research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis and DFT studies of (E)-2-{[(3-chloro-4-methyl­phen­yl)imino]­meth­yl}-4-methyl­phenol

CROSSMARK_Color_square_no_text.svg

aPG Department of Chemistry, Langat Singh College, B. R. A. Bihar University, Muzaffarpur, Bihar 842001, India, bOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Samsun, Turkey, cOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Chemistry, 55139, Samsun, Turkey, and dDepartment of Pharmacy, University of Science and Technology, Ibb Branch, Ibb, Yemen
*Correspondence e-mail: ashraf.yemen7@gmail.com

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 22 June 2020; accepted 9 July 2020; online 21 July 2020)

The title compound, C15H14ClNO, was synthesized by condensation reaction of 2-hy­droxy-5-methyl­benzaldehyde and 3-chloro-4-methyl­aniline, and crystallizes in the monoclinic space group P21/c. The 3-chloro­benzene ring is inclined to the phenol ring by 9.38 (11)°. The configuration about the C=N bond is E and an intra­molecular O—H⋯N hydrogen bond forms an S(6) ring motif. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the packing arrangement are from H⋯H (43.8%) and C⋯H/H⋯C (26.7%) inter­actions. The density functional theory (DFT) optimized structure at the B3LYP/ 6–311 G(d,p) level is compared with the experimentally determined mol­ecular structure and the HOMO–LUMO energy gap is provided.

1. Chemical context

Schiff bases contain the azomethine moiety (–RCH=N–R′) and are prepared by condensation reactions between amines and active carbonyl compounds. Schiff bases are employed as catalyst carriers (Grigoras et al., 2001[Grigoras, M., Catanescu, O. & Simonescu, C. I. (2001). Rev. Roum. Chim. 46, 927-939.]), thermo-stable mater­ials (Vančo et al., 2004[Vančo, J., Švajlenová, O., Račanská, E. J., Muselík, J. & Valentová, J. (2004). J. Trace Elem. Med. Biol. 18, 155-161.]), metal–cation complexing agents and in biological systems (Taggi et al., 2002[Taggi, A. E., Hafez, A. M., Wack, H., Young, B., Ferraris, D. & Lectka, T. (2002). J. Am. Chem. Soc. 124, 6626-6635.]). Schiff bases show biological activities including anti­bacterial, anti­fungal, anti­cancer, anti­viral and herbicidal activities (Desai et al., 2001[Desai, S. B., Desai, P. B. & Desai, K. R. (2001). Heterocycl. Commun. 7, 83-90.]; Singh & Dash, 1988[Singh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33-37.]; Karia & Parsania, 1999[Karia, F. D. & Parsania, P. H. (1999). Asian J. Chem. 11, 991-995.]; Siddiqui et al., 2006[Siddiqui, J. I., Iqbal, A., Ahmad, S. & Weaver, W. (2006). Molecules, 11, 206-211.]). Moreover, Schiff base ligands are potentially capable of forming stable complexes by coordination of metal ions with their nitro­gen atoms as donors (Ebrahimipour et al., 2012[Ebrahimipour, S. Y., Mague, J. T., Akbari, A. & Takjoo, R. (2012). J. Mol. Struct. 1028, 148-155.]). They are important for their photochromic properties and have applications in various fields such as the measurement and control of radiation intensities in imaging systems, optical computers, electronics, optoelectronics and photonics (Iwan et al., 2007[Iwan, A., Kaczmarczyk, B., Janeczek, H., Sek, D. & Ostrowski, S. (2007). Spectrochim. Acta A Mol. Biomol. Spectrosc. 66, 1030-1041.]). The present work is a part of an ongoing structural study of Schiff bases and their utilization in the synthesis of quinoxaline derivatives (Faizi et al., 2018[Faizi, M. S. H., Alam, M. J., Haque, A., Ahmad, S., Shahid, M. & Ahmad, M. (2018). J. Mol. Struct. 1156, 457-464.]), fluorescence sensors (Faizi et al., 2016[Faizi, M. S. H., Gupta, S., Mohan, V. K., Jain, K. V. & Sen, P. (2016). Sens. Actuators B Chem. 222, 15-20.]; Mukherjee et al., 2018[Mukherjee, P., Das, A., Faizi, M. S. H. & Sen, P. (2018). Chemistry Select, 3, 3787-3796.]; Kumar et al., 2017[Kumar, S., Hansda, A., Chandra, A., Kumar, A., Kumar, M., Sithambaresan, M., Faizi, M. S. H., Kumar, V. & John, R. P. (2017). Polyhedron, 134, 11-21.], 2018[Kumar, M., Kumar, A., Faizi, M. S. H., Kumar, S., Singh, M. K., Sahu, S. K., Kishor, S. & John, R. P. (2018). Sens. Actuators B Chem. 260, 888-899.]) and non-linear optical properties (Faizi et al., 2020[Faizi, M. S. H., Osório, F. A. P. & Valverde, C. (2020). J. Mol. Struct. 1210, 128039-464.]). We report herein on the synthesis (from 2-hy­droxy-5-methyl­benzaldehyde and 3-chloro-4-methyl­aniline), crystal structure, Hirshfeld surface analysis and DFT computational calculations of the title compound, (I)[link]. The results of calculations by density functional theory (DFT) carried out at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound (I)[link] is shown in Fig. 1[link]. An intra­molecular O—H⋯N hydrogen bond is observed (Table 1[link] and Fig. 1[link]). This is a relatively common feature in analogous imine–phenol compounds (see Database survey section). The imine group, which displays a C9—C8— N1—C5 torsion angle of −177.49 (18)°, contributes to the general non-planarity of the mol­ecule. The chloro­benzene ring (C2–C7) is inclined by 9.38 (11)° to the phenol ring (C9–C14). The configuration of the C7=N1 bond of this Schiff base is E, and the intra­molecular O1—H1⋯N1 hydrogen bond forms an S(6) ring motif (Fig. 1[link]a and Table 1[link]). The C14—O1 distance [1.354 (2) Å] is close to normal values reported for single C—O bonds in phenols and salicyl­idene­amines (Ozeryanskii et al., 2006[Ozeryanskii, V. A., Pozharskii, A. F., Schilf, W., Kamieński, B., Sawka-Dobrowolska, W., Sobczyk, L. & Grech, E. (2006). Eur. J. Org. Chem. pp. 782-790.]). The N1—C8 bond is short at 1.281 (3) Å, indicating the existence of an imine bond, while the long C8—C9 bond [1.446 (3) Å] implies a single bond. All these data support the existence of the phenol–imine tautomer for (I)[link] in its crystalline state. These features are similar to those observed in related 4-di­methyl­amino-N-salicylideneanilines (Wozniak et al., 1995[Wozniak, K., He, H., Klinowski, J., Jones, W., Dziembowska, T. & Grech, E. (1995). J. Chem. Soc. Faraday Trans. 91, 7-85.]; Pizzala et al., 2000[Pizzala, H., Carles, M., Stone, W. E. E. & Thevand, A. (2000). J. Chem. Soc. Perkin Trans. 2, pp. 935-939.]). The C—N, C=N and C—C bond lengths are normal and close to the values observed in related structures (Faizi et al., 2017[Faizi, M. S. H., Ahmad, M., Kapshuk, A. A. & Golenya, I. A. (2017). Acta Cryst. E73, 38-40.]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.79 (4) 1.89 (3) 2.625 (3) 153 (3)
C1—H1C⋯Cl1 0.96 2.91 3.072 (3) 91
C1—H1A⋯N1i 0.96 2.86 3.734 (3) 152
C1—H1CCg1ii 0.96 2.92 3.617 (2) 131
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+2, -z.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound (I)[link], showing the atom labelling and the inter­molecular O—H⋯N hydrogen bond as a dashed line. Displacement ellipsoids are drawn at the 40% probability level.

3. Supra­molecular features

In the crystal packing of (I)[link], the mol­ecules are linked by C1—H1A⋯N1 [H1A⋯N1(−x + 1, −y + 1, −z + 1) = 2.86 Å] inter­actions, forming sheets propagating along the a-axis direction (Fig. 2[link]a). Weak C—H⋯π inter­actions [C1—H1CCg1(−x, −y + 2, −z) = 2.92 Å] are observed (Table 1[link] and Fig. 2[link]b). Notably, weak ππ stacking inter­actions between chloro­benzene rings [Cg1⋯Cg1(−x + 1, −y + 1, −z + 1) = 3.7890 (2) Å, where Cg1 is the centroid of the C2–C7 ring] along the a axis lead to the formation of a three-dimensional network.

[Figure 2]
Figure 2
A view along the a axis of the crystal packing of title compound (I)[link] showing (a) the C1—H1CCg1 inter­actions and (b) the most important inter­actions as dashed lines.

4. Hirshfeld surface analysis

The inter­molecular inter­actions were investigated qu­anti­tatively and visualized with Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.]; Spackman et al., 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]). The shorter and longer contacts are indicated as red and blue spots, respectively, on the Hirshfeld surfaces, and contacts with distances approximately equal to the sum of the van der Waals radii are represented as white spots. The dnorm (ad) and shape index (e) surface mappings are shown in Fig. 3[link]. The most important red spots on the dnorm surface represent O1⋯Cl1 inter­actions (Fig. 3[link]b) and C1—H1CCg1 inter­actions (Fig. 3[link]c). Some additional inter­actions indicated by light-red spots are corresponding to contacts around phenolic and chloro­benzene rings (Fig. 3[link]d). The red and blue triangles are absent on the shape-index surface, which indicates there are no strong ππ stacking inter­actions in the crystal structure.

[Figure 3]
Figure 3
A view of the three-dimensional Hirshfeld surface for (I)[link], plotted over (a)–(d) dnorm and (e) shape-index.

Analysis of the two-dimensional fingerprint plots (Fig. 4[link]af) indicates that the H⋯H (43.8%) inter­actions are the major factor in the crystal packing with C⋯H/H⋯C (26.7%) inter­actions making the next highest contribution. The percentage contributions of other weak inter­actions are: Cl⋯H/H⋯Cl (12.4%), O⋯H/H⋯O (6.6%) and N⋯H/H⋯N (3.8%).

[Figure 4]
Figure 4
(a) The overall two-dimensional fingerprint plot for the title compound and (b)–(f) those delineated into H⋯H, C⋯H/H⋯C, Cl⋯H/H⋯Cl, O⋯H/H⋯O and N⋯H/H⋯N contacts, respectively.

5. DFT calculations

The optimized structure in the gas phase of compound (I)[link] was generated theoretically via density functional theory (DFT) using standard B3LYP functional and 6–311 G(d,p) basis-set calculations (Becke, 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]) as implemented in GAUSSIAN 09 (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN 09. Gaussian Inc., Wallingford, CT, USA.]). The theoretical and experimental results are in good agreement (Table 2[link]). The highest-occupied mol­ecular orbital (HOMO), acting as an electron donor, and the lowest-unoccupied mol­ecular orbital (LUMO), acting as an electron acceptor, are very important parameters for quantum chemistry. When the energy gap is small, the mol­ecule is highly polarizable and has high chemical reactivity (Fukui, 1982[Fukui, K. (1982). Science, 218, 747-754.]; Khan et al., 2015[Khan, E., Shukla, A., Srivastava, A., Shweta, P. & Tandon, P. (2015). New J. Chem. 39, 9800-9812.]). The DFT calculations provide some important information on the reactivity and site selectivity of the mol­ecular framework, EHOMO and ELUMO, which clarify the inevitable charge-exchange collaboration inside the studied material, electronegativity (χ), hardness (η), electrophilicity (ω), softness (σ) and fraction of electron transferred (ΔN). These data are recorded in Table 3[link]. The significance of η and σ is for the evaluation of both the reactivity and stability. The electron transition from the HOMO to the LUMO energy level is shown in Fig. 5[link]. The HOMO and LUMO are localized in the plane extending from the whole 2-{[(3-chloro-4-methyl­phen­yl)imino]­meth­yl}-4-methyl­phenol ring. The energy band gap [ΔE = ELUMO − EHOMO] of the mol­ecule is 4.0023 eV, the frontier mol­ecular orbital energies EHOMO and ELUMO being −5.9865 eV and −1.9842 eV, respectively. The dipole moment of (I)[link] is estimated to be 4.30 Debye.

Table 2
Comparison of observed (X-ray data) and calculated (DFT) geometric parameters (Å, °)

Parameter X-ray B3LYP/6–311G(d,p)
O1—C14 1.354 (2) 1.354
C7—Cl1 1.735 (2) 1.735
N1—C8 1.281 (3) 1.281
C8—C9 1.446 (3) 1.446
N1—C5 1.418 (3) 1.418
C2—C7 1.385 (3) 1.385
C13—C14—C9 119.36 (19) 119.4
C9—C8—N1 121.82 (19) 121.8
C8—N1—C5 122.08 (19) 122.1

Table 3
Calculated mol­ecular energies for (I)

Mol­ecular Energy (a.u.) (eV) Compound (I)
Total Energy TE (eV) −31841.0844
EHOMO (eV) −5.9865
ELUMO (eV) −1.9842
Gap, ΔE (eV) 4.0023
Dipole moment, μ (Debye) 4.30
Ionization potential, I (eV) 5.9865
Electron affinity, A 1.9842
Electronegativity, χ 3.985
Hardness, η 2.001
Electrophilicity index, ω 3.968
Softness, σ 0.250
Fraction of electron transferred, ΔN 0.754
[Figure 5]
Figure 5
Mol­ecular orbitals showing the HOMO–LUMO electronic transition in the title compound.

6. Database survey

A search of the Cambridge Structural Database (CSD, version 5.39; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave 13 hits for the 2-{[(3-chloro-4-methyl­phen­yl)imino]­meth­yl}-4-methyl­phenol moiety. Out of 13, only a few are very closely related to the title compound. In (E)-4-meth­oxy-2-{[(4-methyl­phen­yl)imino]­meth­yl}phenol (DUPGOL; Koşar et al., 2010[Koşar, B., Özek, A., Albayrak, Ç. & Büyükgüngör, O. (2010). Acta Cryst. E66, o469.]), the methyl group is replaced by a meth­oxy group and the dihedral angle between the benzene rings is 5.46 (2)°. In 2-[(E)-(5-chloro-2-methyl­phen­yl)imino­meth­yl]-4-methyl­phenol (AFILAE; Zheng, 2013[Zheng, Y.-F. (2013). Acta Cryst. E69, o1349.]), the dihedral angle between the planes of the chloro­phenyl and methyl­phenol rings is 35.0 (3)°. In 2-{(E)-[(3-chloro-4-meth­yl­phen­yl)imino]­meth­yl}-4-(tri­fluoro­meth­oxy)phenol (TERTUI; Atalay et al., 2017[Atalay, Ş., Gerçeker, S., Meral, S. & Bülbül, H. (2017). IUCrData, 2, x171725.]), the dihedral angle between the benzene rings is 8.3 (2)° and an intra­molecular O—H⋯N hydrogen bond closes an S(6) ring. In 2-{(E)-[(3-iodo-4-methyl­phen­yl)imino]­meth­yl}-4-(tri­fluoro­meth­oxy)phenol (XEBCOY; Pekdemir et al., 2012[Pekdemir, M., Işık, Ş. & Alaman Ağar, A. (2012). Acta Cryst. E68, o2148.]), the dihedral angle between the two benzene rings is 12.4 (2)°. For 4-[(2-hy­droxy-5-meth­oxy­benzyl­idene)amino]­benzo­nitrile (XIGNEI; Chiang et al., 2013[Chiang, H.-W., Su, Y.-T. & Wu, J.-Y. (2013). Dalton Trans. 42, 15169-15182.]), a complex with zinc is reported. In N-(5-hy­droxy­salicyl­idene)-2,4,6-tri­methyl­aniline (ZIKNOW; Tenon et al., 1995[Tenon, J. A., Carles, M. & Aycard, J.-P. (1995). Acta Cryst. C51, 2603-2606.]), the angle between the planes of the benzene rings is 74.5 (1)° and chlorine is absent.

7. Synthesis and crystallization

The title compound was prepared by refluxing mixed solutions of 2-hy­droxy-5-methyl­benzaldehyde (34.0 mg, 0.25 mmol) in ethanol (15 ml) and 3-chloro-4-methyl­aniline (35.4 mg, 0.25 mmol) in ethanol (15 ml). The reaction mixture was stirred for 5 h under reflux. Single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution (yield 65%, m.p. 383–386 K).

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The hy­droxy H atom was located in a difference-Fourier map and its positional parameters were refined freely with Uiso(H) = 1.5Ueq(O). Other H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (meth­yl) or 0.93 Å (aromatic), and Uiso(H) = 1.2Ueq(C) for aromatic H atoms or Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Table 4
Experimental details

Crystal data
Chemical formula C15H14ClNO
Mr 259.72
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 8.0534 (5), 6.3764 (3), 25.3657 (16)
β (°) 96.392 (5)
V3) 1294.47 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.28
Crystal size (mm) 0.65 × 0.37 × 0.21
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.885, 0.958
No. of measured, independent and observed [I > 2σ(I)] reflections 7752, 2414, 1801
Rint 0.040
(sin θ/λ)max−1) 0.606
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.137, 1.03
No. of reflections 2414
No. of parameters 169
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.22, −0.26
Computer programs: X-AREA and X-SHAPE (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-SHAPE (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), XP in SHELXTL (Sheldrick, 2008).

(E)-2-{[(3-Chloro-4-methylphenyl)imino]methyl}-4-methylphenol top
Crystal data top
C15H14ClNOF(000) = 544
Mr = 259.72Dx = 1.333 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.0534 (5) ÅCell parameters from 9569 reflections
b = 6.3764 (3) Åθ = 1.6–30.3°
c = 25.3657 (16) ŵ = 0.28 mm1
β = 96.392 (5)°T = 296 K
V = 1294.47 (13) Å3Stick, orange
Z = 40.65 × 0.37 × 0.21 mm
Data collection top
Stoe IPDS 2
diffractometer
2414 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus1801 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.040
Detector resolution: 6.67 pixels mm-1θmax = 25.5°, θmin = 1.6°
rotation method scansh = 99
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 77
Tmin = 0.885, Tmax = 0.958l = 3030
7752 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.137 w = 1/[σ2(Fo2) + (0.0845P)2 + 0.059P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2414 reflectionsΔρmax = 0.22 e Å3
169 parametersΔρmin = 0.26 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.74526 (10)0.21146 (12)0.56404 (2)0.0820 (3)
O10.3423 (3)0.0128 (3)0.32974 (7)0.0729 (5)
N10.5050 (2)0.3352 (3)0.37421 (7)0.0546 (4)
C90.3492 (2)0.3538 (3)0.28875 (8)0.0495 (5)
C50.6021 (3)0.4244 (3)0.41869 (8)0.0517 (5)
C100.2953 (3)0.4790 (3)0.24498 (8)0.0532 (5)
H100.3333210.6166210.2443520.064*
C60.6276 (3)0.2994 (3)0.46336 (8)0.0558 (5)
H60.5827000.1649700.4628830.067*
C80.4537 (3)0.4436 (3)0.33310 (8)0.0540 (5)
H80.4844070.5838990.3317290.065*
C70.7199 (3)0.3742 (4)0.50893 (8)0.0560 (5)
C140.2942 (3)0.1445 (3)0.28904 (8)0.0537 (5)
C110.1881 (3)0.4072 (3)0.20271 (8)0.0544 (5)
C20.7902 (3)0.5727 (4)0.51180 (8)0.0569 (5)
C30.7630 (3)0.6946 (4)0.46627 (9)0.0624 (6)
H30.8081240.8288870.4667150.075*
C40.6720 (3)0.6247 (4)0.42059 (9)0.0606 (6)
H40.6570400.7110900.3909010.073*
C120.1343 (3)0.1995 (4)0.20491 (9)0.0603 (5)
H120.0610700.1469410.1770990.072*
C130.1860 (3)0.0705 (4)0.24686 (9)0.0618 (6)
H130.1482880.0672730.2469650.074*
C150.1266 (3)0.5478 (4)0.15702 (9)0.0699 (7)
H15A0.1108350.6871330.1699290.105*
H15B0.0222930.4952930.1400880.105*
H15C0.2073260.5507460.1319000.105*
C10.8890 (3)0.6569 (4)0.56097 (9)0.0722 (7)
H1A0.8171910.6722480.5884880.108*
H1B0.9352290.7909410.5533890.108*
H1C0.9778950.5613730.5724490.108*
H10.399 (4)0.082 (5)0.3505 (14)0.099 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1001 (5)0.0819 (5)0.0596 (4)0.0149 (4)0.0115 (3)0.0193 (3)
O10.0944 (13)0.0595 (10)0.0617 (10)0.0062 (9)0.0051 (9)0.0144 (8)
N10.0546 (10)0.0596 (11)0.0481 (9)0.0028 (8)0.0013 (7)0.0010 (8)
C90.0467 (11)0.0521 (11)0.0489 (11)0.0015 (9)0.0018 (8)0.0018 (8)
C50.0497 (11)0.0586 (12)0.0458 (10)0.0081 (9)0.0014 (8)0.0017 (8)
C100.0564 (12)0.0506 (11)0.0514 (11)0.0007 (9)0.0007 (9)0.0043 (9)
C60.0575 (12)0.0535 (12)0.0553 (11)0.0105 (10)0.0008 (9)0.0040 (9)
C80.0542 (12)0.0529 (12)0.0528 (11)0.0025 (9)0.0034 (9)0.0023 (9)
C70.0569 (12)0.0617 (13)0.0481 (11)0.0185 (10)0.0001 (9)0.0050 (9)
C140.0601 (13)0.0513 (11)0.0496 (11)0.0027 (10)0.0062 (9)0.0060 (9)
C110.0532 (12)0.0616 (12)0.0477 (11)0.0017 (10)0.0021 (9)0.0008 (9)
C20.0531 (12)0.0654 (14)0.0510 (11)0.0124 (10)0.0010 (9)0.0064 (10)
C30.0648 (14)0.0625 (14)0.0583 (13)0.0030 (11)0.0000 (10)0.0016 (10)
C40.0646 (13)0.0642 (13)0.0515 (11)0.0047 (11)0.0003 (10)0.0060 (10)
C120.0586 (12)0.0700 (14)0.0507 (11)0.0053 (11)0.0003 (9)0.0081 (10)
C130.0692 (14)0.0540 (12)0.0621 (13)0.0097 (11)0.0067 (11)0.0030 (10)
C150.0756 (16)0.0780 (17)0.0524 (12)0.0013 (13)0.0093 (11)0.0077 (11)
C10.0725 (15)0.0864 (18)0.0545 (13)0.0117 (13)0.0067 (11)0.0140 (12)
Geometric parameters (Å, º) top
Cl1—C71.735 (2)C11—C121.397 (3)
O1—C141.354 (2)C11—C151.505 (3)
O1—H10.79 (4)C2—C31.389 (3)
N1—C81.281 (3)C2—C11.502 (3)
N1—C51.418 (3)C3—C41.374 (3)
C9—C101.397 (3)C3—H30.9300
C9—C141.406 (3)C4—H40.9300
C9—C81.446 (3)C12—C131.372 (3)
C5—C61.382 (3)C12—H120.9300
C5—C41.394 (3)C13—H130.9300
C10—C111.378 (3)C15—H15A0.9600
C10—H100.9300C15—H15B0.9600
C6—C71.388 (3)C15—H15C0.9600
C6—H60.9300C1—H1A0.9600
C8—H80.9300C1—H1B0.9600
C7—C21.385 (3)C1—H1C0.9600
C14—C131.385 (3)
C14—O1—H1105 (2)C7—C2—C1123.1 (2)
C8—N1—C5122.08 (19)C3—C2—C1120.7 (2)
C10—C9—C14118.46 (18)C4—C3—C2122.6 (2)
C10—C9—C8119.64 (19)C4—C3—H3118.7
C14—C9—C8121.86 (18)C2—C3—H3118.7
C6—C5—C4118.5 (2)C3—C4—C5120.1 (2)
C6—C5—N1116.1 (2)C3—C4—H4120.0
C4—C5—N1125.41 (19)C5—C4—H4120.0
C11—C10—C9122.7 (2)C13—C12—C11122.0 (2)
C11—C10—H10118.6C13—C12—H12119.0
C9—C10—H10118.6C11—C12—H12119.0
C5—C6—C7120.1 (2)C12—C13—C14120.4 (2)
C5—C6—H6119.9C12—C13—H13119.8
C7—C6—H6119.9C14—C13—H13119.8
N1—C8—C9121.82 (19)C11—C15—H15A109.5
N1—C8—H8119.1C11—C15—H15B109.5
C9—C8—H8119.1H15A—C15—H15B109.5
C2—C7—C6122.4 (2)C11—C15—H15C109.5
C2—C7—Cl1119.58 (17)H15A—C15—H15C109.5
C6—C7—Cl1118.04 (18)H15B—C15—H15C109.5
O1—C14—C13118.7 (2)C2—C1—H1A109.5
O1—C14—C9121.97 (19)C2—C1—H1B109.5
C13—C14—C9119.36 (19)H1A—C1—H1B109.5
C10—C11—C12117.03 (19)C2—C1—H1C109.5
C10—C11—C15121.7 (2)H1A—C1—H1C109.5
C12—C11—C15121.2 (2)H1B—C1—H1C109.5
C7—C2—C3116.2 (2)
C8—N1—C5—C6170.44 (19)C9—C10—C11—C15177.6 (2)
C8—N1—C5—C49.5 (3)C6—C7—C2—C30.1 (3)
C14—C9—C10—C111.3 (3)Cl1—C7—C2—C3179.31 (17)
C8—C9—C10—C11176.3 (2)C6—C7—C2—C1179.4 (2)
C4—C5—C6—C70.4 (3)Cl1—C7—C2—C10.0 (3)
N1—C5—C6—C7179.51 (18)C7—C2—C3—C40.1 (3)
C5—N1—C8—C9177.49 (18)C1—C2—C3—C4179.4 (2)
C10—C9—C8—N1179.5 (2)C2—C3—C4—C50.2 (4)
C14—C9—C8—N12.0 (3)C6—C5—C4—C30.4 (3)
C5—C6—C7—C20.3 (3)N1—C5—C4—C3179.5 (2)
C5—C6—C7—Cl1179.12 (16)C10—C11—C12—C130.6 (3)
C10—C9—C14—O1179.3 (2)C15—C11—C12—C13178.4 (2)
C8—C9—C14—O13.1 (3)C11—C12—C13—C140.4 (4)
C10—C9—C14—C131.5 (3)O1—C14—C13—C12179.9 (2)
C8—C9—C14—C13176.1 (2)C9—C14—C13—C120.6 (3)
C9—C10—C11—C120.3 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.79 (4)1.89 (3)2.625 (3)153 (3)
C1—H1C···Cl10.962.913.072 (3)91
C1—H1A···N1i0.962.863.734 (3)152
C1—H1C···Cg1ii0.962.923.617 (2)131
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+2, z.
Comparison of observed (X-ray data) and calculated (DFT) geometric parameters (Å, °) top
ParameterX-rayB3LYP/6–311G(d,p)
O1—C141.354 (2)1.354
C7—Cl11.735 (2)1.735
N1—C81.281 (3)1.281
C8—C91.446 (3)1.446
N1—C51.418 (3)1.418
C2—C71.385 (3)1.385
C13—C14—C9119.36 (19)119.4
C9—C8—N1121.82 (19)121.8
C8—N1—C5122.08 (19)122.1
Calculated molecular energies for (I) top
Molecular Energy (a.u.) (eV)Compound (I)
Total Energy TE (eV)-31841.0844
EHOMO (eV)-5.9865
ELUMO (eV)-1.9842
Gap, ΔE (eV)4.0023
Dipole moment, µ (Debye)4.30
Ionization potential, I (eV)5.9865
Electron affinity, A1.9842
Electronegativity, χ3.985
Hardness, η2.001
Electrophilicity index, ω3.968
Softness, σ0.250
Fraction of electron transferred, ΔN0.754
 

Acknowledgements

Langat Singh College, B. R. Bihar University India, is thanked for the use of laboratory facilities.

Funding information

This study was supported financially by Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Morocco, the University of Science and Technology, Ibb Branch, Ibb, Yemen, and a start-up grant from the University Grants Commission (UGC).

References

First citationAtalay, Ş., Gerçeker, S., Meral, S. & Bülbül, H. (2017). IUCrData, 2, x171725.  Google Scholar
First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationChiang, H.-W., Su, Y.-T. & Wu, J.-Y. (2013). Dalton Trans. 42, 15169–15182.  CSD CrossRef CAS PubMed Google Scholar
First citationDesai, S. B., Desai, P. B. & Desai, K. R. (2001). Heterocycl. Commun. 7, 83–90.  CrossRef CAS Google Scholar
First citationEbrahimipour, S. Y., Mague, J. T., Akbari, A. & Takjoo, R. (2012). J. Mol. Struct. 1028, 148–155.  Google Scholar
First citationFaizi, M. S. H., Ahmad, M., Kapshuk, A. A. & Golenya, I. A. (2017). Acta Cryst. E73, 38–40.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFaizi, M. S. H., Alam, M. J., Haque, A., Ahmad, S., Shahid, M. & Ahmad, M. (2018). J. Mol. Struct. 1156, 457–464.  Web of Science CSD CrossRef CAS Google Scholar
First citationFaizi, M. S. H., Gupta, S., Mohan, V. K., Jain, K. V. & Sen, P. (2016). Sens. Actuators B Chem. 222, 15–20.  Web of Science CrossRef CAS Google Scholar
First citationFaizi, M. S. H., Osório, F. A. P. & Valverde, C. (2020). J. Mol. Struct. 1210, 128039–464.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN 09. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationFukui, K. (1982). Science, 218, 747–754.  CrossRef PubMed CAS Web of Science Google Scholar
First citationGrigoras, M., Catanescu, O. & Simonescu, C. I. (2001). Rev. Roum. Chim. 46, 927–939.  CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationIwan, A., Kaczmarczyk, B., Janeczek, H., Sek, D. & Ostrowski, S. (2007). Spectrochim. Acta A Mol. Biomol. Spectrosc. 66, 1030–1041.  Web of Science CrossRef PubMed Google Scholar
First citationKaria, F. D. & Parsania, P. H. (1999). Asian J. Chem. 11, 991–995.  CAS Google Scholar
First citationKhan, E., Shukla, A., Srivastava, A., Shweta, P. & Tandon, P. (2015). New J. Chem. 39, 9800–9812.  Web of Science CrossRef CAS Google Scholar
First citationKoşar, B., Özek, A., Albayrak, Ç. & Büyükgüngör, O. (2010). Acta Cryst. E66, o469.  CSD CrossRef IUCr Journals Google Scholar
First citationKumar, M., Kumar, A., Faizi, M. S. H., Kumar, S., Singh, M. K., Sahu, S. K., Kishor, S. & John, R. P. (2018). Sens. Actuators B Chem. 260, 888–899.  Web of Science CrossRef CAS Google Scholar
First citationKumar, S., Hansda, A., Chandra, A., Kumar, A., Kumar, M., Sithambaresan, M., Faizi, M. S. H., Kumar, V. & John, R. P. (2017). Polyhedron, 134, 11–21.  Web of Science CSD CrossRef CAS Google Scholar
First citationMukherjee, P., Das, A., Faizi, M. S. H. & Sen, P. (2018). Chemistry Select, 3, 3787–3796.  CAS Google Scholar
First citationOzeryanskii, V. A., Pozharskii, A. F., Schilf, W., Kamieński, B., Sawka-Dobrowolska, W., Sobczyk, L. & Grech, E. (2006). Eur. J. Org. Chem. pp. 782–790.  Web of Science CSD CrossRef Google Scholar
First citationPekdemir, M., Işık, Ş. & Alaman Ağar, A. (2012). Acta Cryst. E68, o2148.  CSD CrossRef IUCr Journals Google Scholar
First citationPizzala, H., Carles, M., Stone, W. E. E. & Thevand, A. (2000). J. Chem. Soc. Perkin Trans. 2, pp. 935–939.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiddiqui, J. I., Iqbal, A., Ahmad, S. & Weaver, W. (2006). Molecules, 11, 206–211.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSingh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33–37.  Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationStoe & Cie (2002). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTaggi, A. E., Hafez, A. M., Wack, H., Young, B., Ferraris, D. & Lectka, T. (2002). J. Am. Chem. Soc. 124, 6626–6635.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTenon, J. A., Carles, M. & Aycard, J.-P. (1995). Acta Cryst. C51, 2603–2606.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.  Google Scholar
First citationVančo, J., Švajlenová, O., Račanská, E. J., Muselík, J. & Valentová, J. (2004). J. Trace Elem. Med. Biol. 18, 155–161.  Web of Science PubMed Google Scholar
First citationWozniak, K., He, H., Klinowski, J., Jones, W., Dziembowska, T. & Grech, E. (1995). J. Chem. Soc. Faraday Trans. 91, 7–85.  CSD CrossRef Web of Science Google Scholar
First citationZheng, Y.-F. (2013). Acta Cryst. E69, o1349.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds