research communications
E)-1-(2,6-dichlorophenyl)-2-(2-nitrobenzylidene)hydrazine
and Hirshfeld surface analysis of (aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bOrganic Chemistry Department, Baku State University, Z. Khalilov str. 23, AZ, 1148 Baku, Azerbaijan, and cDepartment of Chemistry, M.M.A.M.C (Tribhuvan University), Biratnagar, Nepal
*Correspondence e-mail: bkajaya@yahoo.com
In the title compound, C13H9Cl2N3O2, the 2,6-dichlorophenyl ring and the nitro-substituted benzene ring form a dihedral angle of 21.16 (14)°. In the crystal, face-to-face π–π stacking interactions occur along the a-axis direction between the centroids of the 2,6-dichlorophenyl ring and the nitro-substituted benzene ring. Furthermore, these molecules show intramolecular N—H⋯Cl and C—H⋯O contacts and are linked by intermolecular N—H⋯O and C—H⋯Cl hydrogen bonds, forming pairs of hydrogen-bonded molecular layers parallel to (20). The Hirshfeld surface analysis of the indicates that the most important contributions to the crystal packing are from H⋯H (23.0%), O⋯H/H⋯O (20.1%), Cl⋯H/H⋯Cl (19.0%), C⋯C (11.2%) and H⋯C/C⋯H (8.0%) interactions.
Keywords: crystal structure; face-to-face π–π stacking interactions; 2,6-dichlorophenyl ring; nitro-substituted benzene ring; Hirshfeld surface analysis.
CCDC reference: 2012294
1. Chemical context
Arylhydrazones and their complexes have attracted much attention because of their high synthetic potential for organic and inorganic chemistry and diverse useful properties (Maharramov et al., 2009, 2010, 2018; Mahmudov et al., 2010, 2011, 2014a). The analytical and catalytic properties of this class of compounds are strongly dependent on the attached groups to the hydrazone moiety (Mahmudov et al., 2013; Shixaliyev et al., 2018, 2019). On the other hand, intermolecular interactions organize the molecular architectures, which play a critical role in synthesis, catalysis, micellization, etc. (Akbari Afkhami et al., 2017; Gurbanov et al., 2017, 2018; Kopylovich et al., 2011a,b; Ma et al., 2017a,b; Mahmoudi et al., 2016, 2017a,b,c, 2018a,b). New types of non-covalent bonds such as halogen, chalcogen, pnictogen and tetrel bonds or their cooperation with hydrogen bonds are able to contribute to the synthesis and catalysis, giving materials with improved properties (Mahmudov et al., 2013, 2014b, 2015, 2017a,b, 2019; Mizar et al., 2012; Shixaliyev et al., 2013, 2014). For that, the main skeleton of the hydrazone ligand should be decorated by non-covalent bond donor centre(s). In a continuation of our work in this regard, we have functionalized a new azo dye, (E)-1-(2,6-dichlorophenyl)-2-(2-nitrobenzylidene)hydrazine, which provides intermolecular non-covalent interactions.
2. Structural commentary
The title molecule (Fig. 1) has an E configuration about the C=N bond. The 2,6-dichlorophenyl ring and the nitro-substituted benzene ring of the title compound are inclined at 21.16 (14)°, while the nitro group is skewed out of the attached benzene ring plane by 27.06 (18)°. The Cl1—C2—C1—N1, Cl2—C6—C1—N1, C2—C1—N1—N2, C1—N1—N2—C7, N1—N2—C7—C8, N2—C7—C8—C13, C7—C8—C13—N3, C8—C13—N3—O1 and C8—C13—N3—O2 torsion angles are 0.1 (3), 4.7 (4), −145.8 (2), 176.7 (2), 175.4 (2), 164.3 (3), −7.7 (4), −26.9 (4) and 155.7 (3)°, respectively. Two intramolecular N—H⋯Cl and C—H⋯O contacts are present (Table 1).
3. Supramolecular features and Hirshfeld surface analysis
In the crystal, face-to-face π–π stacking interactions [Cg1⋯Cg2( − x, + y, − z) = 3.7605 (17) Å with slippage of 1.352 Å, Cg1⋯Cg2( − x, + y, − z) = 3.8010 (17) Å with slippage of 1.457 Å, where Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 rings, respectively] occur between the centroids of the 2,6-dichlorophenyl ring and the nitro-substituted benzene ring of the title molecule along the a-axis direction (Figs. 2 and 3). Furthermore, these molecules are linked by intermolecular N—H⋯O and C—H⋯Cl hydrogen bonds, forming pairs of hydrogen-bonded molecular layers parallel to (20) (Tables 1 and 2; Figs. 4 and 5). There is also a C—Cl⋯Cg interaction [Cl1⋯Cg2( − x, + y, − z) = 3.9026 (14) Å; C2—Cl1⋯Cg2 = 64.12 (10)°]. As a result of the large Cl ⋯ Cg2 distance and acute C—Cl⋯Cg2 angle, this interaction is only weak.
|
Hirshfeld surface analysis was used to analyse the various intermolecular interactions in the title compound, through mapping the normalized contact distance (dnorm) using CrystalExplorer (Turner et al., 2017; Spackman & Jayatilaka, 2009). The Hirshfeld surface mapped over dnorm using a standard surface resolution with a fixed colour scale of −0.1980 (red) to 1.3500 (blue) a.u. is shown in Fig. 6. The white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distant contact) than the van der Waals radii, respectively (Venkatesan et al., 2016). The dark-red spots on the dnorm surface arise as a result of short interatomic contacts (Table 2), while the other weaker intermolecular interactions appear as light-red spots. The red points, which represent closer contacts and negative dnorm values on the surface, correspond to the C—H⋯O and C—H⋯Cl interactions. The shape-index of the Hirshfeld surface is a tool for visualizing the π–π stacking by the presence of adjacent red and blue triangles; if there are no such triangles, then there are no π–π interactions. The plot of the Hirshfeld surface mapped over shape-index shown in Fig. 7 clearly suggests that there are π–π interactions in the crystal packing of the title compound.
The percentage contributions of various contacts to the total Hirshfeld surface are listed in Table 3 and shown in the two-dimensional fingerprint plots in Fig. 8. As revealed by the two-dimensional fingerprint plots (Fig. 8), the crystal packing is dominated by H⋯H contacts, representing van der Waals interactions (23.0% contribution to the overall surface), followed by O⋯H and Cl⋯H interactions, which contribute 20.1% and 19.0%, respectively.
|
4. Database survey
Six compounds closely resemble the title compound, viz. 1-(2,4-dinitrophenyl)-2-[(E)-(3,4,5-trimethoxybenzylidene)hydrazine] (CSD refcode GISJAV; Chantrapromma et al., 2014), (E)-1-(2,4-dinitrophenyl)-2-[1-(3-methoxyphenyl)ethylidene]hydrazine (XEBCEO; Fun et al., 2012), 1-(2,4-dinitrophenyl)-2-[(E)-2,4,5-trimethoxybenzylidene]hydrazine (AFUSEB; Fun et al., 2013), (E)-1-(2,4-dinitrophenyl)-2-(1-(2-methoxyphenyl)ethylidene)hydrazine (OBUJAY; Fun et al., 2011), (E)-1-(2,4-dinitrophenyl)-2-[1-(3-fluorophenyl)ethylidene]hydrazine (PAVKAA; Chantrapromma et al., 2012) and (E)-1-(2,4-dinitrophenyl)-2-[1-(2-nitrophenyl)ethylidene]hydrazine (YAHRUW; Nilwanna et al., 2011). All bond lengths (Allen et al., 1987) and angles for the title compound are within normal ranges and are comparable to those observed in these structures. In each one, the configuration of the imine C=N bond is E.
5. Synthesis and crystallization
The title compound was synthesized according to the reported method (Atioğlu et al., 2019; Maharramov et al., 2018; Shixaliyev et al., 2018, 2019). A mixture of 2-nitrobenzaldehyde (10 mmol), CH3COONa (0.82 g), ethanol (50 mL) and (2,6-dichlorophenyl)hydrazine (10.2 mmol) was refluxed at 353 K under stirring for 2 h. The reaction mixture was cooled to room temperature and water (50 mL) was added to give a precipitate of the crude product, which was filtered off, washed with diluted ethanol (1:1 with water) and dried in vacuo using a rotary evaporator. Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.
Title compound: orange solid (90%); m.p. 398 K. Analysis calculated for C13H9Cl2N3O2 (M = 310.13): C 50.35, H 2.93, N 13.55; found: C 50.27, H 2.86, N 13.54%. 1H NMR (300 MHz, DMSO-d6): δ 10.20 (1H, –NH), 8.41 (1H, –CH), 7.13–8.08 (7H, aromatic). 13C NMR (75 MHz, DMSO-d6): δ 147.47, 137.80, 133.76, 133.32, 130.17, 129.85, 129.16, 128.00, 127.08, 125.86, 124.96. ESI–MS: m/z: 311.08 [M+H]+.
6. Refinement
Crystal data, data collection and structure . All H atoms were refined using a riding model with d(C—H) = 0.93 Å, d(N—H) = 0.95 Å and Uiso = 1.2Ueq(N,C).
details are summarized in Table 4
|
Supporting information
CCDC reference: 2012294
https://doi.org/10.1107/S2056989020008567/vm2235sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020008567/vm2235Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989020008567/vm2235Isup3.cml
Data collection: APEX3 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXT2016/6 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).C13H9Cl2N3O2 | F(000) = 632 |
Mr = 310.13 | Dx = 1.532 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 7.1138 (4) Å | Cell parameters from 9979 reflections |
b = 12.6827 (6) Å | θ = 2.7–27.9° |
c = 15.1613 (8) Å | µ = 0.49 mm−1 |
β = 100.571 (2)° | T = 296 K |
V = 1344.67 (12) Å3 | Plate, orange |
Z = 4 | 0.26 × 0.22 × 0.18 mm |
Bruker APEXII CCD diffractometer | 2184 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.057 |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | θmax = 26.0°, θmin = 2.7° |
Tmin = 0.868, Tmax = 0.906 | h = −8→8 |
22007 measured reflections | k = −15→15 |
2521 independent reflections | l = −18→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.052 | Hydrogen site location: mixed |
wR(F2) = 0.118 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.026P)2 + 1.7039P] where P = (Fo2 + 2Fc2)/3 |
