research communications
(E)-1-(2,6-Dichlorophenyl)-2-(3-nitrobenzylidene)hydrazine: and Hirshfeld surface analysis
aİlke Education and Health Foundation, Cappadocia University, Cappadocia Vocational College, The Medical Imaging Techniques Program, 50420 Mustafapaşa, Ürgüp, Nevşehir, Turkey, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cOrganic Chemistry Department, Baku State University, Z. Khalilov str. 23, AZ, 1148 Baku, Azerbaijan, and dUniversity of Dar es Salaam, Dar es Salaam University College of Education, Department of Chemistry, PO Box 2329, Dar es Salaam, Tanzania
*Correspondence e-mail: sixberth.mlowe@duce.ac.tz
The stabilized conformation of the title compound, C13H9Cl2N3O2, is similar to that of the isomeric compound (E)-1-(2,6-dichlorophenyl)-2-(2-nitrobenzylidene)hydrazine. The 2,6-dichlorophenyl ring and the nitro-substituted benzene ring form a dihedral angle of 26.25 (16)°. In the crystal, face-to-face π-π stacking interactions along the a-axis direction occur between the centroids of the 2,6-dichlorophenyl ring and the nitro-substituted benzene ring. The molecules are further linked by C—H⋯O contacts and N—H⋯O and C—H⋯Cl hydrogen bonds, forming pairs of hydrogen-bonded molecular layers parallel to (100). The Hirshfeld surface analysis of the indicates that the most important contributions to the crystal packing are from H⋯H (22.1%), Cl⋯H/H⋯Cl (20.5%), O⋯H/H⋯O (19.7%), C⋯C (11.1%) and C⋯H/H⋯C (8.3%) interactions.
Keywords: crystal structure; isomer; 2,6-dichlorophenyl ring; 3-nitrobenzylidene ring; Hirshfeld surface analysis.
CCDC reference: 2015528
1. Chemical context
et al., 2018; Mahmudov et al., 2014). The analytical and catalytic properties of this class of compounds are strongly dependent on the groups attached to the hydrazone moiety (Shixaliyev et al., 2019). On the other hand, intermolecular interactions organize molecular architectures, which play a critical role in synthesis, catalysis, micellization, etc (Akbari et al., 2017; Gurbanov et al., 2018; Mahmoudi et al., 2018 and references cited therein). New types of weak interactions such as halogen, chalcogen, pnictogen and tetrel bonds or their cooperation with hydrogen bonds are able to drive the synthesis and catalysis, as well as improve properties of materials (Mizar et al., 2012; Mahmudov et al., 2019 and references cited therein). For that, the main skeleton of the arylhydrazone ligand should be extended with weak bond-donor centre(s). In order to continue our work in this perspective, we have functionalized a new azo dye, (E)-1-(2,6-dichlorophenyl)-2-(3-nitrobenzylidene)hydrazine, (I), which provides intermolecular non-covalent interactions.
as well as hydrazone ligands and their complexes have attracted much attention because of their high synthetic potential for organic and inorganic chemistry and their diverse useful properties (Maharramov2. Structural commentary
The title molecule (Fig. 1) has an E configuration about the C=N bond. The 2,6-dichlorophenyl ring and the nitro-substituted benzene ring of the title compound are inclined at 26.25 (16)°, while the nitro group is skewed out of the attached benzene ring plane by 6.3 (2)°. The conformation is stabilized by an intramolecular N1—H1N⋯Cl1 interaction, which forms an S(6) graph-set motif (Table 1). The conformation of the title compound can be compared with that of the isomeric compound (E)-1-(2,6-dichlorophenyl)-2-(2-nitrobenzylidene)hydrazine (CSD refcode KUWGOB; Çelikesir et al., 2020). Fig. 2 shows the overlay of the two isomers. The r.m.s. deviation of the overlay between the two isomers is 0.003 Å. In the 2-nitro isomer, the dihedral angles are 21.16 (14) (between the phenyl rings) and 27.06 (18)° (between between the nitro group and the phenyl ring). The difference in angles may be due to the steric interaction resulting from the position of the nitro group on the benzene ring to which it is attached. The Cl1—C2—C1—N1, Cl2—C6—C1—N1, C2—C1—N1—N2, C1—N1—N2—C7, N1—N2—C7—C8, N2—C7—C8—C13, N2—C7—C8—C9, C8—C13—C12—N3, C13—C12—N3—O1 and C13—C12—N3—O2 torsion angles are −0.1 (4), 3.4 (4), −147.1 (3), 177.3 (3), 178.2 (2), 165.5 (3), −15.6 (4), 178.8 (3), 6.2 (4) and −174.4 (3) °, respectively.
3. Supramolecular features
In the crystal, face-to-face π–π stacking interactions [Cg1⋯Cg2(−x, − + y, 1 − z) = 3.753 (2) Å with slippage of 1.380 Å and Cgl⋯Cg2(1 − x, − + y, 1 − z) = 3.761 (2) Å with slippage of 1.423 Å, where Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 rings, respectively] occur between the 2,6-dichlorophenyl ring and the nitro-substituted benzene ring of the title molecule along the a-axis direction (Fig. 3). The molecules are further linked by C—H⋯O contacts and N—H⋯O and C—H⋯Cl hydrogen bonds, forming pairs of hydrogen-bonded molecular layers parallel to (100) (Tables 1 and 2; Figs. 4 and 5). In the crystal, a C—Cl⋯π interaction is also observed [C2—Cl1⋯Cg2 (−x, − + y, 1 − z) = 3.9373 (18) Å, C2—Cl1⋯Cg2 = 62.59 (10)°, where Cg2 is the centroid of the C8–C13 ring]. The large Cl⋯Cg2 distance and acute C–Cl⋯Cg2 angle, however, indicate that this interaction is only weak.
|
4. Hirshfeld surface analysis
The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and the associated two-dimensional fingerprint plots (McKinnon, et al., 2007) were performed with Crystal Explorer17 (Turner et al., 2017) to investigate the intermolecular interactions and surface morphology. The Hirshfeld surface mapped over dnorm in the range −0.2694 to 1.2224 a.u. and corresponding colours from red (shorter distance than the sum of van der Waals radii) over white to blue (longer distance than the sum of van der Waals radii) is shown in Fig. 6. The red points, which represent closer contacts and negative dnorm values on the surface, correspond to the N—H⋯O, C—H⋯O and C—H⋯Cl interactions (Table 2). The shape-index of the Hirshfeld surface is a tool for visualizing the π–π stacking by the presence of adjacent red and blue triangles. The plot of the Hirshfeld surface mapped over shape-index shown in Fig. 7 clearly suggests that there are π–π interactions in the title compound.
In the crystal there are four major types of interaction (H⋯H = 22.1%, Cl⋯H = 20.5%, O⋯H = 19.7%, C⋯C = 11.1%) on the dnorm surface. The two-dimensional fingerprint plots are shown in Fig. 8. The interaction sequence of dnorm on the two-dimensional fingerprint plot (H⋯H) > (Cl⋯H) > (O⋯H) > (C⋯C) represents the nature of the packing in the The contribution of these major interactions governs the overall packing of The percentage contributions of other weak interactions are: C⋯H/H⋯C (8.3%), N⋯H/H⋯N (4.9%), Cl⋯C/C⋯Cl (3.3%), N⋯C/C⋯N (2.9%), Cl⋯O/O⋯Cl (2.6%), Cl⋯N/N⋯Cl (1.8%), C⋯O/O⋯C (1.7%) and Cl⋯Cl (1.2%).
5. Database survey
A search of the Cambridge Structural Database (CSD version 5.40, update of September 2019; Groom et al., 2016) gave only seven entries closely resembling the title compound. Our recently published compound (E)-1-(2,6-dichlorophenyl)-2-(2-nitrobenzylidene)hydrazine (KUWGOB: Çelikesir et al., 2020) is an isomer of the title compound. The other six compounds are 1-(2,4-dinitrophenyl)-2-[(E)-(3,4,5-trimethoxybenzylidene)hydrazine] (GISJAV: Chantrapromma et al., 2014), (E)-1-(2,4-dinitrophenyl)-2-[1-(3-methoxyphenyl)ethylidene]hydrazine (XEBCEO: Fun et al., 2012), 1-(2,4-dinitrophenyl)-2-[(E)-2,4,5-trimethoxybenzylidene]hydrazine (AFUSEB: Fun et al., 2013), (E)-1-(2,4-dinitrophenyl)-2-(1-(2-methoxyphenyl)ethylidene)hydrazine (OBUJAY: Fun et al., 2011), (E)-1-(2,4-dinitrophenyl)-2-[1-(3-fluorophenyl)ethylidene]hydrazine (PAVKAA: Chantrapromma et al., 2012) and (E)-1-(2,4-dinitrophenyl)-2-[1-(2-nitrophenyl)ethylidene]hydrazine (YAHRUW: Nilwanna et al., 2011). All bond lengths (Allen et al., 1987) and angles for the title compound and these related compounds are comparable and within normal ranges.
6. Synthesis and crystallization
The title compound was synthesized according to the reported method (Atioğlu et al., 2019; Maharramov et al., 2018). A mixture of 3-nitrobenzaldehyde (10 mmol), CH3COONa (0.82 g), ethanol (50 mL) and (2,6-dichlorophenyl)hydrazine (10.2 mmol) was refluxed at 353 K with stirring for 2 h. The reaction mixture was cooled to room temperature and water (50 mL) was added to give a precipitate of the crude product, which was filtered off, washed with diluted ethanol (1:1 with water) and dried in vacuo of rotary evaporator. Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution; yellow solid; yield 95%; m.p. 423 K. Analysis calculated for C13H9Cl2N3O2 (M = 310.13): C 50.35, H 2.93, N 13.55; found: C 50.32, H 2.90, N 13.47%. 1H NMR (300 MHz, DMSO-d6): δ 9.95 (1H, –NH), 8.40 (1H, –CH), 7.00–8.20 (7H, aromatic). 13C NMR (75 MHz, DMSO-d6): δ 149.00, 138.01, 137.50, 136.05, 132.11, 130.50, 129.04, 128.23, 126.24, 123.16, 119.90. ESI-MS: m/z: 311.14 [M+H]+.
7. Refinement
Crystal data, data collection and structure . All H atoms were refined using a riding model with d(C—H) = 0.93 Å, d(N—H) = 0.95 Å and Uiso = 1.2Ueq(N,C).
details are summarized in Table 3Supporting information
CCDC reference: 2015528
https://doi.org/10.1107/S2056989020009433/vm2237sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020009433/vm2237Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989020009433/vm2237Isup3.cml
Data collection: APEX3 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXT2016/6 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: PLATON (Spek, 2020).C13H9Cl2N3O2 | F(000) = 316 |
Mr = 310.13 | Dx = 1.537 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.1212 (14) Å | Cell parameters from 9800 reflections |
b = 12.711 (3) Å | θ = 2.8–26.3° |
c = 7.6991 (16) Å | µ = 0.49 mm−1 |
β = 105.940 (7)° | T = 296 K |
V = 670.1 (2) Å3 | Plate, orange |
Z = 2 | 0.26 × 0.22 × 0.18 mm |
Bruker APEXII CCD diffractometer | 2392 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.062 |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | θmax = 26.4°, θmin = 2.8° |
Tmin = 0.873, Tmax = 0.902 | h = −8→8 |
22230 measured reflections | k = −15→15 |
2744 independent reflections | l = −9→9 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.031 | H-atom parameters constrained |
wR(F2) = 0.064 | w = 1/[σ2(Fo2) + (0.0217P)2 + 0.0759P] where P = (Fo2 + 2Fc2)/3 |
S = 1.11 | (Δ/σ)max < 0.001 |
2744 reflections | Δρmax = 0.15 e Å−3 |
181 parameters | Δρmin = −0.16 e Å−3 |
1 restraint | Absolute structure: Flack x determined using 1032 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.04 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.28649 (13) | 0.12020 (5) | 0.58310 (10) | 0.0583 (2) | |
Cl2 | 0.28511 (15) | 0.43809 (7) | 0.10800 (12) | 0.0666 (3) | |
O1 | 0.3919 (5) | 0.7625 (2) | 1.1215 (3) | 0.0799 (8) | |
O2 | 0.2541 (5) | 0.9024 (2) | 0.9937 (4) | 0.0848 (9) | |
N1 | 0.3362 (4) | 0.34075 (17) | 0.4897 (3) | 0.0465 (6) | |
H1N | 0.401372 | 0.310054 | 0.602708 | 0.056* | |
N2 | 0.2806 (3) | 0.44380 (18) | 0.4863 (3) | 0.0397 (5) | |
N3 | 0.3101 (4) | 0.8121 (2) | 0.9871 (4) | 0.0531 (7) | |
C1 | 0.2672 (4) | 0.2769 (2) | 0.3396 (4) | 0.0365 (6) | |
C2 | 0.2365 (4) | 0.1696 (2) | 0.3645 (4) | 0.0411 (7) | |
C3 | 0.1710 (5) | 0.1009 (2) | 0.2220 (4) | 0.0543 (8) | |
H3A | 0.152757 | 0.030205 | 0.243822 | 0.065* | |
C4 | 0.1330 (5) | 0.1370 (3) | 0.0483 (5) | 0.0588 (9) | |
H4A | 0.086569 | 0.091344 | −0.048297 | 0.071* | |
C5 | 0.1641 (5) | 0.2419 (3) | 0.0174 (4) | 0.0558 (8) | |
H5A | 0.139312 | 0.266660 | −0.100398 | 0.067* | |
C6 | 0.2322 (4) | 0.3105 (2) | 0.1614 (4) | 0.0426 (7) | |
C7 | 0.3439 (5) | 0.4963 (2) | 0.6318 (4) | 0.0413 (7) | |
H7A | 0.421014 | 0.463484 | 0.734710 | 0.050* | |
C8 | 0.2957 (4) | 0.6082 (2) | 0.6376 (3) | 0.0359 (6) | |
C9 | 0.2219 (5) | 0.6675 (2) | 0.4811 (4) | 0.0433 (7) | |
H9A | 0.201931 | 0.635668 | 0.368765 | 0.052* | |
C10 | 0.1784 (5) | 0.7724 (2) | 0.4908 (4) | 0.0512 (8) | |
H10A | 0.131772 | 0.810787 | 0.384850 | 0.061* | |
C11 | 0.2029 (5) | 0.8214 (2) | 0.6557 (4) | 0.0475 (7) | |
H11A | 0.169393 | 0.891678 | 0.662994 | 0.057* | |
C12 | 0.2790 (4) | 0.7623 (2) | 0.8092 (4) | 0.0387 (6) | |
C13 | 0.3274 (4) | 0.6576 (2) | 0.8048 (4) | 0.0375 (6) | |
H13A | 0.380225 | 0.620594 | 0.911236 | 0.045* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0720 (6) | 0.0433 (4) | 0.0608 (5) | 0.0025 (4) | 0.0200 (4) | 0.0100 (4) |
Cl2 | 0.0988 (8) | 0.0470 (4) | 0.0610 (5) | 0.0050 (5) | 0.0339 (5) | 0.0121 (4) |
O1 | 0.122 (2) | 0.0705 (17) | 0.0406 (13) | 0.0047 (16) | 0.0118 (14) | −0.0139 (12) |
O2 | 0.106 (2) | 0.0565 (16) | 0.0844 (19) | 0.0181 (15) | 0.0135 (16) | −0.0350 (14) |
N1 | 0.0622 (17) | 0.0308 (12) | 0.0418 (13) | 0.0081 (10) | 0.0060 (11) | −0.0040 (9) |
N2 | 0.0457 (13) | 0.0285 (10) | 0.0451 (12) | 0.0019 (11) | 0.0128 (10) | −0.0042 (10) |
N3 | 0.0580 (18) | 0.0489 (15) | 0.0529 (16) | −0.0065 (13) | 0.0163 (14) | −0.0188 (13) |
C1 | 0.0341 (15) | 0.0321 (12) | 0.0434 (14) | 0.0045 (11) | 0.0110 (12) | −0.0048 (10) |
C2 | 0.0420 (17) | 0.0315 (13) | 0.0513 (17) | 0.0049 (12) | 0.0153 (13) | −0.0011 (11) |
C3 | 0.0538 (19) | 0.0350 (16) | 0.073 (2) | 0.0013 (14) | 0.0155 (16) | −0.0127 (15) |
C4 | 0.059 (2) | 0.055 (2) | 0.0569 (19) | 0.0011 (16) | 0.0081 (15) | −0.0228 (15) |
C5 | 0.058 (2) | 0.066 (2) | 0.0420 (17) | 0.0124 (17) | 0.0099 (15) | −0.0063 (14) |
C6 | 0.0452 (18) | 0.0368 (14) | 0.0477 (16) | 0.0057 (13) | 0.0158 (14) | −0.0013 (13) |
C7 | 0.0522 (19) | 0.0326 (14) | 0.0385 (15) | 0.0020 (12) | 0.0116 (13) | −0.0017 (11) |
C8 | 0.0366 (14) | 0.0336 (13) | 0.0379 (13) | −0.0044 (12) | 0.0108 (11) | −0.0043 (12) |
C9 | 0.0506 (19) | 0.0418 (16) | 0.0354 (15) | −0.0022 (13) | 0.0080 (13) | −0.0064 (11) |
C10 | 0.059 (2) | 0.0423 (16) | 0.0455 (18) | 0.0014 (15) | 0.0033 (15) | 0.0060 (13) |
C11 | 0.0504 (19) | 0.0295 (13) | 0.0594 (19) | 0.0028 (13) | 0.0097 (15) | −0.0045 (13) |
C12 | 0.0380 (15) | 0.0361 (14) | 0.0417 (16) | −0.0054 (12) | 0.0104 (12) | −0.0109 (11) |
C13 | 0.0422 (16) | 0.0355 (13) | 0.0355 (14) | −0.0025 (11) | 0.0119 (12) | −0.0009 (10) |
Cl1—C2 | 1.739 (3) | C4—H4A | 0.9300 |
Cl2—C6 | 1.740 (3) | C5—C6 | 1.389 (4) |
O1—N3 | 1.215 (4) | C5—H5A | 0.9300 |
O2—N3 | 1.220 (4) | C7—C8 | 1.467 (4) |
N1—N2 | 1.367 (3) | C7—H7A | 0.9300 |
N1—C1 | 1.387 (3) | C8—C13 | 1.393 (3) |
N1—H1N | 0.9500 | C8—C9 | 1.396 (4) |
N2—C7 | 1.275 (3) | C9—C10 | 1.375 (4) |
N3—C12 | 1.469 (3) | C9—H9A | 0.9300 |
C1—C6 | 1.392 (4) | C10—C11 | 1.382 (4) |
C1—C2 | 1.404 (4) | C10—H10A | 0.9300 |
C2—C3 | 1.379 (4) | C11—C12 | 1.379 (4) |
C3—C4 | 1.369 (5) | C11—H11A | 0.9300 |
C3—H3A | 0.9300 | C12—C13 | 1.378 (4) |
C4—C5 | 1.383 (5) | C13—H13A | 0.9300 |
N2—N1—C1 | 120.7 (2) | C5—C6—Cl2 | 116.6 (2) |
N2—N1—H1N | 118.5 | C1—C6—Cl2 | 121.8 (2) |
C1—N1—H1N | 119.7 | N2—C7—C8 | 120.4 (3) |
C7—N2—N1 | 117.0 (2) | N2—C7—H7A | 119.8 |
O1—N3—O2 | 122.6 (3) | C8—C7—H7A | 119.8 |
O1—N3—C12 | 119.0 (3) | C13—C8—C9 | 118.7 (2) |
O2—N3—C12 | 118.5 (3) | C13—C8—C7 | 119.0 (2) |
N1—C1—C6 | 124.6 (2) | C9—C8—C7 | 122.2 (2) |
N1—C1—C2 | 119.2 (3) | C10—C9—C8 | 120.9 (3) |
C6—C1—C2 | 116.1 (2) | C10—C9—H9A | 119.5 |
C3—C2—C1 | 122.5 (3) | C8—C9—H9A | 119.5 |
C3—C2—Cl1 | 118.4 (2) | C9—C10—C11 | 120.9 (3) |
C1—C2—Cl1 | 119.0 (2) | C9—C10—H10A | 119.6 |
C4—C3—C2 | 119.9 (3) | C11—C10—H10A | 119.6 |
C4—C3—H3A | 120.1 | C12—C11—C10 | 117.5 (3) |
C2—C3—H3A | 120.1 | C12—C11—H11A | 121.2 |
C3—C4—C5 | 119.6 (3) | C10—C11—H11A | 121.2 |
C3—C4—H4A | 120.2 | C13—C12—C11 | 123.2 (2) |
C5—C4—H4A | 120.2 | C13—C12—N3 | 117.7 (3) |
C4—C5—C6 | 120.3 (3) | C11—C12—N3 | 119.1 (2) |
C4—C5—H5A | 119.8 | C12—C13—C8 | 118.7 (2) |
C6—C5—H5A | 119.8 | C12—C13—H13A | 120.7 |
C5—C6—C1 | 121.5 (3) | C8—C13—H13A | 120.7 |
C1—N1—N2—C7 | 177.3 (3) | N1—N2—C7—C8 | 178.2 (2) |
N2—N1—C1—C6 | 35.6 (4) | N2—C7—C8—C13 | 165.5 (3) |
N2—N1—C1—C2 | −147.1 (3) | N2—C7—C8—C9 | −15.6 (4) |
N1—C1—C2—C3 | −179.0 (3) | C13—C8—C9—C10 | −1.0 (4) |
C6—C1—C2—C3 | −1.5 (4) | C7—C8—C9—C10 | −179.9 (3) |
N1—C1—C2—Cl1 | −0.1 (4) | C8—C9—C10—C11 | −1.3 (5) |
C6—C1—C2—Cl1 | 177.4 (2) | C9—C10—C11—C12 | 2.3 (5) |
C1—C2—C3—C4 | −0.2 (5) | C10—C11—C12—C13 | −1.2 (4) |
Cl1—C2—C3—C4 | −179.1 (3) | C10—C11—C12—N3 | 179.1 (3) |
C2—C3—C4—C5 | 1.2 (5) | O1—N3—C12—C13 | 6.2 (4) |
C3—C4—C5—C6 | −0.4 (5) | O2—N3—C12—C13 | −174.4 (3) |
C4—C5—C6—C1 | −1.4 (5) | O1—N3—C12—C11 | −174.0 (3) |
C4—C5—C6—Cl2 | 175.0 (3) | O2—N3—C12—C11 | 5.4 (4) |
N1—C1—C6—C5 | 179.6 (3) | C11—C12—C13—C8 | −1.0 (4) |
C2—C1—C6—C5 | 2.3 (4) | N3—C12—C13—C8 | 178.8 (3) |
N1—C1—C6—Cl2 | 3.4 (4) | C9—C8—C13—C12 | 2.0 (4) |
C2—C1—C6—Cl2 | −173.9 (2) | C7—C8—C13—C12 | −179.0 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···Cl1 | 0.95 | 2.54 | 2.940 (2) | 106 |
N1—H1N···O1i | 0.95 | 2.31 | 3.243 (3) | 168 |
Symmetry code: (i) −x+1, y−1/2, −z+2. |
Contact | Distance | Symmetry operation |
Cl1···H11A | 3.13 | x, - 1 + y, z |
H1N···O1 | 2.31 | 1 - x, -1/2 + y, 2 - z |
H7A···O2 | 2.77 | 1 - x, -1/2 + y, 2 - z |
C1···C11 | 3.405 | -x, -1/2 + y, 1 - z |
Cl2···H13A | 2.95 | x, y, -1 + z |
O2···H4A | 2.66 | x, 1 + y, 1 + z |
C2···C8 | 3.426 | 1 - x, -1/2 + y, 1 - z |
H5A···H10A | 2.55 | -x, -1/2 + y, -z |
Funding information
This work was funded by the Science Development Foundation under the President of the Republic of Azerbaijan (grant No EIF/ MQM/ Elm-Tehsil-1–2016-1(26)–71/06/4).
References
Akbari Afkhami, F., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888–14896. Web of Science CSD CrossRef CAS PubMed Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237–241. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Çelikesir, S. T., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Gurbanova, N. V., Mammadova, G. Z. & Bhattarai, A. (2020). Acta Cryst. E76, 1173–1178. CSD CrossRef IUCr Journals Google Scholar
Chantrapromma, S., Nilwanna, B., Kobkeatthawin, T., Jansrisewangwong, P. & Fun, H.-K. (2012). Acta Cryst. E68, o1644–o1645. CSD CrossRef IUCr Journals Google Scholar
Chantrapromma, S., Ruanwas, P., Boonnak, N., Chidan Kumar, C. S. & Fun, H.-K. (2014). Acta Cryst. E70, o188–o189. CSD CrossRef IUCr Journals Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fun, H.-K., Chantrapromma, S., Nilwanna, B. & Kobkeatthawin, T. (2012). Acta Cryst. E68, o2144–o2145. CSD CrossRef CAS IUCr Journals Google Scholar
Fun, H.-K., Chantrapromma, S., Nilwanna, B., Kobkeatthawin, T. & Boonnak, N. (2013). Acta Cryst. E69, o1203–o1204. CSD CrossRef CAS IUCr Journals Google Scholar
Fun, H.-K., Nilwanna, B., Jansrisewangwong, P., Kobkeatthawin, T. & Chantrapromma, S. (2011). Acta Cryst. E67, o3202–o3203. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018). Aust. J. Chem. 71, 190–194. Web of Science CrossRef CAS Google Scholar
Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141. Web of Science CrossRef CAS Google Scholar
Mahmoudi, G., Seth, S. K., Bauzá, A., Zubkov, F. I., Gurbanov, A. V., White, J., Stilinović, V., Doert, T. & Frontera, A. (2018). CrystEngComm, 20, 2812–2821. Web of Science CSD CrossRef CAS Google Scholar
Mahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32–46. Web of Science CrossRef CAS Google Scholar
Mahmudov, K. T., Kopylovich, M. N., Maharramov, A. M., Kurbanova, M. M., Gurbanov, A. V. & Pombeiro, A. J. L. (2014). Coord. Chem. Rev. 265, 1–37. Web of Science CrossRef CAS Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Mizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305–2313. Web of Science CSD CrossRef Google Scholar
Nilwanna, B., Chantrapromma, S., Jansrisewangwong, P. & Fun, H.-K. (2011). Acta Cryst. E67, o3084–o3085. Web of Science CSD CrossRef IUCr Journals Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shikhaliyev, N. Q., Çelikesir, S. T., Akkurt, M., Bagirova, K. N., Suleymanova, G. T. & Toze, F. A. A. (2019). Acta Cryst. E75, 465–469. Web of Science CSD CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.