research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (E)-1-(2,6-di­chloro­phen­yl)-2-(2-nitro­benzyl­­idene)hydrazine

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bOrganic Chemistry Department, Baku State University, Z. Khalilov str. 23, AZ, 1148 Baku, Azerbaijan, and cDepartment of Chemistry, M.M.A.M.C (Tribhuvan University), Biratnagar, Nepal
*Correspondence e-mail: bkajaya@yahoo.com

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 22 June 2020; accepted 25 June 2020; online 3 July 2020)

In the title compound, C13H9Cl2N3O2, the 2,6-di­chloro­phenyl ring and the nitro-substituted benzene ring form a dihedral angle of 21.16 (14)°. In the crystal, face-to-face ππ stacking inter­actions occur along the a-axis direction between the centroids of the 2,6-di­chloro­phenyl ring and the nitro-substituted benzene ring. Furthermore, these mol­ecules show intra­molecular N—H⋯Cl and C—H⋯O contacts and are linked by inter­molecular N—H⋯O and C—H⋯Cl hydrogen bonds, forming pairs of hydrogen-bonded mol­ecular layers parallel to (20[\overline{2}]). The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H⋯H (23.0%), O⋯H/H⋯O (20.1%), Cl⋯H/H⋯Cl (19.0%), C⋯C (11.2%) and H⋯C/C⋯H (8.0%) inter­actions.

1. Chemical context

Aryl­hydrazones and their complexes have attracted much attention because of their high synthetic potential for organic and inorganic chemistry and diverse useful properties (Maharramov et al., 2009[Maharramov, A. M., Alieva, R. A., Mahmudov, K. T., Kurbanov, A. V. & Askerov, R. K. (2009). Russ. J. Coord. Chem. 35, 704-709.], 2010[Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Pashaev, F. G., Gasanov, A. G., Azimova, S. I., Askerov, R. K., Kurbanov, A. V. & Mahmudov, K. T. (2010). Dyes Pigments, 85, 1-6.], 2018[Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135-141.]; Mahmudov et al., 2010[Mahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Kopylovich, M. N. & Pombeiro, A. J. L. (2010). Anal. Lett. 43, 2923-2938.], 2011[Mahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Askerov, R. K., Batmaz, R., Kopylovich, M. N. & Pombeiro, A. J. L. (2011). J. Photochem. Photobiol. Chem. 219, 159-165.], 2014a[Mahmudov, K. T., Guedes da Silva, M. F. C., Kopylovich, M. N., Fernandes, A. R., Silva, A., Mizar, A. & Pombeiro, A. J. L. (2014a). J. Organomet. Chem. 760, 67-73.]). The analytical and catalytic properties of this class of compounds are strongly dependent on the attached groups to the hydrazone moiety (Mahmudov et al., 2013[Mahmudov, K. T., Kopylovich, M. N. & Pombeiro, A. J. L. (2013). Coord. Chem. Rev. 257, 1244-1281.]; Shixaliyev et al., 2018[Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377-381.], 2019[Shikhaliyev, N. Q., Çelikesir, S. T., Akkurt, M., Bagirova, K. N., Suleymanova, G. T. & Toze, F. A. A. (2019). Acta Cryst. E75, 465-469.]). On the other hand, inter­molecular inter­actions organize the mol­ecular architectures, which play a critical role in synthesis, catalysis, micellization, etc. (Akbari Afkhami et al., 2017[Akbari Afkhami, F., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888-14896.]; Gurbanov et al., 2017[Gurbanov, A. V., Mahmudov, K. T., Sutradhar, M., Guedes da Silva, F. C., Mahmudov, T. A., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). J. Organomet. Chem. 834, 22-27.], 2018[Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018). Aust. J. Chem. 71, 190-194.]; Kopylovich et al., 2011a[Kopylovich, M. N., Mahmudov, K. T., Mizar, A. & Pombeiro, A. J. L. (2011a). Chem. Commun. 47, 7248-7250.],b[Kopylovich, M. N., Mahmudov, K. T., Haukka, M., Luzyanin, K. V. & Pombeiro, A. J. L. (2011b). Inorg. Chim. Acta, 374, 175-180.]; Ma et al., 2017a[Ma, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526-533.],b[Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). Mol. Catal. 428, 17-23.]; Mahmoudi et al., 2016[Mahmoudi, G., Bauzá, A., Gurbanov, A. V., Zubkov, F. I., Maniukiewicz, W., Rodríguez-Diéguez, A., López-Torres, E. & Frontera, A. (2016). CrystEngComm, 18, 9056-9066.], 2017a[Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017a). Eur. J. Inorg. Chem. pp. 4763-4772.],b[Mahmoudi, G., Gurbanov, A. V., Rodríguez-Hermida, S., Carballo, R., Amini, M., Bacchi, A., Mitoraj, M. P., Sagan, F., Kukułka, M. & Safin, D. A. (2017b). Inorg. Chem. 56, 9698-9709.],c[Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017c). Inorg. Chim. Acta, 461, 192-205.], 2018a[Mahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018a). New J. Chem. 42, 4959-4971.],b[Mahmoudi, G., Seth, S. K., Bauzá, A., Zubkov, F. I., Gurbanov, A. V., White, J., Stilinović, V., Doert, T. & Frontera, A. (2018b). CrystEngComm, 20, 2812-2821.]). New types of non-covalent bonds such as halogen, chalcogen, pnictogen and tetrel bonds or their cooperation with hydrogen bonds are able to contribute to the synthesis and catalysis, giving materials with improved properties (Mahmudov et al., 2013[Mahmudov, K. T., Kopylovich, M. N. & Pombeiro, A. J. L. (2013). Coord. Chem. Rev. 257, 1244-1281.], 2014b[Mahmudov, K. T., Kopylovich, M. N., Maharramov, A. M., Kurbanova, M. M., Gurbanov, A. V. & Pombeiro, A. J. L. (2014b). Coord. Chem. Rev. 265, 1-37.], 2015[Mahmudov, K. T., Guedes da Silva, M. F. C., Sutradhar, M., Kopylovich, M. N., Huseynov, F. E., Shamilov, N. T., Voronina, A. A., Buslaeva, T. M. & Pombeiro, A. J. L. (2015). Dalton Trans. 44, 5602-5610.], 2017a[Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017a). Dalton Trans. 46, 10121-10138.],b[Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017b). Coord. Chem. Rev. 345, 54-72.], 2019[Mahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32-46.]; Mizar et al., 2012[Mizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305-2313.]; Shixaliyev et al., 2013[Shixaliyev, N. Q., Maharramov, A. M., Gurbanov, A. V., Nenajdenko, V. G., Muzalevskiy, V. M., Mahmudov, K. T. & Kopylovich, M. N. (2013). Catal. Today, 217, 76-79.], 2014[Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807-4815.]). For that, the main skeleton of the hydrazone ligand should be decorated by non-covalent bond donor centre(s). In a continuation of our work in this regard, we have functionalized a new azo dye, (E)-1-(2,6-di­chloro­phen­yl)-2-(2-nitro­benzyl­idene)hydrazine, which provides inter­molecular non-covalent inter­actions.

[Scheme 1]

2. Structural commentary

The title mol­ecule (Fig. 1[link]) has an E configuration about the C=N bond. The 2,6-di­chloro­phenyl ring and the nitro-substituted benzene ring of the title compound are inclined at 21.16 (14)°, while the nitro group is skewed out of the attached benzene ring plane by 27.06 (18)°. The Cl1—C2—C1—N1, Cl2—C6—C1—N1, C2—C1—N1—N2, C1—N1—N2—C7, N1—N2—C7—C8, N2—C7—C8—C13, C7—C8—C13—N3, C8—C13—N3—O1 and C8—C13—N3—O2 torsion angles are 0.1 (3), 4.7 (4), −145.8 (2), 176.7 (2), 175.4 (2), 164.3 (3), −7.7 (4), −26.9 (4) and 155.7 (3)°, respectively. Two intra­molecular N—H⋯Cl and C—H⋯O contacts are present (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C8–C13 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯Cl1 0.95 2.48 2.939 (2) 110
N1—H1N⋯O2i 0.95 2.40 3.327 (3) 166
C7—H7A⋯O1 0.93 2.34 2.774 (4) 108
C12—H12A⋯Cl2ii 0.93 2.80 3.679 (3) 157
C2—Cl1⋯Cg2iii 1.73 (1) 3.90 (1) 3.511 (3) 64 (1)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, face-to-face ππ stacking inter­actions [Cg1⋯Cg2([{1\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z) = 3.7605 (17) Å with slippage of 1.352 Å, Cg1⋯Cg2([{3\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z) = 3.8010 (17) Å with slippage of 1.457 Å, where Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 rings, respectively] occur between the centroids of the 2,6-di­chloro­phenyl ring and the nitro-substituted benzene ring of the title mol­ecule along the a-axis direction (Figs. 2[link] and 3[link]). Furthermore, these mol­ecules are linked by inter­molecular N—H⋯O and C—H⋯Cl hydrogen bonds, forming pairs of hydrogen-bonded mol­ecular layers parallel to (20[\overline{2}]) (Tables 1[link] and 2[link]; Figs. 4[link] and 5[link]). There is also a C—Cl⋯Cg inter­action [Cl1⋯Cg2([{3\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z) = 3.9026 (14) Å; C2—Cl1⋯Cg2 = 64.12 (10)°]. As a result of the large Cl ⋯ Cg2 distance and acute C—Cl⋯Cg2 angle, this inter­action is only weak.

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

Contact Distance Symmetry operation
Cl1⋯H11A 3.06 x, 1 + y, z
C2⋯C8 3.464 (4) [{1\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z
H1N⋯O2 2.40 1 − x, 1 − y, 1 − z
O1⋯H4A 2.68 [{1\over 2}] + x, [{3\over 2}] − y, [{1\over 2}] + z
Cl2⋯H12A 2.80 [{1\over 2}] + x, [{1\over 2}] − y, −[{1\over 2}] + z
N3⋯C4 3.447 (4) [{3\over 2}] − x, −[{1\over 2}] + y, [{1\over 2}] − z
[Figure 2]
Figure 2
A view of ππ stacking inter­actions of in the crystal packing of the title compound. Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 benzene rings, respectively. [Symmetry codes: (a) [{1\over 2}] − x, −[{1\over 2}] + y, [{1\over 2}] − z; (b) [{3\over 2}] − x, −[{1\over 2}] + y, [{1\over 2}] − z; (c) [{1\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z; (d) [{3\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z].
[Figure 3]
Figure 3
A partial view of ππ stacking inter­actions in the crystal packing of the title compound viewed along the b axis.
[Figure 4]
Figure 4
A general view of the crystal packing along the a axis of the title compound. Dashed lines indicate the intra­molecular N—H⋯Cl, C—H⋯O, inter­molecular N—H⋯O, C—H⋯Cl inter­actions and Cl⋯H, O⋯H contacts. [Symmetry codes: (a) x, 1 + y, z; (b) −[{1\over 2}] + x, [{3\over 2}] − y, −[{1\over 2}] + z; (c) −[{1\over 2}] + x, [{1\over 2}] − y, −[{1\over 2}] + z; (d) x, −1 + y, z; (e) [{1\over 2}] + x, [{1\over 2}] − y, [{1\over 2}] + z; (f) 1 − x, 1 − y, 1 − z; (g) [{1\over 2}] + x, [{3\over 2}] − y, [{1\over 2}] + z; (h) 1 − x, −y, 1 − z].
[Figure 5]
Figure 5
A general view of the crystal packing with the hydrogen bonds and contacts along the b axis of the title compound, forming pairs of hydrogen-bonded mol­ecular layers parallel to (20[\overline{2}]).

Hirshfeld surface analysis was used to analyse the various inter­molecular inter­actions in the title compound, through mapping the normalized contact distance (dnorm) using CrystalExplorer (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]). The Hirshfeld surface mapped over dnorm using a standard surface resolution with a fixed colour scale of −0.1980 (red) to 1.3500 (blue) a.u. is shown in Fig. 6[link]. The white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distant contact) than the van der Waals radii, respectively (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A, 153, 625-636.]). The dark-red spots on the dnorm surface arise as a result of short inter­atomic contacts (Table 2[link]), while the other weaker inter­molecular inter­actions appear as light-red spots. The red points, which represent closer contacts and negative dnorm values on the surface, correspond to the C—H⋯O and C—H⋯Cl inter­actions. The shape-index of the Hirshfeld surface is a tool for visualizing the ππ stacking by the presence of adjacent red and blue triangles; if there are no such triangles, then there are no ππ inter­actions. The plot of the Hirshfeld surface mapped over shape-index shown in Fig. 7[link] clearly suggests that there are ππ inter­actions in the crystal packing of the title compound.

[Figure 6]
Figure 6
A view of the Hirshfeld surface mapped for the title compound over dnorm in the range −0.1980 to 1.3500 arbitrary units.
[Figure 7]
Figure 7
View of the three-dimensional Hirshfeld surface of the title compound plotted over shape-index.

The percentage contributions of various contacts to the total Hirshfeld surface are listed in Table 3[link] and shown in the two-dimensional fingerprint plots in Fig. 8[link]. As revealed by the two-dimensional fingerprint plots (Fig. 8[link]), the crystal packing is dominated by H⋯H contacts, representing van der Waals inter­actions (23.0% contribution to the overall surface), followed by O⋯H and Cl⋯H inter­actions, which contribute 20.1% and 19.0%, respectively.

Table 3
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for the title compound

Contact Percentage contribution
H⋯H 23.0
O⋯H/H⋯O 20.1
Cl⋯H/H⋯Cl 19.0
C⋯C 11.2
H⋯C/C⋯H 8.0
N⋯H/H⋯N 5.5
Cl⋯Cl 3.3
N⋯C/C⋯N 3.1
Cl⋯C/C⋯Cl 3.0
O⋯C/C⋯O 1.4
Cl⋯O/O⋯Cl 1.3
Cl⋯N/N⋯Cl 0.8
O⋯O 0.2
O⋯N/N⋯O 0.1
[Figure 8]
Figure 8
(a) The full two-dimensional fingerprint plot for the title compound and (b)–(f) those delineated into H⋯H, O⋯H/H⋯O, Cl⋯H/H⋯Cl, C⋯C and C⋯H/H⋯C contacts, respectively.

4. Database survey

Six compounds closely resemble the title compound, viz. 1-(2,4-di­nitro­phen­yl)-2-[(E)-(3,4,5-tri­meth­oxy­benzyl­idene)hydrazine] (CSD refcode GISJAV; Chantrapromma et al., 2014[Chantrapromma, S., Ruanwas, P., Boonnak, N., Chidan Kumar, C. S. & Fun, H.-K. (2014). Acta Cryst. E70, o188-o189.]), (E)-1-(2,4-di­nitro­phen­yl)-2-[1-(3-meth­oxy­phen­yl)eth­yl­idene]hydrazine (XEBCEO; Fun et al., 2012[Fun, H.-K., Chantrapromma, S., Nilwanna, B. & Kobkeatthawin, T. (2012). Acta Cryst. E68, o2144-o2145.]), 1-(2,4-di­nitro­phen­yl)-2-[(E)-2,4,5-tri­meth­oxy­benzyl­idene]hydrazine (AFUSEB; Fun et al., 2013[Fun, H.-K., Chantrapromma, S., Nilwanna, B., Kobkeatthawin, T. & Boonnak, N. (2013). Acta Cryst. E69, o1203-o1204.]), (E)-1-(2,4-di­nitro­phen­yl)-2-(1-(2-meth­oxy­phen­yl)ethyl­idene)hydrazine (OBUJAY; Fun et al., 2011[Fun, H.-K., Nilwanna, B., Jansrisewangwong, P., Kobkeatthawin, T. & Chantrapromma, S. (2011). Acta Cryst. E67, o3202-o3203.]), (E)-1-(2,4-di­nitro­phen­yl)-2-[1-(3-fluoro­phen­yl)ethyl­idene]hydrazine (PAVKAA; Chantrapromma et al., 2012[Chantrapromma, S., Nilwanna, B., Kobkeatthawin, T., Jansrisewangwong, P. & Fun, H.-K. (2012). Acta Cryst. E68, o1644-o1645.]) and (E)-1-(2,4-di­nitro­phen­yl)-2-[1-(2-nitro­phen­yl)ethyl­idene]hydrazine (YAHRUW; Nilwanna et al., 2011[Nilwanna, B., Chantrapromma, S., Jansrisewangwong, P. & Fun, H.-K. (2011). Acta Cryst. E67, o3084-o3085.]). All bond lengths (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]) and angles for the title compound are within normal ranges and are comparable to those observed in these structures. In each one, the configuration of the imine C=N bond is E.

5. Synthesis and crystallization

The title compound was synthesized according to the reported method (Atioğlu et al., 2019[Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237-241.]; Maharramov et al., 2018[Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135-141.]; Shixaliyev et al., 2018[Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377-381.], 2019[Shikhaliyev, N. Q., Çelikesir, S. T., Akkurt, M., Bagirova, K. N., Suleymanova, G. T. & Toze, F. A. A. (2019). Acta Cryst. E75, 465-469.]). A mixture of 2-nitro­benzaldehyde (10 mmol), CH3COONa (0.82 g), ethanol (50 mL) and (2,6-di­chloro­phen­yl)hydrazine (10.2 mmol) was refluxed at 353 K under stirring for 2 h. The reaction mixture was cooled to room temperature and water (50 mL) was added to give a precipitate of the crude product, which was filtered off, washed with diluted ethanol (1:1 with water) and dried in vacuo using a rotary evaporator. Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

Title compound: orange solid (90%); m.p. 398 K. Analysis calculated for C13H9Cl2N3O2 (M = 310.13): C 50.35, H 2.93, N 13.55; found: C 50.27, H 2.86, N 13.54%. 1H NMR (300 MHz, DMSO-d6): δ 10.20 (1H, –NH), 8.41 (1H, –CH), 7.13–8.08 (7H, aromatic). 13C NMR (75 MHz, DMSO-d6): δ 147.47, 137.80, 133.76, 133.32, 130.17, 129.85, 129.16, 128.00, 127.08, 125.86, 124.96. ESI–MS: m/z: 311.08 [M+H]+.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. All H atoms were refined using a riding model with d(C—H) = 0.93 Å, d(N—H) = 0.95 Å and Uiso = 1.2Ueq(N,C).

Table 4
Experimental details

Crystal data
Chemical formula C13H9Cl2N3O2
Mr 310.13
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 7.1138 (4), 12.6827 (6), 15.1613 (8)
β (°) 100.571 (2)
V3) 1344.67 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.49
Crystal size (mm) 0.26 × 0.22 × 0.18
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.868, 0.906
No. of measured, independent and observed [I > 2σ(I)] reflections 22007, 2521, 2184
Rint 0.057
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.118, 1.07
No. of reflections 2521
No. of parameters 181
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.32, −0.40
Computer programs: APEX3 and SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2016/6 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXT2016/6 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

(E)-1-(2,6-Dichlorophenyl)-2-(2-nitrobenzylidene)hydrazine top
Crystal data top
C13H9Cl2N3O2F(000) = 632
Mr = 310.13Dx = 1.532 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.1138 (4) ÅCell parameters from 9979 reflections
b = 12.6827 (6) Åθ = 2.7–27.9°
c = 15.1613 (8) ŵ = 0.49 mm1
β = 100.571 (2)°T = 296 K
V = 1344.67 (12) Å3Plate, orange
Z = 40.26 × 0.22 × 0.18 mm
Data collection top
Bruker APEXII CCD
diffractometer
2184 reflections with I > 2σ(I)
φ and ω scansRint = 0.057
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
θmax = 26.0°, θmin = 2.7°
Tmin = 0.868, Tmax = 0.906h = 88
22007 measured reflectionsk = 1515
2521 independent reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: mixed
wR(F2) = 0.118H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.026P)2 + 1.7039P]
where P = (Fo2 + 2Fc2)/3
2521 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.40 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.48623 (11)0.84495 (6)0.29065 (5)0.0562 (2)
Cl20.26473 (16)0.52094 (7)0.06054 (6)0.0807 (3)
O10.7013 (4)0.44141 (18)0.49042 (15)0.0702 (7)
O20.6516 (4)0.2943 (2)0.55110 (15)0.0863 (8)
N10.4068 (4)0.62149 (17)0.24789 (15)0.0473 (6)
H1N0.3961650.6574320.3018080.057*
N20.4727 (3)0.52096 (16)0.24606 (15)0.0419 (5)
N30.6564 (3)0.3486 (2)0.48539 (15)0.0509 (6)
C10.3930 (4)0.6850 (2)0.17229 (17)0.0405 (6)
C20.4275 (4)0.7938 (2)0.18315 (18)0.0410 (6)
C30.4131 (4)0.8620 (2)0.1116 (2)0.0530 (7)
H3A0.4350830.9336920.1213630.064*
C40.3661 (5)0.8234 (3)0.0258 (2)0.0623 (9)
H4A0.3591300.8686450.0230060.075*
C50.3296 (4)0.7177 (3)0.0122 (2)0.0594 (8)
H5A0.2984640.6917220.0460440.071*
C60.3384 (4)0.6497 (2)0.08380 (19)0.0487 (7)
C70.4904 (4)0.4688 (2)0.31903 (18)0.0414 (6)
H7A0.4679330.5008960.3712800.050*
C80.5469 (4)0.35755 (19)0.31939 (17)0.0377 (5)
C90.5193 (4)0.3022 (2)0.23815 (19)0.0468 (6)
H9A0.4732720.3378420.1849770.056*
C100.5589 (4)0.1961 (2)0.2353 (2)0.0565 (8)
H10A0.5417620.1614930.1802640.068*
C110.6239 (4)0.1405 (2)0.3132 (2)0.0586 (8)
H11A0.6496590.0687720.3108220.070*
C120.6501 (4)0.1916 (2)0.3942 (2)0.0515 (7)
H12A0.6917290.1546970.4472190.062*
C130.6139 (4)0.2987 (2)0.39640 (17)0.0396 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0685 (5)0.0450 (4)0.0534 (4)0.0010 (3)0.0064 (3)0.0065 (3)
Cl20.1061 (8)0.0636 (5)0.0648 (5)0.0150 (5)0.0046 (5)0.0194 (4)
O10.0956 (18)0.0501 (13)0.0590 (14)0.0025 (12)0.0014 (12)0.0147 (11)
O20.130 (2)0.0877 (18)0.0400 (12)0.0075 (17)0.0109 (13)0.0151 (12)
N10.0694 (16)0.0337 (11)0.0405 (12)0.0096 (10)0.0143 (11)0.0029 (9)
N20.0482 (13)0.0343 (11)0.0444 (12)0.0006 (9)0.0112 (10)0.0012 (9)
N30.0540 (14)0.0554 (15)0.0415 (13)0.0043 (11)0.0042 (11)0.0005 (11)
C10.0391 (13)0.0418 (14)0.0398 (13)0.0053 (11)0.0053 (11)0.0044 (11)
C20.0384 (13)0.0408 (13)0.0440 (14)0.0039 (11)0.0077 (11)0.0041 (11)
C30.0544 (17)0.0450 (16)0.0610 (18)0.0080 (13)0.0140 (14)0.0148 (14)
C40.064 (2)0.071 (2)0.0523 (18)0.0132 (16)0.0128 (15)0.0224 (16)
C50.0589 (19)0.079 (2)0.0383 (15)0.0090 (16)0.0042 (13)0.0023 (15)
C60.0492 (16)0.0520 (16)0.0427 (15)0.0016 (13)0.0023 (12)0.0015 (13)
C70.0481 (15)0.0363 (13)0.0414 (14)0.0031 (11)0.0120 (11)0.0008 (11)
C80.0381 (13)0.0366 (13)0.0398 (13)0.0018 (10)0.0110 (10)0.0004 (10)
C90.0527 (16)0.0465 (15)0.0421 (14)0.0006 (12)0.0111 (12)0.0035 (12)
C100.0641 (19)0.0477 (16)0.0602 (19)0.0038 (14)0.0178 (15)0.0190 (15)
C110.0602 (19)0.0317 (14)0.085 (2)0.0011 (13)0.0175 (17)0.0048 (15)
C120.0545 (17)0.0377 (14)0.0615 (18)0.0005 (12)0.0089 (14)0.0091 (13)
C130.0401 (13)0.0374 (13)0.0415 (14)0.0018 (10)0.0078 (11)0.0008 (11)
Geometric parameters (Å, º) top
Cl1—C21.732 (3)C4—H4A0.9300
Cl2—C61.731 (3)C5—C61.380 (4)
O1—N31.218 (3)C5—H5A0.9300
O2—N31.217 (3)C7—C81.467 (3)
N1—N21.361 (3)C7—H7A0.9300
N1—C11.390 (3)C8—C131.394 (4)
N1—H1N0.9510C8—C91.400 (4)
N2—C71.275 (3)C9—C101.377 (4)
N3—C131.471 (3)C9—H9A0.9300
C1—C61.400 (4)C10—C111.381 (5)
C1—C21.406 (4)C10—H10A0.9300
C2—C31.376 (4)C11—C121.371 (4)
C3—C41.374 (4)C11—H11A0.9300
C3—H3A0.9300C12—C131.384 (4)
C4—C51.374 (5)C12—H12A0.9300
N2—N1—C1119.9 (2)C5—C6—Cl2117.5 (2)
N2—N1—H1N123.3C1—C6—Cl2121.2 (2)
C1—N1—H1N115.2N2—C7—C8119.0 (2)
C7—N2—N1116.6 (2)N2—C7—H7A120.5
O2—N3—O1122.8 (3)C8—C7—H7A120.5
O2—N3—C13118.4 (3)C13—C8—C9116.1 (2)
O1—N3—C13118.7 (2)C13—C8—C7124.7 (2)
N1—C1—C6124.7 (2)C9—C8—C7119.0 (2)
N1—C1—C2119.2 (2)C10—C9—C8121.4 (3)
C6—C1—C2116.0 (2)C10—C9—H9A119.3
C3—C2—C1122.6 (3)C8—C9—H9A119.3
C3—C2—Cl1118.5 (2)C9—C10—C11120.6 (3)
C1—C2—Cl1119.0 (2)C9—C10—H10A119.7
C4—C3—C2119.6 (3)C11—C10—H10A119.7
C4—C3—H3A120.2C12—C11—C10119.7 (3)
C2—C3—H3A120.2C12—C11—H11A120.2
C5—C4—C3119.8 (3)C10—C11—H11A120.2
C5—C4—H4A120.1C11—C12—C13119.3 (3)
C3—C4—H4A120.1C11—C12—H12A120.3
C4—C5—C6120.8 (3)C13—C12—H12A120.3
C4—C5—H5A119.6C12—C13—C8122.8 (3)
C6—C5—H5A119.6C12—C13—N3115.9 (3)
C5—C6—C1121.2 (3)C8—C13—N3121.3 (2)
C1—N1—N2—C7176.7 (2)N2—C7—C8—C13164.3 (3)
N2—N1—C1—C637.1 (4)N2—C7—C8—C920.8 (4)
N2—N1—C1—C2145.8 (2)C13—C8—C9—C100.8 (4)
N1—C1—C2—C3178.8 (2)C7—C8—C9—C10176.0 (3)
C6—C1—C2—C31.4 (4)C8—C9—C10—C111.3 (5)
N1—C1—C2—Cl10.1 (3)C9—C10—C11—C120.3 (5)
C6—C1—C2—Cl1177.4 (2)C10—C11—C12—C131.1 (5)
C1—C2—C3—C41.0 (4)C11—C12—C13—C81.6 (4)
Cl1—C2—C3—C4179.8 (2)C11—C12—C13—N3176.6 (3)
C2—C3—C4—C51.5 (5)C9—C8—C13—C120.7 (4)
C3—C4—C5—C60.3 (5)C7—C8—C13—C12174.3 (3)
C4—C5—C6—C12.9 (5)C9—C8—C13—N3177.4 (2)
C4—C5—C6—Cl2173.1 (3)C7—C8—C13—N37.7 (4)
N1—C1—C6—C5179.5 (3)O2—N3—C13—C1226.1 (4)
C2—C1—C6—C53.3 (4)O1—N3—C13—C12151.3 (3)
N1—C1—C6—Cl24.7 (4)O2—N3—C13—C8155.7 (3)
C2—C1—C6—Cl2172.5 (2)O1—N3—C13—C826.9 (4)
N1—N2—C7—C8175.4 (2)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N···Cl10.952.482.939 (2)110
N1—H1N···O2i0.952.403.327 (3)166
C7—H7A···O10.932.342.774 (4)108
C12—H12A···Cl2ii0.932.803.679 (3)157
C2—Cl1···Cg2iii1.73 (1)3.90 (1)3.511 (3)64 (1)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+1/2, z+1/2; (iii) x+3/2, y+1/2, z+1/2.
Summary of short interatomic contacts (Å) in the title compound top
ContactDistanceSymmetry operation
Cl1···H11A3.06x, 1 + y, z
C2···C83.464 (4)1/2 - x, 1/2 + y, 1/2 - z
H1N···O22.401 - x, 1 - y, 1 - z
O1···H4A2.681/2 + x, 3/2 - y, 1/2 + z
Cl2···H12A2.80-1/2 + x, 1/2 - y, -1/2 + z
N3···C43.447 (4)3/2 - x, -1/2 + y, 1/2 - z
Percentage contributions of interatomic contacts to the Hirshfeld surface for the title compound top
ContactPercentage contribution
H···H23.0
O···H/H···O20.1
Cl···H/H···Cl19.0
C···C11.2
H···C/C···H8.0
N···H/H···N5.5
Cl···Cl3.3
N···C/C···N3.1
Cl···C/C···Cl3.0
O···C/C···O1.4
Cl···O/O···Cl1.3
Cl···N/N···Cl0.8
O···O0.2
O···N/N···O0.1
 

Funding information

This work was funded by Science Development Foundation under the President of the Republic of Azerbaijan, grant No. EIF/MQM/Elm-Tehsil-1–2016-1(26)–71/06/4.

References

First citationAkbari Afkhami, F., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888–14896.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAtioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237–241.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChantrapromma, S., Nilwanna, B., Kobkeatthawin, T., Jansrisewangwong, P. & Fun, H.-K. (2012). Acta Cryst. E68, o1644–o1645.  CSD CrossRef IUCr Journals Google Scholar
First citationChantrapromma, S., Ruanwas, P., Boonnak, N., Chidan Kumar, C. S. & Fun, H.-K. (2014). Acta Cryst. E70, o188–o189.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Chantrapromma, S., Nilwanna, B. & Kobkeatthawin, T. (2012). Acta Cryst. E68, o2144–o2145.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Chantrapromma, S., Nilwanna, B., Kobkeatthawin, T. & Boonnak, N. (2013). Acta Cryst. E69, o1203–o1204.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Nilwanna, B., Jansrisewangwong, P., Kobkeatthawin, T. & Chantrapromma, S. (2011). Acta Cryst. E67, o3202–o3203.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018). Aust. J. Chem. 71, 190–194.  Web of Science CrossRef CAS Google Scholar
First citationGurbanov, A. V., Mahmudov, K. T., Sutradhar, M., Guedes da Silva, F. C., Mahmudov, T. A., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). J. Organomet. Chem. 834, 22–27.  Web of Science CSD CrossRef CAS Google Scholar
First citationKopylovich, M. N., Mahmudov, K. T., Haukka, M., Luzyanin, K. V. & Pombeiro, A. J. L. (2011b). Inorg. Chim. Acta, 374, 175–180.  Web of Science CSD CrossRef CAS Google Scholar
First citationKopylovich, M. N., Mahmudov, K. T., Mizar, A. & Pombeiro, A. J. L. (2011a). Chem. Commun. 47, 7248–7250.  Web of Science CrossRef CAS Google Scholar
First citationMa, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526–533.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). Mol. Catal. 428, 17–23.  Web of Science CSD CrossRef CAS Google Scholar
First citationMaharramov, A. M., Alieva, R. A., Mahmudov, K. T., Kurbanov, A. V. & Askerov, R. K. (2009). Russ. J. Coord. Chem. 35, 704–709.  Web of Science CrossRef CAS Google Scholar
First citationMaharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Pashaev, F. G., Gasanov, A. G., Azimova, S. I., Askerov, R. K., Kurbanov, A. V. & Mahmudov, K. T. (2010). Dyes Pigments, 85, 1–6.  Web of Science CSD CrossRef CAS Google Scholar
First citationMaharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141.  Web of Science CrossRef CAS Google Scholar
First citationMahmoudi, G., Bauzá, A., Gurbanov, A. V., Zubkov, F. I., Maniukiewicz, W., Rodríguez-Diéguez, A., López-Torres, E. & Frontera, A. (2016). CrystEngComm, 18, 9056–9066.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017c). Inorg. Chim. Acta, 461, 192–205.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Gurbanov, A. V., Rodríguez-Hermida, S., Carballo, R., Amini, M., Bacchi, A., Mitoraj, M. P., Sagan, F., Kukułka, M. & Safin, D. A. (2017b). Inorg. Chem. 56, 9698–9709.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMahmoudi, G., Seth, S. K., Bauzá, A., Zubkov, F. I., Gurbanov, A. V., White, J., Stilinović, V., Doert, T. & Frontera, A. (2018b). CrystEngComm, 20, 2812–2821.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018a). New J. Chem. 42, 4959–4971.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017a). Eur. J. Inorg. Chem. pp. 4763–4772.  Web of Science CSD CrossRef Google Scholar
First citationMahmudov, K. T., Guedes da Silva, M. F. C., Kopylovich, M. N., Fernandes, A. R., Silva, A., Mizar, A. & Pombeiro, A. J. L. (2014a). J. Organomet. Chem. 760, 67–73.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmudov, K. T., Guedes da Silva, M. F. C., Sutradhar, M., Kopylovich, M. N., Huseynov, F. E., Shamilov, N. T., Voronina, A. A., Buslaeva, T. M. & Pombeiro, A. J. L. (2015). Dalton Trans. 44, 5602–5610.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32–46.  Web of Science CrossRef CAS Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017a). Dalton Trans. 46, 10121–10138.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017b). Coord. Chem. Rev. 345, 54–72.  Web of Science CrossRef CAS Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N., Maharramov, A. M., Kurbanova, M. M., Gurbanov, A. V. & Pombeiro, A. J. L. (2014b). Coord. Chem. Rev. 265, 1–37.  Web of Science CrossRef CAS Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N. & Pombeiro, A. J. L. (2013). Coord. Chem. Rev. 257, 1244–1281.  Web of Science CrossRef CAS Google Scholar
First citationMahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Askerov, R. K., Batmaz, R., Kopylovich, M. N. & Pombeiro, A. J. L. (2011). J. Photochem. Photobiol. Chem. 219, 159–165.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Kopylovich, M. N. & Pombeiro, A. J. L. (2010). Anal. Lett. 43, 2923–2938.  Web of Science CrossRef CAS Google Scholar
First citationMizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305–2313.  Web of Science CSD CrossRef Google Scholar
First citationNilwanna, B., Chantrapromma, S., Jansrisewangwong, P. & Fun, H.-K. (2011). Acta Cryst. E67, o3084–o3085.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381.  Web of Science CSD CrossRef CAS Google Scholar
First citationShikhaliyev, N. Q., Çelikesir, S. T., Akkurt, M., Bagirova, K. N., Suleymanova, G. T. & Toze, F. A. A. (2019). Acta Cryst. E75, 465–469.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807–4815.  Web of Science CSD CrossRef CAS Google Scholar
First citationShixaliyev, N. Q., Maharramov, A. M., Gurbanov, A. V., Nenajdenko, V. G., Muzalevskiy, V. M., Mahmudov, K. T. & Kopylovich, M. N. (2013). Catal. Today, 217, 76–79.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A, 153, 625–636.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds