research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­(tetra­methyl­thio­urea-κS)bis­(thio­cyanato-κN)cobalt(II)

CROSSMARK_Color_square_no_text.svg

aInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth Str. 2, D-24118 Kiel, Germany
*Correspondence e-mail: ajochim@ac.uni-kiel.de

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 17 July 2020; accepted 23 July 2020; online 31 July 2020)

In the course of systematic investigations on the synthesis of Co(NCS)2 coordination compounds with different thio­urea ligands, the title compound, [Co(NCS)2(C5H12N2S)2], was obtained. In this compound the CoII cations are coordinated by two crystallographically independent N-bonded thio­cyanate anions and two tetra­methyl­thio­urea ligands into discrete complexes that are located in general positions and show a strongly distorted tetra­hedral geometry. Inter­molecular C—H⋯S hydrogen bonds of different strength can be observed between the discrete complexes, which are connected by pairs of hydrogen bonds into zigzag-like chains that elongate in the b-axis direction. These chains are additionally linked by strong C—H⋯S hydrogen bonds along the a-axis direction, resulting in the formation of layers that are parallel to the ab plane. There is also one weak intra­molecular C—H⋯S hydrogen bond between two neighbouring thio­urea ligands within the complexes. Comparison of the experimental PXRD pattern with that calculated from the single-crystal data prove that a pure phase has been obtained. Thermoanalytical investigations reveal that this compound melts at 364 K and decomposes upon further heating.

1. Chemical context

The thio­cyanate anion is a very versatile ligand, which can coordinate in many different ways to metal cations, leading to compounds with a variety of coordination networks (Buckingham, 1994[Buckingham, S. (1994). Coord. Chem. Rev. 135-136, 587-621.]; Haasnoot et al., 1984[Haasnoot, J. G., Driessen, W. L. & Reedijk, J. (1984). Inorg. Chem. 23, 2803-2807.]; Barnett et al., 2002[Barnett, S. A., Blake, A. J., Champness, N. R. & Wilson, C. (2002). Chem. Commun. pp. 1640-1641.]; Bhowmik et al., 2010[Bhowmik, P., Chattopadhyay, S., Drew, M. G. B., Diaz, C. & Ghosh, A. (2010). Polyhedron, 29, 2637-2642.]; Abedi et al., 2016[Abedi, M., Kirschbaum, K., Shamkhali, A. N., Brue, C. R. & Khandar, A. A. (2016). Polyhedron, 109, 176-181.]). This ligand is also able to mediate reasonable magnetic exchange (Palion-Gazda et al., 2015[Palion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Inorg. Chem. 56, 2380-2388.]), which is one reason why we have been inter­ested in transition-metal thio­cyanate coordination compounds for many years. In this context, we are especially inter­ested in compounds of the general composition [M(NCS)2(L)2]n, in which paramagnetic first-row transition-metal cations M such as MnII, FeII, CoII or NiII are octa­hedrally coordinated by two N- and two S-bonding thio­cyanate anions and two coligands L that usually consist of pyridine derivatives. Depending on the nature of the coligand, the metal cations are connected into chains by pairs of μ-1,3 coordinating anionic ligands (Mautner et al., 2018[Mautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436-442.]; Prananto et al., 2017[Prananto, Y. P., Urbatsch, A., Moubaraki, B., Murray, K. S., Turner, D. R., Deacon, G. B. & Batten, S. R. (2017). Aust. J. Chem. 70, 516-528.]; Shurdha et al., 2013[Shurdha, E., Moore, C. E., Rheingold, A. L., Lapidus, S. H., Stephens, P. W., Arif, A. M. & Miller, J. S. (2013). Inorg. Chem. 52, 10583-10594.]; Jin et al., 2007[Jin, Y., Che, Y. X. & Zheng, J. M. (2007). J. Coord. Chem. 60, 2067-2074.]; Böhme et al., 2020[Böhme, M., Jochim, A., Rams, M., Lohmiller, T., Suckert, S., Schnegg, A., Plass, W. & Näther, C. (2020). Inorg. Chem. 59, 5325-5338.]), or they are linked into layers with different layer topologies (Werner et al., 2015a[Werner, J., Rams, M., Tomkowicz, Z., Runčevski, T., Dinnebier, R. E., Suckert, S. & Näther, C. (2015a). Inorg. Chem. 54, 2893-2901.]; Neumann et al., 2018a[Neumann, T., Rams, M., Wellm, C. & Näther, C. (2018a). Cryst. Growth Des. 18, 6020-6027.]; Suckert et al., 2016[Suckert, S., Rams, M., Böhme, M., Germann, L. S., Dinnebier, R., Plass, W., Werner, J. & Näther, C. (2016). Dalton Trans. 45, 18190-18201.]). The chain compounds show either ferromagnetism (Neumann et al., 2019[Neumann, T., Rams, M., Tomkowicz, Z., Jess, I. & Näther, C. (2019). Chem. Commun. 55, 2652-2655.]), anti­ferromagnetism (Jochim et al., 2020[Jochim, A., Lohmiller, T., Rams, M., Böhme, M., Ceglarska, M., Schnegg, A., Plass, W. & Näther, C. (2020). Inorg. Chem. 59, 8971-8982.]) or they represent anti­ferromagnetic phases of single-chain magnets (Mautner et al., 2018[Mautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436-442.]; Rams et al., 2017[Rams, M., Tomkowicz, Z., Böhme, M., Plass, W., Suckert, S., Werner, J., Jess, I. & Näther, C. (2017). Phys. Chem. Chem. Phys. 19, 3232-3243.], 2020[Rams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. & Näther, C. (2020). Chem. Eur. J. 26, 2837-2851.]; Werner et al., 2015b[Werner, S., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Neumann, T. & Näther, C. (2015b). Dalton Trans. 44, 14149-14158.]), whereas the layer compounds are in most cases ferromagnets (Suckert et al., 2016[Suckert, S., Rams, M., Böhme, M., Germann, L. S., Dinnebier, R., Plass, W., Werner, J. & Näther, C. (2016). Dalton Trans. 45, 18190-18201.]). For this composition a third structure type is known, in which the metal cations are tetra­hedrally coordin­ated, forming discrete complexes with only N-terminally bonded thio­cyanate anions (Neumann et al., 2018b[Neumann, T., Jess, I., Pielnhofer, F. & Näther, C. (2018b). Eur. J. Inorg. Chem. pp. 4972-4981.]). For some coligands, at least two of the three isomers can be obtained. With 4-acetyl­pyridine as coligand, for example, the chain as well as the layer isomer can be prepared, with the latter representing the thermodynamically stable form at room temperature (Werner et al., 2015a[Werner, J., Rams, M., Tomkowicz, Z., Runčevski, T., Dinnebier, R. E., Suckert, S. & Näther, C. (2015a). Inorg. Chem. 54, 2893-2901.]). If 4-meth­oxy­pyridine is used as coligand, the chain isomer as well as the tetra­hedral discrete complex can be obtained, and in this case the chain compound is thermodynamically stable at room temperature (Mautner et al., 2018[Mautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436-442.]; Rams et al., 2020[Rams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. & Näther, C. (2020). Chem. Eur. J. 26, 2837-2851.]). Finally, different polymorphic modifications can also be obtained for discrete complexes (Neumann et al., 2018b[Neumann, T., Jess, I., Pielnhofer, F. & Näther, C. (2018b). Eur. J. Inorg. Chem. pp. 4972-4981.]).

[Scheme 1]

However, in all previous work we exclusively used N-donor coligands for the synthesis of Co(NCS)2 thio­cyanate coordin­ation polymers, and to investigate the influence of the coligand on the structure and the magnetic behaviour, we became inter­ested in donor ligands that can coordinate via a sulfur atom, including thio­urea derivatives. With thio­urea, the crystal structure of one Co(NCS)2 coordination compound has already been already reported, and in this case the Co cations are linked by pairs of thio­urea sulfur atoms, whereas the thio­cyanate anions are only terminally N-bonded (Rajarajan et al., 2012[Rajarajan, K., Sendil Kumar, K., Ramesh, V., Shihabuddeen, V. & Murugavel, S. (2012). Acta Cryst. E68, m1125-m1126.]). Independent of this, we used ethyl­ene­thio­urea as coligand and obtained a compound with the composition [Co(NCS)2(ethyl­ene­thio­urea)2]n. Single-crystal structure determination proves that, in this case, the CoII cations are connected by pairs of thio­cyanate ligands into chains, which corresponds exactly to the desired structure (Jochim et al., 2020[Jochim, A., Lohmiller, T., Rams, M., Böhme, M., Ceglarska, M., Schnegg, A., Plass, W. & Näther, C. (2020). Inorg. Chem. 59, 8971-8982.]). In contrast to the analogous compounds with N-donor coligands, this compound shows anti­ferromagnetic ordering but no relaxations of single chains. To investigate this in more detail, we used tetra­methyl­thio­urea as coligand and obtained crystals of the title compound Co(NCS)2(tetra­methyl­thio­urea)2. Surprisingly, this compound consists of discrete complexes, in which the CoII cations are tetra­hedrally coord­inated, which is also reflected in its IR spectra, where the C—N stretching vibration of the thio­cyanate anion is observed at 2048 cm−1 (see Fig. S1 in the supporting information). The powder diffraction pattern reveals that a pure product has been obtained (Fig. S2). The thermogravimetric (TG) curve shows that all tetra­methyl­thio­urea ligands are emitted in one step (theoretical mass loss: 60.2%), which is accompanied by an exothermic peak in the differential thermoanalysis (DTA) curve (Fig. S3). However, two endothermic peaks are observed at low temperatures where the sample mass does not change. To investigate this phenomenon in more detail, measurements using differential scanning calorimetry (DSC) were performed, which prove that the first endothermic signal is reversible with some hysteresis, pointing to some structural transition (Fig. S4), which could explain why no changes in the PXRD pattern are observed after cooling. The second endothermic peak is irreversible, but thermomicroscopic measurements prove that this event corresponds to melting, which means that upon cooling no crystallization is observed (Figs. S5 and S6).

2. Structural commentary

The asymmetric unit of the title compound contains two crystallographically independent tetra­methyl­thio­urea mol­ecules, two thio­cyanate anions and one CoII cation in general positions (Fig. 1[link]). The CoII cations are coordinated by two N-bonded thio­cyanate anions and two tetra­methyl­thio­urea mol­ecules into discrete complexes, with bonds lengths and angles similar to those reported in the literature (Table 1[link]). The coordination polyhedra around the CoII cations can be described as strongly distorted tetra­hedra (Table 1[link]), which is also obvious from the tetra­hedral angle variance σθ〈tet〉2 = 81.0 and the mean tetra­hedral quadratic elongation 〈λtet〉 = 1.036 (Robinson et al., 1971[Robinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567-570.]). The C—N bond lengths between the thio­ketone C and the amino groups are significantly shorter than those between the amino groups and the methyl C atoms, which points to some degree of double-bond character of the former. This is expected as thio­ketones are subject to thio­ketone–enthiole tautomerism similar to the tautomerism found for regular ketones, which is also supported by the fact that the CNMe2 groups are planar with angles close to 120° (Devillanova, 2007[Devillanova, F. A. (2007). Editor. Handbook of Chalcogen Chemistry: New Perspectives in Sulfur, Selenium and Tellurium, 1st ed., pp. 107-108. Cambridge: Royal Society of Chemistry.]). The NMe2 groups of the same coligand are twisted against each other with angles of 45.74 (9) and 46.32 (8)° for the two crystallographically independent tetra­methyl­thio­urea coligands.

Table 1
Selected geometric parameters (Å, °)

Co1—N1 1.9484 (17) Co1—S11 2.3157 (5)
Co1—N2 1.9499 (17) Co1—S21 2.3196 (6)
       
N1—Co1—N2 106.56 (7) N1—Co1—S21 117.66 (5)
N1—Co1—S11 102.86 (5) N2—Co1—S21 97.67 (6)
N2—Co1—S11 121.40 (5) S11—Co1—S21 111.564 (19)
[Figure 1]
Figure 1
View of the asymmetric unit of the title compound with the atom labelling and displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

As can be seen in Table 2[link], two sets of hydrogen bonds can be found for which the D—H⋯A angles are either relatively near to 180° (174.0 and 166.2°) or far from 180° (142.8 and 140.8°), which is indicative for strong or relatively weak hydrogen bonds, respectively. Although nearly all of these hydrogen bonds are inter­molecular bonds between the thio­cyanate sulfur and a C—H hydrogen atom from an adjacent complex, in one case relatively weak intra­molecular hydrogen C—H⋯S bonding between two different tetra­methyl­thio­urea mol­ecules of the same discrete complex is found. Each complex is connected to two different neighbouring complexes by pairs of C—H⋯SNCS hydrogen bonds between the tetra­methyl­thio­urea coligands and the thio­cyanate anions. This leads to the formation of zigzag-like chains along the b-axis direction (Fig. 2[link]), which are further connected by additional single C—H⋯SNCS hydrogen bonds into layers that are parallel to the ab plane (Fig. 3[link]). These layers are stacked along the c-axis direction with no pronounced inter­molecular inter­actions between them (Fig. 4[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12B⋯S1i 0.98 2.93 3.906 (2) 174
C14—H14A⋯S2ii 0.98 2.93 3.741 (2) 141
C22—H22C⋯S11 0.98 2.61 3.442 (2) 143
C24—H24A⋯S1iii 0.98 2.92 3.878 (2) 166
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Crystal structure of the title compound with a view of the chains that run along the b-axis direction with inter­molecular C—H⋯S hydrogen bonds shown as dashed lines.
[Figure 3]
Figure 3
Crystal structure of the title compound with a view along the c axis of the layers. Inter­molecular C—H⋯S hydrogen bonds are shown as dashed lines.
[Figure 4]
Figure 4
Crystal structure of the title compound with a view in the direction of the layers along the b axis. Inter­molecular C—H⋯S hydrogen bonds are shown as dashed lines.

4. Database survey

In the Cambridge Structural Database (Version 5.41, last update November 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) only 72 compounds containing transition-metal cations and tetra­methyl­thio­urea are reported, but none of them contains thio­cyanate anions. This search also reveals that no tetra­hedral Co(NCS)2 compounds with other thio­urea derivatives are known, but one chain compound with the composition [Co(NCS)2(thio­urea)2]n has been reported (Rajarajan et al., 2012[Rajarajan, K., Sendil Kumar, K., Ramesh, V., Shihabuddeen, V. & Murugavel, S. (2012). Acta Cryst. E68, m1125-m1126.]). However, several structures built up of discrete tetra­hedral complexes with cobalt thio­cyanate and a variety of N-containing ligands are reported in the CCDC. These include, for example, bis­(3-methyl­pyridine)­diiso­thio­cyanato­cobalt(II) (Böckmann et al. 2011[Böckmann, J., Reimer, B. & Näther, C. (2011). Z. Naturforsch. B: Chem. Sci. 66, 819-827.]) and bis­(quinoline)­diiso­thio­cyanato­cobalt(II) (Mirčeva & Golič, 1990[Mirčeva, A. & Golič, L. (1990). Acta Cryst. C46, 1001-1003.]). It is noted that, in several cases, pyridine or imidazole derivatives are used that have large substituents adjacent to the coordinating N atoms, which might enforce the formation of a tetra­hedral complex for steric reasons.

5. Synthesis and crystallization

General

Co(NCS)2 and tetra­methyl­thio­urea were purchased from Sigma Aldrich and were used without further purification.

Synthesis

A suspension of Co(NCS)2 (0.50 mmol, 87.5 mg) and tetra­methyl­thio­urea (1.00 mmol, 132.23 mg) in 0.75 mL water was stored at 281 K. After a few days, deep-blue-coloured crystals were obtained, which were filtered off, and ground into powder or used for single-crystal structure determination. It is noted that no crystalline product could be obtained from an analogous reaction at room temperature. Elemental analysis calculated for C12H24N6CoS4 (439.56 g mol−1) C 32.79, H 5.50, N 19.12%, S 29.18, found: C 32.37, H 5.38, N 18.75, S 28.64.

Experimental details

Elemental analysis was performed using an EURO EA elemental analyser fabricated by EURO VECTOR Instruments.

The IR spectrum was measured using an ATI Mattson Genesis Series FTIR Spectrometer, control software: WINFIRST, from ATI Mattson.

The PXRD measurement was performed with Cu Kα1 radiation (λ = 1.540598 Å) using a Stoe Transmission Powder Diffraction System (STADI P) equipped with a MYTHEN 1K detector and a Johansson-type Ge(111) monochromator.

DTA–TG measurements were performed in a dynamic nitro­gen atmosphere (100 sccm) in Al2O3 crucibles using a STA-PT 1600 thermobalance from Linseis. The instrument was calibrated using standard reference materials.

The DSC measurements were performed with a DSC 1 Star System with STARe Excellence Software from Mettler-Toledo AG. The instrument was calibrated using standard reference materials.

Thermomicroscopic measurements were performed using a hot-stage FP82 from Mettler and a BX60 microscope from Olympus, using the software analysis package from Mettler.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All non-hydrogen atoms were refined anisotropically. The C—H atoms were positioned with idealized geometry (allowed to rotate but not to tip) and refined isotropically with Uiso(H) = 1.5Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula [Co(NCS)2(C5H12N2S)2]
Mr 439.54
Crystal system, space group Monoclinic, P21/c
Temperature (K) 200
a, b, c (Å) 13.3288 (13), 11.2140 (8), 13.8579 (13)
β (°) 97.667 (8)
V3) 2052.8 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.25
Crystal size (mm) 0.19 × 0.15 × 0.10
 
Data collection
Diffractometer Stoe IPDS2
Absorption correction Numerical (X-RED and X-SHAPE; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.644, 0.805
No. of measured, independent and observed [I > 2σ(I)] reflections 14562, 4409, 3826
Rint 0.044
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.084, 1.02
No. of reflections 4409
No. of parameters 217
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.39
Computer programs: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]), SHELXS97 and XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 1999[Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-AREA (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: XP (Sheldrick, 2008) and DIAMOND (Brandenburg & Putz, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis(tetramethylthiourea-κS)bis(thiocyanato-κN)cobalt(II) top
Crystal data top
[Co(NCS)2(C5H12N2S)2]F(000) = 916
Mr = 439.54Dx = 1.422 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.3288 (13) ÅCell parameters from 14562 reflections
b = 11.2140 (8) Åθ = 2.4–27.0°
c = 13.8579 (13) ŵ = 1.25 mm1
β = 97.667 (8)°T = 200 K
V = 2052.8 (3) Å3Block, blue
Z = 40.19 × 0.15 × 0.10 mm
Data collection top
Stoe IPDS-2
diffractometer
3826 reflections with I > 2σ(I)
ω scansRint = 0.044
Absorption correction: numerical
(X-Red and X-Shape; Stoe & Cie, 2002)
θmax = 27.0°, θmin = 2.4°
Tmin = 0.644, Tmax = 0.805h = 1516
14562 measured reflectionsk = 1314
4409 independent reflectionsl = 1717
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0593P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.084(Δ/σ)max = 0.001
S = 1.02Δρmax = 0.33 e Å3
4409 reflectionsΔρmin = 0.39 e Å3
217 parametersExtinction correction: SHELXL2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0092 (16)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.31466 (2)0.44406 (2)0.18631 (2)0.03623 (10)
N10.26892 (14)0.28853 (15)0.13540 (11)0.0473 (4)
C10.22426 (14)0.20050 (17)0.11758 (12)0.0400 (4)
S10.16309 (4)0.07801 (5)0.09170 (4)0.05239 (14)
N20.23001 (14)0.56237 (15)0.11124 (12)0.0476 (4)
C20.18324 (14)0.63196 (16)0.06226 (12)0.0389 (4)
S20.11944 (5)0.73069 (6)0.00388 (4)0.05992 (16)
S110.31339 (4)0.42243 (5)0.35233 (3)0.04323 (13)
C110.20254 (13)0.33900 (15)0.34598 (11)0.0346 (3)
N110.11381 (12)0.39071 (14)0.31533 (11)0.0410 (3)
C120.09967 (18)0.51955 (19)0.32179 (17)0.0551 (5)
H12A0.1505220.5524290.3724100.083*
H12B0.0318050.5362170.3382590.083*
H12C0.1072210.5564140.2590490.083*
C130.02995 (16)0.3274 (2)0.25917 (16)0.0580 (5)
H13A0.0534520.2494990.2392270.087*
H13B0.0045580.3740510.2012450.087*
H13C0.0245190.3160340.2993160.087*
N120.20637 (12)0.22456 (14)0.37071 (10)0.0392 (3)
C140.12200 (18)0.1612 (2)0.40544 (16)0.0538 (5)
H14A0.0712350.2189790.4207470.081*
H14B0.1470610.1157240.4640960.081*
H14C0.0912370.1066300.3547060.081*
C150.29981 (18)0.1561 (2)0.37811 (16)0.0561 (5)
H15A0.3451160.1916570.3358740.084*
H15B0.2844470.0736960.3577510.084*
H15C0.3327930.1569010.4456790.084*
S210.47009 (4)0.51223 (5)0.15128 (3)0.04435 (13)
C210.56218 (13)0.43472 (14)0.22564 (11)0.0333 (3)
N210.57661 (12)0.45344 (13)0.32191 (10)0.0369 (3)
C220.54437 (16)0.56303 (18)0.36544 (14)0.0463 (4)
H22A0.5405290.6276000.3174340.069*
H22B0.5933160.5841780.4220320.069*
H22C0.4775950.5509360.3860960.069*
C230.60727 (17)0.3590 (2)0.39199 (12)0.0507 (5)
H23A0.6103610.2830210.3575530.076*
H23B0.5579300.3528880.4382420.076*
H23C0.6741280.3775610.4272880.076*
N220.62202 (12)0.35804 (13)0.18656 (9)0.0384 (3)
C240.72499 (16)0.3301 (2)0.23060 (14)0.0509 (5)
H24A0.7458740.3861470.2837380.076*
H24B0.7710170.3367460.1813070.076*
H24C0.7272010.2485770.2563140.076*
C250.59760 (19)0.3148 (2)0.08646 (13)0.0536 (5)
H25A0.5239410.3099110.0696080.080*
H25B0.6273510.2356050.0809000.080*
H25C0.6251780.3700240.0418900.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.03421 (15)0.03936 (14)0.03465 (14)0.00045 (9)0.00284 (9)0.00153 (8)
N10.0544 (10)0.0439 (9)0.0433 (8)0.0005 (7)0.0056 (7)0.0033 (6)
C10.0435 (10)0.0433 (9)0.0341 (8)0.0064 (8)0.0078 (7)0.0016 (6)
S10.0532 (3)0.0467 (3)0.0576 (3)0.0074 (2)0.0087 (2)0.0008 (2)
N20.0442 (9)0.0477 (9)0.0489 (9)0.0033 (7)0.0017 (7)0.0035 (7)
C20.0350 (9)0.0444 (9)0.0374 (8)0.0011 (7)0.0049 (6)0.0005 (7)
S20.0516 (3)0.0689 (4)0.0587 (3)0.0139 (3)0.0055 (2)0.0237 (3)
S110.0358 (3)0.0584 (3)0.0352 (2)0.00976 (19)0.00353 (16)0.00086 (17)
C110.0327 (8)0.0426 (8)0.0288 (6)0.0009 (7)0.0053 (6)0.0055 (6)
N110.0335 (8)0.0444 (8)0.0446 (7)0.0057 (6)0.0036 (6)0.0023 (6)
C120.0537 (13)0.0477 (11)0.0659 (12)0.0154 (9)0.0155 (10)0.0021 (9)
C130.0371 (11)0.0755 (15)0.0574 (11)0.0002 (10)0.0080 (8)0.0021 (10)
N120.0382 (8)0.0401 (8)0.0395 (7)0.0033 (6)0.0056 (6)0.0009 (6)
C140.0545 (13)0.0496 (11)0.0571 (11)0.0128 (9)0.0068 (9)0.0030 (9)
C150.0566 (13)0.0549 (12)0.0573 (11)0.0209 (10)0.0096 (9)0.0043 (9)
S210.0363 (3)0.0573 (3)0.0390 (2)0.00071 (19)0.00352 (16)0.01763 (18)
C210.0341 (9)0.0352 (8)0.0307 (7)0.0069 (6)0.0048 (6)0.0035 (6)
N210.0404 (8)0.0407 (7)0.0295 (6)0.0014 (6)0.0049 (5)0.0007 (5)
C220.0430 (11)0.0498 (10)0.0477 (9)0.0052 (8)0.0118 (8)0.0134 (8)
C230.0588 (13)0.0611 (12)0.0320 (8)0.0063 (10)0.0048 (7)0.0106 (8)
N220.0468 (9)0.0381 (7)0.0303 (6)0.0006 (6)0.0055 (5)0.0012 (5)
C240.0517 (12)0.0556 (11)0.0458 (9)0.0138 (9)0.0083 (8)0.0007 (8)
C250.0690 (14)0.0571 (11)0.0355 (9)0.0105 (10)0.0107 (8)0.0100 (8)
Geometric parameters (Å, º) top
Co1—N11.9484 (17)N11—C131.459 (3)
Co1—N21.9499 (17)N11—C121.461 (3)
Co1—S112.3157 (5)N12—C151.455 (3)
Co1—S212.3196 (6)N12—C141.465 (3)
N1—C11.162 (3)S21—C211.7282 (17)
C1—S11.613 (2)C21—N221.336 (2)
N2—C21.160 (2)C21—N211.339 (2)
C2—S21.6066 (18)N21—C231.458 (2)
S11—C111.7411 (18)N21—C221.459 (2)
C11—N121.327 (2)N22—C241.460 (3)
C11—N111.335 (2)N22—C251.464 (2)
N1—Co1—N2106.56 (7)C11—N11—C12121.74 (17)
N1—Co1—S11102.86 (5)C13—N11—C12114.72 (17)
N2—Co1—S11121.40 (5)C11—N12—C15122.09 (17)
N1—Co1—S21117.66 (5)C11—N12—C14123.28 (16)
N2—Co1—S2197.67 (6)C15—N12—C14114.12 (17)
S11—Co1—S21111.564 (19)C21—S21—Co1107.02 (6)
C1—N1—Co1164.57 (16)N22—C21—N21119.39 (15)
N1—C1—S1179.27 (18)N22—C21—S21119.81 (12)
C2—N2—Co1175.96 (17)N21—C21—S21120.76 (13)
N2—C2—S2178.70 (18)C21—N21—C23122.68 (15)
C11—S11—Co197.16 (5)C21—N21—C22122.21 (15)
N12—C11—N11120.27 (16)C23—N21—C22114.11 (15)
N12—C11—S11120.22 (13)C21—N22—C24123.21 (14)
N11—C11—S11119.51 (14)C21—N22—C25121.86 (16)
C11—N11—C13122.80 (17)C24—N22—C25113.75 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12B···S1i0.982.933.906 (2)174
C14—H14A···S2ii0.982.933.741 (2)141
C22—H22C···S110.982.613.442 (2)143
C24—H24A···S1iii0.982.923.878 (2)166
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1/2, z+1/2; (iii) x+1, y+1/2, z+1/2.
 

Acknowledgements

We thank Professor Dr Wolfgang Bensch for access to his experimental facilities.

Funding information

This project was supported by the Deutsche Forschungsgemeinschaft (project No. NA 720/5–2) and the State of Schleswig-Holstein.

References

First citationAbedi, M., Kirschbaum, K., Shamkhali, A. N., Brue, C. R. & Khandar, A. A. (2016). Polyhedron, 109, 176–181.  CSD CrossRef CAS Google Scholar
First citationBarnett, S. A., Blake, A. J., Champness, N. R. & Wilson, C. (2002). Chem. Commun. pp. 1640–1641.  CSD CrossRef Google Scholar
First citationBhowmik, P., Chattopadhyay, S., Drew, M. G. B., Diaz, C. & Ghosh, A. (2010). Polyhedron, 29, 2637–2642.  CSD CrossRef CAS Google Scholar
First citationBöckmann, J., Reimer, B. & Näther, C. (2011). Z. Naturforsch. B: Chem. Sci. 66, 819–827.  Google Scholar
First citationBöhme, M., Jochim, A., Rams, M., Lohmiller, T., Suckert, S., Schnegg, A., Plass, W. & Näther, C. (2020). Inorg. Chem. 59, 5325–5338.  PubMed Google Scholar
First citationBrandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBuckingham, S. (1994). Coord. Chem. Rev. 135–136, 587–621.  CrossRef Google Scholar
First citationDevillanova, F. A. (2007). Editor. Handbook of Chalcogen Chemistry: New Perspectives in Sulfur, Selenium and Tellurium, 1st ed., pp. 107–108. Cambridge: Royal Society of Chemistry.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHaasnoot, J. G., Driessen, W. L. & Reedijk, J. (1984). Inorg. Chem. 23, 2803–2807.  CSD CrossRef CAS Web of Science Google Scholar
First citationJin, Y., Che, Y. X. & Zheng, J. M. (2007). J. Coord. Chem. 60, 2067–2074.  CSD CrossRef CAS Google Scholar
First citationJochim, A., Lohmiller, T., Rams, M., Böhme, M., Ceglarska, M., Schnegg, A., Plass, W. & Näther, C. (2020). Inorg. Chem. 59, 8971–8982.  CSD CrossRef CAS PubMed Google Scholar
First citationMautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436–442.  Web of Science CSD CrossRef CAS Google Scholar
First citationMirčeva, A. & Golič, L. (1990). Acta Cryst. C46, 1001–1003.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationNeumann, T., Jess, I., Pielnhofer, F. & Näther, C. (2018b). Eur. J. Inorg. Chem. pp. 4972–4981.  CSD CrossRef Google Scholar
First citationNeumann, T., Rams, M., Tomkowicz, Z., Jess, I. & Näther, C. (2019). Chem. Commun. 55, 2652–2655.  Web of Science CSD CrossRef CAS Google Scholar
First citationNeumann, T., Rams, M., Wellm, C. & Näther, C. (2018a). Cryst. Growth Des. 18, 6020–6027.  Web of Science CrossRef CAS Google Scholar
First citationPalion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Inorg. Chem. 56, 2380–2388.  Google Scholar
First citationPrananto, Y. P., Urbatsch, A., Moubaraki, B., Murray, K. S., Turner, D. R., Deacon, G. B. & Batten, S. R. (2017). Aust. J. Chem. 70, 516–528.  Web of Science CSD CrossRef CAS Google Scholar
First citationRajarajan, K., Sendil Kumar, K., Ramesh, V., Shihabuddeen, V. & Murugavel, S. (2012). Acta Cryst. E68, m1125–m1126.  CSD CrossRef IUCr Journals Google Scholar
First citationRams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. & Näther, C. (2020). Chem. Eur. J. 26, 2837–2851.  CSD CrossRef CAS PubMed Google Scholar
First citationRams, M., Tomkowicz, Z., Böhme, M., Plass, W., Suckert, S., Werner, J., Jess, I. & Näther, C. (2017). Phys. Chem. Chem. Phys. 19, 3232–3243.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRobinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567–570.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShurdha, E., Moore, C. E., Rheingold, A. L., Lapidus, S. H., Stephens, P. W., Arif, A. M. & Miller, J. S. (2013). Inorg. Chem. 52, 10583–10594.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationStoe & Cie (2002). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationSuckert, S., Rams, M., Böhme, M., Germann, L. S., Dinnebier, R., Plass, W., Werner, J. & Näther, C. (2016). Dalton Trans. 45, 18190–18201.  CSD CrossRef CAS PubMed Google Scholar
First citationWerner, J., Rams, M., Tomkowicz, Z., Runčevski, T., Dinnebier, R. E., Suckert, S. & Näther, C. (2015a). Inorg. Chem. 54, 2893–2901.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWerner, S., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Neumann, T. & Näther, C. (2015b). Dalton Trans. 44, 14149–14158.  CSD CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds