research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of zwitterionic 3,3′-[1,1′-(butane-1,4-di­yl)bis­­(1H-imidazol-3-ium-3,1-di­yl)]bis­­(propane-1-sulfonate) dihydrate

CROSSMARK_Color_square_no_text.svg

aUniversity of Debrecen, Department of Physical Chemistry, PO Box 400, Debrecen, H-4002, Hungary, bUniversity of Debrecen, Doctoral School of Chemistry, PO Box 400, Debrecen, H-4002, Hungary, and cMTA-DE Redox and Homogeneous Catalytic Reaction Mechanisms Research Group, PO Box 400, Debrecen, H-4002, Hungary
*Correspondence e-mail: udvardya@unideb.hu

Edited by M. Weil, Vienna University of Technology, Austria (Received 12 June 2020; accepted 17 July 2020; online 24 July 2020)

The crystal structure of the title compound, C16H26N4O6S2·2H2O, a water-soluble di-N-heterocyclic carbene ligand precursor was determined using a single crystal grown by the slow cooling of a hot N,N-di­methyl­formamide solution of the compound. The dihydrate crystallizes in the monoclinic space group P21/c, with half of the zwitterionic mol­ecule and one water mol­ecule of crystallization in the asymmetric unit. The remaining part of the mol­ecule is completed by inversion symmetry. In the mol­ecule, the imidazole ring planes are parallel with a plane-to-plane distance of 2.741 (2) Å. The supra­molecular network is consolidated by hydrogen bonds of medium strength between the zwitterionic mol­ecules and the water mol­ecules of crystallization, as well as by ππ stacking inter­actions between the imidazole rings of neighbouring mol­ecules and C—H⋯O hydrogen-bonding inter­actions.

1. Chemical context

Imidazolium salt-based ionic liquids are versatile because of their unique properties and their use as green solvents, replacing volatile or toxic organic solvents (De et al., 2019[De, S., Udvardy, A., Czégéni, C. E. & Joó, F. (2019). Coord. Chem. Rev. 400, 213038.]). Moreover, they are very often used as reaction media, or – the water-immiscible ones – for extraction. X-ray crystallographic studies of several crystalline imidazolium salts have been described. However, examples of zwitterionic imidazolium salts are limited in the literature, and only a few examples of zwitterionic imidazolium sulfonates, with their crystal structures determined, have been reported to date. The introduction of hydro­philic substituents (e.g. sulfonate groups) made possible the synthesis of water-soluble metal complexes, and subsequently, a range of catalytic applications (Kohmoto et al., 2012[Kohmoto, S., Okuyama, S., Yokota, N., Takahashi, M., Kishikawa, K., Masu, H. & Azumaya, I. (2012). J. Mol. Struct. 1015, 6-11.]).

[Scheme 1]

Here we report the crystal structure of the title compound, 3,3′-[1,1′-(butane-1,4-di­yl)bis­(1H-imidazol-3-ium-3,1-di­yl)]bis­(propane-1-sulfonate) (1; Fig. 1[link]), which crystallizes as a dihydrate (1·2H2O). To the best of our knowledge, this is the first crystal structure determination of an alkyl­ene-bridged di-imidazolium salt with ω-propyl­sulfonate wingtips. Compound 1 is known from the literature (Liu et al., 2013[Liu, H. F., Zeng, F.-X., Deng, L., Liao, B., Pang, H. & Guo, Q. X. (2013). Green Chem. 15, 81-84.]; Xu et al., 2012[Xu, Y., Liang, J., Ren, X., Jiang, M., Wei, P. & Ouyang, P. (2012). Nanjing Gongye Daxue Xuebao, Ziran Kexueban 34, 48-52.]; Zeng et al., 2013[Zeng, F. X., Liu, H. F., Deng, L., Liao, B., Pang, H. & Guo, Q. X. (2013). ChemSusChem, 6, 600-603.]) and was prepared according to the method described by Papini et al. (2009[Papini, G., Pellei, M., Lobbia, G. G., Burini, A. & Santini, G. (2009). Dalton Trans. pp. 6985-6990.]), utilizing the reaction between 1,1′-(butane-1,4-di­yl)di-1H-imidazole and 1,3-propane­sultone (Fig. 1[link]).

[Figure 1]
Figure 1
Synthesis scheme of 1.

2. Structural commentary

The di-N-heterocyclic carbene precursor 1 crystallizes as a dihydrate, with one half of the mol­ecule and one water mol­ecule of crystallization being present in the asymmetric unit. The other half of the mol­ecule is generated by the application of inversion symmetry (symmentry operation: 1 − x, −y, −z). No molecules of the solvent, DMF, from which the crystals were obtained, are built into the lattice.

The zwitterionic mol­ecule of 1 (Fig. 2[link]) is composed of two imidazolium propane sulfonate fragments, which are linked by a butyl­ene bridge. The N1—C6 and N2—C6 bond lengths are 1.327 (3) Å and 1.320 (4) Å, and the N1—C1—N2 angle is 108.9 (2)°. The length of the C2—C3 bond of 1.342 (4) Å indicates that these carbon atoms are sp2 hybridized. The sulfonate moiety is rigid, with characteristic bond lengths of S1—C1 = 1.773 (3) Å, S1—O1 = 1.446 (2) Å, S1—O2 = 1.450 (2) Å, S1—O3 = 1.453 (2) Å, and angles O1—S1—O2 = 112.16 (14)°, O1—S1—O3 = 111.80 (14)°, and O2—S1—O3 = 112.80 (15)°. As a result of the point group symmetry [\overline{1}] of the mol­ecule, the imidazole planes are parallel and have a distance of 2.741 (2) Å (Fig. 3[link]) from each other.

[Figure 2]
Figure 2
The mol­ecular structure of 1 showing the atom labelling and displacement ellipsoids drawn at the 50% probability level. The asymmetric unit of 1 is given in darker colours, and the symmetry-generated part (symmetry code: 1 − x, −y, −z) of the mol­ecule is given in lighter colours. The water mol­ecule is also shown.
[Figure 3]
Figure 3
The imidazole ring planes in 1 displayed as capped sticks. The water mol­ecules of crystallization are omitted for clarity [Symmetry code: (i) 1 − x, −y, −z].

3. Supra­molecular features

The water mol­ecules bridge adjacent zwitterionic mol­ecules through hydrogen bonds of medium strength with sulfonate O atoms as acceptor groups into ribbons aligned parallel to [001] (Table 1[link], Fig. 4[link]). ππ stacking inter­actions involving the imidazole rings of neighbouring mol­ecules (symmetry operation 2 − x, 1 − y, 1 − z; centroid-to-centroid distance of 3.9541 (17) Å, slippage 1.622 Å, Fig. 5[link]) lead to the formation of supra­molecular layers extending parallel to (100). Additional weak C—H⋯O hydrogen bonds (Table 1[link], Fig. 5[link]) consolidate the three-dimensional network structure.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O2i 0.85 1.97 2.818 (4) 180
O4—H4B⋯O3ii 0.85 2.04 2.821 (4) 152
C4—H4⋯O1iii 0.93 2.40 3.217 (4) 146
C5—H5⋯O1iv 0.93 2.40 3.321 (4) 170
C6—H6⋯O4 0.93 2.39 3.209 (4) 147
Symmetry codes: (i) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x+1, y, z; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 4]
Figure 4
A partial packing diagram of 1, showing the formation of ribbons through O—H⋯O hydrogen bonds. [Symmetry codes: (i) x + 1, −y + [{1\over 2}], z − [{1\over 2}]; (ii) x + 1, y, z].
[Figure 5]
Figure 5
Packing diagram of 1 viewed along the a axis, showing selected hydrogen bonds (including weak C—H⋯O inter­actions) and ππ stacking inter­actions (Cg is the centroid of the: N1–N6–N2–C4–C5 ring).

4. Database survey

A search of the Cambridge Structural Database (CSD Version 5.41, May 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed no similar crystal structures of di-N-heterocyclic carbene ligand precursor mol­ecules where two N-ω-sulfonato­propyl-imidazolium units are connected through an α,ω-alkyl­ene bridge. Crystals of similar sulfoalkyl-imidazolium di-NHC precursors containing aromatic linkers have been grown by Kohmoto et al. (2012[Kohmoto, S., Okuyama, S., Yokota, N., Takahashi, M., Kishikawa, K., Masu, H. & Azumaya, I. (2012). J. Mol. Struct. 1015, 6-11.]). Crystal structures of gold(III) (refcode: KOGGUK; Hung et al., 2014[Hung, F. F., To, W. P., Zhang, J. J., Ma, C., Wong, W. Y. & Che, C. M. (2014). Chem. Eur. J. 20, 8604-8614.]) and palladium(II) (Asensio et al., 2017[Asensio, J. M., Gómez-Sal, P., Andrés, R. & de Jesús, E. (2017). Dalton Trans. 46, 6785-6797.]) metal complexes with similar ligands with a methyl­ene bridge (Fig. 6[link], 2) were also reported.

[Figure 6]
Figure 6
Structural formula of 3,3′-[1,1′-methyl­enebis(1H-imidazole-3-ium-3,1-di­yl)]bis­(propane-1-sulfonate (2).

The Pd complexes [PdCl2(2)], refcode: YAVROF, and [Pd(2)2], refcode: YAVXAX, crystallize in space group type P[\overline{1}]. In all other above-mentioned cases, the space-group type is P21/c.

5. Synthesis and crystallization

Compound 1 was synthesized according to the method of Papini et al. (2009[Papini, G., Pellei, M., Lobbia, G. G., Burini, A. & Santini, G. (2009). Dalton Trans. pp. 6985-6990.]). 4.4 mmol of 1,3-propanesultone were slowly added to a solution of 2 mmol of 1,1′-(butane-1,4-di­yl)di-1H-imidazole in 30 ml of acetone at 273 K. Then the mixture was left to warm to room temperature and stirred for 5 d. The solvent was evaporated and the resulting white solid was recrystallized from methanol affording 1 as a white powder (yield: 617 mg, 71%). Analytical data: 13C{1H}-NMR (90 MHz, D2O, 298 K) δ [ppm], 135.6, 122.5, 48.8, 47.8, 47.2, 26.2, 25.0; ESI–MS (CH3OH, positive mode), m/z observed 435.1359, calculated value for C16H27N4O6S2, ([M - H]+): 435.1367). For recrystallization, 1 was suspended in DMF and heated to approximately 373 K, then filtered and left overnight to slowly cool down to room temperature. Single crystals, suitable for X-ray analysis, were obtained as colourless prisms after storing the solution in open glass vials in a refrigerator at 278 K. A possible source of water is the employed DMF, which is hygroscopic and easily adsorbs water from a humid atmos­phere. The same type of prismatic crystals were also grown from hot water, revealing a very similar unit cell. However, these crystals were of poor quality, and the best Rint value was very high, 0.19.

6. Refinement

Crystal data, and details of data collection and structure refinement are summarized in Table 2[link]. Hydrogen atoms of the zwitterionic mol­ecules were placed at idealized positions and refined using a riding model. The positions of hydrogen atoms of the water mol­ecule were discernible in a difference-Fourier map. They were refined with a fixed bond length of 0.85 Å and Uiso(H) = 1.5Ueq(O).

Table 2
Experimental details

Crystal data
Chemical formula C16H26N4O6S2·2H2O
Mr 470.56
Crystal system, space group Monoclinic, P21/c
Temperature (K) 300
a, b, c (Å) 5.6085 (4), 18.1641 (11), 10.6884 (7)
β (°) 97.860 (4)
V3) 1078.63 (12)
Z 2
Radiation type Cu Kα
μ (mm−1) 2.69
Crystal size (mm) 0.20 × 0.12 × 0.07
 
Data collection
Diffractometer Bruker D8 VENTURE
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.702, 0.820
No. of measured, independent and observed [I > 2σ(I)] reflections 8276, 1841, 1483
Rint 0.052
(sin θ/λ)max−1) 0.596
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.109, 1.11
No. of reflections 1841
No. of parameters 136
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.40, −0.29
Computer programs: APEX3 and SAINT (Bruker 2017[Bruker (2017). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA, 2017.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2017); cell refinement: SAINT (Bruker, 2017); data reduction: SAINT (Bruker 2017); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: WinGX (Farrugia, 2012), OLEX2 (Dolomanov et al., 2009), publCIF (Westrip, 2010).

3,3'-[1,1'-(Butane-1,4-diyl)bis(1H-imidazol-3-ium-3,1-diyl)]bis(propane-1-sulfonate) dihydrate top
Crystal data top
C16H26N4O6S2·2H2OF(000) = 500
Mr = 470.56Dx = 1.449 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 5.6085 (4) ÅCell parameters from 8513 reflections
b = 18.1641 (11) Åθ = 4.8–70.0°
c = 10.6884 (7) ŵ = 2.69 mm1
β = 97.860 (4)°T = 300 K
V = 1078.63 (12) Å3Prism, colourless
Z = 20.20 × 0.12 × 0.07 mm
Data collection top
Bruker D8 VENTURE
diffractometer
1483 reflections with I > 2σ(I)
Radiation source: microfocus sealed tubeRint = 0.052
ω and φ scansθmax = 66.8°, θmin = 4.8°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 66
Tmin = 0.702, Tmax = 0.820k = 2121
8276 measured reflectionsl = 1211
1841 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: mixed
wR(F2) = 0.109H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0303P)2 + 0.8877P]
where P = (Fo2 + 2Fc2)/3
1841 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.29 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.01051 (13)0.32408 (4)0.27909 (7)0.0384 (2)
O10.0178 (4)0.36082 (12)0.1620 (2)0.0515 (6)
O20.0556 (5)0.37554 (13)0.3769 (2)0.0684 (7)
O30.1853 (4)0.26460 (13)0.2622 (2)0.0605 (7)
N10.4379 (4)0.12377 (12)0.4186 (2)0.0342 (5)
N20.4693 (4)0.03758 (12)0.2835 (2)0.0397 (6)
C10.2680 (5)0.28051 (15)0.3317 (3)0.0387 (7)
H1A0.2957610.2422460.2720920.046*
H1B0.3964160.3163900.3330230.046*
C20.2778 (5)0.24673 (15)0.4622 (3)0.0407 (7)
H2A0.1264640.2220280.4681170.049*
H2B0.2964980.2857190.5247410.049*
C30.4824 (6)0.19192 (15)0.4923 (3)0.0414 (7)
H3A0.6310920.2141160.4739930.050*
H3B0.5013090.1801960.5816040.050*
C40.2637 (5)0.07226 (16)0.4320 (3)0.0442 (8)
H40.1526270.0742100.4890450.053*
C50.2834 (6)0.01861 (16)0.3477 (3)0.0470 (8)
H50.1887040.0234760.3352430.056*
C60.5586 (5)0.10126 (15)0.3272 (3)0.0383 (7)
H60.6853690.1262680.2985890.046*
C70.5562 (6)0.00487 (17)0.1802 (3)0.0516 (8)
H7A0.5179650.0564950.1894840.062*
H7B0.7299340.0004350.1874160.062*
C80.4471 (6)0.02087 (17)0.0518 (3)0.0462 (8)
H8A0.2742040.0135770.0418930.055*
H8B0.4775840.0731170.0439830.055*
O40.9450 (6)0.13610 (16)0.1398 (3)0.0982 (11)
H4A0.9442110.1324490.0604130.147*
H4B0.8982010.1798500.1506830.147*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0413 (4)0.0408 (4)0.0350 (4)0.0084 (3)0.0128 (3)0.0048 (3)
O10.0632 (15)0.0539 (13)0.0404 (12)0.0105 (11)0.0174 (11)0.0153 (10)
O20.097 (2)0.0648 (15)0.0463 (14)0.0381 (14)0.0195 (13)0.0033 (11)
O30.0407 (13)0.0686 (15)0.0714 (17)0.0097 (11)0.0046 (12)0.0164 (12)
N10.0408 (13)0.0316 (12)0.0313 (13)0.0045 (10)0.0087 (11)0.0006 (10)
N20.0527 (16)0.0335 (13)0.0344 (14)0.0073 (11)0.0114 (12)0.0036 (10)
C10.0362 (16)0.0368 (15)0.0447 (18)0.0024 (12)0.0116 (14)0.0029 (13)
C20.0528 (19)0.0371 (15)0.0332 (16)0.0063 (13)0.0095 (14)0.0037 (12)
C30.0488 (18)0.0397 (16)0.0340 (16)0.0047 (13)0.0008 (14)0.0071 (13)
C40.0486 (19)0.0485 (17)0.0389 (18)0.0005 (14)0.0180 (15)0.0016 (14)
C50.056 (2)0.0391 (17)0.0474 (19)0.0063 (14)0.0138 (16)0.0014 (14)
C60.0431 (17)0.0391 (16)0.0348 (16)0.0026 (13)0.0126 (14)0.0028 (13)
C70.072 (2)0.0434 (17)0.0413 (18)0.0170 (16)0.0155 (17)0.0081 (14)
C80.056 (2)0.0445 (17)0.0388 (18)0.0079 (15)0.0103 (15)0.0083 (14)
O40.154 (3)0.082 (2)0.0673 (19)0.0355 (19)0.047 (2)0.0023 (15)
Geometric parameters (Å, º) top
S1—O11.446 (2)C2—H2B0.9700
S1—O21.450 (2)C3—H3A0.9700
S1—O31.453 (2)C3—H3B0.9700
S1—C11.773 (3)C4—C51.342 (4)
N1—C61.327 (3)C4—H40.9300
N1—C41.374 (4)C5—H50.9300
N1—C31.470 (3)C6—H60.9300
N2—C61.320 (4)C7—C81.499 (4)
N2—C51.368 (4)C7—H7A0.9700
N2—C71.482 (3)C7—H7B0.9700
C1—C21.517 (4)C8—C8i1.528 (5)
C1—H1A0.9700C8—H8A0.9700
C1—H1B0.9700C8—H8B0.9700
C2—C31.520 (4)O4—H4A0.8500
C2—H2A0.9700O4—H4B0.8499
O1—S1—O2112.16 (14)C2—C3—H3A109.3
O1—S1—O3112.80 (14)N1—C3—H3B109.3
O2—S1—O3112.80 (15)C2—C3—H3B109.3
O1—S1—C1106.52 (13)H3A—C3—H3B107.9
O2—S1—C1106.97 (15)C5—C4—N1107.4 (2)
O3—S1—C1104.93 (13)C5—C4—H4126.3
C6—N1—C4108.0 (2)N1—C4—H4126.3
C6—N1—C3126.0 (2)C4—C5—N2107.0 (3)
C4—N1—C3126.1 (2)C4—C5—H5126.5
C6—N2—C5108.7 (2)N2—C5—H5126.5
C6—N2—C7124.9 (2)N2—C6—N1108.9 (2)
C5—N2—C7126.4 (3)N2—C6—H6125.6
C2—C1—S1113.08 (19)N1—C6—H6125.6
C2—C1—H1A109.0N2—C7—C8112.6 (2)
S1—C1—H1A109.0N2—C7—H7A109.1
C2—C1—H1B109.0C8—C7—H7A109.1
S1—C1—H1B109.0N2—C7—H7B109.1
H1A—C1—H1B107.8C8—C7—H7B109.1
C1—C2—C3113.0 (2)H7A—C7—H7B107.8
C1—C2—H2A109.0C7—C8—C8i111.0 (3)
C3—C2—H2A109.0C7—C8—H8A109.5
C1—C2—H2B109.0C8i—C8—H8A109.5
C3—C2—H2B109.0C7—C8—H8B109.2
H2A—C2—H2B107.8C8i—C8—H8B109.4
N1—C3—C2111.7 (2)H8A—C8—H8B108.0
N1—C3—H3A109.3H4A—O4—H4B104.5
O1—S1—C1—C2173.2 (2)C6—N2—C5—C40.4 (4)
O2—S1—C1—C253.1 (2)C7—N2—C5—C4179.5 (3)
O3—S1—C1—C266.9 (2)C5—N2—C6—N10.6 (3)
S1—C1—C2—C3163.8 (2)C7—N2—C6—N1179.7 (2)
C6—N1—C3—C2111.4 (3)C4—N1—C6—N20.6 (3)
C4—N1—C3—C268.4 (4)C3—N1—C6—N2179.6 (2)
C1—C2—C3—N171.0 (3)C6—N2—C7—C883.8 (4)
C6—N1—C4—C50.3 (3)C5—N2—C7—C895.1 (4)
C3—N1—C4—C5179.9 (3)N2—C7—C8—C8i176.4 (3)
N1—C4—C5—N20.1 (4)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O2ii0.851.972.818 (4)180
O4—H4B···O3iii0.852.042.821 (4)152
C4—H4···O1iv0.932.403.217 (4)146
C5—H5···O1v0.932.403.321 (4)170
C6—H6···O40.932.393.209 (4)147
Symmetry codes: (ii) x+1, y+1/2, z1/2; (iii) x+1, y, z; (iv) x, y+1/2, z+1/2; (v) x, y1/2, z+1/2.
 

Funding information

Funding for this research was provided by: the EU and co-financed by the European Regional Development Fund (contract No. GINOP-2.3.2-15-2016-00008); the EU and co-financed by the European Regional Development Fund (contract No. GINOP-2.3.3-15-2016-00004); the Thematic Excellence Programme of the Ministry for Innovation and Technology of Hungary, within the framework of the Vehicle Industry thematic programme of the University of Debrecen (contract No. ED_18-1-2019-0028); Hungarian National Research, Development and Innovation Office (contract No. FK-128333); Stipendium Hungaricum.

References

First citationAsensio, J. M., Gómez-Sal, P., Andrés, R. & de Jesús, E. (2017). Dalton Trans. 46, 6785–6797.  CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2017). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA, 2017.  Google Scholar
First citationDe, S., Udvardy, A., Czégéni, C. E. & Joó, F. (2019). Coord. Chem. Rev. 400, 213038.  CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHung, F. F., To, W. P., Zhang, J. J., Ma, C., Wong, W. Y. & Che, C. M. (2014). Chem. Eur. J. 20, 8604–8614.  CSD CrossRef CAS PubMed Google Scholar
First citationKohmoto, S., Okuyama, S., Yokota, N., Takahashi, M., Kishikawa, K., Masu, H. & Azumaya, I. (2012). J. Mol. Struct. 1015, 6–11.  CSD CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLiu, H. F., Zeng, F.-X., Deng, L., Liao, B., Pang, H. & Guo, Q. X. (2013). Green Chem. 15, 81–84.  CrossRef Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPapini, G., Pellei, M., Lobbia, G. G., Burini, A. & Santini, G. (2009). Dalton Trans. pp. 6985–6990.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, Y., Liang, J., Ren, X., Jiang, M., Wei, P. & Ouyang, P. (2012). Nanjing Gongye Daxue Xuebao, Ziran Kexueban 34, 48–52.  Google Scholar
First citationZeng, F. X., Liu, H. F., Deng, L., Liao, B., Pang, H. & Guo, Q. X. (2013). ChemSusChem, 6, 600–603.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds