research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and charge-distribution validation of a new alluaudite-type phosphate, Na2.22Mn0.87In1.68(PO4)3

CROSSMARK_Color_square_no_text.svg

aLaboratory of Interfacial and Advanced Materials, Faculty of Sciences (FSM), University of Monastir, Monastir 5000, Tunisia, and bDepartamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
*Correspondence e-mail: badri_abdessalem@yahoo.fr

Edited by M. Weil, Vienna University of Technology, Austria (Received 25 May 2020; accepted 23 July 2020; online 31 July 2020)

Na2.22Mn0.87In1.68(PO4)3, sodium manganese indium tris­(phosphate) (2.22/0.87/1.68), was obtained in the form of single crystals by a flux method and was structurally characterized by single-crystal X-ray diffraction. The compound belongs to the alluaudite structure type (space group C2/c) with general formula X(2)X(1)M(1)M(2)2(PO4)3. The X(2) and X(1) sites are partially occupied by sodium [occupancy 0.7676 (17) and 1/2] while the M(1) and M(2) sites are fully occupied within a mixed distribution of sodium/manganese(II) and manganese(II)/indium, respectively. The three-dimensional anionic framework is built up on the basis of M(2)2O10 dimers that share opposite edges with M(1)O6 octa­hedra, thus forming infinite chains extending parallel to [10[\overline{1}]]. The linkage between these chains is ensured by PO4 tetra­hedra through common vertices. The three-dimensional network thus constructed delimits two types of hexa­gonal channels, resulting from the catenation of M(2)2O10 dimers, M(1)O6 octa­hedra and PO4 tetra­hedra through edge- and corner-sharing. The channels are occupied by Na+ cations with coordination numbers of seven and eight.

1. Chemical context

The general structural formula of alluaudite-type phosphates is [A(2)A(2)][A(1)A(1)'A(1)''2]M(1)M(2)2(PO4)3 (Hatert et al., 2000[Hatert, F., Keller, F., Lissner, F., Antenucci, D. & Fransolet, A. M. (2000). Eur. J. Mineral. 12, 847-857.]); in the majority of natural alluaudites, the large crystallographic A sites are occupied by Na+, Ca2+ or Mn2+, and the distorted-octa­hedrally surrounded M sites are occupied by Mn2+, Fe2+, Fe3+, Al3+ or Mg2+ (Moore & Ito, 1979[Moore, P. B. & Ito, J. (1979). Miner. Mag. 43, 227-235.]). Alluaudite-type phosphates are frequently used for practical applications such as corrosion inhibition, passivation of metal surfaces, or catalysis (Korzenski et al., 1998[Korzenski, M. B., Schimek, G. L., Kolis, J. W. & Long, G. J. (1998). J. Solid State Chem. 139, 142-160.]; Kacimi et al., 2005[Kacimi, M., Ziyad, M. & Hatert, F. (2005). Mater. Res. Bull. 40, 682-693.]). Furthermore, as a result of the presence of channels, alluaudite-type compounds exhibit electronic and/or ionic conductivity properties (Warner et al., 1994[Warner, T. E., Milius, W. & Maier, J. (1994). Solid State Ionics, 74, 119-123.]; Durio et al., 2002[Durio, C., Daidouh, A., Chouaibi, N., Pico, C. & Veiga, M. L. (2002). J. Solid State Chem. 168, 208-216.]). The possibility of inserting variable amounts of lithium into the channels of the alluaudite structure also makes the (Na1–xLix)MnFe3+2(PO4)3 and (Na1–xLix)1.5Mn1.5Fe3+1.5(PO4)3 compounds of value as potential battery materials (Hatert et al., 2004[Hatert, F. (2004). Mineral. Petrol. 81, 205-217.]; Trad et al., 2018[Trad, K., Castets, A., Wattiaux, A., Delmas, C., Ben Amara, M. & Carlier, D. (2018). J. Solid State Chem. 265, 12-17.]). A number of indium-bearing alluaudite-like compounds have also been synthesized, i.e. NaCdIn2(PO4)3 (Antenucci et al., 1993[Antenucci, D., Miehe, G., Tarte, P., Schmahl, W. & Fransolet, A. (1993). Eur. J. Mineral. 5, 207-214.]), Na3In2(PO4)3 (Lii & Ye, 1997[Lii, K. H. & Ye, J. (1997). J. Solid State Chem. 131, 131-137.]), and NaMn(Fe1–xInx)2(PO4)3 (Hatert et al., 2003[Hatert, F., Hermann, R. P., Long, G. J., Fransolet, A. M. & Grandjean, F. (2003). Am. Mineral. 88, 211-222.]). In this paper, we report the structural study of a new alluaudite-type phosphate, Na2.22Mn0.87In1.68(PO4)3, which was obtained during our investigation of the Na3PO4–Mn3(PO4)2–InPO4 quasi system.

2. Structural commentary

The principal building units (Fig. 1[link]) of the three-dimensional framework structure of Na2.22Mn0.87In1.68(PO4)3 are mixed-occupancy (Mn, Na) [= M(1); site symmetry 2] and (Mn1, In) [= M(2)] sites with distorted octa­hedral environments and two phosphate tetra­hedra (P1 and P2); the two sites associated with Na+ cations (Na1; Na2 with site symmetry 2) are partially occupied and are situated in the resulting voids. By edge-sharing, the (Mn,In)O6 octa­hedra form (Mn,In)2O10 dimers, which are linked by highly distorted (Mn,Na)O6 octa­hedra into infinite zigzag chains along [10[\overline{1}]] (Fig. 2[link]). The connection of these chains through vertices belonging to P1O4 and P2O4 tetra­hedra gives layers perpendicular to [010] (Fig. 3[link]), which, in turn, are linked into the three-dimensional framework by sharing corners with phosphate tetra­hedra. This framework accommodates two types of channels extending parallel to [001] in which the Na+ cations are located (Fig. 4[link]).

[Figure 1]
Figure 1
The principal building units of the alluaudite-type phosphate Na2.22Mn0.87In1.68(PO4)3 with displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: (i) x, y, z  − 1; (ii) x + 1, y, z + 1; (iii) x + 1, y, z + [{3\over 2}]; (iv) x, y, z − [{3\over 2}]; (v) x, y, z − [{1\over 2}]; (vi) x, y, z + [{3\over 2}]; (vii) x, y, z + 2; (viii) x + [{1\over 2}], y − [{1\over 2}], z + [{3\over 2}]; (ix) x − [{1\over 2}], y − [{1\over 2}], z; (x) x + [{1\over 2}], y + [{1\over 2}], z − [{1\over 2}]; (xi) x + [{1\over 2}], y + [{1\over 2}], z + 1; (xii) x − [{1\over 2}], y + [{1\over 2}], z − [{1\over 2}]; (xiii) x + [{1\over 2}], y + [{1\over 2}], z + 2; (xiv) x + 1, y, z.]
[Figure 2]
Figure 2
Infinite zigzag chain extending parallel to [10[\overline{1}]], built of edge-sharing M(2)2O10 and M(1)O6 units.
[Figure 3]
Figure 3
The connection of individual chains via PO4 tetra­hedra to give sheets perpendicular to [010].
[Figure 4]
Figure 4
Projection of the Na2.22Mn0.87In1.68(PO4)3 structure along the [001] direction showing channels occupied by the Na+ cations.

The mean <M1—O> distance of 2.329 Å is between those of 2.23 and 2.42 Å predicted by the sums of the ionic radii (Shannon, 1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]) for Mn2+ and Na+ cations in an octa­hedral environment. The mean <M2—O> distance of 2.150 Å is between the mean distance of 2.142 Å observed for In3+ in an octa­hedral environment in NaCuIn(PO4)2 (Benhsina et al., 2020[Benhsina, E., Khmiyas, J., Ouaatta, S., Assani, A., Saadi, M. & El Ammari, L. (2020). Acta Cryst. E76, 366-369.]) and 2.238 Å for Mn2+ in the same coordination in K0.53Mn2.37Fe1.24(PO4)3 (Hidouri & Ben Amara, 2011[Hidouri, M. & Ben Amara, M. (2011). Acta Cryst. E67, i1.]). The PO4 tetra­hedra show a slight distortion, as indicated by the range of P—O bond lengths [1.538 (2)–1.550 (2) Å for P1O4 and 1.520 (3)–1.566 (2) Å for P2O4], with mean bond lengths of <P1—O> = 1.544 (2) Å and <P2—O> = 1.546 (2) Å, consistent with 1.537 Å as calculated by Baur (1974[Baur, W. H. (1974). Acta Cryst. B30, 1195-1215.]) for the orthophosphate group. The coordination spheres of the two crystallographically distinct Na sites (Fig. 1[link]) in the channels were defined under the assumption of a maximum Na—O distance Lmax = 3.13 Å, suggested by Donnay & Allmann (1970[Donnay, G. & Allmann, R. (1970). Am. Mineral. 55, 1003-1015.]). The environment around Na1 consists of seven O atoms with distances varying from 2.35 (3) to 2.99 (3) Å, and Na2 is bound to eight O atoms with distances in the range 2.510 (3)–2.928 (6) Å.

The refined structure model is confirmed by (i) the bond-valence method (Brown & Altermatt, 1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]; Brown, 2002[Brown, I. D. (2002). The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press.]) and (ii) the charge-distribution (Chardi) method (Nespolo, 2015[Nespolo, M. (2015). CHARDI-IT. Laboratoire CRM 2, Université de Nancy I, France.], 2016[Nespolo, M. (2016). Acta Cryst. B72, 51-66.]). The Chardi method is a development of Pauling's concept of bond strength (Pauling, 1929[Pauling, L. J. (1929). J. Am. Chem. Soc. 51, 1010-1026.]). Instead of the empirical parameters used in the bond-valence approach, it exploits the experimental bond lengths deduced from the structural study to compute a non-integer coordination number (effective coordination number = ECoN) around a PC atom (atom placed at the center of a polyhedron, q > 0), which is coordinated by V atoms (atoms located at the vertices; q < 0); q is the formal oxidation number. ECoN takes into account not only the number of V atoms around a given PC atom, but also their weight in terms of relative distances. Calculated charges Q(i) and valences V(i) are in good agreement with the formal oxidation number (q) multiplied by occupancy rates. The dispersion factor MAPD, [MAPD= {{100}\over{N}}\sum _{i=1}^{N}\left\vert {{q_{i}}-Q_{i}\over{q_{i}}}\right\vert], which measures the mean absolute percentage deviation, is 1% for the calculated cationic charges. The variation of the ECoN value with respect to the traditional coordination number indicates the degree of distortion. The results of the two validation models are compiled in Table 1[link].

Table 1
CHARDI and BVS analysis of cations in Na2.22Mn0.87In1.68(PO4)3

M1 = Mn/Na, M2 = Mn/In, q = formal oxidation number, sof(i) = site-occupation factor, Q(i) = calculated charges, CN = coordination number, ECoN = number of effective coordination, dar = arithmetic average distance to oxygen atoms and dmed = weighted average distance to oxygen atoms.

Cation q.sof(i) Q(i) V(i).sof(i) CN(i) ECoN(i) daverage dmed
Na1 0.50 0.50 0.542 7 5.56 2.550 2.428
Na2 0.77 0.75 0.716 8 6.70 2.738 2.653
M1 1.54 1.56 1.421 6 6.00 2.329 2.330
M2 2.84 2.84 2.696 6 5.87 2.150 2.141
P1 5.00 4.92 4.873 4 4.00 1.544 1.544
P2 5.00 5.05 4.844 4 3.98 1.546 1.545

3. Synthesis and crystallization

Commercially available NaNO3, Mn(NO3)2·6H2O, In2O3, MoO3 and (NH4)2HPO4 were mixed in stoichiometric ratios of 2:1:1:1:2 and dissolved in aqueous nitric acid. The resulting solution was then evaporated by heating at 353 K. The obtained dry residue was ground in an agate mortar, and then heated increasingly in an open platinum crucible up to 873 K. The sample was then reground and mixed with sodium dimolybdate Na2Mo2O7 in the molar ratio P:Mo = 2:1. The mixture was heated for 1 h at 1243 K to give a melt that was subsequently cooled down to room temperature at a rate of 10 K h−1. Brown hexa­gonally shaped crystals were obtained by washing the final product with hot water in order to dissolve the flux.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The bond lengths involving M1—O and M2—O are those between the mean Na—O and Mn—O and the mean In—O and Mn—O bond lengths, respectively. We used EADP, EXYZ and SUMP constraints within SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) for the mixed-occupied M1 [refined ratio Mn:Na = 0.5438 (14):0.4562 (14)] and M2 [refined ratio In:Mn = 0.8443 (5):0.1557 (5)] sites. Na2 shows an occupancy of 0.7676 (17), and free refinement of the occupancy of Na1 resulted in a value very close to 0.5. For the final refinement, this value was fixed at 0.5, and all other occupancies were refined to ensure electrical neutrality of the compound. The remaining maximum and minimum electron densities are located 0.74 Å from P2 and 1.07 Å from O24, respectively.

Table 2
Experimental details

Crystal data
Chemical formula Na2.22Mn0.87In1.68(PO4)3
Mr 575.82
Crystal system, space group Monoclinic, C2/c
Temperature (K) 293
a, b, c (Å) 12.412 (2), 12.855 (2), 6.599 (1)
β (°) 114.727 (2)
V3) 956.4 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 5.81
Crystal size (mm) 0.29 × 0.17 × 0.11
 
Data collection
Diffractometer Nonius Kappa CCD
Absorption correction Part of the refinement model (ΔF) (Parkin et al., 1995[Parkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53-56.])
Tmin, Tmax 0.178, 0.222
No. of measured, independent and observed [I > 2σ(I)] reflections 1183, 1183, 1172
Rint 0.034
(sin θ/λ)max−1) 0.680
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.054, 1.31
No. of reflections 1183
No. of parameters 102
No. of restraints 3
Δρmax, Δρmin (e Å−3) 0.73, −0.83
Computer programs: KappaCCD Server Software (Nonius, 1997[Nonius (1997). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.]), HKL SCALEPACK and DENZO (Otwinovski & Minor, 1997[Otwinovski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. University of Bonn, Germany.]).

Supporting information


Computing details top

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: HKL SCALEPACK (Otwinovski & Minor, 1997); data reduction: HKL DENZO (Otwinovski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012).

Sodium manganese indium tris(phosphate) (2.22/0.87/1.68) top
Crystal data top
Na2.22Mn0.87In1.68(PO4)3F(000) = 1100
Mr = 575.82Dx = 4.115 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 12.412 (2) Åθ = 3.2–28.9°
b = 12.855 (2) ŵ = 5.81 mm1
c = 6.599 (1) ÅT = 293 K
β = 114.727 (2)°Prism, brown
V = 956.4 (3) Å30.29 × 0.17 × 0.11 mm
Z = 4
Data collection top
Nonius Kappa CCD
diffractometer
1172 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
non–profiled ω/2τ scansθmax = 28.9°, θmin = 2.4°
Absorption correction: part of the refinement model (ΔF)
(Parkin et al., 1995)
h = 1614
Tmin = 0.178, Tmax = 0.222k = 016
1183 measured reflectionsl = 08
1183 independent reflections
Refinement top
Refinement on F23 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.021 w = 1/[σ2(Fo2) + (0.0135P)2 + 7.1094P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.054(Δ/σ)max = 0.023
S = 1.31Δρmax = 0.73 e Å3
1183 reflectionsΔρmin = 0.83 e Å3
102 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Na10.492 (3)0.003 (3)0.013 (5)0.017 (2)0.5
Na200.0079 (4)0.750.0586 (13)0.7676 (17)
Mn0.50.22924 (8)0.250.0128 (2)0.5438 (14)
Na0.50.22924 (8)0.250.0128 (2)0.4562 (14)
In0.22327 (2)0.15486 (2)0.64458 (4)0.00781 (9)0.8443 (5)
Mn10.22327 (2)0.15486 (2)0.64458 (4)0.00781 (9)0.1557 (5)
P10.50.21702 (9)0.750.0075 (2)
O110.5471 (2)0.2867 (2)0.9611 (4)0.0138 (5)
O120.4072 (2)0.14288 (19)0.7683 (4)0.0140 (5)
P20.23767 (7)0.10662 (6)1.13105 (13)0.00841 (17)
O210.1736 (3)0.0029 (2)1.1238 (4)0.0172 (5)
O220.2293 (2)0.17542 (19)1.3198 (4)0.0112 (5)
O230.1663 (2)0.16388 (19)0.9065 (4)0.0139 (5)
O240.3668 (2)0.0921 (2)1.1731 (5)0.0206 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.023 (7)0.013 (3)0.012 (5)0.004 (4)0.005 (3)0.002 (3)
Na20.027 (2)0.073 (3)0.055 (3)00.0025 (19)0
Mn0.0146 (5)0.0121 (5)0.0141 (5)00.0083 (4)0
Na0.0146 (5)0.0121 (5)0.0141 (5)00.0083 (4)0
In0.00802 (13)0.00782 (13)0.00813 (14)0.00050 (8)0.00390 (10)0.00093 (8)
Mn10.00802 (13)0.00782 (13)0.00813 (14)0.00050 (8)0.00390 (10)0.00093 (8)
P10.0062 (5)0.0092 (5)0.0055 (5)00.0008 (4)0
O110.0097 (11)0.0174 (12)0.0121 (11)0.0005 (9)0.0024 (9)0.0062 (9)
O120.0083 (11)0.0139 (12)0.0184 (13)0.0007 (9)0.0042 (10)0.0045 (9)
P20.0131 (4)0.0069 (4)0.0063 (4)0.0012 (3)0.0051 (3)0.0005 (3)
O210.0287 (14)0.0080 (11)0.0163 (13)0.0006 (10)0.0108 (11)0.0008 (9)
O220.0154 (12)0.0105 (11)0.0081 (11)0.0003 (9)0.0053 (9)0.0005 (9)
O230.0232 (13)0.0120 (12)0.0079 (11)0.0027 (9)0.0079 (10)0.0021 (9)
O240.0201 (14)0.0249 (14)0.0206 (14)0.0084 (11)0.0124 (11)0.0071 (11)
Geometric parameters (Å, º) top
Na1—O12i2.35 (3)Mn—O23xi2.330 (3)
Na1—O12ii2.38 (3)Mn—O11iii2.335 (3)
Na1—O24iii2.38 (3)Mn—O11i2.335 (3)
Na1—O24iv2.45 (3)In—O122.084 (2)
Na1—O24i2.489 (18)In—O21v2.107 (3)
Na1—O24ii2.811 (17)In—O232.127 (3)
Na1—O12v2.99 (3)In—O11xii2.144 (2)
Na2—O212.510 (3)In—O22i2.192 (2)
Na2—O21vi2.510 (3)In—O22xiii2.246 (2)
Na2—O21v2.616 (3)P1—O121.538 (2)
Na2—O21vii2.616 (3)P1—O12iii1.538 (2)
Na2—O23vi2.901 (5)P1—O11iii1.550 (2)
Na2—O232.901 (5)P1—O111.550 (2)
Na2—O11viii2.928 (6)P2—O241.520 (3)
Na2—O11ix2.928 (6)P2—O211.543 (3)
Mn—O24i2.323 (3)P2—O231.557 (3)
Mn—O24iii2.323 (3)P2—O221.566 (2)
Mn—O23x2.330 (3)
O12i—Na1—O12ii172.0 (8)O21vii—Na2—O11ix84.12 (12)
O12i—Na1—O24iii100.6 (13)O23vi—Na2—O11ix145.72 (9)
O12ii—Na1—O24iii80.8 (10)O23—Na2—O11ix123.11 (7)
Na1xiv—Na1—O24iv73 (10)O11viii—Na2—O11ix51.21 (13)
O12i—Na1—O24iv79.9 (10)O24i—Mn—O24iii81.29 (13)
O12ii—Na1—O24iv97.6 (12)O24i—Mn—O23x164.09 (10)
O24iii—Na1—O24iv172.4 (9)O24iii—Mn—O23x86.16 (9)
O12i—Na1—O24i76.2 (8)O24i—Mn—O23xi86.16 (9)
O12ii—Na1—O24i111.7 (10)O24iii—Mn—O23xi164.09 (10)
O24iii—Na1—O24i76.9 (7)O23x—Mn—O23xi107.74 (13)
O24iv—Na1—O24i110.6 (11)O24i—Mn—O11iii91.16 (9)
O12i—Na1—O24ii102.3 (8)O24iii—Mn—O11iii117.37 (9)
O12ii—Na1—O24ii69.7 (6)O23x—Mn—O11iii85.95 (9)
O24iii—Na1—O24ii102.7 (9)O23xi—Mn—O11iii72.40 (9)
O24iv—Na1—O24ii69.8 (6)O24i—Mn—O11i117.37 (9)
O24i—Na1—O24ii178.4 (15)O24iii—Mn—O11i91.16 (9)
O12i—Na1—O12v135.0 (10)O23x—Mn—O11i72.40 (9)
O12ii—Na1—O12v51.9 (6)O23xi—Mn—O11i85.95 (9)
O24iii—Na1—O12v96.7 (9)O11iii—Mn—O11i143.12 (14)
O24iv—Na1—O12v88.1 (10)O12—In—O21v101.37 (10)
O24i—Na1—O12v67.8 (5)O12—In—O23111.59 (10)
O24ii—Na1—O12v113.8 (11)O21v—In—O2385.28 (10)
O21—Na2—O21vi173.7 (3)O12—In—O11xii159.80 (10)
O21—Na2—O21v80.14 (8)O21v—In—O11xii95.68 (10)
O21vi—Na2—O21v99.71 (8)O23—In—O11xii80.34 (10)
O21—Na2—O21vii99.71 (8)O12—In—O22i84.96 (10)
O21vi—Na2—O21vii80.14 (8)O21v—In—O22i100.43 (10)
O21v—Na2—O21vii177.2 (3)O23—In—O22i161.27 (10)
O21—Na2—O23vi119.88 (19)O11xii—In—O22i81.35 (9)
O21vi—Na2—O23vi54.39 (10)O12—In—O22xiii80.47 (9)
O21v—Na2—O23vi115.22 (16)O21v—In—O22xiii176.57 (10)
O21vii—Na2—O23vi62.40 (10)O23—In—O22xiii91.36 (9)
O21—Na2—O2354.39 (10)O11xii—In—O22xiii83.08 (9)
O21vi—Na2—O23119.88 (19)O22i—In—O22xiii82.57 (9)
O21v—Na2—O2362.40 (10)O12—P1—O12iii103.4 (2)
O21vii—Na2—O23115.22 (16)O12—P1—O11iii114.56 (13)
O23vi—Na2—O2380.89 (17)O12iii—P1—O11iii107.48 (14)
O21—Na2—O11viii115.83 (18)O12—P1—O11107.48 (14)
O21vi—Na2—O11viii70.36 (11)O12iii—P1—O11114.56 (13)
O21v—Na2—O11viii84.12 (12)O11iii—P1—O11109.4 (2)
O21vii—Na2—O11viii98.43 (14)O24—P2—O21112.98 (16)
O23vi—Na2—O11viii123.11 (7)O24—P2—O23111.62 (15)
O23—Na2—O11viii145.71 (9)O21—P2—O23107.34 (15)
O21—Na2—O11ix70.36 (11)O24—P2—O22109.88 (15)
O21vi—Na2—O11ix115.83 (18)O21—P2—O22107.94 (14)
O21v—Na2—O11ix98.43 (14)O23—P2—O22106.81 (14)
Symmetry codes: (i) x, y, z1; (ii) x+1, y, z+1; (iii) x+1, y, z+3/2; (iv) x, y, z3/2; (v) x, y, z1/2; (vi) x, y, z+3/2; (vii) x, y, z+2; (viii) x+1/2, y1/2, z+3/2; (ix) x1/2, y1/2, z; (x) x+1/2, y+1/2, z1/2; (xi) x+1/2, y+1/2, z+1; (xii) x1/2, y+1/2, z1/2; (xiii) x+1/2, y+1/2, z+2; (xiv) x+1, y, z.
CHARDI and BVS analysis of cations in Na2.22Mn0.87In1.68(PO4)3 top
M1 = Mn/Na, M2 = Mn/In, q = formal oxidation number, sof(i) = site-occupation factor, Q(i) = calculated charges, CN = coordination number, ECoN = number of effective coordination, dar = arithmetic average distance to oxygen atoms and dmed = weighted average distance to oxygen atoms.
Cationq.sof(i)Q(i)V(i).sof(i)CN(i)ECoN(i)daveragedmed
Na10.500.500.54275.562.5502.428
Na20.770.750.71686.702.7382.653
M11.541.561.42166.002.3292.330
M22.842.842.69665.872.1502.141
P15.004.924.87344.001.5441.544
P25.005.054.84443.981.5461.545
 

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAntenucci, D., Miehe, G., Tarte, P., Schmahl, W. & Fransolet, A. (1993). Eur. J. Mineral. 5, 207–214.  CrossRef ICSD CAS Google Scholar
First citationBaur, W. H. (1974). Acta Cryst. B30, 1195–1215.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBenhsina, E., Khmiyas, J., Ouaatta, S., Assani, A., Saadi, M. & El Ammari, L. (2020). Acta Cryst. E76, 366–369.  CrossRef ICSD IUCr Journals Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. University of Bonn, Germany.  Google Scholar
First citationBrown, I. D. (2002). The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press.  Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDonnay, G. & Allmann, R. (1970). Am. Mineral. 55, 1003–1015.  CAS Google Scholar
First citationDurio, C., Daidouh, A., Chouaibi, N., Pico, C. & Veiga, M. L. (2002). J. Solid State Chem. 168, 208–216.  Web of Science CrossRef ICSD CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHatert, F. (2004). Mineral. Petrol. 81, 205–217.  CrossRef ICSD CAS Google Scholar
First citationHatert, F., Hermann, R. P., Long, G. J., Fransolet, A. M. & Grandjean, F. (2003). Am. Mineral. 88, 211–222.  CrossRef CAS Google Scholar
First citationHatert, F., Keller, F., Lissner, F., Antenucci, D. & Fransolet, A. M. (2000). Eur. J. Mineral. 12, 847–857.  CrossRef CAS Google Scholar
First citationHidouri, M. & Ben Amara, M. (2011). Acta Cryst. E67, i1.  Web of Science CrossRef ICSD IUCr Journals Google Scholar
First citationKacimi, M., Ziyad, M. & Hatert, F. (2005). Mater. Res. Bull. 40, 682–693.  Web of Science CrossRef ICSD CAS Google Scholar
First citationKorzenski, M. B., Schimek, G. L., Kolis, J. W. & Long, G. J. (1998). J. Solid State Chem. 139, 142–160.  Web of Science CrossRef ICSD Google Scholar
First citationLii, K. H. & Ye, J. (1997). J. Solid State Chem. 131, 131–137.  CrossRef ICSD CAS Web of Science Google Scholar
First citationMoore, P. B. & Ito, J. (1979). Miner. Mag. 43, 227–235.  CrossRef CAS Google Scholar
First citationNespolo, M. (2015). CHARDI-IT. Laboratoire CRM 2, Université de Nancy I, France.  Google Scholar
First citationNespolo, M. (2016). Acta Cryst. B72, 51–66.  Web of Science CrossRef IUCr Journals Google Scholar
First citationNonius (1997). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinovski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationParkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53–56.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPauling, L. J. (1929). J. Am. Chem. Soc. 51, 1010–1026.  CrossRef CAS Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTrad, K., Castets, A., Wattiaux, A., Delmas, C., Ben Amara, M. & Carlier, D. (2018). J. Solid State Chem. 265, 12–17.  CrossRef ICSD CAS Google Scholar
First citationWarner, T. E., Milius, W. & Maier, J. (1994). Solid State Ionics, 74, 119–123.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds