research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-(2,6-Di­chloro­phen­yl)-2-(3-nitro­benzyl­­idene)hydrazine: crystal structure and Hirshfeld surface analysis

CROSSMARK_Color_square_no_text.svg

aİlke Education and Health Foundation, Cappadocia University, Cappadocia Vocational College, The Medical Imaging Techniques Program, 50420 Mustafapaşa, Ürgüp, Nevşehir, Turkey, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cOrganic Chemistry Department, Baku State University, Z. Khalilov str. 23, AZ, 1148 Baku, Azerbaijan, and dUniversity of Dar es Salaam, Dar es Salaam University College of Education, Department of Chemistry, PO Box 2329, Dar es Salaam, Tanzania
*Correspondence e-mail: sixberth.mlowe@duce.ac.tz

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 4 July 2020; accepted 10 July 2020; online 17 July 2020)

The stabilized conformation of the title compound, C13H9Cl2N3O2, is similar to that of the isomeric compound (E)-1-(2,6-di­chloro­phen­yl)-2-(2-nitro­benzyl­idene)hydrazine. The 2,6-di­chloro­phenyl ring and the nitro-substituted benzene ring form a dihedral angle of 26.25 (16)°. In the crystal, face-to-face π-π stacking inter­actions along the a-axis direction occur between the centroids of the 2,6-di­chloro­phenyl ring and the nitro-substituted benzene ring. The mol­ecules are further linked by C—H⋯O contacts and N—H⋯O and C—H⋯Cl hydrogen bonds, forming pairs of hydrogen-bonded mol­ecular layers parallel to (100). The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H⋯H (22.1%), Cl⋯H/H⋯Cl (20.5%), O⋯H/H⋯O (19.7%), C⋯C (11.1%) and C⋯H/H⋯C (8.3%) inter­actions.

1. Chemical context

Schiff bases as well as hydrazone ligands and their complexes have attracted much attention because of their high synthetic potential for organic and inorganic chemistry and their diverse useful properties (Maharramov et al., 2018[Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135-141.]; Mahmudov et al., 2014[Mahmudov, K. T., Kopylovich, M. N., Maharramov, A. M., Kurbanova, M. M., Gurbanov, A. V. & Pombeiro, A. J. L. (2014). Coord. Chem. Rev. 265, 1-37.]). The analytical and catalytic properties of this class of compounds are strongly dependent on the groups attached to the hydrazone moiety (Shixaliyev et al., 2019[Shikhaliyev, N. Q., Çelikesir, S. T., Akkurt, M., Bagirova, K. N., Suleymanova, G. T. & Toze, F. A. A. (2019). Acta Cryst. E75, 465-469.]). On the other hand, inter­molecular inter­actions organize mol­ecular architectures, which play a critical role in synthesis, catalysis, micellization, etc (Akbari et al., 2017[Akbari Afkhami, F., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888-14896.]; Gurbanov et al., 2018[Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018). Aust. J. Chem. 71, 190-194.]; Mahmoudi et al., 2018[Mahmoudi, G., Seth, S. K., Bauzá, A., Zubkov, F. I., Gurbanov, A. V., White, J., Stilinović, V., Doert, T. & Frontera, A. (2018). CrystEngComm, 20, 2812-2821.] and references cited therein). New types of weak inter­actions such as halogen, chalcogen, pnictogen and tetrel bonds or their cooperation with hydrogen bonds are able to drive the synthesis and catalysis, as well as improve properties of materials (Mizar et al., 2012[Mizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305-2313.]; Mahmudov et al., 2019[Mahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32-46.] and references cited therein). For that, the main skeleton of the aryl­hydrazone ligand should be extended with weak bond-donor centre(s). In order to continue our work in this perspective, we have functionalized a new azo dye, (E)-1-(2,6-di­chloro­phen­yl)-2-(3-nitro­benzyl­idene)hydrazine, (I)[link], which provides inter­molecular non-covalent inter­actions.

