research communications
E)-2-{[(3-chloro-4-methylphenyl)imino]methyl}-4-methylphenol
Hirshfeld surface analysis and DFT studies of (aPG Department of Chemistry, Langat Singh College, B. R. A. Bihar University, Muzaffarpur, Bihar 842001, India, bOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Samsun, Turkey, cOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Chemistry, 55139, Samsun, Turkey, and dDepartment of Pharmacy, University of Science and Technology, Ibb Branch, Ibb, Yemen
*Correspondence e-mail: ashraf.yemen7@gmail.com
The title compound, C15H14ClNO, was synthesized by condensation reaction of 2-hydroxy-5-methylbenzaldehyde and 3-chloro-4-methylaniline, and crystallizes in the monoclinic P21/c. The 3-chlorobenzene ring is inclined to the phenol ring by 9.38 (11)°. The configuration about the C=N bond is E and an intramolecular O—H⋯N hydrogen bond forms an S(6) ring motif. The Hirshfeld surface analysis of the indicates that the most important contributions for the packing arrangement are from H⋯H (43.8%) and C⋯H/H⋯C (26.7%) interactions. The density functional theory (DFT) optimized structure at the B3LYP/ 6–311 G(d,p) level is compared with the experimentally determined molecular structure and the HOMO–LUMO energy gap is provided.
Keywords: crystal structure; 3-chloro-4-methylaniline; 2-hydroxy-5-methylbenzaldehyde; Schiff base.
CCDC reference: 2015356
1. Chemical context
RCH=N–R′) and are prepared by condensation reactions between and active are employed as catalyst carriers (Grigoras et al., 2001), thermo-stable materials (Vančo et al., 2004), metal–cation complexing agents and in biological systems (Taggi et al., 2002). show biological activities including antibacterial, antifungal, anticancer, antiviral and herbicidal activities (Desai et al., 2001; Singh & Dash, 1988; Karia & Parsania, 1999; Siddiqui et al., 2006). Moreover, Schiff base ligands are potentially capable of forming stable complexes by coordination of metal ions with their nitrogen atoms as donors (Ebrahimipour et al., 2012). They are important for their photochromic properties and have applications in various fields such as the measurement and control of radiation intensities in imaging systems, optical computers, electronics, optoelectronics and photonics (Iwan et al., 2007). The present work is a part of an ongoing structural study of and their utilization in the synthesis of quinoxaline derivatives (Faizi et al., 2018), fluorescence sensors (Faizi et al., 2016; Mukherjee et al., 2018; Kumar et al., 2017, 2018) and non-linear optical properties (Faizi et al., 2020). We report herein on the synthesis (from 2-hydroxy-5-methylbenzaldehyde and 3-chloro-4-methylaniline), Hirshfeld surface analysis and DFT computational calculations of the title compound, (I). The results of calculations by density functional theory (DFT) carried out at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state.
contain the azomethine moiety (–2. Structural commentary
The molecular structure of the title compound (I) is shown in Fig. 1. An intramolecular O—H⋯N hydrogen bond is observed (Table 1 and Fig. 1). This is a relatively common feature in analogous imine–phenol compounds (see Database survey section). The imine group, which displays a C9—C8— N1—C5 torsion angle of −177.49 (18)°, contributes to the general non-planarity of the molecule. The chlorobenzene ring (C2–C7) is inclined by 9.38 (11)° to the phenol ring (C9–C14). The configuration of the C7=N1 bond of this Schiff base is E, and the intramolecular O1—H1⋯N1 hydrogen bond forms an S(6) ring motif (Fig. 1a and Table 1). The C14—O1 distance [1.354 (2) Å] is close to normal values reported for single C—O bonds in and salicylideneamines (Ozeryanskii et al., 2006). The N1—C8 bond is short at 1.281 (3) Å, indicating the existence of an imine bond, while the long C8—C9 bond [1.446 (3) Å] implies a single bond. All these data support the existence of the phenol–imine tautomer for (I) in its crystalline state. These features are similar to those observed in related 4-dimethylamino-N-salicylideneanilines (Wozniak et al., 1995; Pizzala et al., 2000). The C—N, C=N and C—C bond lengths are normal and close to the values observed in related structures (Faizi et al., 2017).
3. Supramolecular features
In the crystal packing of (I), the molecules are linked by C1—H1A⋯N1 [H1A⋯N1(−x + 1, −y + 1, −z + 1) = 2.86 Å] interactions, forming sheets propagating along the a-axis direction (Fig. 2a). Weak C—H⋯π interactions [C1—H1C⋯Cg1(−x, −y + 2, −z) = 2.92 Å] are observed (Table 1 and Fig. 2b). Notably, weak π–π stacking interactions between chlorobenzene rings [Cg1⋯Cg1(−x + 1, −y + 1, −z + 1) = 3.7890 (2) Å, where Cg1 is the centroid of the C2–C7 ring] along the a axis lead to the formation of a three-dimensional network.
4. Hirshfeld surface analysis
The intermolecular interactions were investigated quantitatively and visualized with Crystal Explorer 17.5 (Turner et al., 2017; Spackman et al., 2009). The shorter and longer contacts are indicated as red and blue spots, respectively, on the Hirshfeld surfaces, and contacts with distances approximately equal to the sum of the van der Waals radii are represented as white spots. The dnorm (a–d) and shape index (e) surface mappings are shown in Fig. 3. The most important red spots on the dnorm surface represent O1⋯Cl1 interactions (Fig. 3b) and C1—H1C⋯Cg1 interactions (Fig. 3c). Some additional interactions indicated by light-red spots are corresponding to contacts around phenolic and chlorobenzene rings (Fig. 3d). The red and blue triangles are absent on the shape-index surface, which indicates there are no strong π–π stacking interactions in the crystal structure.
Analysis of the two-dimensional fingerprint plots (Fig. 4a–f) indicates that the H⋯H (43.8%) interactions are the major factor in the crystal packing with C⋯H/H⋯C (26.7%) interactions making the next highest contribution. The percentage contributions of other weak interactions are: Cl⋯H/H⋯Cl (12.4%), O⋯H/H⋯O (6.6%) and N⋯H/H⋯N (3.8%).
5. DFT calculations
The optimized structure in the gas phase of compound (I) was generated theoretically via density functional theory (DFT) using standard B3LYP functional and 6–311 G(d,p) basis-set calculations (Becke, 1993) as implemented in GAUSSIAN 09 (Frisch et al., 2009). The theoretical and experimental results are in good agreement (Table 2). The highest-occupied molecular orbital (HOMO), acting as an and the lowest-unoccupied molecular orbital (LUMO), acting as an are very important parameters for quantum chemistry. When the energy gap is small, the molecule is highly polarizable and has high chemical reactivity (Fukui, 1982; Khan et al., 2015). The DFT calculations provide some important information on the reactivity and site selectivity of the molecular framework, EHOMO and ELUMO, which clarify the inevitable charge-exchange collaboration inside the studied material, (χ), hardness (η), (ω), softness (σ) and fraction of electron transferred (ΔN). These data are recorded in Table 3. The significance of η and σ is for the evaluation of both the reactivity and stability. The electron transition from the HOMO to the LUMO energy level is shown in Fig. 5. The HOMO and LUMO are localized in the plane extending from the whole 2-{[(3-chloro-4-methylphenyl)imino]methyl}-4-methylphenol ring. The energy band gap [ΔE = ELUMO − EHOMO] of the molecule is 4.0023 eV, the frontier molecular orbital energies EHOMO and ELUMO being −5.9865 eV and −1.9842 eV, respectively. The of (I) is estimated to be 4.30 Debye.
|
|
6. Database survey
A search of the Cambridge Structural Database (CSD, version 5.39; Groom et al., 2016) gave 13 hits for the 2-{[(3-chloro-4-methylphenyl)imino]methyl}-4-methylphenol moiety. Out of 13, only a few are very closely related to the title compound. In (E)-4-methoxy-2-{[(4-methylphenyl)imino]methyl}phenol (DUPGOL; Koşar et al., 2010), the methyl group is replaced by a methoxy group and the dihedral angle between the benzene rings is 5.46 (2)°. In 2-[(E)-(5-chloro-2-methylphenyl)iminomethyl]-4-methylphenol (AFILAE; Zheng, 2013), the dihedral angle between the planes of the chlorophenyl and methylphenol rings is 35.0 (3)°. In 2-{(E)-[(3-chloro-4-methylphenyl)imino]methyl}-4-(trifluoromethoxy)phenol (TERTUI; Atalay et al., 2017), the dihedral angle between the benzene rings is 8.3 (2)° and an intramolecular O—H⋯N hydrogen bond closes an S(6) ring. In 2-{(E)-[(3-iodo-4-methylphenyl)imino]methyl}-4-(trifluoromethoxy)phenol (XEBCOY; Pekdemir et al., 2012), the dihedral angle between the two benzene rings is 12.4 (2)°. For 4-[(2-hydroxy-5-methoxybenzylidene)amino]benzonitrile (XIGNEI; Chiang et al., 2013), a complex with zinc is reported. In N-(5-hydroxysalicylidene)-2,4,6-trimethylaniline (ZIKNOW; Tenon et al., 1995), the angle between the planes of the benzene rings is 74.5 (1)° and chlorine is absent.
7. Synthesis and crystallization
The title compound was prepared by refluxing mixed solutions of 2-hydroxy-5-methylbenzaldehyde (34.0 mg, 0.25 mmol) in ethanol (15 ml) and 3-chloro-4-methylaniline (35.4 mg, 0.25 mmol) in ethanol (15 ml). The reaction mixture was stirred for 5 h under reflux. Single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution (yield 65%, m.p. 383–386 K).
8. Refinement
Crystal data, data collection and structure . The hydroxy H atom was located in a difference-Fourier map and its positional parameters were refined freely with Uiso(H) = 1.5Ueq(O). Other H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl) or 0.93 Å (aromatic), and Uiso(H) = 1.2Ueq(C) for aromatic H atoms or Uiso(H) = 1.5Ueq(C) for methyl H atoms.
details are summarized in Table 4Supporting information
CCDC reference: 2015356
https://doi.org/10.1107/S2056989020009421/vm2236sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020009421/vm2236Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989020009421/vm2236Isup3.cml
Data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-SHAPE (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), XP in SHELXTL (Sheldrick, 2008).C15H14ClNO | F(000) = 544 |
Mr = 259.72 | Dx = 1.333 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 8.0534 (5) Å | Cell parameters from 9569 reflections |
b = 6.3764 (3) Å | θ = 1.6–30.3° |
c = 25.3657 (16) Å | µ = 0.28 mm−1 |
β = 96.392 (5)° | T = 296 K |
V = 1294.47 (13) Å3 | Stick, orange |
Z = 4 | 0.65 × 0.37 × 0.21 mm |
Stoe IPDS 2 diffractometer | 2414 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 1801 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.040 |
Detector resolution: 6.67 pixels mm-1 | θmax = 25.5°, θmin = 1.6° |
rotation method scans | h = −9→9 |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | k = −7→7 |
Tmin = 0.885, Tmax = 0.958 | l = −30→30 |
7752 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.045 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.137 | w = 1/[σ2(Fo2) + (0.0845P)2 + 0.059P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
2414 reflections | Δρmax = 0.22 e Å−3 |
169 parameters | Δρmin = −0.26 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.74526 (10) | 0.21146 (12) | 0.56404 (2) | 0.0820 (3) | |
O1 | 0.3423 (3) | 0.0128 (3) | 0.32974 (7) | 0.0729 (5) | |
N1 | 0.5050 (2) | 0.3352 (3) | 0.37421 (7) | 0.0546 (4) | |
C9 | 0.3492 (2) | 0.3538 (3) | 0.28875 (8) | 0.0495 (5) | |
C5 | 0.6021 (3) | 0.4244 (3) | 0.41869 (8) | 0.0517 (5) | |
C10 | 0.2953 (3) | 0.4790 (3) | 0.24498 (8) | 0.0532 (5) | |
H10 | 0.333321 | 0.616621 | 0.244352 | 0.064* | |
C6 | 0.6276 (3) | 0.2994 (3) | 0.46336 (8) | 0.0558 (5) | |
H6 | 0.582700 | 0.164970 | 0.462883 | 0.067* | |
C8 | 0.4537 (3) | 0.4436 (3) | 0.33310 (8) | 0.0540 (5) | |
H8 | 0.484407 | 0.583899 | 0.331729 | 0.065* | |
C7 | 0.7199 (3) | 0.3742 (4) | 0.50893 (8) | 0.0560 (5) | |
C14 | 0.2942 (3) | 0.1445 (3) | 0.28904 (8) | 0.0537 (5) | |
C11 | 0.1881 (3) | 0.4072 (3) | 0.20271 (8) | 0.0544 (5) | |
C2 | 0.7902 (3) | 0.5727 (4) | 0.51180 (8) | 0.0569 (5) | |
C3 | 0.7630 (3) | 0.6946 (4) | 0.46627 (9) | 0.0624 (6) | |
H3 | 0.808124 | 0.828887 | 0.466715 | 0.075* | |
C4 | 0.6720 (3) | 0.6247 (4) | 0.42059 (9) | 0.0606 (6) | |
H4 | 0.657040 | 0.711090 | 0.390901 | 0.073* | |
C12 | 0.1343 (3) | 0.1995 (4) | 0.20491 (9) | 0.0603 (5) | |
H12 | 0.061070 | 0.146941 | 0.177099 | 0.072* | |
C13 | 0.1860 (3) | 0.0705 (4) | 0.24686 (9) | 0.0618 (6) | |
H13 | 0.148288 | −0.067273 | 0.246965 | 0.074* | |
C15 | 0.1266 (3) | 0.5478 (4) | 0.15702 (9) | 0.0699 (7) | |
H15A | 0.110835 | 0.687133 | 0.169929 | 0.105* | |
H15B | 0.022293 | 0.495293 | 0.140088 | 0.105* | |
H15C | 0.207326 | 0.550746 | 0.131900 | 0.105* | |
C1 | 0.8890 (3) | 0.6569 (4) | 0.56097 (9) | 0.0722 (7) | |
H1A | 0.817191 | 0.672248 | 0.588488 | 0.108* | |
H1B | 0.935229 | 0.790941 | 0.553389 | 0.108* | |
H1C | 0.977895 | 0.561373 | 0.572449 | 0.108* | |
H1 | 0.399 (4) | 0.082 (5) | 0.3505 (14) | 0.099 (12)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.1001 (5) | 0.0819 (5) | 0.0596 (4) | 0.0149 (4) | −0.0115 (3) | 0.0193 (3) |
O1 | 0.0944 (13) | 0.0595 (10) | 0.0617 (10) | −0.0062 (9) | −0.0051 (9) | 0.0144 (8) |
N1 | 0.0546 (10) | 0.0596 (11) | 0.0481 (9) | 0.0028 (8) | −0.0013 (7) | 0.0010 (8) |
C9 | 0.0467 (11) | 0.0521 (11) | 0.0489 (11) | 0.0015 (9) | 0.0018 (8) | 0.0018 (8) |
C5 | 0.0497 (11) | 0.0586 (12) | 0.0458 (10) | 0.0081 (9) | 0.0014 (8) | 0.0017 (8) |
C10 | 0.0564 (12) | 0.0506 (11) | 0.0514 (11) | −0.0007 (9) | 0.0007 (9) | 0.0043 (9) |
C6 | 0.0575 (12) | 0.0535 (12) | 0.0553 (11) | 0.0105 (10) | 0.0008 (9) | 0.0040 (9) |
C8 | 0.0542 (12) | 0.0529 (12) | 0.0528 (11) | 0.0025 (9) | −0.0034 (9) | 0.0023 (9) |
C7 | 0.0569 (12) | 0.0617 (13) | 0.0481 (11) | 0.0185 (10) | −0.0001 (9) | 0.0050 (9) |
C14 | 0.0601 (13) | 0.0513 (11) | 0.0496 (11) | 0.0027 (10) | 0.0062 (9) | 0.0060 (9) |
C11 | 0.0532 (12) | 0.0616 (12) | 0.0477 (11) | 0.0017 (10) | 0.0021 (9) | 0.0008 (9) |
C2 | 0.0531 (12) | 0.0654 (14) | 0.0510 (11) | 0.0124 (10) | 0.0010 (9) | −0.0064 (10) |
C3 | 0.0648 (14) | 0.0625 (14) | 0.0583 (13) | −0.0030 (11) | 0.0000 (10) | −0.0016 (10) |
C4 | 0.0646 (13) | 0.0642 (13) | 0.0515 (11) | −0.0047 (11) | −0.0003 (10) | 0.0060 (10) |
C12 | 0.0586 (12) | 0.0700 (14) | 0.0507 (11) | −0.0053 (11) | −0.0003 (9) | −0.0081 (10) |
C13 | 0.0692 (14) | 0.0540 (12) | 0.0621 (13) | −0.0097 (11) | 0.0067 (11) | −0.0030 (10) |
C15 | 0.0756 (16) | 0.0780 (17) | 0.0524 (12) | 0.0013 (13) | −0.0093 (11) | 0.0077 (11) |
C1 | 0.0725 (15) | 0.0864 (18) | 0.0545 (13) | 0.0117 (13) | −0.0067 (11) | −0.0140 (12) |
Cl1—C7 | 1.735 (2) | C11—C12 | 1.397 (3) |
O1—C14 | 1.354 (2) | C11—C15 | 1.505 (3) |
O1—H1 | 0.79 (4) | C2—C3 | 1.389 (3) |
N1—C8 | 1.281 (3) | C2—C1 | 1.502 (3) |
N1—C5 | 1.418 (3) | C3—C4 | 1.374 (3) |
C9—C10 | 1.397 (3) | C3—H3 | 0.9300 |
C9—C14 | 1.406 (3) | C4—H4 | 0.9300 |
C9—C8 | 1.446 (3) | C12—C13 | 1.372 (3) |
C5—C6 | 1.382 (3) | C12—H12 | 0.9300 |
C5—C4 | 1.394 (3) | C13—H13 | 0.9300 |
C10—C11 | 1.378 (3) | C15—H15A | 0.9600 |
C10—H10 | 0.9300 | C15—H15B | 0.9600 |
C6—C7 | 1.388 (3) | C15—H15C | 0.9600 |
C6—H6 | 0.9300 | C1—H1A | 0.9600 |
C8—H8 | 0.9300 | C1—H1B | 0.9600 |
C7—C2 | 1.385 (3) | C1—H1C | 0.9600 |
C14—C13 | 1.385 (3) | ||
C14—O1—H1 | 105 (2) | C7—C2—C1 | 123.1 (2) |
C8—N1—C5 | 122.08 (19) | C3—C2—C1 | 120.7 (2) |
C10—C9—C14 | 118.46 (18) | C4—C3—C2 | 122.6 (2) |
C10—C9—C8 | 119.64 (19) | C4—C3—H3 | 118.7 |
C14—C9—C8 | 121.86 (18) | C2—C3—H3 | 118.7 |
C6—C5—C4 | 118.5 (2) | C3—C4—C5 | 120.1 (2) |
C6—C5—N1 | 116.1 (2) | C3—C4—H4 | 120.0 |
C4—C5—N1 | 125.41 (19) | C5—C4—H4 | 120.0 |
C11—C10—C9 | 122.7 (2) | C13—C12—C11 | 122.0 (2) |
C11—C10—H10 | 118.6 | C13—C12—H12 | 119.0 |
C9—C10—H10 | 118.6 | C11—C12—H12 | 119.0 |
C5—C6—C7 | 120.1 (2) | C12—C13—C14 | 120.4 (2) |
C5—C6—H6 | 119.9 | C12—C13—H13 | 119.8 |
C7—C6—H6 | 119.9 | C14—C13—H13 | 119.8 |
N1—C8—C9 | 121.82 (19) | C11—C15—H15A | 109.5 |
N1—C8—H8 | 119.1 | C11—C15—H15B | 109.5 |
C9—C8—H8 | 119.1 | H15A—C15—H15B | 109.5 |
C2—C7—C6 | 122.4 (2) | C11—C15—H15C | 109.5 |
C2—C7—Cl1 | 119.58 (17) | H15A—C15—H15C | 109.5 |
C6—C7—Cl1 | 118.04 (18) | H15B—C15—H15C | 109.5 |
O1—C14—C13 | 118.7 (2) | C2—C1—H1A | 109.5 |
O1—C14—C9 | 121.97 (19) | C2—C1—H1B | 109.5 |
C13—C14—C9 | 119.36 (19) | H1A—C1—H1B | 109.5 |
C10—C11—C12 | 117.03 (19) | C2—C1—H1C | 109.5 |
C10—C11—C15 | 121.7 (2) | H1A—C1—H1C | 109.5 |
C12—C11—C15 | 121.2 (2) | H1B—C1—H1C | 109.5 |
C7—C2—C3 | 116.2 (2) | ||
C8—N1—C5—C6 | 170.44 (19) | C9—C10—C11—C15 | 177.6 (2) |
C8—N1—C5—C4 | −9.5 (3) | C6—C7—C2—C3 | 0.1 (3) |
C14—C9—C10—C11 | 1.3 (3) | Cl1—C7—C2—C3 | −179.31 (17) |
C8—C9—C10—C11 | −176.3 (2) | C6—C7—C2—C1 | 179.4 (2) |
C4—C5—C6—C7 | 0.4 (3) | Cl1—C7—C2—C1 | 0.0 (3) |
N1—C5—C6—C7 | −179.51 (18) | C7—C2—C3—C4 | −0.1 (3) |
C5—N1—C8—C9 | −177.49 (18) | C1—C2—C3—C4 | −179.4 (2) |
C10—C9—C8—N1 | 179.5 (2) | C2—C3—C4—C5 | 0.2 (4) |
C14—C9—C8—N1 | 2.0 (3) | C6—C5—C4—C3 | −0.4 (3) |
C5—C6—C7—C2 | −0.3 (3) | N1—C5—C4—C3 | 179.5 (2) |
C5—C6—C7—Cl1 | 179.12 (16) | C10—C11—C12—C13 | −0.6 (3) |
C10—C9—C14—O1 | 179.3 (2) | C15—C11—C12—C13 | −178.4 (2) |
C8—C9—C14—O1 | −3.1 (3) | C11—C12—C13—C14 | 0.4 (4) |
C10—C9—C14—C13 | −1.5 (3) | O1—C14—C13—C12 | 179.9 (2) |
C8—C9—C14—C13 | 176.1 (2) | C9—C14—C13—C12 | 0.6 (3) |
C9—C10—C11—C12 | −0.3 (3) |
Cg1 is the centroid of the C2–C7 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1 | 0.79 (4) | 1.89 (3) | 2.625 (3) | 153 (3) |
C1—H1C···Cl1 | 0.96 | 2.91 | 3.072 (3) | 91 |
C1—H1A···N1i | 0.96 | 2.86 | 3.734 (3) | 152 |
C1—H1C···Cg1ii | 0.96 | 2.92 | 3.617 (2) | 131 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+2, −z. |
Parameter | X-ray | B3LYP/6–311G(d,p) |
O1—C14 | 1.354 (2) | 1.354 |
C7—Cl1 | 1.735 (2) | 1.735 |
N1—C8 | 1.281 (3) | 1.281 |
C8—C9 | 1.446 (3) | 1.446 |
N1—C5 | 1.418 (3) | 1.418 |
C2—C7 | 1.385 (3) | 1.385 |
C13—C14—C9 | 119.36 (19) | 119.4 |
C9—C8—N1 | 121.82 (19) | 121.8 |
C8—N1—C5 | 122.08 (19) | 122.1 |
Molecular Energy (a.u.) (eV) | Compound (I) |
Total Energy TE (eV) | -31841.0844 |
EHOMO (eV) | -5.9865 |
ELUMO (eV) | -1.9842 |
Gap, ΔE (eV) | 4.0023 |
Dipole moment, µ (Debye) | 4.30 |
Ionization potential, I (eV) | 5.9865 |
Electron affinity, A | 1.9842 |
Electronegativity, χ | 3.985 |
Hardness, η | 2.001 |
Electrophilicity index, ω | 3.968 |
Softness, σ | 0.250 |
Fraction of electron transferred, ΔN | 0.754 |
Acknowledgements
Langat Singh College, B. R. Bihar University India, is thanked for the use of laboratory facilities.
Funding information
This study was supported financially by Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Morocco, the University of Science and Technology, Ibb Branch, Ibb, Yemen, and a start-up grant from the University Grants Commission (UGC).
References
Atalay, Ş., Gerçeker, S., Meral, S. & Bülbül, H. (2017). IUCrData, 2, x171725. Google Scholar
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Chiang, H.-W., Su, Y.-T. & Wu, J.-Y. (2013). Dalton Trans. 42, 15169–15182. CSD CrossRef CAS PubMed Google Scholar
Desai, S. B., Desai, P. B. & Desai, K. R. (2001). Heterocycl. Commun. 7, 83–90. CrossRef CAS Google Scholar
Ebrahimipour, S. Y., Mague, J. T., Akbari, A. & Takjoo, R. (2012). J. Mol. Struct. 1028, 148–155. Google Scholar
Faizi, M. S. H., Ahmad, M., Kapshuk, A. A. & Golenya, I. A. (2017). Acta Cryst. E73, 38–40. Web of Science CSD CrossRef IUCr Journals Google Scholar
Faizi, M. S. H., Alam, M. J., Haque, A., Ahmad, S., Shahid, M. & Ahmad, M. (2018). J. Mol. Struct. 1156, 457–464. Web of Science CSD CrossRef CAS Google Scholar
Faizi, M. S. H., Gupta, S., Mohan, V. K., Jain, K. V. & Sen, P. (2016). Sens. Actuators B Chem. 222, 15–20. Web of Science CrossRef CAS Google Scholar
Faizi, M. S. H., Osório, F. A. P. & Valverde, C. (2020). J. Mol. Struct. 1210, 128039–464. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN 09. Gaussian Inc., Wallingford, CT, USA. Google Scholar
Fukui, K. (1982). Science, 218, 747–754. CrossRef PubMed CAS Web of Science Google Scholar
Grigoras, M., Catanescu, O. & Simonescu, C. I. (2001). Rev. Roum. Chim. 46, 927–939. CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Iwan, A., Kaczmarczyk, B., Janeczek, H., Sek, D. & Ostrowski, S. (2007). Spectrochim. Acta A Mol. Biomol. Spectrosc. 66, 1030–1041. Web of Science CrossRef PubMed Google Scholar
Karia, F. D. & Parsania, P. H. (1999). Asian J. Chem. 11, 991–995. CAS Google Scholar
Khan, E., Shukla, A., Srivastava, A., Shweta, P. & Tandon, P. (2015). New J. Chem. 39, 9800–9812. Web of Science CrossRef CAS Google Scholar
Koşar, B., Özek, A., Albayrak, Ç. & Büyükgüngör, O. (2010). Acta Cryst. E66, o469. CSD CrossRef IUCr Journals Google Scholar
Kumar, M., Kumar, A., Faizi, M. S. H., Kumar, S., Singh, M. K., Sahu, S. K., Kishor, S. & John, R. P. (2018). Sens. Actuators B Chem. 260, 888–899. Web of Science CrossRef CAS Google Scholar
Kumar, S., Hansda, A., Chandra, A., Kumar, A., Kumar, M., Sithambaresan, M., Faizi, M. S. H., Kumar, V. & John, R. P. (2017). Polyhedron, 134, 11–21. Web of Science CSD CrossRef CAS Google Scholar
Mukherjee, P., Das, A., Faizi, M. S. H. & Sen, P. (2018). Chemistry Select, 3, 3787–3796. CAS Google Scholar
Ozeryanskii, V. A., Pozharskii, A. F., Schilf, W., Kamieński, B., Sawka-Dobrowolska, W., Sobczyk, L. & Grech, E. (2006). Eur. J. Org. Chem. pp. 782–790. Web of Science CSD CrossRef Google Scholar
Pekdemir, M., Işık, Ş. & Alaman Ağar, A. (2012). Acta Cryst. E68, o2148. CSD CrossRef IUCr Journals Google Scholar
Pizzala, H., Carles, M., Stone, W. E. E. & Thevand, A. (2000). J. Chem. Soc. Perkin Trans. 2, pp. 935–939. CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Siddiqui, J. I., Iqbal, A., Ahmad, S. & Weaver, W. (2006). Molecules, 11, 206–211. Web of Science CrossRef PubMed CAS Google Scholar
Singh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33–37. Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Stoe & Cie (2002). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Taggi, A. E., Hafez, A. M., Wack, H., Young, B., Ferraris, D. & Lectka, T. (2002). J. Am. Chem. Soc. 124, 6626–6635. Web of Science CrossRef PubMed CAS Google Scholar
Tenon, J. A., Carles, M. & Aycard, J.-P. (1995). Acta Cryst. C51, 2603–2606. CSD CrossRef CAS IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia. Google Scholar
Vančo, J., Švajlenová, O., Račanská, E. J., Muselík, J. & Valentová, J. (2004). J. Trace Elem. Med. Biol. 18, 155–161. Web of Science PubMed Google Scholar
Wozniak, K., He, H., Klinowski, J., Jones, W., Dziembowska, T. & Grech, E. (1995). J. Chem. Soc. Faraday Trans. 91, 7–85. CSD CrossRef Web of Science Google Scholar
Zheng, Y.-F. (2013). Acta Cryst. E69, o1349. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.