3) | 0.0071 (3) | −0.0001 (2) | 0.0017 (2) | −0.0015 (2) |
O1 | 0.0147 (10) | 0.0189 (10) | 0.0160 (10) | 0.0011 (7) | 0.0001 (8) | −0.0103 (8) |
O2 | 0.0149 (9) | 0.0163 (10) | 0.0122 (9) | 0.0022 (7) | 0.0015 (7) | −0.0069 (7) |
O3 | 0.0131 (9) | 0.0091 (9) | 0.0124 (9) | −0.0021 (7) | −0.0005 (7) | 0.0006 (7) |
O4 | 0.0133 (9) | 0.0128 (9) | 0.0079 (8) | −0.0011 (7) | 0.0025 (7) | −0.0014 (7) |
O5 | 0.0121 (9) | 0.0079 (8) | 0.0151 (9) | 0.0026 (7) | −0.0003 (7) | −0.0016 (7) |
O6 | 0.0154 (10) | 0.0156 (10) | 0.0134 (9) | −0.0029 (7) | 0.0011 (7) | −0.0046 (7) |
O7 | 0.0188 (10) | 0.0173 (10) | 0.0150 (10) | −0.0009 (8) | 0.0041 (8) | −0.0104 (8) |
O8 | 0.0161 (9) | 0.0067 (8) | 0.0151 (9) | −0.0025 (7) | 0.0070 (7) | −0.0017 (7) |
O9 | 0.0132 (9) | 0.0087 (8) | 0.0128 (9) | 0.0037 (7) | 0.0049 (7) | −0.0006 (7) |
O10 | 0.0126 (9) | 0.0138 (9) | 0.0090 (9) | 0.0011 (7) | −0.0004 (7) | −0.0025 (7) |
C1 | 0.0139 (12) | 0.0069 (11) | 0.0087 (11) | 0.0001 (9) | 0.0025 (9) | −0.0011 (9) |
C2 | 0.0098 (12) | 0.0071 (11) | 0.0098 (11) | 0.0011 (9) | 0.0016 (9) | 0.0001 (9) |
C3 | 0.0093 (11) | 0.0087 (11) | 0.0071 (11) | −0.0002 (9) | 0.0005 (9) | 0.0006 (9) |
C4 | 0.0124 (12) | 0.0075 (11) | 0.0096 (11) | −0.0002 (9) | 0.0023 (9) | −0.0010 (9) |
C5 | 0.0097 (12) | 0.0105 (12) | 0.0143 (12) | 0.0020 (9) | 0.0034 (9) | 0.0018 (10) |
C6 | 0.0125 (12) | 0.0112 (12) | 0.0119 (12) | −0.0018 (9) | −0.0004 (9) | 0.0003 (9) |
C7 | 0.0170 (13) | 0.0092 (11) | 0.0083 (12) | 0.0014 (9) | 0.0023 (9) | 0.0011 (9) |
C8 | 0.0127 (12) | 0.0082 (11) | 0.0087 (12) | 0.0007 (9) | 0.0000 (9) | −0.0002 (9) |
C9 | 0.0087 (11) | 0.0064 (11) | 0.0112 (12) | −0.0002 (9) | 0.0004 (9) | 0.0012 (9) |
C10 | 0.0097 (12) | 0.0080 (11) | 0.0072 (11) | 0.0019 (9) | 0.0018 (9) | −0.0015 (9) |
C11 | 0.0117 (12) | 0.0069 (11) | 0.0091 (11) | 0.0006 (9) | 0.0005 (9) | 0.0003 (9) |
C12 | 0.0082 (11) | 0.0112 (12) | 0.0133 (12) | −0.0001 (9) | 0.0020 (9) | 0.0002 (9) |
C13 | 0.0120 (12) | 0.0131 (12) | 0.0097 (12) | 0.0013 (9) | 0.0021 (9) | −0.0006 (9) |
C14 | 0.0161 (13) | 0.0093 (11) | 0.0061 (11) | 0.0004 (9) | 0.0026 (9) | 0.0004 (9) |
Ag1—O3i | 2.3868 (18) | O7—C14 | 1.311 (3) |
Ag1—O8 | 2.4091 (18) | O7—H7 | 0.8400 |
Ag1—O10ii | 2.4406 (18) | C1—C2 | 1.393 (3) |
Ag1—O10iii | 2.5249 (18) | C1—C6 | 1.402 (4) |
Ag1—O5 | 2.6853 (19) | C1—C7 | 1.483 (3) |
Ag1—O4 | 2.7254 (19) | C2—C3 | 1.390 (3) |
Ag2—O9ii | 2.4090 (17) | C2—H2A | 0.9500 |
Ag2—O5iv | 2.4199 (18) | C3—C4 | 1.400 (3) |
Ag2—O4v | 2.4609 (18) | C4—C5 | 1.388 (4) |
Ag2—O4 | 2.5295 (18) | C4—H4 | 0.9500 |
Ag2—O8 | 2.6953 (19) | C5—C6 | 1.389 (4) |
Ag2—O10 | 2.7179 (19) | C5—H5 | 0.9500 |
S1—O3 | 1.4556 (18) | C6—H6 | 0.9500 |
S1—O5 | 1.4629 (18) | C8—C13 | 1.393 (4) |
S1—O4 | 1.4754 (18) | C8—C9 | 1.397 (3) |
S1—C3 | 1.776 (3) | C8—C14 | 1.494 (3) |
S2—O9 | 1.4560 (18) | C9—C10 | 1.393 (3) |
S2—O8 | 1.4624 (18) | C9—H9 | 0.9500 |
S2—O10 | 1.4784 (19) | C10—C11 | 1.399 (3) |
S2—C10 | 1.778 (2) | C11—C12 | 1.388 (3) |
O1—C7 | 1.232 (3) | C11—H11 | 0.9500 |
O2—C7 | 1.312 (3) | C12—C13 | 1.390 (4) |
O2—H2 | 0.8400 | C12—H12 | 0.9500 |
O6—C14 | 1.231 (3) | C13—H13 | 0.9500 |
O3i—Ag1—O8 | 99.00 (6) | Ag1i—O3—Ag2v | 67.35 (4) |
O3i—Ag1—O10ii | 164.88 (6) | S1—O3—Ag2iii | 68.22 (7) |
O8—Ag1—O10ii | 89.93 (6) | Ag1i—O3—Ag2iii | 91.87 (5) |
O3i—Ag1—O10iii | 93.71 (6) | Ag2v—O3—Ag2iii | 105.51 (5) |
O8—Ag1—O10iii | 134.17 (6) | S1—O4—Ag2v | 122.51 (10) |
O10ii—Ag1—O10iii | 71.42 (7) | S1—O4—Ag2 | 117.62 (10) |
O3i—Ag1—O5 | 95.65 (6) | Ag2v—O4—Ag2 | 108.75 (7) |
O8—Ag1—O5 | 133.72 (6) | S1—O4—Ag1 | 97.01 (9) |
O10ii—Ag1—O5 | 86.75 (6) | Ag2v—O4—Ag1 | 123.21 (7) |
O10iii—Ag1—O5 | 87.86 (6) | Ag2—O4—Ag1 | 80.66 (5) |
O3i—Ag1—O4 | 79.09 (6) | S1—O4—Ag1i | 68.13 (7) |
O8—Ag1—O4 | 87.10 (6) | Ag2v—O4—Ag1i | 59.17 (4) |
O10ii—Ag1—O4 | 113.75 (6) | Ag2—O4—Ag1i | 164.54 (7) |
O10iii—Ag1—O4 | 138.66 (6) | Ag1—O4—Ag1i | 113.67 (5) |
O5—Ag1—O4 | 53.11 (5) | S1—O5—Ag2iii | 129.94 (11) |
O9ii—Ag2—O5iv | 100.47 (6) | S1—O5—Ag1 | 99.04 (9) |
O9ii—Ag2—O4v | 163.71 (6) | Ag2iii—O5—Ag1 | 81.60 (5) |
O5iv—Ag2—O4v | 88.30 (6) | C14—O7—H7 | 109.5 |
O9ii—Ag2—O4 | 92.99 (6) | S2—O8—Ag1 | 129.24 (10) |
O5iv—Ag2—O4 | 134.11 (6) | S2—O8—Ag2 | 98.80 (9) |
O4v—Ag2—O4 | 71.25 (7) | Ag1—O8—Ag2 | 83.46 (6) |
O9ii—Ag2—O8 | 95.18 (6) | S2—O9—Ag2ii | 135.66 (11) |
O5iv—Ag2—O8 | 135.75 (6) | S2—O9—Ag1ii | 79.15 (8) |
O4v—Ag2—O8 | 87.79 (6) | Ag2ii—O9—Ag1ii | 68.49 (4) |
O4—Ag2—O8 | 85.39 (6) | S2—O9—Ag1 | 68.85 (7) |
O9ii—Ag2—O10 | 79.91 (6) | Ag2ii—O9—Ag1 | 90.55 (5) |
O5iv—Ag2—O10 | 89.29 (6) | Ag1ii—O9—Ag1 | 104.81 (5) |
O4v—Ag2—O10 | 114.18 (6) | S2—O10—Ag1ii | 123.30 (10) |
O4—Ag2—O10 | 136.43 (6) | S2—O10—Ag1iv | 118.98 (10) |
O8—Ag2—O10 | 53.09 (5) | Ag1ii—O10—Ag1iv | 108.58 (7) |
O3—S1—O5 | 113.96 (11) | S2—O10—Ag2 | 97.40 (9) |
O3—S1—O4 | 112.15 (11) | Ag1ii—O10—Ag2 | 121.23 (7) |
O5—S1—O4 | 110.84 (11) | Ag1iv—O10—Ag2 | 79.11 (5) |
O3—S1—C3 | 107.55 (11) | S2—O10—Ag2ii | 67.58 (7) |
O5—S1—C3 | 106.29 (11) | Ag1ii—O10—Ag2ii | 59.96 (4) |
O4—S1—C3 | 105.45 (11) | Ag1iv—O10—Ag2ii | 166.05 (7) |
O3—S1—Ag1 | 134.18 (8) | Ag2—O10—Ag2ii | 113.18 (5) |
O5—S1—Ag1 | 54.60 (8) | C2—C1—C6 | 120.7 (2) |
O4—S1—Ag1 | 56.24 (7) | C2—C1—C7 | 121.0 (2) |
C3—S1—Ag1 | 118.27 (8) | C6—C1—C7 | 118.3 (2) |
O3—S1—Ag2 | 142.49 (8) | C3—C2—C1 | 119.0 (2) |
O5—S1—Ag2 | 101.87 (8) | C3—C2—H2A | 120.5 |
C3—S1—Ag2 | 70.67 (8) | C1—C2—H2A | 120.5 |
Ag1—S1—Ag2 | 60.743 (12) | C2—C3—C4 | 120.7 (2) |
O3—S1—Ag2v | 75.89 (8) | C2—C3—S1 | 120.38 (19) |
O5—S1—Ag2v | 133.57 (8) | C4—C3—S1 | 118.86 (19) |
C3—S1—Ag2v | 113.59 (8) | C2—C3—Ag2 | 122.32 (16) |
Ag1—S1—Ag2v | 85.217 (16) | C4—C3—Ag2 | 67.59 (14) |
Ag2—S1—Ag2v | 71.389 (13) | S1—C3—Ag2 | 79.16 (8) |
O3—S1—Ag2iii | 89.34 (8) | C5—C4—C3 | 119.5 (2) |
O4—S1—Ag2iii | 105.55 (8) | C5—C4—Ag2 | 112.49 (17) |
C3—S1—Ag2iii | 135.36 (8) | C3—C4—Ag2 | 87.60 (15) |
Ag1—S1—Ag2iii | 58.742 (11) | C5—C4—H4 | 120.2 |
Ag2—S1—Ag2iii | 118.903 (18) | C3—C4—H4 | 120.2 |
Ag2v—S1—Ag2iii | 110.509 (17) | Ag2—C4—H4 | 70.2 |
O5—S1—Ag1i | 110.81 (8) | C4—C5—C6 | 120.5 (2) |
O4—S1—Ag1i | 89.35 (7) | C4—C5—Ag2 | 47.98 (13) |
C3—S1—Ag1i | 131.60 (8) | C6—C5—Ag2 | 116.08 (17) |
Ag1—S1—Ag1i | 108.357 (17) | C4—C5—H5 | 119.7 |
Ag2—S1—Ag1i | 127.793 (18) | C6—C5—H5 | 119.7 |
Ag2v—S1—Ag1i | 56.515 (11) | Ag2—C5—H5 | 103.4 |
Ag2iii—S1—Ag1i | 79.804 (14) | C5—C6—C1 | 119.4 (2) |
O9—S2—O8 | 114.02 (11) | C5—C6—H6 | 120.3 |
O9—S2—O10 | 112.31 (11) | C1—C6—H6 | 120.3 |
O8—S2—O10 | 110.71 (11) | O1—C7—O2 | 124.1 (2) |
O9—S2—C10 | 107.87 (11) | O1—C7—C1 | 121.7 (2) |
O8—S2—C10 | 106.02 (11) | O2—C7—C1 | 114.2 (2) |
O10—S2—C10 | 105.29 (11) | C13—C8—C9 | 120.9 (2) |
O9—S2—Ag2 | 134.36 (8) | C13—C8—C14 | 120.9 (2) |
O8—S2—Ag2 | 54.86 (8) | C9—C8—C14 | 118.2 (2) |
O10—S2—Ag2 | 55.85 (8) | C10—C9—C8 | 118.7 (2) |
C10—S2—Ag2 | 117.76 (8) | C10—C9—H9 | 120.6 |
O9—S2—Ag1ii | 76.58 (8) | C8—C9—H9 | 120.6 |
O8—S2—Ag1ii | 132.19 (8) | C9—C10—C11 | 120.9 (2) |
C10—S2—Ag1ii | 114.74 (8) | C9—C10—S2 | 120.11 (19) |
Ag2—S2—Ag1ii | 83.690 (15) | C11—C10—S2 | 118.95 (19) |
O9—S2—Ag1iv | 142.72 (8) | C9—C10—Ag1iv | 122.76 (16) |
O8—S2—Ag1iv | 101.22 (8) | C11—C10—Ag1iv | 67.27 (14) |
C10—S2—Ag1iv | 71.67 (8) | S2—C10—Ag1iv | 78.38 (8) |
Ag2—S2—Ag1iv | 59.268 (11) | C12—C11—C10 | 119.3 (2) |
Ag1ii—S2—Ag1iv | 70.705 (13) | C12—C11—Ag1iv | 111.71 (16) |
O9—S2—Ag1 | 88.47 (8) | C10—C11—Ag1iv | 88.31 (15) |
O10—S2—Ag1 | 106.42 (8) | C12—C11—H11 | 120.4 |
C10—S2—Ag1 | 135.01 (8) | C10—C11—H11 | 120.4 |
Ag2—S2—Ag1 | 60.142 (11) | Ag1iv—C11—H11 | 70.3 |
Ag1ii—S2—Ag1 | 109.706 (17) | C11—C12—C13 | 120.7 (2) |
Ag1iv—S2—Ag1 | 118.896 (18) | C11—C12—Ag1iv | 48.75 (13) |
O8—S2—Ag2ii | 109.90 (8) | C13—C12—Ag1iv | 116.17 (17) |
O10—S2—Ag2ii | 90.09 (7) | C11—C12—H12 | 119.6 |
C10—S2—Ag2ii | 132.48 (8) | C13—C12—H12 | 119.6 |
Ag2—S2—Ag2ii | 108.167 (17) | Ag1iv—C12—H12 | 102.7 |
Ag1ii—S2—Ag2ii | 57.481 (11) | C12—C13—C8 | 119.4 (2) |
Ag1iv—S2—Ag2ii | 128.036 (18) | C12—C13—H13 | 120.3 |
Ag1—S2—Ag2ii | 78.344 (13) | C8—C13—H13 | 120.3 |
C7—O2—H2 | 109.5 | O6—C14—O7 | 124.4 (2) |
S1—O3—Ag1i | 135.48 (11) | O6—C14—C8 | 121.1 (2) |
S1—O3—Ag2v | 79.83 (8) | O7—C14—C8 | 114.6 (2) |
C6—C1—C2—C3 | 1.7 (4) | C13—C8—C9—C10 | 1.5 (4) |
C7—C1—C2—C3 | −176.8 (2) | C14—C8—C9—C10 | −178.8 (2) |
C1—C2—C3—C4 | −2.3 (4) | C8—C9—C10—C11 | −3.1 (4) |
C1—C2—C3—S1 | 175.60 (19) | C8—C9—C10—S2 | 173.79 (19) |
C1—C2—C3—Ag2 | 79.1 (3) | C8—C9—C10—Ag1iv | 78.3 (3) |
O3—S1—C3—C2 | 98.3 (2) | O9—S2—C10—C9 | 98.0 (2) |
O5—S1—C3—C2 | −24.1 (2) | O8—S2—C10—C9 | −24.5 (2) |
O4—S1—C3—C2 | −141.8 (2) | O10—S2—C10—C9 | −141.9 (2) |
Ag1—S1—C3—C2 | −82.2 (2) | Ag2—S2—C10—C9 | −82.8 (2) |
Ag2—S1—C3—C2 | −121.2 (2) | Ag1ii—S2—C10—C9 | −178.88 (17) |
Ag2v—S1—C3—C2 | −179.76 (17) | Ag1iv—S2—C10—C9 | −121.3 (2) |
Ag2iii—S1—C3—C2 | −9.3 (3) | Ag1—S2—C10—C9 | −8.4 (3) |
Ag1i—S1—C3—C2 | 114.91 (19) | Ag2ii—S2—C10—C9 | 113.49 (19) |
O3—S1—C3—C4 | −83.7 (2) | O9—S2—C10—C11 | −85.1 (2) |
O5—S1—C3—C4 | 153.9 (2) | O8—S2—C10—C11 | 152.4 (2) |
O4—S1—C3—C4 | 36.1 (2) | O10—S2—C10—C11 | 35.0 (2) |
Ag1—S1—C3—C4 | 95.7 (2) | Ag2—S2—C10—C11 | 94.1 (2) |
Ag2—S1—C3—C4 | 56.71 (19) | Ag1ii—S2—C10—C11 | −2.0 (2) |
Ag2v—S1—C3—C4 | −1.8 (2) | Ag1iv—S2—C10—C11 | 55.63 (18) |
Ag2iii—S1—C3—C4 | 168.65 (14) | Ag1—S2—C10—C11 | 168.49 (14) |
Ag1i—S1—C3—C4 | −67.1 (2) | Ag2ii—S2—C10—C11 | −69.6 (2) |
O3—S1—C3—Ag2 | −140.42 (9) | O9—S2—C10—Ag1iv | −140.70 (9) |
O5—S1—C3—Ag2 | 97.16 (9) | O8—S2—C10—Ag1iv | 96.78 (9) |
O4—S1—C3—Ag2 | −20.57 (9) | O10—S2—C10—Ag1iv | −20.60 (9) |
Ag1—S1—C3—Ag2 | 39.04 (7) | Ag2—S2—C10—Ag1iv | 38.49 (7) |
Ag2v—S1—C3—Ag2 | −58.52 (6) | Ag1ii—S2—C10—Ag1iv | −57.59 (6) |
Ag2iii—S1—C3—Ag2 | 111.94 (8) | Ag1—S2—C10—Ag1iv | 112.87 (8) |
Ag1i—S1—C3—Ag2 | −123.85 (7) | Ag2ii—S2—C10—Ag1iv | −125.22 (7) |
C2—C3—C4—C5 | 0.7 (4) | C9—C10—C11—C12 | 1.6 (4) |
S1—C3—C4—C5 | −177.23 (19) | S2—C10—C11—C12 | −175.29 (19) |
Ag2—C3—C4—C5 | −114.6 (2) | Ag1iv—C10—C11—C12 | −114.1 (2) |
C2—C3—C4—Ag2 | 115.3 (2) | C9—C10—C11—Ag1iv | 115.7 (2) |
S1—C3—C4—Ag2 | −62.63 (17) | S2—C10—C11—Ag1iv | −61.23 (17) |
C3—C4—C5—C6 | 1.5 (4) | C10—C11—C12—C13 | 1.5 (4) |
Ag2—C4—C5—C6 | −99.0 (2) | Ag1iv—C11—C12—C13 | −99.3 (2) |
C3—C4—C5—Ag2 | 100.5 (3) | C10—C11—C12—Ag1iv | 100.8 (3) |
C4—C5—C6—C1 | −2.1 (4) | C11—C12—C13—C8 | −3.0 (4) |
Ag2—C5—C6—C1 | −56.9 (3) | Ag1iv—C12—C13—C8 | −58.8 (3) |
C2—C1—C6—C5 | 0.5 (4) | C9—C8—C13—C12 | 1.5 (4) |
C7—C1—C6—C5 | 179.0 (2) | C14—C8—C13—C12 | −178.2 (2) |
C2—C1—C7—O1 | 163.7 (3) | C13—C8—C14—O6 | 155.1 (2) |
C6—C1—C7—O1 | −14.8 (4) | C9—C8—C14—O6 | −24.6 (4) |
C2—C1—C7—O2 | −16.4 (3) | C13—C8—C14—O7 | −25.5 (3) |
C6—C1—C7—O2 | 165.0 (2) | C9—C8—C14—O7 | 154.8 (2) |
Symmetry codes: (i) −x+3, −y+1, −z+1; (ii) −x+2, −y, −z+1; (iii) x+1, y, z; (iv) x−1, y, z; (v) −x+2, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O1vi | 0.84 | 1.81 | 2.631 (3) | 164 |
O7—H7···O6vii | 0.84 | 1.81 | 2.651 (3) | 176 |
C4—H4···O8v | 0.95 | 2.43 | 3.214 (3) | 140 |
C11—H11···O5ii | 0.95 | 2.48 | 3.269 (3) | 141 |
Symmetry codes: (ii) −x+2, −y, −z+1; (v) −x+2, −y+1, −z+1; (vi) −x+2, −y, −z; (vii) −x+2, −y+1, −z+2. |
Acknowledgements
We thank Chris Gianopoulos (U. of Toledo) for helpful discussions on the
of the structure.References
Bruker (2015). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Côté, A. P. & Shimizu, G. K. H. (2004). Inorg. Chem. 43, 6663–6673. Web of Science CSD CrossRef PubMed CAS Google Scholar
Dey, C., Kundu, T., Biswal, B. P., Mallick, A. & Banerjee, R. (2014). Acta Cryst. B70, 3–10. Web of Science CrossRef CAS IUCr Journals Google Scholar
Downer, S. M., Squattrito, P. J., Bestaoui, N. & Clearfield, A. (2006). J. Chem. Crystallogr. 36, 487–501. Web of Science CSD CrossRef CAS Google Scholar
Gao, S., Zhu, Z.-B., Huo, L.-H. & Ng, S. W. (2005). Acta Cryst. E61, m517–m518. Web of Science CSD CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hoffart, D. J., Dalrymple, S. A. & Shimizu, G. K. H. (2005). Inorg. Chem. 44, 8868–8875. Web of Science CSD CrossRef PubMed CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Li, X., Sun, H.-L., Wu, X.-S., Qiu, X. & Du, M. (2010). Inorg. Chem. 49, 1865–1871. Web of Science CSD CrossRef CAS PubMed Google Scholar
Ma, J.-F., Yang, J. & Liu, J.-F. (2003). Acta Cryst. E59, m478–m480. Web of Science CSD CrossRef IUCr Journals Google Scholar
Palmer, D. (2014). CrystalMaker. CrystalMaker Software Ltd, Yarnton, England. Google Scholar
Parr, R. G. & Pearson, R. G. (1983). J. Am. Chem. Soc. 105, 7512–7516. CrossRef CAS Web of Science Google Scholar
Prochniak, G., Videnova-Adrabinska, V., Daszkiewicz, M. & Pietraszko, A. (2008). J. Mol. Struct. 891, 178–183. Web of Science CSD CrossRef CAS Google Scholar
Senevirathna, D. C., Werrett, M. V., Blair, V. L., Mehring, M. & Andrews, P. C. (2018). Chem. Eur. J. 24, 6722–6726. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shimizu, G. K. H., Vaidhyanathan, R. & Taylor, J. M. (2009). Chem. Soc. Rev. 38, 1430–1449. Web of Science CrossRef PubMed CAS Google Scholar
Squattrito, P. J., Lambright-Mutthamsetty, K. J., Giolando, P. A. & Kirschbaum, K. (2019). Acta Cryst. E75, 1801–1807. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ying, S.-M., Chen, W.-T., Liu, J.-H. & Li, X.-F. (2010). Chin. J. Struct. Chem. 29, 1547–1551. CAS Google Scholar
Zheng, X.-F. & Zhu, L.-G. (2011). Inorg. Chim. Acta, 365, 419–429. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.