research communications
Hexaaquanickel(II) bis[triaqua-μ3-oxalato-di-μ-oxalato-bariumchromate(III)] tetrahydrate
aChemistry Department, Higher Teachers' Training College, University of Maroua, PO Box 55, Maroua, Cameroon, and bUniversité de Lorraine, CNRS, CRM2, F54000, Nancy, France
*Correspondence e-mail: mbiangueya@yahoo.com
The title compound, [Ni(H2O)6][BaCr(C2O4)3(H2O)3]2·4H2O, was obtained in the form of single crystals from the slow evaporation of an aqueous mixture of {Ba6(H2O)17[Cr(C2O4)3]4}·7H2O and NiSO4·6H2O in the molar ratio 1:4. Its structure is made up of corrugated anionic (101) layers of formula [BaCr(C2O4)3(H2O)3]nn− that leave voids accommodating the charge-compensating cations, [Ni(H2O)6]2+ (point group symmetry ), as well as the water molecules of crystallization. The anionic layers are built from the connection of barium and chromium atoms through bridging oxalate ligands. The CrIII atom is hexacoordinated by O atoms of three oxalate ligands while the BaII atom is tenfold coordinated by three O atoms of water molecules and seven O atoms of four oxalate ligands. Each NiII atom sits on an inversion center and is coordinated by six water molecules. One of the uncoordinated water molecules is disordered over two sites, with a refined occupancy ratio of 0.51 (5):0.49 (5). In the crystal, extensive O—H⋯O hydrogen-bonding interactions link the anionic layers, the charge-balancing cations as well as the water molecules of crystallization into a three-dimensional supramolecular network.
Keywords: crystal structure; tris(oxalato)chromate(III); barium complexes; nickel complexes; corrugated layers.
CCDC reference: 1953456
1. Chemical context
Over the past three decades, tris(oxalato)metalate(III) complex anions, [M(C2O4)3]3–, have been extensively used for the design of many compounds with fascinating physical properties (Zhong et al., 1990; Bénard et al., 2001; Coronado et al., 2008; Pardo et al., 2011; Martin et al., 2017; Tsobnang et al., 2019; Ōkawa et al., 2020). One of the main reasons for that is the ability of these anions to act like ligands towards a variety of metallic cations and to build a diversity of extended structures in which neighboring metallic ions are linked through bridging oxalate ligands. From the synthetic point of view, the tris(oxalato)chromate(III) anion, [Cr(C2O4)3]3– or [Cr(ox)3]3–, is most attractive because of its stability and inertness toward ligand substitution. As a source of this anion, the polymeric complex salt {Ba6(H2O)17[Cr(C2O4)3]4}·7H2O (Bélombé et al., 2003) offers the possibility of easily replacing, in the reaction medium and under daylight, the Ba2+ ions by other cations, provided the latter are brought into that medium as their sulfates. Since Ba2+ has a flexible coordination sphere with coordination numbers ranging from three to twelve (Hancock et al., 2004), this inspired us to start a research program aimed at exploring the various structures that might arise from different combinations of [Cr(ox)3]3–, Ba2+ and other cations, and possibly studying the physical properties of the corresponding compounds. From an aqueous suspension of {Ba6(H2O)17[Cr(C2O4)3]4}·7H2O, a partial replacement of Ba2+ by Ni2+ led to [Ni(H2O)6][BaCr(C2O4)3(H2O)3]2·4H2O (I), the structure of which is described herein.
2. Structural commentary
The I) is depicted in Fig. 1. It contains one half of an [Ni(H2O)6]2+ cation situated on an inversion center, one [BaCr(C2O4)3(H2O)3]− anion and two water molecules of crystallization, one of which being equally disordered over two positions (O20A and O20B). The Ba2+ ion is linked to ten O atoms from three water molecules and four oxalate ligands (three chelating, one monodentately binding), with Ba—O bond lengths in the range 2.784 (3)–2.933 (3) Å (Table 1). These values are typical for ten-coordinate barium complexes with oxalate and water ligands (Alabada et al., 2015). One of the oxalate ligands (bearing O18) bridges three cations (two Ba and one Cr) while the two others are bis-chelating (one Ba and one Cr). In the crystal, neighboring [Cr(C2O4)3]3– units are linked through barium ions into a ladder-like chain running parallel to [010] (Fig. 2). Adjacent ladders are then connected, through Ba—O18 coordination bonds, into a corrugated layer extending parallel to (101) (Fig. 3). The packing of the layers delineates voids that accommodate the cationic complex, [Ni(H2O)6]2+, as well as the water molecules of crystallization (Fig. 4).
of (3. Supramolecular features
In the crystal, extensive O—H⋯O hydrogen-bonding interactions of medium-to-weak strength are observed (Table 2), with all the water molecules acting as hydrogen-bond donors. The water molecules of crystallization also act as hydrogen-bond acceptors, as well as all of the oxalate O atoms except O12, O14 and O18. Two barium-coordinating water molecules (O1 and O3) behave as hydrogen-bond donors toward both components of the disordered lattice water molecule (O20A and O20B) via three-center bonds, O1—H1B⋯(O20A,O20B) and O3—H3B⋯(O20A,O20B). The cationic complex, [Ni(H2O)6]2+, functions as a hydrogen-bond donor group towards one barium-coordinating water molecule (O3), one water molecule of crystallization (O19) and four oxalate O atoms, viz. O9vi, O13vi, O11iv and O17iv [symmetry codes refer to Table 2]. Together, these interactions lead to a three-dimensional supramolecular network structure.
4. Database survey
A search of the Cambridge Structural Database (CSD version 5.41, May 2020; Groom et al., 2016) for [M(C2O4)3]n− complexes with each oxalate ligand bis-chelating M and another metal M′ gave 316 hits. Of these hits, 86 contain M = Cr and only one, the parent complex of (I), contains M = Cr and M′ = Ba.
5. Synthesis and crystallization
The parent complex of (I), {Ba6(H2O)17[Cr(C2O4)3]4}·7H2O, was prepared as previously described (Bélombé et al., 2003). The title compound was synthesized as follows: NiSO4·6H2O (0.21 g, 0.8 mmol) was dissolved in water (20 ml) and the resulting green solution added dropwise, under stirring and at 313 K, to a violet suspension of {Ba6(H2O)17[Cr(C2O4)3]4}·7H2O (0.50 g, 0.2 mmol) in water (25 ml). After one h, the colorless precipitate of BaSO4 was filtered off, and the filtrate was left to evaporate at room temperature. Two days later, crystals suitable for X-ray analysis were harvested.
6. Refinement
Crystal data, data collection and structure . All hydrogen atoms were located in difference-Fourier maps and refined with O—H and H⋯H distance restraints of 0.88 (1) and 1.37 (2) Å, respectively, and with Uiso(H) = 1.5Ueq(O). One lattice water molecule was refined as being disordered over two positions (O20A and O20B), with the occupancy ratio refined to 0.51 (5):0.49 (5). The distances Ba1—H3A and Ba1—H3B were restrained to be equal using a SADI instruction.
details are summarized in Table 3
|
Supporting information
CCDC reference: 1953456
https://doi.org/10.1107/S2056989020009536/wm5572sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020009536/wm5572Isup2.hkl
Data collection: APEX2 (Bruker, 2012); cell
SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Putz, 2018); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).[Ni(H2O)6][BaCr(C2O4)3(H2O)3]2·4H2O | F(000) = 1224 |
Mr = 1253.76 | Dx = 2.231 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 11.5556 (11) Å | Cell parameters from 53111 reflections |
b = 11.0774 (13) Å | θ = 2.2–27.5° |
c = 14.6105 (17) Å | µ = 3.27 mm−1 |
β = 93.794 (4)° | T = 100 K |
V = 1866.1 (4) Å3 | Block, metallic dark red |
Z = 2 | 0.14 × 0.09 × 0.06 mm |
Bruker D8 Venture diffractometer | 3539 reflections with I > 2σ(I) |
ω scans | Rint = 0.102 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 27.5°, θmin = 2.2° |
Tmin = 0.564, Tmax = 0.746 | h = −15→14 |
53111 measured reflections | k = −14→14 |
4278 independent reflections | l = −18→18 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.026 | Only H-atom coordinates refined |
wR(F2) = 0.058 | w = 1/[σ2(Fo2) + (0.0172P)2 + 3.0153P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.001 |
4278 reflections | Δρmax = 0.91 e Å−3 |
324 parameters | Δρmin = −0.85 e Å−3 |
28 restraints | Extinction correction: SHELXL-2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.00113 (15) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ba1 | 0.08524 (2) | 0.86116 (2) | 1.12114 (2) | 0.00717 (7) | |
Ni1 | 0.500000 | 0.500000 | 1.000000 | 0.00719 (12) | |
Cr1 | 0.11343 (4) | 0.64371 (4) | 0.80510 (3) | 0.00671 (11) | |
O1 | 0.2825 (2) | 1.0283 (2) | 1.13529 (18) | 0.0194 (5) | |
H1A | 0.295 (3) | 1.065 (4) | 1.1884 (15) | 0.029* | |
H1B | 0.3528 (16) | 1.008 (4) | 1.120 (3) | 0.029* | |
O2 | 0.2458 (2) | 0.8272 (2) | 1.2695 (2) | 0.0254 (6) | |
H2A | 0.311 (2) | 0.867 (4) | 1.273 (3) | 0.038* | |
H2B | 0.242 (3) | 0.798 (4) | 1.3252 (14) | 0.038* | |
O3 | 0.2799 (2) | 0.7817 (2) | 1.02345 (18) | 0.0239 (6) | |
H3A | 0.268 (3) | 0.809 (4) | 0.9661 (11) | 0.036* | |
H3B | 0.340 (2) | 0.829 (3) | 1.041 (2) | 0.036* | |
O4 | 0.36196 (19) | 0.5495 (2) | 1.07281 (16) | 0.0128 (5) | |
H4A | 0.327 (3) | 0.6188 (19) | 1.064 (2) | 0.019* | |
H4B | 0.384 (3) | 0.551 (3) | 1.1313 (9) | 0.019* | |
O5 | 0.61283 (18) | 0.5438 (2) | 1.10821 (15) | 0.0111 (5) | |
H5A | 0.597 (3) | 0.606 (2) | 1.141 (2) | 0.017* | |
H5B | 0.6886 (9) | 0.541 (3) | 1.109 (3) | 0.017* | |
O6 | 0.4836 (2) | 0.3258 (2) | 1.04722 (16) | 0.0117 (5) | |
H6A | 0.508 (3) | 0.304 (3) | 1.1027 (12) | 0.018* | |
H6B | 0.4116 (13) | 0.301 (3) | 1.041 (2) | 0.018* | |
O7 | 0.27008 (18) | 0.71183 (19) | 0.82518 (14) | 0.0088 (4) | |
O8 | 0.17713 (18) | 0.57697 (19) | 0.69450 (15) | 0.0098 (4) | |
O9 | 0.15646 (18) | 0.49939 (19) | 0.87894 (15) | 0.0095 (4) | |
O10 | −0.03403 (18) | 0.55595 (19) | 0.78547 (15) | 0.0105 (5) | |
O11 | 0.04723 (18) | 0.78461 (19) | 0.73672 (14) | 0.0090 (4) | |
O12 | 0.06071 (18) | 0.73167 (19) | 0.91145 (15) | 0.0099 (4) | |
O13 | 0.44555 (18) | 0.7013 (2) | 0.76971 (15) | 0.0109 (5) | |
O14 | 0.34645 (19) | 0.5579 (2) | 0.62938 (16) | 0.0125 (5) | |
O15 | 0.08516 (19) | 0.32087 (19) | 0.92016 (15) | 0.0117 (5) | |
O16 | −0.12046 (19) | 0.3838 (2) | 0.82179 (17) | 0.0158 (5) | |
O17 | −0.06735 (19) | 0.94310 (19) | 0.75914 (15) | 0.0103 (4) | |
O18 | −0.03303 (18) | 0.89973 (19) | 0.94573 (15) | 0.0088 (4) | |
O19 | 0.2628 (2) | 0.2480 (2) | 1.04657 (19) | 0.0244 (6) | |
H19A | 0.256 (4) | 0.1727 (15) | 1.062 (3) | 0.037* | |
H19B | 0.206 (3) | 0.263 (3) | 1.007 (2) | 0.037* | |
O20A | 0.4749 (9) | 0.938 (2) | 1.0718 (8) | 0.015 (3) | 0.51 (5) |
H20A | 0.543 (3) | 0.923 (8) | 1.099 (5) | 0.023* | 0.51 (5) |
H20B | 0.493 (6) | 0.970 (8) | 1.020 (3) | 0.023* | 0.51 (5) |
O20B | 0.4877 (12) | 0.895 (2) | 1.0565 (11) | 0.018 (2) | 0.49 (5) |
H20C | 0.536 (6) | 0.875 (7) | 1.103 (4) | 0.027* | 0.49 (5) |
H20D | 0.477 (7) | 0.825 (4) | 1.028 (5) | 0.027* | 0.49 (5) |
C1 | 0.3415 (3) | 0.6770 (3) | 0.7665 (2) | 0.0085 (6) | |
C2 | 0.2869 (3) | 0.5965 (3) | 0.6882 (2) | 0.0087 (6) | |
C3 | 0.0763 (3) | 0.4184 (3) | 0.8807 (2) | 0.0081 (6) | |
C4 | −0.0373 (3) | 0.4528 (3) | 0.8258 (2) | 0.0092 (6) | |
C5 | −0.0088 (3) | 0.8571 (3) | 0.7871 (2) | 0.0073 (6) | |
C6 | 0.0054 (3) | 0.8296 (3) | 0.8905 (2) | 0.0078 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ba1 | 0.00780 (10) | 0.00561 (9) | 0.00811 (10) | 0.00062 (7) | 0.00049 (6) | 0.00064 (7) |
Ni1 | 0.0055 (3) | 0.0091 (3) | 0.0068 (3) | 0.0002 (2) | −0.0008 (2) | −0.0013 (2) |
Cr1 | 0.0055 (2) | 0.0055 (2) | 0.0092 (2) | 0.00058 (18) | 0.00116 (18) | 0.00096 (19) |
O1 | 0.0149 (12) | 0.0216 (13) | 0.0213 (14) | −0.0025 (10) | −0.0011 (10) | 0.0013 (11) |
O2 | 0.0171 (13) | 0.0242 (14) | 0.0329 (16) | −0.0095 (11) | −0.0126 (12) | 0.0088 (12) |
O3 | 0.0239 (14) | 0.0266 (15) | 0.0211 (14) | 0.0006 (11) | 0.0012 (11) | −0.0033 (11) |
O4 | 0.0101 (11) | 0.0168 (12) | 0.0113 (11) | 0.0026 (9) | 0.0003 (9) | −0.0013 (9) |
O5 | 0.0063 (10) | 0.0142 (11) | 0.0127 (12) | 0.0021 (9) | −0.0008 (9) | −0.0051 (9) |
O6 | 0.0103 (11) | 0.0144 (11) | 0.0100 (11) | 0.0000 (9) | −0.0020 (9) | 0.0033 (9) |
O7 | 0.0073 (10) | 0.0086 (10) | 0.0105 (11) | −0.0005 (8) | 0.0015 (8) | −0.0015 (9) |
O8 | 0.0063 (10) | 0.0120 (11) | 0.0111 (11) | 0.0000 (8) | 0.0010 (8) | −0.0022 (9) |
O9 | 0.0063 (10) | 0.0064 (10) | 0.0155 (12) | 0.0000 (8) | −0.0014 (9) | 0.0020 (9) |
O10 | 0.0066 (10) | 0.0087 (10) | 0.0162 (12) | 0.0000 (8) | −0.0004 (9) | 0.0035 (9) |
O11 | 0.0101 (10) | 0.0086 (10) | 0.0084 (11) | 0.0011 (8) | 0.0024 (8) | 0.0010 (9) |
O12 | 0.0114 (11) | 0.0095 (11) | 0.0088 (11) | 0.0028 (9) | 0.0017 (8) | 0.0033 (9) |
O13 | 0.0061 (10) | 0.0157 (12) | 0.0108 (11) | −0.0021 (8) | 0.0002 (8) | 0.0009 (9) |
O14 | 0.0097 (11) | 0.0139 (11) | 0.0142 (12) | −0.0003 (9) | 0.0042 (9) | −0.0018 (9) |
O15 | 0.0144 (11) | 0.0076 (10) | 0.0126 (12) | −0.0002 (9) | −0.0019 (9) | 0.0036 (9) |
O16 | 0.0075 (11) | 0.0110 (12) | 0.0282 (14) | −0.0014 (9) | −0.0034 (10) | 0.0037 (10) |
O17 | 0.0138 (11) | 0.0086 (11) | 0.0081 (11) | 0.0038 (9) | −0.0018 (9) | 0.0014 (9) |
O18 | 0.0117 (11) | 0.0070 (10) | 0.0078 (11) | −0.0003 (8) | 0.0017 (9) | 0.0000 (8) |
O19 | 0.0201 (13) | 0.0203 (14) | 0.0307 (15) | −0.0076 (11) | −0.0138 (11) | 0.0119 (12) |
O20A | 0.015 (3) | 0.021 (7) | 0.009 (4) | −0.003 (4) | 0.000 (2) | −0.004 (4) |
O20B | 0.021 (4) | 0.020 (6) | 0.012 (4) | −0.003 (4) | −0.002 (3) | −0.001 (4) |
C1 | 0.0100 (15) | 0.0081 (13) | 0.0075 (15) | 0.0006 (11) | 0.0005 (12) | 0.0030 (11) |
C2 | 0.0106 (15) | 0.0068 (13) | 0.0089 (15) | −0.0004 (11) | 0.0010 (12) | 0.0019 (12) |
C3 | 0.0093 (14) | 0.0079 (15) | 0.0074 (15) | 0.0000 (12) | 0.0021 (12) | −0.0029 (12) |
C4 | 0.0066 (14) | 0.0085 (14) | 0.0124 (16) | 0.0011 (11) | 0.0010 (12) | −0.0007 (12) |
C5 | 0.0071 (14) | 0.0067 (13) | 0.0081 (14) | −0.0027 (12) | 0.0014 (11) | −0.0009 (12) |
C6 | 0.0048 (14) | 0.0070 (14) | 0.0115 (15) | −0.0035 (11) | −0.0005 (12) | 0.0026 (12) |
Ba1—O2 | 2.784 (3) | O4—H4A | 0.875 (10) |
Ba1—O17i | 2.802 (2) | O4—H4B | 0.874 (10) |
Ba1—O15ii | 2.855 (2) | O5—H5A | 0.870 (10) |
Ba1—O18 | 2.856 (2) | O5—H5B | 0.875 (10) |
Ba1—O16ii | 2.859 (2) | O6—H6A | 0.873 (10) |
Ba1—O18i | 2.873 (2) | O6—H6B | 0.874 (10) |
Ba1—O13iii | 2.874 (2) | O7—C1 | 1.288 (4) |
Ba1—O3 | 2.880 (3) | O8—C2 | 1.297 (4) |
Ba1—O14iii | 2.912 (2) | O9—C3 | 1.291 (4) |
Ba1—O1 | 2.933 (2) | O10—C4 | 1.287 (4) |
Ni1—O5iv | 2.040 (2) | O11—C5 | 1.292 (4) |
Ni1—O5 | 2.040 (2) | O12—C6 | 1.285 (4) |
Ni1—O4iv | 2.050 (2) | O13—C1 | 1.230 (4) |
Ni1—O4 | 2.050 (2) | O14—C2 | 1.213 (4) |
Ni1—O6iv | 2.062 (2) | O15—C3 | 1.225 (4) |
Ni1—O6 | 2.062 (2) | O16—C4 | 1.226 (4) |
Cr1—O8 | 1.964 (2) | O17—C5 | 1.223 (4) |
Cr1—O12 | 1.965 (2) | O18—C6 | 1.225 (4) |
Cr1—O7 | 1.965 (2) | O19—H19A | 0.870 (10) |
Cr1—O10 | 1.966 (2) | O19—H19B | 0.870 (10) |
Cr1—O9 | 1.974 (2) | O20A—H20A | 0.878 (10) |
Cr1—O11 | 1.979 (2) | O20A—H20B | 0.878 (10) |
O1—H1A | 0.879 (10) | O20B—H20C | 0.878 (10) |
O1—H1B | 0.884 (10) | O20B—H20D | 0.879 (10) |
O2—H2A | 0.875 (10) | C1—C2 | 1.550 (4) |
O2—H2B | 0.878 (10) | C3—C4 | 1.542 (4) |
O3—H3A | 0.893 (10) | C5—C6 | 1.540 (4) |
O3—H3B | 0.891 (10) | ||
O2—Ba1—O17i | 72.03 (7) | O12—Cr1—O10 | 92.84 (9) |
O2—Ba1—O15ii | 118.93 (7) | O7—Cr1—O10 | 172.94 (9) |
O17i—Ba1—O15ii | 126.88 (6) | O8—Cr1—O9 | 92.88 (9) |
O2—Ba1—O18 | 166.84 (7) | O12—Cr1—O9 | 92.84 (9) |
O17i—Ba1—O18 | 113.19 (6) | O7—Cr1—O9 | 91.90 (9) |
O15ii—Ba1—O18 | 68.50 (6) | O10—Cr1—O9 | 82.17 (9) |
O2—Ba1—O16ii | 64.53 (7) | O8—Cr1—O11 | 92.00 (9) |
O17i—Ba1—O16ii | 124.55 (7) | O12—Cr1—O11 | 83.02 (9) |
O15ii—Ba1—O16ii | 58.29 (6) | O7—Cr1—O11 | 95.39 (9) |
O18—Ba1—O16ii | 117.00 (7) | O10—Cr1—O11 | 90.80 (9) |
O2—Ba1—O18i | 120.24 (7) | O9—Cr1—O11 | 171.68 (9) |
O17i—Ba1—O18i | 58.43 (6) | Ba1—O1—H1A | 116 (3) |
O15ii—Ba1—O18i | 116.93 (6) | Ba1—O1—H1B | 123 (3) |
O18—Ba1—O18i | 58.65 (7) | H1A—O1—H1B | 104 (2) |
O16ii—Ba1—O18i | 175.13 (6) | Ba1—O2—H2A | 121 (3) |
O2—Ba1—O13iii | 76.00 (7) | Ba1—O2—H2B | 134 (3) |
O17i—Ba1—O13iii | 69.29 (6) | H2A—O2—H2B | 103 (2) |
O15ii—Ba1—O13iii | 64.89 (6) | Ba1—O3—H3A | 106 (2) |
O18—Ba1—O13iii | 117.03 (6) | Ba1—O3—H3B | 107 (2) |
O16ii—Ba1—O13iii | 68.14 (7) | H3A—O3—H3B | 99 (2) |
O18i—Ba1—O13iii | 111.27 (6) | Ni1—O4—H4A | 122 (3) |
O2—Ba1—O3 | 80.94 (8) | Ni1—O4—H4B | 109 (2) |
O17i—Ba1—O3 | 129.65 (7) | H4A—O4—H4B | 103 (2) |
O15ii—Ba1—O3 | 103.29 (7) | Ni1—O5—H5A | 118 (2) |
O18—Ba1—O3 | 86.79 (7) | Ni1—O5—H5B | 126 (2) |
O16ii—Ba1—O3 | 75.75 (7) | H5A—O5—H5B | 105 (2) |
O18i—Ba1—O3 | 105.45 (7) | Ni1—O6—H6A | 123 (2) |
O13iii—Ba1—O3 | 142.83 (7) | Ni1—O6—H6B | 111 (2) |
O2—Ba1—O14iii | 126.45 (8) | H6A—O6—H6B | 104 (2) |
O17i—Ba1—O14iii | 68.07 (6) | C1—O7—Cr1 | 114.17 (19) |
O15ii—Ba1—O14iii | 65.42 (6) | C2—O8—Cr1 | 114.68 (19) |
O18—Ba1—O14iii | 65.95 (6) | C3—O9—Cr1 | 114.79 (19) |
O16ii—Ba1—O14iii | 113.40 (6) | C4—O10—Cr1 | 115.08 (19) |
O18i—Ba1—O14iii | 63.38 (6) | C5—O11—Cr1 | 113.24 (19) |
O13iii—Ba1—O14iii | 57.43 (6) | C6—O12—Cr1 | 113.91 (19) |
O3—Ba1—O14iii | 152.62 (7) | C1—O13—Ba1v | 120.99 (19) |
O2—Ba1—O1 | 63.63 (7) | C2—O14—Ba1v | 120.2 (2) |
O17i—Ba1—O1 | 63.68 (7) | C3—O15—Ba1ii | 119.24 (19) |
O15ii—Ba1—O1 | 169.31 (7) | C4—O16—Ba1ii | 118.81 (19) |
O18—Ba1—O1 | 107.00 (7) | C5—O17—Ba1i | 117.15 (19) |
O16ii—Ba1—O1 | 118.91 (7) | C6—O18—Ba1 | 108.89 (19) |
O18i—Ba1—O1 | 65.59 (7) | C6—O18—Ba1i | 115.98 (19) |
O13iii—Ba1—O1 | 124.84 (7) | Ba1—O18—Ba1i | 121.35 (7) |
O3—Ba1—O1 | 66.37 (8) | H19A—O19—H19B | 106 (2) |
O14iii—Ba1—O1 | 122.46 (7) | H20A—O20A—H20B | 102 (2) |
O5iv—Ni1—O5 | 180.00 (8) | H20C—O20B—H20D | 103 (2) |
O5iv—Ni1—O4iv | 90.78 (9) | O13—C1—O7 | 125.2 (3) |
O5—Ni1—O4iv | 89.22 (9) | O13—C1—C2 | 120.2 (3) |
O5iv—Ni1—O4 | 89.22 (9) | O7—C1—C2 | 114.6 (3) |
O5—Ni1—O4 | 90.78 (9) | O14—C2—O8 | 126.5 (3) |
O4iv—Ni1—O4 | 180.0 | O14—C2—C1 | 120.2 (3) |
O5iv—Ni1—O6iv | 91.79 (9) | O8—C2—C1 | 113.3 (3) |
O5—Ni1—O6iv | 88.21 (9) | O15—C3—O9 | 125.8 (3) |
O4iv—Ni1—O6iv | 89.13 (9) | O15—C3—C4 | 120.3 (3) |
O4—Ni1—O6iv | 90.87 (9) | O9—C3—C4 | 113.9 (3) |
O5iv—Ni1—O6 | 88.21 (9) | O16—C4—O10 | 125.4 (3) |
O5—Ni1—O6 | 91.79 (9) | O16—C4—C3 | 120.6 (3) |
O4iv—Ni1—O6 | 90.87 (9) | O10—C4—C3 | 114.1 (3) |
O4—Ni1—O6 | 89.13 (9) | O17—C5—O11 | 125.6 (3) |
O6iv—Ni1—O6 | 180.00 (4) | O17—C5—C6 | 120.2 (3) |
O8—Cr1—O12 | 171.94 (9) | O11—C5—C6 | 114.3 (3) |
O8—Cr1—O7 | 82.86 (9) | O18—C6—O12 | 125.1 (3) |
O12—Cr1—O7 | 91.28 (9) | O18—C6—C5 | 120.1 (3) |
O8—Cr1—O10 | 93.57 (9) | O12—C6—C5 | 114.8 (3) |
Ba1v—O13—C1—O7 | −172.7 (2) | Cr1—O10—C4—C3 | −0.6 (3) |
Ba1v—O13—C1—C2 | 8.4 (4) | O15—C3—C4—O16 | 0.9 (4) |
Cr1—O7—C1—O13 | −174.5 (2) | O9—C3—C4—O16 | 180.0 (3) |
Cr1—O7—C1—C2 | 4.4 (3) | O15—C3—C4—O10 | −178.0 (3) |
Ba1v—O14—C2—O8 | 173.1 (2) | O9—C3—C4—O10 | 1.1 (4) |
Ba1v—O14—C2—C1 | −7.5 (4) | Ba1i—O17—C5—O11 | −150.8 (2) |
Cr1—O8—C2—O14 | 175.1 (3) | Ba1i—O17—C5—C6 | 27.7 (3) |
Cr1—O8—C2—C1 | −4.3 (3) | Cr1—O11—C5—O17 | −171.9 (2) |
O13—C1—C2—O14 | −0.5 (5) | Cr1—O11—C5—C6 | 9.5 (3) |
O7—C1—C2—O14 | −179.5 (3) | Ba1—O18—C6—O12 | 20.2 (4) |
O13—C1—C2—O8 | 178.9 (3) | Ba1i—O18—C6—O12 | 161.3 (2) |
O7—C1—C2—O8 | −0.1 (4) | Ba1—O18—C6—C5 | −158.5 (2) |
Ba1ii—O15—C3—O9 | −166.0 (2) | Ba1i—O18—C6—C5 | −17.4 (3) |
Ba1ii—O15—C3—C4 | 13.0 (3) | Cr1—O12—C6—O18 | −178.3 (2) |
Cr1—O9—C3—O15 | 178.1 (2) | Cr1—O12—C6—C5 | 0.4 (3) |
Cr1—O9—C3—C4 | −1.0 (3) | O17—C5—C6—O18 | −6.7 (4) |
Ba1ii—O16—C4—O10 | 164.6 (2) | O11—C5—C6—O18 | 172.0 (3) |
Ba1ii—O16—C4—C3 | −14.2 (4) | O17—C5—C6—O12 | 174.6 (3) |
Cr1—O10—C4—O16 | −179.4 (3) | O11—C5—C6—O12 | −6.8 (4) |
Symmetry codes: (i) −x, −y+2, −z+2; (ii) −x, −y+1, −z+2; (iii) x−1/2, −y+3/2, z+1/2; (iv) −x+1, −y+1, −z+2; (v) x+1/2, −y+3/2, z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O16vi | 0.88 (1) | 2.20 (2) | 3.038 (4) | 160 (3) |
O1—H1B···O20A | 0.88 (1) | 1.80 (2) | 2.660 (18) | 165 (4) |
O1—H1B···O20B | 0.88 (1) | 2.25 (3) | 3.08 (2) | 156 (3) |
O2—H2A···O10vi | 0.88 (1) | 1.98 (1) | 2.851 (3) | 175 (4) |
O2—H2B···O19vii | 0.88 (1) | 1.96 (1) | 2.835 (4) | 175 (4) |
O3—H3A···O7 | 0.89 (1) | 2.32 (3) | 2.993 (3) | 132 (3) |
O3—H3B···O20A | 0.89 (1) | 2.00 (2) | 2.893 (16) | 176 (3) |
O3—H3B···O20B | 0.89 (1) | 1.86 (2) | 2.722 (11) | 163 (3) |
O4—H4A···O3 | 0.88 (1) | 1.96 (1) | 2.819 (4) | 166 (4) |
O4—H4B···O17vi | 0.87 (1) | 1.92 (1) | 2.791 (3) | 179 (4) |
O5—H5A···O11vi | 0.87 (1) | 1.96 (1) | 2.811 (3) | 165 (4) |
O5—H5B···O9iv | 0.88 (1) | 1.84 (1) | 2.703 (3) | 167 (4) |
O6—H6A···O13iv | 0.87 (1) | 1.91 (1) | 2.761 (3) | 165 (4) |
O6—H6B···O19 | 0.87 (1) | 1.83 (1) | 2.693 (3) | 172 (3) |
O19—H19A···O1viii | 0.87 (1) | 1.94 (2) | 2.759 (4) | 157 (4) |
O19—H19B···O15 | 0.87 (1) | 1.93 (1) | 2.789 (3) | 172 (4) |
O20A—H20A···O8vi | 0.88 (1) | 2.01 (3) | 2.855 (10) | 161 (8) |
O20A—H20B···O20Aix | 0.88 (1) | 1.74 (3) | 2.60 (2) | 168 (9) |
O20B—H20C···O8vi | 0.88 (1) | 2.11 (4) | 2.893 (11) | 149 (7) |
O20B—H20D···O6iv | 0.88 (1) | 2.07 (4) | 2.90 (3) | 159 (8) |
Symmetry codes: (iv) −x+1, −y+1, −z+2; (vi) x+1/2, −y+3/2, z+1/2; (vii) −x+1/2, y+1/2, −z+5/2; (viii) x, y−1, z; (ix) −x+1, −y+2, −z+2. |
Acknowledgements
YAM thanks the PMD2X X-ray diffraction facility (https://crm2.univ-lorraine.fr/lab/fr/services/pmd2x) of the Institut Jean Barriol, Université de Lorraine, for the X-ray diffraction measurements, data processing and analysis, and providing reports for publication. YAM thanks also the CCDC for providing access to the Cambridge Structural Database through the FAIRE programme.
References
Alabada, R., Kovalchukova, O., Polyakova, I., Strashnova, S. & Sergienko, V. (2015). Acta Cryst. E71, 459–462. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bélombé, M. M., Nenwa, J., Mbiangué, Y. A., Nnanga, G. E., Mbomekallé, I.-M., Hey-Hawkins, E., Lönnecke, P. & Majoumo, F. (2003). Dalton Trans. pp. 2117–2118. Google Scholar
Bénard, S., Rivière, E., Yu, P., Nakatani, K. & Delouis, J. F. (2001). Chem. Mater. 13, 159–162. Google Scholar
Brandenburg, K. & Putz, H. (2018). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Coronado, E., Galán-Mascarós, J. R., Martí-Gastaldo, C., Waerenborgh, J. C. & Gaczyński, P. (2008). Inorg. Chem. 47, 6829–6839. Web of Science CSD CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hancock, R. D., Siddons, C. J., Oscarson, K. A. & Reibenspies, J. M. (2004). Inorg. Chim. Acta, 357, 723–727. Web of Science CSD CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Martin, L., Lopez, J. R., Akutsu, H., Nakazawa, Y. & Imajo, S. (2017). Inorg. Chem. 56, 14045–14052. Web of Science CSD CrossRef CAS PubMed Google Scholar
Ōkawa, H., Yoshida, Y., Otsubo, K. & Kitagawa, H. (2020). Inorg. Chem. 59, 623–628. Web of Science PubMed Google Scholar
Pardo, E., Train, C., Gontard, G., Boubekeur, K., Fabelo, O., Liu, H., Dkhil, B., Lloret, F., Nakagawa, K., Tokoro, H., Ohkoshi, S. & Verdaguer, M. (2011). J. Am. Chem. Soc. 133, 15328–15331. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Tsobnang, P. K., Hastürk, E., Fröhlich, D., Wenger, E., Durand, P., Ngolui, L. J., Lecomte, C. & Janiak, C. (2019). Cryst. Growth Des. 19, 2869–2880. Web of Science CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhong, Z. J., Matsumoto, N., Okawa, H. & Kida, S. (1990). Chem. Lett. 19, 87–90. CrossRef Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.