research communications
H-imidazo[4,5-b]pyridine
Hirshfeld surface analysis and DFT study of 6-bromo-3-(5-bromohexyl)-2-[4-(dimethylamino)phenyl]-3aLaboratory of Applied Organic Chemistry, Sidi Mohamed Ben Abdellah University, Faculty of Sciences and Techniques, Road Immouzer, BP 2202 Fez, Morocco, bLaboratoire de Chimie Bioorganique Appliquée et Environnement Equipe de Chimie, Bioorganique Appliquée, Faculté des Sciences, Université Ibn Zohr, Agadir, Morocco, cLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, dDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, and eDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: zainabjabri2018@gmail.com
In the title molecule, C20H24Br2N4, the imidazopyridine moiety is not planar as indicated by the dihedral angle of 2.0 (2)° between the constituent rings; the 4-dimethylaminophenyl ring is inclined to the mean plane of the imidazole ring by 27.4 (1)°. In the crystal, two sets of C—H⋯π(ring) interactions form stacks of molecules extending parallel to the a-axis direction. Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (42.2%), H⋯C/C⋯H (23.1%) and H⋯Br/Br⋯H (22.3%) interactions. The optimized structure calculated using density functional theory (DFT) at the B3LYP/ 6–311 G(d,p) level is compared with the experimentally determined structure in the solid state. The calculated HOMO–LUMO energy gap is 2.3591 eV.
Keywords: crystal structure; C—H⋯π(ring) interaction; imidazopyridine; DFT calculation; Hirshfeld surface analysis.
CCDC reference: 2013416
1. Chemical context
The family of nitrogenous drugs, particularly those containing the imidazopyridine moiety, is important in medicinal chemistry because of their wide range of pharmacological activities such as anticancer, anti-inflammatory, antibacterial, anti-tuberculosis, anti-glycation anti-analgesic and antifungal properties, and their antioxidant potential. In particular, imadazo[4,5-b]pyridine derivatives inhibit the P-glycoprotein, which could reverse the multidrug resistance of cancer cells (Bourichi et al., 2018). They are also inhibitors of type 2 diabetes because of their ability to inhibit the Baker's yeast α-glucosidase enzyme, and are inhibitors of one or more proteins in the treatment of disorders characterized by the activation of Wnt pathway signalling (for example: cancer, abnormal cellular proliferation, angiogenesis, fibrotic disorders, bone or cartilage diseases and osteoarthritis), and of genetic and neurological diseases such as PAK4 kinase 4 inhibitor activated by p21 and aurora kinase inhibitors. Imadazo[4,5-b]pyridine derivatives are also therapeutic agents for dysferlinopathies through phenotypic screening on patient-induced pluripotent stem cells (Takada et al., 2019).
Given the wide range of theraputic applications for such compounds, we have already reported a route for the preparation of imidazo[4,5-b]pyridine derivatives using N-alkylation reactions carried out with di-halogenated carbon chains (Jabri et al., 2020); a similar approach yielded the title compound, C20H24Br2N4,(I). Besides the synthesis, we also report the molecular and crystal structures along with a Hirshfeld surface analysis and a density functional theory (DFT) computational calculation carried out at the B3LYP/6–311 G(d,p) level.
2. Structural commentary
The molecular structure of (I) is depicted in Fig. 1. The imidazopyridine moiety is not planar, as indicated by the dihedral angle of 2.0 (3)° between the constituent rings. The ring of the 4-dimethylaminophenyl moiety is inclined to the mean plane of the imidazole ring by 27.4 (1)°. The 5-bromopentyl chain is oriented in an arc-like form around the periphery of the 4-dimethylaminophenyl moiety so that the terminal Br2 atom of the chain is only 4.36 (6) Å from one of the methyl C atoms (C20; Fig. 1).
3. Supramolecular features
In the crystal, stacks of molecules extending along the a-axis direction are formed by inversion-related C14—H14B⋯Cg3i and C15—H15A⋯Cg3ii interactions [symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) 2 − x, 1 − y, 1 − z] where Cg3 is the centroid of the C7–C12 phenyl ring (Fig. 2, Table 1).
4. Hirshfeld surface analysis
In order to visualize the intermolecular interactions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977) was carried out by using Crystal Explorer 17.5 (Turner et al., 2017). A view of the three-dimensional Hirshfeld surface of (I), plotted over dnorm and electrostatic potential are shown in Fig. 3a and3b. The shape-index of the HS reveals that there are no significant π–π interactions in (I), as shown in Fig. 4. The overall two-dimensional fingerprint plot (McKinnon et al., 2007) is shown in Fig. 5a, while those delineated into H⋯H, H⋯C/C⋯H, H⋯Br/Br⋯H, H⋯N/N⋯H, C⋯Br/Br⋯C, N⋯Br/Br⋯N and N⋯C/C⋯N contacts are illustrated in Fig. 5b–h, respectively, together with their relative contributions to the Hirshfeld surface. The most important interaction is H⋯H, contributing 42.2% to the overall crystal packing, which is reflected in Fig. 5b as widely scattered points of high density due to the large hydrogen content of the molecule, with the tip at de = di = 1.18 Å. In the presence of C—H⋯π interactions, the pair of characteristic wings in the fingerprint plot delineated into H⋯C/C⋯H contacts (23.1% contribution to the HS), Fig. 5c, has the tips at de + di = 2.76 Å. The pair of scattered points of spikes in the fingerprint plot delineated into H⋯Br/Br⋯H, Fig. 5d (22.3%), have the tips at de + di = 2.95 Å. The H⋯N/N⋯H contacts, Fig. 5e (10.1%), have the tips at de + di = 2.56 Å. The C⋯Br/Br⋯C contacts, Fig. 5f, contribute 1.2% to the HS and appear as a pair of scattered points of spikes with the tips at de + di = 3.50 Å. The N⋯Br/Br⋯N contacts, Fig. 5g, contribute 1.1% to the HS appearing as pair of scattered points of spikes with the tips at de + di = 3.59 Å. Finally, the N⋯C/C⋯N contacts, Fig. 5h, make only 0.1% contribution to the HS and have a low-density distribution of points.
5. DFT calculations
The optimized structure of (I) in the gas phase was calculated by density functional theory (DFT) using a standard B3LYP functional and the 6–311 G(d,p) basis-set (Becke, 1993) as implemented in GAUSSIAN 09 (Frisch et al., 2009). The theoretical and experimental results related to bond lengths and angles are in good agreement (Table 2). Calculated numerical values for (I) including (χ), hardness (η), potential (μ), (ω) and softness (σ) are collated in Table 3. The electron transition from the HOMO to the LUMO energy level is shown in Fig. 6. The HOMO and LUMO are localized in the plane extending ove the whole 6-bromo-3-(5-bromopentyl)-2-[4-(dimethylamino)phenyl]-3-H-imidazo[4,5-b]pyridine system. The energy band gap [ΔE = ELUMO − EHOMO] of the molecule is 2.3591 eV, and the frontier molecular orbital energies, EHOMO and ELUMO, are −3.1033 and −0.7442 eV, respectively.
|
|
6. Database survey
A search of the Cambridge Structural Database (CSD version 5.40, updated to March 2020; Groom et al., 2016) with fragment (II) (Fig. 7) and excluding metal complexes gave seven matches. Of these, two had a –CH2CH2X– (X = O, NH) chain connecting a saturated nitrogen atom [corresponding to N2 in (I)] to an ortho position of the phenyl ring and so were considered less comparable to (I) than the remainder, which can be represented by the general structure (III) (Fig. 7). For R = Ph and R" = Br, examples are UCOXES (R′ = CH2COOC2H5; Hjouji et al., 2016), UNUWIK [R′ = (1-benzyl-1H-1,2,3-triazol- 5-yl)methyl; Ouzidan et al., 2011a] and URAQOU [R′ = (2-oxooxazolidin-3-yl)ethyl; Ouzidan et al., 2011b]. For R = 4-ClC6H4 and R" = Br there are two reports of the compound with R′ = 1-octyl-1H-1,2,3-triazol-4-yl)methyl [XITLUK (Bourichi et al., 2019a) and XITLUK01 (Bourichi et al., 2019b)]. The dihedral angle between the plane of the 4-dimethylaminophenyl group and the mean plane of the imidazopyridine unit is ca 19° in XITLUK and ca 49° in UCOXES. Of all of these related structures, (I) is the only one with the substituent on nitrogen approximately coplanar with the imidazopyridine unit. In UCOXES, this substituent is directed outward and away from the phenyl group while in all the others, it is bent back over the phenyl group. In fact, in UNUWIK there is an H⋯H contact of 2.4 Å between the phenyl ring of the benzyl group and that attached to the imidazole ring.
7. Synthesis and crystallization
To a solution of 4-(6-bromo-3H-imidazo[4,5-b]pyridin-2-yl)-N,N-dimethylaniline (0.4 g, 1.25 mmol), 2.2 equivalents of potassium carbonate (0.38 g, 2.75 mmol) and 0.2 equivalents of tetra-n-butyl ammonium bromide (BTBA) (0.061 g, 0.187 mmol) in 40 ml of DMF were added in small portions to 1.5 equivalent of the 1,6-dibromododecanedihalogenated reagent, and the mixture was stirred magnetically at room temperature for 48 h. After removal of the salts and evaporation of DMF under reduced pressure, the product was subjected to separation by on a column of silica gel using a mixture of hexane/dichloromethane = 1/4 (v/v) as the mobile phase. Brown single crystals suitable for X-ray diffraction were obtained by evaporation of a dichloromethane/hexane solution (1:4 v/v).
8. Refinement
Crystal data, data collection and structure . Hydrogen atoms were included as riding contributions in idealized positions (C—H = 0.95–0.99 Å) with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-methyl).
details are summarized in Table 4Supporting information
CCDC reference: 2013416
https://doi.org/10.1107/S2056989020008889/wm5570sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020008889/wm5570Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989020008889/wm5570Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2056989020008889/wm5570Isup4.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).C20H24Br2N4 | Z = 2 |
Mr = 480.25 | F(000) = 484 |
Triclinic, P1 | Dx = 1.598 Mg m−3 |
a = 8.1488 (11) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.2243 (15) Å | Cell parameters from 9203 reflections |
c = 12.6378 (17) Å | θ = 2.6–29.1° |
α = 64.049 (2)° | µ = 4.07 mm−1 |
β = 74.184 (2)° | T = 150 K |
γ = 86.067 (2)° | Block, brown |
V = 998.3 (2) Å3 | 0.35 × 0.21 × 0.20 mm |
Bruker SMART APEX CCD diffractometer | 5325 independent reflections |
Radiation source: fine-focus sealed tube | 4168 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 29.2°, θmin = 1.9° |
φ and ω scans | h = −11→11 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −15→15 |
Tmin = 0.41, Tmax = 0.50 | l = −17→17 |
19397 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.140 | H-atom parameters constrained |
S = 1.12 | w = 1/[σ2(Fo2) + (0.0785P)2 + 0.5344P] where P = (Fo2 + 2Fc2)/3 |
5325 reflections | (Δ/σ)max < 0.001 |
237 parameters | Δρmax = 2.18 e Å−3 |
0 restraints | Δρmin = −0.80 e Å−3 |
Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, collected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 20 sec/frame. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.38201 (6) | −0.28330 (4) | 0.92693 (3) | 0.05798 (15) | |
Br2 | 0.95197 (4) | 0.93260 (3) | 0.34919 (3) | 0.04034 (12) | |
N1 | 0.6232 (4) | 0.0771 (3) | 0.8277 (2) | 0.0434 (7) | |
N2 | 0.6823 (4) | 0.2652 (3) | 0.6288 (2) | 0.0367 (6) | |
N3 | 0.5754 (3) | 0.1802 (3) | 0.5275 (2) | 0.0348 (6) | |
N4 | 0.8327 (4) | 0.7359 (3) | 0.0600 (3) | 0.0487 (7) | |
C1 | 0.5486 (4) | 0.0877 (3) | 0.6478 (3) | 0.0305 (6) | |
C2 | 0.4742 (4) | −0.0402 (3) | 0.7100 (3) | 0.0375 (7) | |
H2 | 0.426342 | −0.080259 | 0.671849 | 0.045* | |
C3 | 0.4747 (4) | −0.1051 (3) | 0.8308 (3) | 0.0382 (7) | |
C4 | 0.5490 (5) | −0.0466 (3) | 0.8856 (3) | 0.0457 (8) | |
H4 | 0.547009 | −0.097433 | 0.969032 | 0.055* | |
C5 | 0.6152 (4) | 0.1393 (3) | 0.7109 (3) | 0.0348 (6) | |
C6 | 0.6541 (4) | 0.2842 (3) | 0.5191 (3) | 0.0287 (6) | |
C7 | 0.7070 (4) | 0.4037 (3) | 0.4039 (3) | 0.0298 (6) | |
C8 | 0.7208 (4) | 0.5323 (3) | 0.3942 (3) | 0.0356 (6) | |
H8 | 0.698994 | 0.544398 | 0.466483 | 0.043* | |
C9 | 0.7655 (4) | 0.6417 (3) | 0.2817 (3) | 0.0391 (7) | |
H9 | 0.775946 | 0.727231 | 0.278106 | 0.047* | |
C10 | 0.7958 (4) | 0.6281 (3) | 0.1725 (3) | 0.0355 (6) | |
C11 | 0.7797 (4) | 0.4999 (3) | 0.1826 (3) | 0.0371 (7) | |
H11 | 0.799081 | 0.487401 | 0.110577 | 0.044* | |
C12 | 0.7362 (4) | 0.3916 (3) | 0.2950 (3) | 0.0357 (7) | |
H12 | 0.725654 | 0.306081 | 0.298581 | 0.043* | |
C13 | 0.7850 (4) | 0.3494 (3) | 0.6551 (3) | 0.0370 (7) | |
H13A | 0.855360 | 0.417953 | 0.577241 | 0.044* | |
H13B | 0.863039 | 0.293447 | 0.702436 | 0.044* | |
C14 | 0.6702 (5) | 0.4158 (3) | 0.7268 (3) | 0.0401 (7) | |
H14A | 0.621256 | 0.348586 | 0.811797 | 0.048* | |
H14B | 0.574420 | 0.452669 | 0.690150 | 0.048* | |
C15 | 0.7645 (5) | 0.5269 (3) | 0.7290 (3) | 0.0410 (7) | |
H15A | 0.879431 | 0.499333 | 0.739215 | 0.049* | |
H15B | 0.701343 | 0.543649 | 0.799681 | 0.049* | |
C16 | 0.7824 (4) | 0.6547 (3) | 0.6111 (3) | 0.0374 (7) | |
H16A | 0.865311 | 0.642510 | 0.543472 | 0.045* | |
H16B | 0.670741 | 0.670141 | 0.591780 | 0.045* | |
C17 | 0.8412 (5) | 0.7779 (3) | 0.6165 (3) | 0.0386 (7) | |
H17A | 0.779730 | 0.776918 | 0.696102 | 0.046* | |
H17B | 0.964794 | 0.775162 | 0.610989 | 0.046* | |
C18 | 0.8093 (5) | 0.9053 (3) | 0.5144 (3) | 0.0406 (7) | |
H18A | 0.832848 | 0.981153 | 0.529282 | 0.049* | |
H18B | 0.687247 | 0.904205 | 0.516041 | 0.049* | |
C19 | 0.8714 (6) | 0.7165 (4) | −0.0514 (3) | 0.0552 (10) | |
H19A | 0.972594 | 0.664450 | −0.055484 | 0.083* | |
H19B | 0.893616 | 0.802985 | −0.123010 | 0.083* | |
H19C | 0.773928 | 0.668979 | −0.050252 | 0.083* | |
C20 | 0.8846 (7) | 0.8629 (4) | 0.0483 (4) | 0.0683 (13) | |
H20A | 0.793094 | 0.891955 | 0.098904 | 0.103* | |
H20B | 0.907455 | 0.928588 | −0.037358 | 0.103* | |
H20C | 0.988418 | 0.854195 | 0.075477 | 0.103* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0870 (3) | 0.0396 (2) | 0.0379 (2) | −0.02465 (19) | −0.01769 (19) | −0.00405 (15) |
Br2 | 0.0480 (2) | 0.03483 (19) | 0.03595 (19) | −0.00702 (14) | −0.00713 (14) | −0.01459 (14) |
N1 | 0.070 (2) | 0.0335 (14) | 0.0294 (13) | −0.0024 (13) | −0.0171 (13) | −0.0132 (11) |
N2 | 0.0564 (17) | 0.0280 (13) | 0.0286 (12) | −0.0006 (11) | −0.0137 (11) | −0.0133 (10) |
N3 | 0.0453 (15) | 0.0297 (13) | 0.0298 (12) | −0.0058 (11) | −0.0160 (11) | −0.0087 (10) |
N4 | 0.068 (2) | 0.0363 (15) | 0.0358 (15) | −0.0161 (14) | −0.0163 (14) | −0.0067 (12) |
C1 | 0.0333 (14) | 0.0294 (14) | 0.0289 (14) | 0.0005 (11) | −0.0102 (11) | −0.0118 (11) |
C2 | 0.0408 (17) | 0.0364 (16) | 0.0351 (16) | −0.0080 (13) | −0.0134 (13) | −0.0122 (13) |
C3 | 0.0507 (19) | 0.0274 (14) | 0.0321 (15) | −0.0053 (13) | −0.0081 (13) | −0.0096 (12) |
C4 | 0.074 (2) | 0.0338 (17) | 0.0284 (15) | −0.0023 (16) | −0.0110 (15) | −0.0141 (13) |
C5 | 0.0517 (18) | 0.0257 (14) | 0.0290 (14) | 0.0020 (13) | −0.0107 (13) | −0.0137 (11) |
C6 | 0.0329 (14) | 0.0303 (14) | 0.0266 (13) | 0.0023 (11) | −0.0100 (11) | −0.0144 (11) |
C7 | 0.0328 (14) | 0.0272 (14) | 0.0293 (14) | 0.0023 (11) | −0.0127 (11) | −0.0099 (11) |
C8 | 0.0484 (18) | 0.0303 (15) | 0.0341 (15) | −0.0027 (13) | −0.0182 (13) | −0.0147 (12) |
C9 | 0.056 (2) | 0.0262 (14) | 0.0380 (16) | −0.0069 (13) | −0.0218 (15) | −0.0100 (12) |
C10 | 0.0364 (16) | 0.0331 (15) | 0.0337 (15) | −0.0062 (12) | −0.0127 (12) | −0.0087 (12) |
C11 | 0.0449 (18) | 0.0364 (16) | 0.0317 (15) | 0.0008 (13) | −0.0106 (13) | −0.0161 (13) |
C12 | 0.0485 (18) | 0.0290 (15) | 0.0337 (16) | 0.0006 (13) | −0.0121 (13) | −0.0166 (13) |
C13 | 0.0416 (17) | 0.0328 (15) | 0.0387 (16) | 0.0016 (13) | −0.0165 (13) | −0.0140 (13) |
C14 | 0.0522 (19) | 0.0370 (17) | 0.0324 (16) | −0.0025 (14) | −0.0114 (14) | −0.0157 (13) |
C15 | 0.060 (2) | 0.0330 (16) | 0.0379 (17) | −0.0038 (14) | −0.0218 (15) | −0.0167 (13) |
C16 | 0.0467 (18) | 0.0334 (16) | 0.0367 (16) | −0.0051 (13) | −0.0157 (13) | −0.0157 (13) |
C17 | 0.0475 (18) | 0.0349 (16) | 0.0422 (18) | 0.0015 (14) | −0.0184 (14) | −0.0210 (14) |
C18 | 0.0502 (19) | 0.0333 (16) | 0.0441 (18) | 0.0022 (14) | −0.0165 (15) | −0.0199 (14) |
C19 | 0.071 (3) | 0.049 (2) | 0.0316 (17) | −0.0067 (19) | −0.0104 (17) | −0.0059 (15) |
C20 | 0.112 (4) | 0.0352 (19) | 0.051 (2) | −0.026 (2) | −0.031 (2) | −0.0034 (17) |
Br1—C3 | 1.905 (3) | C11—C12 | 1.376 (4) |
Br2—C18 | 1.993 (4) | C11—H11 | 0.9500 |
N1—C5 | 1.346 (4) | C12—H12 | 0.9500 |
N1—C4 | 1.347 (4) | C13—C14 | 1.512 (5) |
N2—C5 | 1.373 (4) | C13—H13A | 0.9900 |
N2—C6 | 1.387 (4) | C13—H13B | 0.9900 |
N2—C13 | 1.497 (4) | C14—C15 | 1.523 (4) |
N3—C6 | 1.321 (4) | C14—H14A | 0.9900 |
N3—C1 | 1.381 (4) | C14—H14B | 0.9900 |
N4—C10 | 1.373 (4) | C15—C16 | 1.530 (5) |
N4—C20 | 1.449 (5) | C15—H15A | 0.9900 |
N4—C19 | 1.464 (5) | C15—H15B | 0.9900 |
C1—C2 | 1.385 (4) | C16—C17 | 1.528 (4) |
C1—C5 | 1.396 (4) | C16—H16A | 0.9900 |
C2—C3 | 1.376 (4) | C16—H16B | 0.9900 |
C2—H2 | 0.9500 | C17—C18 | 1.514 (5) |
C3—C4 | 1.399 (5) | C17—H17A | 0.9900 |
C4—H4 | 0.9500 | C17—H17B | 0.9900 |
C6—C7 | 1.461 (4) | C18—H18A | 0.9900 |
C7—C12 | 1.396 (4) | C18—H18B | 0.9900 |
C7—C8 | 1.404 (4) | C19—H19A | 0.9800 |
C8—C9 | 1.383 (4) | C19—H19B | 0.9800 |
C8—H8 | 0.9500 | C19—H19C | 0.9800 |
C9—C10 | 1.408 (4) | C20—H20A | 0.9800 |
C9—H9 | 0.9500 | C20—H20B | 0.9800 |
C10—C11 | 1.401 (4) | C20—H20C | 0.9800 |
Br1···C11i | 3.734 (4) | C9···H20A | 2.72 |
Br2···N1ii | 3.597 (3) | C9···H14Bvi | 2.91 |
Br2···N2ii | 3.591 (3) | C9···H20C | 2.89 |
Br2···C5ii | 3.515 (4) | C11···H19C | 2.73 |
Br2···C13ii | 3.711 (4) | C11···H19A | 2.81 |
Br1···H14Aiii | 3.05 | C12···H14Bvi | 2.99 |
Br1···H11i | 3.07 | C13···H8 | 2.66 |
Br2···H16A | 3.08 | C14···H8 | 2.90 |
Br2···H13Bii | 3.09 | C16···H8 | 2.85 |
Br2···H18Aiv | 3.06 | C16···H13A | 2.87 |
Br2···H19Bv | 3.11 | C19···H11 | 2.47 |
N1···C4iii | 3.380 (5) | C20···H9 | 2.54 |
N1···H13B | 2.80 | C20···H20Bv | 2.92 |
N1···H4iii | 2.67 | C20···H20Cv | 2.97 |
N2···H8 | 2.89 | H2···H18Bvii | 2.53 |
N3···H12 | 2.57 | H8···H13A | 2.14 |
N3···H16Bvi | 2.84 | H8···H14B | 2.47 |
N3···H18Bvi | 2.68 | H8···H16A | 2.42 |
C1···C18vii | 3.467 (5) | H8···H16B | 2.50 |
C2···C18vii | 3.370 (5) | H9···H20A | 2.18 |
C4···C19viii | 3.597 (6) | H9···H20C | 2.51 |
C4···C4iii | 3.372 (5) | H11···C19 | 2.47 |
C8···C13 | 3.198 (5) | H11···H19C | 2.21 |
C20···C20v | 3.279 (7) | H13A···H16A | 2.37 |
C1···H18Avii | 2.89 | H13B···H15A | 2.57 |
C2···H18Bvii | 2.88 | H14B···H16B | 2.28 |
C4···H4iii | 2.87 | H15B···H17A | 2.40 |
C7···H14Bvi | 2.93 | H16B···H18B | 2.37 |
C7···H13A | 2.84 | H19B···H20B | 2.14 |
C8···H13A | 2.61 | H20B···H20Cv | 2.43 |
C8···H14Bvi | 2.85 | ||
C5—N1—C4 | 112.1 (3) | C14—C13—H13A | 109.4 |
C5—N2—C6 | 105.4 (2) | N2—C13—H13B | 109.4 |
C5—N2—C13 | 124.1 (2) | C14—C13—H13B | 109.4 |
C6—N2—C13 | 129.9 (3) | H13A—C13—H13B | 108.0 |
C6—N3—C1 | 105.2 (2) | C13—C14—C15 | 112.5 (3) |
C10—N4—C20 | 119.7 (3) | C13—C14—H14A | 109.1 |
C10—N4—C19 | 120.1 (3) | C15—C14—H14A | 109.1 |
C20—N4—C19 | 117.7 (3) | C13—C14—H14B | 109.1 |
N3—C1—C2 | 131.6 (3) | C15—C14—H14B | 109.1 |
N3—C1—C5 | 109.6 (3) | H14A—C14—H14B | 107.8 |
C2—C1—C5 | 118.7 (3) | C14—C15—C16 | 111.1 (3) |
C3—C2—C1 | 115.2 (3) | C14—C15—H15A | 109.4 |
C3—C2—H2 | 122.4 | C16—C15—H15A | 109.4 |
C1—C2—H2 | 122.4 | C14—C15—H15B | 109.4 |
C2—C3—C4 | 122.1 (3) | C16—C15—H15B | 109.4 |
C2—C3—Br1 | 120.0 (2) | H15A—C15—H15B | 108.0 |
C4—C3—Br1 | 117.9 (2) | C17—C16—C15 | 114.3 (3) |
N1—C4—C3 | 124.2 (3) | C17—C16—H16A | 108.7 |
N1—C4—H4 | 117.9 | C15—C16—H16A | 108.7 |
C3—C4—H4 | 117.9 | C17—C16—H16B | 108.7 |
N1—C5—N2 | 125.4 (3) | C15—C16—H16B | 108.7 |
N1—C5—C1 | 127.6 (3) | H16A—C16—H16B | 107.6 |
N2—C5—C1 | 106.8 (3) | C18—C17—C16 | 112.2 (3) |
N3—C6—N2 | 113.0 (3) | C18—C17—H17A | 109.2 |
N3—C6—C7 | 121.8 (2) | C16—C17—H17A | 109.2 |
N2—C6—C7 | 125.3 (3) | C18—C17—H17B | 109.2 |
C12—C7—C8 | 117.0 (3) | C16—C17—H17B | 109.2 |
C12—C7—C6 | 118.3 (3) | H17A—C17—H17B | 107.9 |
C8—C7—C6 | 124.6 (3) | C17—C18—Br2 | 113.4 (2) |
C9—C8—C7 | 121.5 (3) | C17—C18—H18A | 108.9 |
C9—C8—H8 | 119.3 | Br2—C18—H18A | 108.9 |
C7—C8—H8 | 119.3 | C17—C18—H18B | 108.9 |
C8—C9—C10 | 121.0 (3) | Br2—C18—H18B | 108.9 |
C8—C9—H9 | 119.5 | H18A—C18—H18B | 107.7 |
C10—C9—H9 | 119.5 | N4—C19—H19A | 109.5 |
N4—C10—C11 | 120.6 (3) | N4—C19—H19B | 109.5 |
N4—C10—C9 | 122.0 (3) | H19A—C19—H19B | 109.5 |
C11—C10—C9 | 117.3 (3) | N4—C19—H19C | 109.5 |
C12—C11—C10 | 121.2 (3) | H19A—C19—H19C | 109.5 |
C12—C11—H11 | 119.4 | H19B—C19—H19C | 109.5 |
C10—C11—H11 | 119.4 | N4—C20—H20A | 109.5 |
C11—C12—C7 | 122.0 (3) | N4—C20—H20B | 109.5 |
C11—C12—H12 | 119.0 | H20A—C20—H20B | 109.5 |
C7—C12—H12 | 119.0 | N4—C20—H20C | 109.5 |
N2—C13—C14 | 111.0 (3) | H20A—C20—H20C | 109.5 |
N2—C13—H13A | 109.4 | H20B—C20—H20C | 109.5 |
C6—N3—C1—C2 | −179.0 (3) | N3—C6—C7—C12 | −24.9 (4) |
C6—N3—C1—C5 | −0.6 (3) | N2—C6—C7—C12 | 153.7 (3) |
N3—C1—C2—C3 | 178.0 (3) | N3—C6—C7—C8 | 151.0 (3) |
C5—C1—C2—C3 | −0.3 (4) | N2—C6—C7—C8 | −30.4 (5) |
C1—C2—C3—C4 | −1.5 (5) | C12—C7—C8—C9 | −1.6 (5) |
C1—C2—C3—Br1 | −178.4 (2) | C6—C7—C8—C9 | −177.5 (3) |
C5—N1—C4—C3 | 1.0 (5) | C7—C8—C9—C10 | 1.2 (5) |
C2—C3—C4—N1 | 1.2 (6) | C20—N4—C10—C11 | −166.9 (4) |
Br1—C3—C4—N1 | 178.2 (3) | C19—N4—C10—C11 | −5.7 (5) |
C4—N1—C5—N2 | −178.8 (3) | C20—N4—C10—C9 | 15.9 (6) |
C4—N1—C5—C1 | −3.1 (5) | C19—N4—C10—C9 | 177.1 (3) |
C6—N2—C5—N1 | 176.1 (3) | C8—C9—C10—N4 | 177.0 (3) |
C13—N2—C5—N1 | 4.1 (5) | C8—C9—C10—C11 | −0.3 (5) |
C6—N2—C5—C1 | −0.3 (3) | N4—C10—C11—C12 | −177.4 (3) |
C13—N2—C5—C1 | −172.3 (3) | C9—C10—C11—C12 | −0.1 (5) |
N3—C1—C5—N1 | −175.8 (3) | C10—C11—C12—C7 | −0.3 (5) |
C2—C1—C5—N1 | 2.9 (5) | C8—C7—C12—C11 | 1.2 (5) |
N3—C1—C5—N2 | 0.5 (4) | C6—C7—C12—C11 | 177.4 (3) |
C2—C1—C5—N2 | 179.2 (3) | C5—N2—C13—C14 | −80.8 (4) |
C1—N3—C6—N2 | 0.4 (3) | C6—N2—C13—C14 | 109.3 (4) |
C1—N3—C6—C7 | 179.1 (3) | N2—C13—C14—C15 | −166.1 (3) |
C5—N2—C6—N3 | 0.0 (3) | C13—C14—C15—C16 | 80.7 (4) |
C13—N2—C6—N3 | 171.4 (3) | C14—C15—C16—C17 | 167.7 (3) |
C5—N2—C6—C7 | −178.8 (3) | C15—C16—C17—C18 | −163.7 (3) |
C13—N2—C6—C7 | −7.4 (5) | C16—C17—C18—Br2 | −67.2 (3) |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+2, −y+1, −z+1; (iii) −x+1, −y, −z+2; (iv) −x+2, −y+2, −z+1; (v) −x+2, −y+2, −z; (vi) −x+1, −y+1, −z+1; (vii) x, y−1, z; (viii) x, y−1, z+1. |
Cg3 is the centroid of the C7–C12 phenyl ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C14—H14B···Cg3vi | 0.99 | 2.60 | 3.502 (4) | 151 |
C15—H15A···Cg3ii | 0.99 | 2.94 | 3.904 (4) | 165 |
Symmetry codes: (ii) −x+2, −y+1, −z+1; (vi) −x+1, −y+1, −z+1. |
X-ray | B3LYP/6-311G(d,p) | |
Br1—C3 | 1.905 (3) | 1.95402 |
Br2—C18 | 1.993 (4) | 2.02785 |
N1—C5 | 1.346 (4) | 1.33429 |
N1—C4 | 1.347 (4) | 1.37682 |
N2—C5 | 1.373 (4) | 1.39261 |
N2—C6 | 1.387 (4) | 1.39443 |
N2—C13 | 1.497 (4) | 1.47275 |
N3—C6 | 1.321 (4) | 1.33277 |
N3—C1 | 1.381 (4) | 1.38362 |
N4—C10 | 1.373 (4) | 1.39418 |
N4—C20 | 1.449 (5) | 1.46048 |
N4—C19 | 1.464 (5) | 1.46022 |
C5—N1—C4 | 112.1 (3) | 114.50142 |
C5—N2—C6 | 105.4 (2) | 108.33854 |
C5—N2—C13 | 124.1 (2) | 118.46297 |
C6—N2—C13 | 129.9 (3) | 128.08505 |
C6—N3—C1 | 105.2 (2) | 107.12596 |
C10—N4—C20 | 119.7 (3) | 120.14593 |
C10—N4—C19 | 120.1 (3) | 120.10245 |
C20—N4—C19 | 117.7 (3) | 119.74504 |
N3—C1—C2 | 131.6 (3) | 134.19166 |
N3—C1—C5 | 109.6 (3) | 106.29375 |
Molecular Energy | Compound (I) |
Total Energy TE (eV) | -167186.456 |
EHOMO (eV) | -3.1033 |
ELUMO (eV) | -0.7442 |
Gap ΔE (eV) | 2.3591 |
Dipole moment µ (Debye) | 6.1953 |
Ionisation potential I (eV) | 3.1033 |
Electron affinity A | 0.7442 |
Electronegativity χ | 1.9237 |
Hardness η | 1.1796 |
Electrophilicity index ω | 1.5687 |
Softness σ | 0.8478 |
Fraction of electron transferred ΔN | 2.1518 |
Funding information
JTM thanks Tulane University for support of the Tulane Crystallography Laboratory. TH is grateful to the Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).
References
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Bourichi, S., Kandri Rodi, Y., Hökelek, T., Chakroune, S., Ouzidan, Y. & Capet, F. (2019a). IUCrData, 4, x190053. Google Scholar
Bourichi, S., Kandri Rodi, Y., Hokelek, T., Ouzidan, Y., Chahdi, F., Akhazzane, M. & Essassi, E. M. (2019b). J. Maroc. Chem. Heterocycli. 18, 43–53. Google Scholar
Bourichi, S., Misbahi, H., Rodi, Y. K., Chahdi, F. O., Essassi, E. M., Szabó, S., Szalontai, B., Gajdács, M., Molnár, J. & Spengler, G. (2018). Anticancer Res. 38, 3999–4003. Web of Science CrossRef CAS PubMed Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, US. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Hjouji, M. Y., Mague, J. T., Kandri Rodi, Y., Ouzidan, Y. & Essassi, E. M. (2016). IUCRData 1, x161999. Google Scholar
Jabri, Z., Jarmoni, K., Hökelek, T., Mague, J. T., Sabir, S., Kandri Rodi, Y. & Misbahi, K. (2020). Acta Cryst. E76, 677–682. Web of Science CrossRef IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Ouzidan, Y., Jasinski, J. P., Butcher, R. J., Golen, J. A., Essassi, E. M. & El Ammari, L. (2011b). Acta Cryst. E67, o1095. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ouzidan, Y., Kandri Rodi, Y., Fronczek, F. R., Venkatraman, R., Essassi, E. M. & El Ammari, L. (2011a). Acta Cryst. E67, o890–o891. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Takada, H., Kaieda, A., Tawada, M., Nagino, T., Sasa, K., Oikawa, T., Oki, A., Sameshima, T., Miyamoto, K., Miyamoto, M., Kokubu, Y., Tozawa, R., Sakurai, H. & Saito, B. (2019). J. Med. Chem. 62, 9175–9187. Web of Science CrossRef CAS PubMed Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.