2521 reflections | (Δ/σ)max < 0.001 |
181 parameters | Δρmax = 0.32 e Å−3 |
0 restraints | Δρmin = −0.40 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.48623 (11) | 0.84495 (6) | 0.29065 (5) | 0.0562 (2) | |
Cl2 | 0.26473 (16) | 0.52094 (7) | 0.06054 (6) | 0.0807 (3) | |
O1 | 0.7013 (4) | 0.44141 (18) | 0.49042 (15) | 0.0702 (7) | |
O2 | 0.6516 (4) | 0.2943 (2) | 0.55110 (15) | 0.0863 (8) | |
N1 | 0.4068 (4) | 0.62149 (17) | 0.24789 (15) | 0.0473 (6) | |
H1N | 0.396165 | 0.657432 | 0.301808 | 0.057* | |
N2 | 0.4727 (3) | 0.52096 (16) | 0.24606 (15) | 0.0419 (5) | |
N3 | 0.6564 (3) | 0.3486 (2) | 0.48539 (15) | 0.0509 (6) | |
C1 | 0.3930 (4) | 0.6850 (2) | 0.17229 (17) | 0.0405 (6) | |
C2 | 0.4275 (4) | 0.7938 (2) | 0.18315 (18) | 0.0410 (6) | |
C3 | 0.4131 (4) | 0.8620 (2) | 0.1116 (2) | 0.0530 (7) | |
H3A | 0.435083 | 0.933692 | 0.121363 | 0.064* | |
C4 | 0.3661 (5) | 0.8234 (3) | 0.0258 (2) | 0.0623 (9) | |
H4A | 0.359130 | 0.868645 | −0.023006 | 0.075* | |
C5 | 0.3296 (4) | 0.7177 (3) | 0.0122 (2) | 0.0594 (8) | |
H5A | 0.298464 | 0.691722 | −0.046044 | 0.071* | |
C6 | 0.3384 (4) | 0.6497 (2) | 0.08380 (19) | 0.0487 (7) | |
C7 | 0.4904 (4) | 0.4688 (2) | 0.31903 (18) | 0.0414 (6) | |
H7A | 0.467933 | 0.500896 | 0.371280 | 0.050* | |
C8 | 0.5469 (4) | 0.35755 (19) | 0.31939 (17) | 0.0377 (5) | |
C9 | 0.5193 (4) | 0.3022 (2) | 0.23815 (19) | 0.0468 (6) | |
H9A | 0.473272 | 0.337842 | 0.184977 | 0.056* | |
C10 | 0.5589 (4) | 0.1961 (2) | 0.2353 (2) | 0.0565 (8) | |
H10A | 0.541762 | 0.161493 | 0.180264 | 0.068* | |
C11 | 0.6239 (4) | 0.1405 (2) | 0.3132 (2) | 0.0586 (8) | |
H11A | 0.649659 | 0.068772 | 0.310822 | 0.070* | |
C12 | 0.6501 (4) | 0.1916 (2) | 0.3942 (2) | 0.0515 (7) | |
H12A | 0.691729 | 0.154697 | 0.447219 | 0.062* | |
C13 | 0.6139 (4) | 0.2987 (2) | 0.39640 (17) | 0.0396 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0685 (5) | 0.0450 (4) | 0.0534 (4) | −0.0010 (3) | 0.0064 (3) | −0.0065 (3) |
Cl2 | 0.1061 (8) | 0.0636 (5) | 0.0648 (5) | −0.0150 (5) | −0.0046 (5) | −0.0194 (4) |
O1 | 0.0956 (18) | 0.0501 (13) | 0.0590 (14) | −0.0025 (12) | −0.0014 (12) | −0.0147 (11) |
O2 | 0.130 (2) | 0.0877 (18) | 0.0400 (12) | −0.0075 (17) | 0.0109 (13) | 0.0151 (12) |
N1 | 0.0694 (16) | 0.0337 (11) | 0.0405 (12) | 0.0096 (10) | 0.0143 (11) | 0.0029 (9) |
N2 | 0.0482 (13) | 0.0343 (11) | 0.0444 (12) | 0.0006 (9) | 0.0112 (10) | 0.0012 (9) |
N3 | 0.0540 (14) | 0.0554 (15) | 0.0415 (13) | 0.0043 (11) | 0.0042 (11) | 0.0005 (11) |
C1 | 0.0391 (13) | 0.0418 (14) | 0.0398 (13) | 0.0053 (11) | 0.0053 (11) | 0.0044 (11) |
C2 | 0.0384 (13) | 0.0408 (13) | 0.0440 (14) | 0.0039 (11) | 0.0077 (11) | 0.0041 (11) |
C3 | 0.0544 (17) | 0.0450 (16) | 0.0610 (18) | 0.0080 (13) | 0.0140 (14) | 0.0148 (14) |
C4 | 0.064 (2) | 0.071 (2) | 0.0523 (18) | 0.0132 (16) | 0.0128 (15) | 0.0224 (16) |
C5 | 0.0589 (19) | 0.079 (2) | 0.0383 (15) | 0.0090 (16) | 0.0042 (13) | 0.0023 (15) |
C6 | 0.0492 (16) | 0.0520 (16) | 0.0427 (15) | 0.0016 (13) | 0.0023 (12) | −0.0015 (13) |
C7 | 0.0481 (15) | 0.0363 (13) | 0.0414 (14) | 0.0031 (11) | 0.0120 (11) | −0.0008 (11) |
C8 | 0.0381 (13) | 0.0366 (13) | 0.0398 (13) | −0.0018 (10) | 0.0110 (10) | −0.0004 (10) |
C9 | 0.0527 (16) | 0.0465 (15) | 0.0421 (14) | 0.0006 (12) | 0.0111 (12) | −0.0035 (12) |
C10 | 0.0641 (19) | 0.0477 (16) | 0.0602 (19) | −0.0038 (14) | 0.0178 (15) | −0.0190 (15) |
C11 | 0.0602 (19) | 0.0317 (14) | 0.085 (2) | −0.0011 (13) | 0.0175 (17) | −0.0048 (15) |
C12 | 0.0545 (17) | 0.0377 (14) | 0.0615 (18) | 0.0005 (12) | 0.0089 (14) | 0.0091 (13) |
C13 | 0.0401 (13) | 0.0374 (13) | 0.0415 (14) | −0.0018 (10) | 0.0078 (11) | −0.0008 (11) |
Cl1—C2 | 1.732 (3) | C4—H4A | 0.9300 |
Cl2—C6 | 1.731 (3) | C5—C6 | 1.380 (4) |
O1—N3 | 1.218 (3) | C5—H5A | 0.9300 |
O2—N3 | 1.217 (3) | C7—C8 | 1.467 (3) |
N1—N2 | 1.361 (3) | C7—H7A | 0.9300 |
N1—C1 | 1.390 (3) | C8—C13 | 1.394 (4) |
N1—H1N | 0.9510 | C8—C9 | 1.400 (4) |
N2—C7 | 1.275 (3) | C9—C10 | 1.377 (4) |
N3—C13 | 1.471 (3) | C9—H9A | 0.9300 |
C1—C6 | 1.400 (4) | C10—C11 | 1.381 (5) |
C1—C2 | 1.406 (4) | C10—H10A | 0.9300 |
C2—C3 | 1.376 (4) | C11—C12 | 1.371 (4) |
C3—C4 | 1.374 (4) | C11—H11A | 0.9300 |
C3—H3A | 0.9300 | C12—C13 | 1.384 (4) |
C4—C5 | 1.374 (5) | C12—H12A | 0.9300 |
N2—N1—C1 | 119.9 (2) | C5—C6—Cl2 | 117.5 (2) |
N2—N1—H1N | 123.3 | C1—C6—Cl2 | 121.2 (2) |
C1—N1—H1N | 115.2 | N2—C7—C8 | 119.0 (2) |
C7—N2—N1 | 116.6 (2) | N2—C7—H7A | 120.5 |
O2—N3—O1 | 122.8 (3) | C8—C7—H7A | 120.5 |
O2—N3—C13 | 118.4 (3) | C13—C8—C9 | 116.1 (2) |
O1—N3—C13 | 118.7 (2) | C13—C8—C7 | 124.7 (2) |
N1—C1—C6 | 124.7 (2) | C9—C8—C7 | 119.0 (2) |
N1—C1—C2 | 119.2 (2) | C10—C9—C8 | 121.4 (3) |
C6—C1—C2 | 116.0 (2) | C10—C9—H9A | 119.3 |
C3—C2—C1 | 122.6 (3) | C8—C9—H9A | 119.3 |
C3—C2—Cl1 | 118.5 (2) | C9—C10—C11 | 120.6 (3) |
C1—C2—Cl1 | 119.0 (2) | C9—C10—H10A | 119.7 |
C4—C3—C2 | 119.6 (3) | C11—C10—H10A | 119.7 |
C4—C3—H3A | 120.2 | C12—C11—C10 | 119.7 (3) |
C2—C3—H3A | 120.2 | C12—C11—H11A | 120.2 |
C5—C4—C3 | 119.8 (3) | C10—C11—H11A | 120.2 |
C5—C4—H4A | 120.1 | C11—C12—C13 | 119.3 (3) |
C3—C4—H4A | 120.1 | C11—C12—H12A | 120.3 |
C4—C5—C6 | 120.8 (3) | C13—C12—H12A | 120.3 |
C4—C5—H5A | 119.6 | C12—C13—C8 | 122.8 (3) |
C6—C5—H5A | 119.6 | C12—C13—N3 | 115.9 (3) |
C5—C6—C1 | 121.2 (3) | C8—C13—N3 | 121.3 (2) |
C1—N1—N2—C7 | 176.7 (2) | N2—C7—C8—C13 | 164.3 (3) |
N2—N1—C1—C6 | 37.1 (4) | N2—C7—C8—C9 | −20.8 (4) |
N2—N1—C1—C2 | −145.8 (2) | C13—C8—C9—C10 | −0.8 (4) |
N1—C1—C2—C3 | −178.8 (2) | C7—C8—C9—C10 | −176.0 (3) |
C6—C1—C2—C3 | −1.4 (4) | C8—C9—C10—C11 | 1.3 (5) |
N1—C1—C2—Cl1 | 0.1 (3) | C9—C10—C11—C12 | −0.3 (5) |
C6—C1—C2—Cl1 | 177.4 (2) | C10—C11—C12—C13 | −1.1 (5) |
C1—C2—C3—C4 | −1.0 (4) | C11—C12—C13—C8 | 1.6 (4) |
Cl1—C2—C3—C4 | −179.8 (2) | C11—C12—C13—N3 | −176.6 (3) |
C2—C3—C4—C5 | 1.5 (5) | C9—C8—C13—C12 | −0.7 (4) |
C3—C4—C5—C6 | 0.3 (5) | C7—C8—C13—C12 | 174.3 (3) |
C4—C5—C6—C1 | −2.9 (5) | C9—C8—C13—N3 | 177.4 (2) |
C4—C5—C6—Cl2 | 173.1 (3) | C7—C8—C13—N3 | −7.7 (4) |
N1—C1—C6—C5 | −179.5 (3) | O2—N3—C13—C12 | −26.1 (4) |
C2—C1—C6—C5 | 3.3 (4) | O1—N3—C13—C12 | 151.3 (3) |
N1—C1—C6—Cl2 | 4.7 (4) | O2—N3—C13—C8 | 155.7 (3) |
C2—C1—C6—Cl2 | −172.5 (2) | O1—N3—C13—C8 | −26.9 (4) |
N1—N2—C7—C8 | 175.4 (2) |
Cg2 is the centroid of the C8–C13 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···Cl1 | 0.95 | 2.48 | 2.939 (2) | 110 |
N1—H1N···O2i | 0.95 | 2.40 | 3.327 (3) | 166 |
C7—H7A···O1 | 0.93 | 2.34 | 2.774 (4) | 108 |
C12—H12A···Cl2ii | 0.93 | 2.80 | 3.679 (3) | 157 |
C2—Cl1···Cg2iii | 1.73 (1) | 3.90 (1) | 3.511 (3) | 64 (1) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1/2, −y+1/2, z+1/2; (iii) −x+3/2, y+1/2, −z+1/2. |
Contact | Distance | Symmetry operation |
Cl1···H11A | 3.06 | x, 1 + y, z |
C2···C8 | 3.464 (4) | 1/2 - x, 1/2 + y, 1/2 - z |
H1N···O2 | 2.40 | 1 - x, 1 - y, 1 - z |
O1···H4A | 2.68 | 1/2 + x, 3/2 - y, 1/2 + z |
Cl2···H12A | 2.80 | -1/2 + x, 1/2 - y, -1/2 + z |
N3···C4 | 3.447 (4) | 3/2 - x, -1/2 + y, 1/2 - z |
Contact | Percentage contribution |
H···H | 23.0 |
O···H/H···O | 20.1 |
Cl···H/H···Cl | 19.0 |
C···C | 11.2 |
H···C/C···H | 8.0 |
N···H/H···N | 5.5 |
Cl···Cl | 3.3 |
N···C/C···N | 3.1 |
Cl···C/C···Cl | 3.0 |
O···C/C···O | 1.4 |
Cl···O/O···Cl | 1.3 |
Cl···N/N···Cl | 0.8 |
O···O | 0.2 |
O···N/N···O | 0.1 |
Funding information
This work was funded by Science Development Foundation under the President of the Republic of Azerbaijan, grant No. EIF/MQM/Elm-Tehsil-1–2016-1(26)–71/06/4.
References
Akbari Afkhami, F., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888–14896. Web of Science CSD CrossRef CAS PubMed Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237–241. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chantrapromma, S., Nilwanna, B., Kobkeatthawin, T., Jansrisewangwong, P. & Fun, H.-K. (2012). Acta Cryst. E68, o1644–o1645. CSD CrossRef IUCr Journals Google Scholar
Chantrapromma, S., Ruanwas, P., Boonnak, N., Chidan Kumar, C. S. & Fun, H.-K. (2014). Acta Cryst. E70, o188–o189. CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fun, H.-K., Chantrapromma, S., Nilwanna, B. & Kobkeatthawin, T. (2012). Acta Cryst. E68, o2144–o2145. CSD CrossRef CAS IUCr Journals Google Scholar
Fun, H.-K., Chantrapromma, S., Nilwanna, B., Kobkeatthawin, T. & Boonnak, N. (2013). Acta Cryst. E69, o1203–o1204. CSD CrossRef CAS IUCr Journals Google Scholar
Fun, H.-K., Nilwanna, B., Jansrisewangwong, P., Kobkeatthawin, T. & Chantrapromma, S. (2011). Acta Cryst. E67, o3202–o3203. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018). Aust. J. Chem. 71, 190–194. Web of Science CrossRef CAS Google Scholar
Gurbanov, A. V., Mahmudov, K. T., Sutradhar, M., Guedes da Silva, F. C., Mahmudov, T. A., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). J. Organomet. Chem. 834, 22–27. Web of Science CSD CrossRef CAS Google Scholar
Kopylovich, M. N., Mahmudov, K. T., Haukka, M., Luzyanin, K. V. & Pombeiro, A. J. L. (2011b). Inorg. Chim. Acta, 374, 175–180. Web of Science CSD CrossRef CAS Google Scholar
Kopylovich, M. N., Mahmudov, K. T., Mizar, A. & Pombeiro, A. J. L. (2011a). Chem. Commun. 47, 7248–7250. Web of Science CrossRef CAS Google Scholar
Ma, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526–533. Web of Science CSD CrossRef CAS Google Scholar
Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). Mol. Catal. 428, 17–23. Web of Science CSD CrossRef CAS Google Scholar
Maharramov, A. M., Alieva, R. A., Mahmudov, K. T., Kurbanov, A. V. & Askerov, R. K. (2009). Russ. J. Coord. Chem. 35, 704–709. Web of Science CrossRef CAS Google Scholar
Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Pashaev, F. G., Gasanov, A. G., Azimova, S. I., Askerov, R. K., Kurbanov, A. V. & Mahmudov, K. T. (2010). Dyes Pigments, 85, 1–6. Web of Science CSD CrossRef CAS Google Scholar
Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141. Web of Science CrossRef CAS Google Scholar
Mahmoudi, G., Bauzá, A., Gurbanov, A. V., Zubkov, F. I., Maniukiewicz, W., Rodríguez-Diéguez, A., López-Torres, E. & Frontera, A. (2016). CrystEngComm, 18, 9056–9066. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017c). Inorg. Chim. Acta, 461, 192–205. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Gurbanov, A. V., Rodríguez-Hermida, S., Carballo, R., Amini, M., Bacchi, A., Mitoraj, M. P., Sagan, F., Kukułka, M. & Safin, D. A. (2017b). Inorg. Chem. 56, 9698–9709. Web of Science CSD CrossRef CAS PubMed Google Scholar
Mahmoudi, G., Seth, S. K., Bauzá, A., Zubkov, F. I., Gurbanov, A. V., White, J., Stilinović, V., Doert, T. & Frontera, A. (2018b). CrystEngComm, 20, 2812–2821. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018a). New J. Chem. 42, 4959–4971. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017a). Eur. J. Inorg. Chem. pp. 4763–4772. Web of Science CSD CrossRef Google Scholar
Mahmudov, K. T., Guedes da Silva, M. F. C., Kopylovich, M. N., Fernandes, A. R., Silva, A., Mizar, A. & Pombeiro, A. J. L. (2014a). J. Organomet. Chem. 760, 67–73. Web of Science CSD CrossRef CAS Google Scholar
Mahmudov, K. T., Guedes da Silva, M. F. C., Sutradhar, M., Kopylovich, M. N., Huseynov, F. E., Shamilov, N. T., Voronina, A. A., Buslaeva, T. M. & Pombeiro, A. J. L. (2015). Dalton Trans. 44, 5602–5610. Web of Science CSD CrossRef CAS PubMed Google Scholar
Mahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32–46. Web of Science CrossRef CAS Google Scholar
Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017a). Dalton Trans. 46, 10121–10138. Web of Science CrossRef CAS PubMed Google Scholar
Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017b). Coord. Chem. Rev. 345, 54–72. Web of Science CrossRef CAS Google Scholar
Mahmudov, K. T., Kopylovich, M. N., Maharramov, A. M., Kurbanova, M. M., Gurbanov, A. V. & Pombeiro, A. J. L. (2014b). Coord. Chem. Rev. 265, 1–37. Web of Science CrossRef CAS Google Scholar
Mahmudov, K. T., Kopylovich, M. N. & Pombeiro, A. J. L. (2013). Coord. Chem. Rev. 257, 1244–1281. Web of Science CrossRef CAS Google Scholar
Mahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Askerov, R. K., Batmaz, R., Kopylovich, M. N. & Pombeiro, A. J. L. (2011). J. Photochem. Photobiol. Chem. 219, 159–165. Web of Science CSD CrossRef CAS Google Scholar
Mahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Kopylovich, M. N. & Pombeiro, A. J. L. (2010). Anal. Lett. 43, 2923–2938. Web of Science CrossRef CAS Google Scholar
Mizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305–2313. Web of Science CSD CrossRef Google Scholar
Nilwanna, B., Chantrapromma, S., Jansrisewangwong, P. & Fun, H.-K. (2011). Acta Cryst. E67, o3084–o3085. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381. Web of Science CSD CrossRef CAS Google Scholar
Shikhaliyev, N. Q., Çelikesir, S. T., Akkurt, M., Bagirova, K. N., Suleymanova, G. T. & Toze, F. A. A. (2019). Acta Cryst. E75, 465–469. Web of Science CSD CrossRef IUCr Journals Google Scholar
Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807–4815. Web of Science CSD CrossRef CAS Google Scholar
Shixaliyev, N. Q., Maharramov, A. M., Gurbanov, A. V., Nenajdenko, V. G., Muzalevskiy, V. M., Mahmudov, K. T. & Kopylovich, M. N. (2013). Catal. Today, 217, 76–79. Web of Science CrossRef CAS Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A, 153, 625–636. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.