[Scheme 1]

2. Structural commentary

The title mol­ecule (Fig. 1[link]) has an E configuration about the C=N bond. The 2,6-di­chloro­phenyl ring and the nitro-substituted benzene ring of the title compound are inclined at 26.25 (16)°, while the nitro group is skewed out of the attached benzene ring plane by 6.3 (2)°. The conformation is stabilized by an intra­molecular N1—H1N⋯Cl1 inter­action, which forms an S(6) graph-set motif (Table 1[link]). The conformation of the title compound can be compared with that of the isomeric compound (E)-1-(2,6-di­chloro­phen­yl)-2-(2-nitro­benzyl­idene)hydrazine (CSD refcode KUWGOB; Çelikesir et al., 2020[Çelikesir, S. T., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Gurbanova, N. V., Mammadova, G. Z. & Bhattarai, A. (2020). Acta Cryst. E76, 1173-1178.]). Fig. 2[link] shows the overlay of the two isomers. The r.m.s. deviation of the overlay between the two isomers is 0.003 Å. In the 2-nitro isomer, the dihedral angles are 21.16 (14) (between the phenyl rings) and 27.06 (18)° (between between the nitro group and the phenyl ring). The difference in angles may be due to the steric inter­action resulting from the position of the nitro group on the benzene ring to which it is attached. The Cl1—C2—C1—N1, Cl2—C6—C1—N1, C2—C1—N1—N2, C1—N1—N2—C7, N1—N2—C7—C8, N2—C7—C8—C13, N2—C7—C8—C9, C8—C13—C12—N3, C13—C12—N3—O1 and C13—C12—N3—O2 torsion angles are −0.1 (4), 3.4 (4), −147.1 (3), 177.3 (3), 178.2 (2), 165.5 (3), −15.6 (4), 178.8 (3), 6.2 (4) and −174.4 (3) °, respectively.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯Cl1 0.95 2.54 2.940 (2) 106
N1—H1N⋯O1i 0.95 2.31 3.243 (3) 168
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+2].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
Overlay of the title compound and the isomer (E)-1-(2,6-di­chloro­phen­yl)-2-(2-nitro­benzyl­idene)hydrazine (Çelikesir et al., 2020[Çelikesir, S. T., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Gurbanova, N. V., Mammadova, G. Z. & Bhattarai, A. (2020). Acta Cryst. E76, 1173-1178.]).

3. Supra­molecular features

In the crystal, face-to-face ππ stacking inter­actions [Cg1⋯Cg2(−x, −[{1\over 2}] + y, 1 − z) = 3.753 (2) Å with slippage of 1.380 Å and Cgl⋯Cg2(1 − x, −[{1\over 2}] + y, 1 − z) = 3.761 (2) Å with slippage of 1.423 Å, where Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 rings, respectively] occur between the 2,6-di­chloro­phenyl ring and the nitro-substituted benzene ring of the title mol­ecule along the a-axis direction (Fig. 3[link]). The mol­ecules are further linked by C—H⋯O contacts and N—H⋯O and C—H⋯Cl hydrogen bonds, forming pairs of hydrogen-bonded mol­ecular layers parallel to (100) (Tables 1[link] and 2[link]; Figs. 4[link] and 5[link]). In the crystal, a C—Cl⋯π inter­action is also observed [C2—Cl1⋯Cg2 (−x, −[{1\over 2}] + y, 1 − z) = 3.9373 (18) Å, C2—Cl1⋯Cg2 = 62.59 (10)°, where Cg2 is the centroid of the C8–C13 ring]. The large Cl⋯Cg2 distance and acute C–Cl⋯Cg2 angle, however, indicate that this inter­action is only weak.

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

Contact Distance Symmetry operation
Cl1⋯H11A 3.13 x, − 1 + y, z
H1N⋯O1 2.31 1 − x, −[{1\over 2}] + y, 2 − z
H7A⋯O2 2.77 1 − x, −[{1\over 2}] + y, 2 − z
C1⋯C11 3.405 x, −[{1\over 2}] + y, 1 − z
Cl2⋯H13A 2.95 x, y, −1 + z
O2⋯H4A 2.66 x, 1 + y, 1 + z
C2⋯C8 3.426 1 − x, −[{1\over 2}] + y, 1 − z
H5A⋯H10A 2.55 x, −[{1\over 2}] + y, −z
[Figure 3]
Figure 3
A view of the ππ stacking inter­actions of the title compound. Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 benzene rings, respectively. [Symmetry codes: (a) −x, −[{1\over 2}] + y, 1 − z; (b) 1 − x, −[{1\over 2}] + y, 1 − z; (c) −x, [{1\over 2}] + y, 1 − z; (d) 1 − x, [{1\over 2}] + y, 1 − z].
[Figure 4]
Figure 4
A general view of the crystal packing of the title compound along the a axis with hydrogen bonds and contacts shown as dashed lines.
[Figure 5]
Figure 5
A general view of the crystal packing of the title compound along the b axis showing the pairs of hydrogen-bonded mol­ecular layers parallel to (100).

4. Hirshfeld surface analysis

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated two-dimensional fingerprint plots (McKinnon, et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were performed with Crystal Explorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]) to investigate the inter­molecular inter­actions and surface morphology. The Hirshfeld surface mapped over dnorm in the range −0.2694 to 1.2224 a.u. and corresponding colours from red (shorter distance than the sum of van der Waals radii) over white to blue (longer distance than the sum of van der Waals radii) is shown in Fig. 6[link]. The red points, which represent closer contacts and negative dnorm values on the surface, correspond to the N—H⋯O, C—H⋯O and C—H⋯Cl inter­actions (Table 2[link]). The shape-index of the Hirshfeld surface is a tool for visualizing the ππ stacking by the presence of adjacent red and blue triangles. The plot of the Hirshfeld surface mapped over shape-index shown in Fig. 7[link] clearly suggests that there are ππ inter­actions in the title compound.

[Figure 6]
Figure 6
A view of the Hirshfeld surface mapped over dnorm in the range −0.2694 to 1.2224 arbitrary units showing C—H⋯O, N—H⋯O hydrogen bonds and H⋯H inter­actions (van der Waals inter­actions). Applied colours for atoms: grey = C, white = H, blue = N, red = O and green = Cl.
[Figure 7]
Figure 7
View of the three-dimensional Hirshfeld surfaces of the title compound plotted over shape-index.

In the crystal there are four major types of inter­action (H⋯H = 22.1%, Cl⋯H = 20.5%, O⋯H = 19.7%, C⋯C = 11.1%) on the dnorm surface. The two-dimensional fingerprint plots are shown in Fig. 8[link]. The inter­action sequence of dnorm on the two-dimensional fingerprint plot (H⋯H) > (Cl⋯H) > (O⋯H) > (C⋯C) represents the nature of the packing in the crystal structure. The contribution of these major inter­actions governs the overall packing of crystal structure. The percentage contributions of other weak inter­actions are: C⋯H/H⋯C (8.3%), N⋯H/H⋯N (4.9%), Cl⋯C/C⋯Cl (3.3%), N⋯C/C⋯N (2.9%), Cl⋯O/O⋯Cl (2.6%), Cl⋯N/N⋯Cl (1.8%), C⋯O/O⋯C (1.7%) and Cl⋯Cl (1.2%).

[Figure 8]
Figure 8
(a) The full two-dimensional fingerprint plot for the title compound and (b)–(f) those delineated into H⋯H (22.1%), Cl⋯H/H⋯Cl (20.5%), O⋯H/H⋯O (19.7%), C⋯C (11.1%) and C⋯H/H⋯C (8.3%) contacts, respectively.

5. Database survey

A search of the Cambridge Structural Database (CSD version 5.40, update of September 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave only seven entries closely resembling the title compound. Our recently published compound (E)-1-(2,6-di­chloro­phen­yl)-2-(2-nitro­benzyl­idene)hydrazine (KUWGOB: Çelikesir et al., 2020[Çelikesir, S. T., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Gurbanova, N. V., Mammadova, G. Z. & Bhattarai, A. (2020). Acta Cryst. E76, 1173-1178.]) is an isomer of the title compound. The other six compounds are 1-(2,4-di­nitro­phen­yl)-2-[(E)-(3,4,5-tri­meth­oxy­benzyl­idene)hydrazine] (GISJAV: Chantrapromma et al., 2014[Chantrapromma, S., Ruanwas, P., Boonnak, N., Chidan Kumar, C. S. & Fun, H.-K. (2014). Acta Cryst. E70, o188-o189.]), (E)-1-(2,4-di­nitro­phen­yl)-2-[1-(3-meth­oxy­phen­yl)eth­yl­idene]hydrazine (XEBCEO: Fun et al., 2012[Fun, H.-K., Chantrapromma, S., Nilwanna, B. & Kobkeatthawin, T. (2012). Acta Cryst. E68, o2144-o2145.]), 1-(2,4-di­nitro­phen­yl)-2-[(E)-2,4,5-tri­meth­oxy­benzyl­idene]hydrazine (AFUSEB: Fun et al., 2013[Fun, H.-K., Chantrapromma, S., Nilwanna, B., Kobkeatthawin, T. & Boonnak, N. (2013). Acta Cryst. E69, o1203-o1204.]), (E)-1-(2,4-di­nitro­phen­yl)-2-(1-(2-meth­oxy­phen­yl)ethyl­idene)hydrazine (OBUJAY: Fun et al., 2011[Fun, H.-K., Nilwanna, B., Jansrisewangwong, P., Kobkeatthawin, T. & Chantrapromma, S. (2011). Acta Cryst. E67, o3202-o3203.]), (E)-1-(2,4-di­nitro­phen­yl)-2-[1-(3-fluoro­phen­yl)ethyl­idene]hydrazine (PAVKAA: Chantrapromma et al., 2012[Chantrapromma, S., Nilwanna, B., Kobkeatthawin, T., Jansrisewangwong, P. & Fun, H.-K. (2012). Acta Cryst. E68, o1644-o1645.]) and (E)-1-(2,4-di­nitro­phen­yl)-2-[1-(2-nitro­phen­yl)ethyl­idene]hydrazine (YAHRUW: Nilwanna et al., 2011[Nilwanna, B., Chantrapromma, S., Jansrisewangwong, P. & Fun, H.-K. (2011). Acta Cryst. E67, o3084-o3085.]). All bond lengths (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]) and angles for the title compound and these related compounds are comparable and within normal ranges.

6. Synthesis and crystallization

The title compound was synthesized according to the reported method (Atioğlu et al., 2019[Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237-241.]; Maharramov et al., 2018[Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135-141.]). A mixture of 3-nitro­benzaldehyde (10 mmol), CH3COONa (0.82 g), ethanol (50 mL) and (2,6-di­chloro­phen­yl)hydrazine (10.2 mmol) was refluxed at 353 K with stirring for 2 h. The reaction mixture was cooled to room temperature and water (50 mL) was added to give a precipitate of the crude product, which was filtered off, washed with diluted ethanol (1:1 with water) and dried in vacuo of rotary evaporator. Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution; yellow solid; yield 95%; m.p. 423 K. Analysis calculated for C13H9Cl2N3O2 (M = 310.13): C 50.35, H 2.93, N 13.55; found: C 50.32, H 2.90, N 13.47%. 1H NMR (300 MHz, DMSO-d6): δ 9.95 (1H, –NH), 8.40 (1H, –CH), 7.00–8.20 (7H, aromatic). 13C NMR (75 MHz, DMSO-d6): δ 149.00, 138.01, 137.50, 136.05, 132.11, 130.50, 129.04, 128.23, 126.24, 123.16, 119.90. ESI-MS: m/z: 311.14 [M+H]+.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were refined using a riding model with d(C—H) = 0.93 Å, d(N—H) = 0.95 Å and Uiso = 1.2Ueq(N,C).

Table 3
Experimental details

Crystal data
Chemical formula C13H9Cl2N3O2
Mr 310.13
Crystal system, space group Monoclinic, P21
Temperature (K) 296
a, b, c (Å) 7.1212 (14), 12.711 (3), 7.6991 (16)
β (°) 105.940 (7)
V3) 670.1 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.49
Crystal size (mm) 0.26 × 0.22 × 0.18
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.873, 0.902
No. of measured, independent and observed [I > 2σ(I)] reflections 22230, 2744, 2392
Rint 0.062
(sin θ/λ)max−1) 0.627
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.064, 1.11
No. of reflections 2744
No. of parameters 181
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.15, −0.16
Absolute structure Flack x determined using 1032 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.04 (3)
Computer programs: APEX3 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2016/6 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXT2016/6 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: PLATON (Spek, 2020).

(E)-1-(2,6-Dichlorophenyl)-2-(3-nitrobenzylidene)hydrazine top
Crystal data top
C13H9Cl2N3O2F(000) = 316
Mr = 310.13Dx = 1.537 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 7.1212 (14) ÅCell parameters from 9800 reflections
b = 12.711 (3) Åθ = 2.8–26.3°
c = 7.6991 (16) ŵ = 0.49 mm1
β = 105.940 (7)°T = 296 K
V = 670.1 (2) Å3Plate, orange
Z = 20.26 × 0.22 × 0.18 mm
Data collection top
Bruker APEXII CCD
diffractometer
2392 reflections with I > 2σ(I)
φ and ω scansRint = 0.062
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
θmax = 26.4°, θmin = 2.8°
Tmin = 0.873, Tmax = 0.902h = 88
22230 measured reflectionsk = 1515
2744 independent reflectionsl = 99
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.064 w = 1/[σ2(Fo2) + (0.0217P)2 + 0.0759P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
2744 reflectionsΔρmax = 0.15 e Å3
181 parametersΔρmin = 0.16 e Å3
1 restraintAbsolute structure: Flack x determined using 1032 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.28649 (13)0.12020 (5)0.58310 (10)0.0583 (2)
Cl20.28511 (15)0.43809 (7)0.10800 (12)0.0666 (3)
O10.3919 (5)0.7625 (2)1.1215 (3)0.0799 (8)
O20.2541 (5)0.9024 (2)0.9937 (4)0.0848 (9)
N10.3362 (4)0.34075 (17)0.4897 (3)0.0465 (6)
H1N0.4013720.3100540.6027080.056*
N20.2806 (3)0.44380 (18)0.4863 (3)0.0397 (5)
N30.3101 (4)0.8121 (2)0.9871 (4)0.0531 (7)
C10.2672 (4)0.2769 (2)0.3396 (4)0.0365 (6)
C20.2365 (4)0.1696 (2)0.3645 (4)0.0411 (7)
C30.1710 (5)0.1009 (2)0.2220 (4)0.0543 (8)
H3A0.1527570.0302050.2438220.065*
C40.1330 (5)0.1370 (3)0.0483 (5)0.0588 (9)
H4A0.0865690.0913440.0482970.071*
C50.1641 (5)0.2419 (3)0.0174 (4)0.0558 (8)
H5A0.1393120.2666600.1003980.067*
C60.2322 (4)0.3105 (2)0.1614 (4)0.0426 (7)
C70.3439 (5)0.4963 (2)0.6318 (4)0.0413 (7)
H7A0.4210140.4634840.7347100.050*
C80.2957 (4)0.6082 (2)0.6376 (3)0.0359 (6)
C90.2219 (5)0.6675 (2)0.4811 (4)0.0433 (7)
H9A0.2019310.6356680.3687650.052*
C100.1784 (5)0.7724 (2)0.4908 (4)0.0512 (8)
H10A0.1317720.8107870.3848500.061*
C110.2029 (5)0.8214 (2)0.6557 (4)0.0475 (7)
H11A0.1693930.8916780.6629940.057*
C120.2790 (4)0.7623 (2)0.8092 (4)0.0387 (6)
C130.3274 (4)0.6576 (2)0.8048 (4)0.0375 (6)
H13A0.3802250.6205940.9112360.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0720 (6)0.0433 (4)0.0608 (5)0.0025 (4)0.0200 (4)0.0100 (4)
Cl20.0988 (8)0.0470 (4)0.0610 (5)0.0050 (5)0.0339 (5)0.0121 (4)
O10.122 (2)0.0705 (17)0.0406 (13)0.0047 (16)0.0118 (14)0.0139 (12)
O20.106 (2)0.0565 (16)0.0844 (19)0.0181 (15)0.0135 (16)0.0350 (14)
N10.0622 (17)0.0308 (12)0.0418 (13)0.0081 (10)0.0060 (11)0.0040 (9)
N20.0457 (13)0.0285 (10)0.0451 (12)0.0019 (11)0.0128 (10)0.0042 (10)
N30.0580 (18)0.0489 (15)0.0529 (16)0.0065 (13)0.0163 (14)0.0188 (13)
C10.0341 (15)0.0321 (12)0.0434 (14)0.0045 (11)0.0110 (12)0.0048 (10)
C20.0420 (17)0.0315 (13)0.0513 (17)0.0049 (12)0.0153 (13)0.0011 (11)
C30.0538 (19)0.0350 (16)0.073 (2)0.0013 (14)0.0155 (16)0.0127 (15)
C40.059 (2)0.055 (2)0.0569 (19)0.0011 (16)0.0081 (15)0.0228 (15)
C50.058 (2)0.066 (2)0.0420 (17)0.0124 (17)0.0099 (15)0.0063 (14)
C60.0452 (18)0.0368 (14)0.0477 (16)0.0057 (13)0.0158 (14)0.0013 (13)
C70.0522 (19)0.0326 (14)0.0385 (15)0.0020 (12)0.0116 (13)0.0017 (11)
C80.0366 (14)0.0336 (13)0.0379 (13)0.0044 (12)0.0108 (11)0.0043 (12)
C90.0506 (19)0.0418 (16)0.0354 (15)0.0022 (13)0.0080 (13)0.0064 (11)
C100.059 (2)0.0423 (16)0.0455 (18)0.0014 (15)0.0033 (15)0.0060 (13)
C110.0504 (19)0.0295 (13)0.0594 (19)0.0028 (13)0.0097 (15)0.0045 (13)
C120.0380 (15)0.0361 (14)0.0417 (16)0.0054 (12)0.0104 (12)0.0109 (11)
C130.0422 (16)0.0355 (13)0.0355 (14)0.0025 (11)0.0119 (12)0.0009 (10)
Geometric parameters (Å, º) top
Cl1—C21.739 (3)C4—H4A0.9300
Cl2—C61.740 (3)C5—C61.389 (4)
O1—N31.215 (4)C5—H5A0.9300
O2—N31.220 (4)C7—C81.467 (4)
N1—N21.367 (3)C7—H7A0.9300
N1—C11.387 (3)C8—C131.393 (3)
N1—H1N0.9500C8—C91.396 (4)
N2—C71.275 (3)C9—C101.375 (4)
N3—C121.469 (3)C9—H9A0.9300
C1—C61.392 (4)C10—C111.382 (4)
C1—C21.404 (4)C10—H10A0.9300
C2—C31.379 (4)C11—C121.379 (4)
C3—C41.369 (5)C11—H11A0.9300
C3—H3A0.9300C12—C131.378 (4)
C4—C51.383 (5)C13—H13A0.9300
N2—N1—C1120.7 (2)C5—C6—Cl2116.6 (2)
N2—N1—H1N118.5C1—C6—Cl2121.8 (2)
C1—N1—H1N119.7N2—C7—C8120.4 (3)
C7—N2—N1117.0 (2)N2—C7—H7A119.8
O1—N3—O2122.6 (3)C8—C7—H7A119.8
O1—N3—C12119.0 (3)C13—C8—C9118.7 (2)
O2—N3—C12118.5 (3)C13—C8—C7119.0 (2)
N1—C1—C6124.6 (2)C9—C8—C7122.2 (2)
N1—C1—C2119.2 (3)C10—C9—C8120.9 (3)
C6—C1—C2116.1 (2)C10—C9—H9A119.5
C3—C2—C1122.5 (3)C8—C9—H9A119.5
C3—C2—Cl1118.4 (2)C9—C10—C11120.9 (3)
C1—C2—Cl1119.0 (2)C9—C10—H10A119.6
C4—C3—C2119.9 (3)C11—C10—H10A119.6
C4—C3—H3A120.1C12—C11—C10117.5 (3)
C2—C3—H3A120.1C12—C11—H11A121.2
C3—C4—C5119.6 (3)C10—C11—H11A121.2
C3—C4—H4A120.2C13—C12—C11123.2 (2)
C5—C4—H4A120.2C13—C12—N3117.7 (3)
C4—C5—C6120.3 (3)C11—C12—N3119.1 (2)
C4—C5—H5A119.8C12—C13—C8118.7 (2)
C6—C5—H5A119.8C12—C13—H13A120.7
C5—C6—C1121.5 (3)C8—C13—H13A120.7
C1—N1—N2—C7177.3 (3)N1—N2—C7—C8178.2 (2)
N2—N1—C1—C635.6 (4)N2—C7—C8—C13165.5 (3)
N2—N1—C1—C2147.1 (3)N2—C7—C8—C915.6 (4)
N1—C1—C2—C3179.0 (3)C13—C8—C9—C101.0 (4)
C6—C1—C2—C31.5 (4)C7—C8—C9—C10179.9 (3)
N1—C1—C2—Cl10.1 (4)C8—C9—C10—C111.3 (5)
C6—C1—C2—Cl1177.4 (2)C9—C10—C11—C122.3 (5)
C1—C2—C3—C40.2 (5)C10—C11—C12—C131.2 (4)
Cl1—C2—C3—C4179.1 (3)C10—C11—C12—N3179.1 (3)
C2—C3—C4—C51.2 (5)O1—N3—C12—C136.2 (4)
C3—C4—C5—C60.4 (5)O2—N3—C12—C13174.4 (3)
C4—C5—C6—C11.4 (5)O1—N3—C12—C11174.0 (3)
C4—C5—C6—Cl2175.0 (3)O2—N3—C12—C115.4 (4)
N1—C1—C6—C5179.6 (3)C11—C12—C13—C81.0 (4)
C2—C1—C6—C52.3 (4)N3—C12—C13—C8178.8 (3)
N1—C1—C6—Cl23.4 (4)C9—C8—C13—C122.0 (4)
C2—C1—C6—Cl2173.9 (2)C7—C8—C13—C12179.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Cl10.952.542.940 (2)106
N1—H1N···O1i0.952.313.243 (3)168
Symmetry code: (i) x+1, y1/2, z+2.
Summary of short interatomic contacts (Å) in the title compound top
ContactDistanceSymmetry operation
Cl1···H11A3.13x, - 1 + y, z
H1N···O12.311 - x, -1/2 + y, 2 - z
H7A···O22.771 - x, -1/2 + y, 2 - z
C1···C113.405-x, -1/2 + y, 1 - z
Cl2···H13A2.95x, y, -1 + z
O2···H4A2.66x, 1 + y, 1 + z
C2···C83.4261 - x, -1/2 + y, 1 - z
H5A···H10A2.55-x, -1/2 + y, -z
 

Funding information

This work was funded by the Science Development Foundation under the President of the Republic of Azerbaijan (grant No EIF/ MQM/ Elm-Tehsil-1–2016-1(26)–71/06/4).

References

First citationAkbari Afkhami, F., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888–14896.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAtioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237–241.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationÇelikesir, S. T., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Gurbanova, N. V., Mammadova, G. Z. & Bhattarai, A. (2020). Acta Cryst. E76, 1173–1178.  CSD CrossRef IUCr Journals Google Scholar
First citationChantrapromma, S., Nilwanna, B., Kobkeatthawin, T., Jansrisewangwong, P. & Fun, H.-K. (2012). Acta Cryst. E68, o1644–o1645.  CSD CrossRef IUCr Journals Google Scholar
First citationChantrapromma, S., Ruanwas, P., Boonnak, N., Chidan Kumar, C. S. & Fun, H.-K. (2014). Acta Cryst. E70, o188–o189.  CSD CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Chantrapromma, S., Nilwanna, B. & Kobkeatthawin, T. (2012). Acta Cryst. E68, o2144–o2145.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Chantrapromma, S., Nilwanna, B., Kobkeatthawin, T. & Boonnak, N. (2013). Acta Cryst. E69, o1203–o1204.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Nilwanna, B., Jansrisewangwong, P., Kobkeatthawin, T. & Chantrapromma, S. (2011). Acta Cryst. E67, o3202–o3203.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018). Aust. J. Chem. 71, 190–194.  Web of Science CrossRef CAS Google Scholar
First citationMaharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141.  Web of Science CrossRef CAS Google Scholar
First citationMahmoudi, G., Seth, S. K., Bauzá, A., Zubkov, F. I., Gurbanov, A. V., White, J., Stilinović, V., Doert, T. & Frontera, A. (2018). CrystEngComm, 20, 2812–2821.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32–46.  Web of Science CrossRef CAS Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N., Maharramov, A. M., Kurbanova, M. M., Gurbanov, A. V. & Pombeiro, A. J. L. (2014). Coord. Chem. Rev. 265, 1–37.  Web of Science CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305–2313.  Web of Science CSD CrossRef Google Scholar
First citationNilwanna, B., Chantrapromma, S., Jansrisewangwong, P. & Fun, H.-K. (2011). Acta Cryst. E67, o3084–o3085.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShikhaliyev, N. Q., Çelikesir, S. T., Akkurt, M., Bagirova, K. N., Suleymanova, G. T. & Toze, F. A. A. (2019). Acta Cryst. E75, 465–469.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds