research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa­aqua­nickel(II) bis­­[tri­aqua-μ3-oxalato-di-μ-oxalato-bariumchromate(III)] tetra­hydrate

CROSSMARK_Color_square_no_text.svg

aChemistry Department, Higher Teachers' Training College, University of Maroua, PO Box 55, Maroua, Cameroon, and bUniversité de Lorraine, CNRS, CRM2, F54000, Nancy, France
*Correspondence e-mail: mbiangueya@yahoo.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 22 June 2020; accepted 13 July 2020; online 17 July 2020)

The title compound, [Ni(H2O)6][BaCr(C2O4)3(H2O)3]2·4H2O, was obtained in the form of single crystals from the slow evaporation of an aqueous mixture of {Ba6(H2O)17[Cr(C2O4)3]4}·7H2O and NiSO4·6H2O in the molar ratio 1:4. Its structure is made up of corrugated anionic (101) layers of formula [BaCr(C2O4)3(H2O)3]nn that leave voids accommodating the charge-compensating cations, [Ni(H2O)6]2+ (point group symmetry [\overline{1}]), as well as the water mol­ecules of crystallization. The anionic layers are built from the connection of barium and chromium atoms through bridging oxalate ligands. The CrIII atom is hexa­coordinated by O atoms of three oxalate ligands while the BaII atom is tenfold coordinated by three O atoms of water mol­ecules and seven O atoms of four oxalate ligands. Each NiII atom sits on an inversion center and is coordinated by six water mol­ecules. One of the uncoordinated water mol­ecules is disordered over two sites, with a refined occupancy ratio of 0.51 (5):0.49 (5). In the crystal, extensive O—H⋯O hydrogen-bonding inter­actions link the anionic layers, the charge-balancing cations as well as the water mol­ecules of crystallization into a three-dimensional supra­molecular network.

1. Chemical context

Over the past three decades, tris­(oxalato)metalate(III) complex anions, [M(C2O4)3]3–, have been extensively used for the design of many compounds with fascinating physical properties (Zhong et al., 1990[Zhong, Z. J., Matsumoto, N., Okawa, H. & Kida, S. (1990). Chem. Lett. 19, 87-90.]; Bénard et al., 2001[Bénard, S., Rivière, E., Yu, P., Nakatani, K. & Delouis, J. F. (2001). Chem. Mater. 13, 159-162.]; Coronado et al., 2008[Coronado, E., Galán-Mascarós, J. R., Martí-Gastaldo, C., Waerenborgh, J. C. & Gaczyński, P. (2008). Inorg. Chem. 47, 6829-6839.]; Pardo et al., 2011[Pardo, E., Train, C., Gontard, G., Boubekeur, K., Fabelo, O., Liu, H., Dkhil, B., Lloret, F., Nakagawa, K., Tokoro, H., Ohkoshi, S. & Verdaguer, M. (2011). J. Am. Chem. Soc. 133, 15328-15331.]; Martin et al., 2017[Martin, L., Lopez, J. R., Akutsu, H., Nakazawa, Y. & Imajo, S. (2017). Inorg. Chem. 56, 14045-14052.]; Tsobnang et al., 2019[Tsobnang, P. K., Hastürk, E., Fröhlich, D., Wenger, E., Durand, P., Ngolui, L. J., Lecomte, C. & Janiak, C. (2019). Cryst. Growth Des. 19, 2869-2880.]; Ōkawa et al., 2020[Ōkawa, H., Yoshida, Y., Otsubo, K. & Kitagawa, H. (2020). Inorg. Chem. 59, 623-628.]). One of the main reasons for that is the ability of these anions to act like ligands towards a variety of metallic cations and to build a diversity of extended structures in which neighboring metallic ions are linked through bridging oxalate ligands. From the synthetic point of view, the tris­(oxalato)chromate(III) anion, [Cr(C2O4)3]3– or [Cr(ox)3]3–, is most attractive because of its stability and inertness toward ligand substitution. As a source of this anion, the polymeric complex salt {Ba6(H2O)17[Cr(C2O4)3]4}·7H2O (Bélombé et al., 2003[Bélombé, M. M., Nenwa, J., Mbiangué, Y. A., Nnanga, G. E., Mbomekallé, I.-M., Hey-Hawkins, E., Lönnecke, P. & Majoumo, F. (2003). Dalton Trans. pp. 2117-2118.]) offers the possibility of easily replacing, in the reaction medium and under daylight, the Ba2+ ions by other cations, provided the latter are brought into that medium as their sulfates. Since Ba2+ has a flexible coordination sphere with coordination numbers ranging from three to twelve (Hancock et al., 2004[Hancock, R. D., Siddons, C. J., Oscarson, K. A. & Reibenspies, J. M. (2004). Inorg. Chim. Acta, 357, 723-727.]), this inspired us to start a research program aimed at exploring the various structures that might arise from different combinations of [Cr(ox)3]3–, Ba2+ and other cations, and possibly studying the physical properties of the corresponding compounds. From an aqueous suspension of {Ba6(H2O)17[Cr(C2O4)3]4}·7H2O, a partial replacement of Ba2+ by Ni2+ led to [Ni(H2O)6][BaCr(C2O4)3(H2O)3]2·4H2O (I), the structure of which is described herein.

[Scheme 1]

2. Structural commentary

The asymmetric unit of (I) is depicted in Fig. 1[link]. It contains one half of an [Ni(H2O)6]2+ cation situated on an inversion center, one [BaCr(C2O4)3(H2O)3] anion and two water mol­ecules of crystallization, one of which being equally disordered over two positions (O20A and O20B). The Ba2+ ion is linked to ten O atoms from three water mol­ecules and four oxalate ligands (three chelating, one monodentately binding), with Ba—O bond lengths in the range 2.784 (3)–2.933 (3) Å (Table 1[link]). These values are typical for ten-coordinate barium complexes with oxalate and water ligands (Alabada et al., 2015[Alabada, R., Kovalchukova, O., Polyakova, I., Strashnova, S. & Sergienko, V. (2015). Acta Cryst. E71, 459-462.]). One of the oxalate ligands (bearing O18) bridges three cations (two Ba and one Cr) while the two others are bis-chelating (one Ba and one Cr). In the crystal, neighboring [Cr(C2O4)3]3– units are linked through barium ions into a ladder-like chain running parallel to [010] (Fig. 2[link]). Adjacent ladders are then connected, through Ba—O18 coordination bonds, into a corrugated layer extending parallel to (101) (Fig. 3[link]). The packing of the layers delineates voids that accommodate the cationic complex, [Ni(H2O)6]2+, as well as the water mol­ecules of crystallization (Fig. 4[link]).

Table 1
Selected bond lengths (Å)

Ba1—O2 2.784 (3) Ba1—O18i 2.873 (2)
Ba1—O17i 2.802 (2) Ba1—O13iii 2.874 (2)
Ba1—O15ii 2.855 (2) Ba1—O3 2.880 (3)
Ba1—O18 2.856 (2) Ba1—O14iii 2.912 (2)
Ba1—O16ii 2.859 (2) Ba1—O1 2.933 (2)
Symmetry codes: (i) -x, -y+2, -z+2; (ii) -x, -y+1, -z+2; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The components of the asymmetric unit of (I)[link], showing the atom-numbering scheme and displacement ellipsoids at the 50% probability level.
[Figure 2]
Figure 2
Connection of [Cr(C2O4)3]3– units with Ba2+ cations into a ladder-like chain. Barium-coordinating water mol­ecules have been omitted for clarity.
[Figure 3]
Figure 3
Three adjacent ladder-like chains connected through Ba2O2 units into a corrugated layer, viewed in the (101) plane (a) and along [010] (b). Barium-coordinating water mol­ecules have been omitted for clarity.
[Figure 4]
Figure 4
Packing of the crystal structure of (I)[link] in a view along [010], showing corrugated layers inter­leaved by [Ni(H2O)6]2+ complex cations and water mol­ecules of crystallization. Barium-coordinating water mol­ecules have been omitted for clarity.

3. Supra­molecular features

In the crystal, extensive O—H⋯O hydrogen-bonding inter­actions of medium-to-weak strength are observed (Table 2[link]), with all the water mol­ecules acting as hydrogen-bond donors. The water mol­ecules of crystallization also act as hydrogen-bond acceptors, as well as all of the oxalate O atoms except O12, O14 and O18. Two barium-coordinating water mol­ecules (O1 and O3) behave as hydrogen-bond donors toward both components of the disordered lattice water mol­ecule (O20A and O20B) via three-center bonds, O1—H1B⋯(O20A,O20B) and O3—H3B⋯(O20A,O20B). The cationic complex, [Ni(H2O)6]2+, functions as a hydrogen-bond donor group towards one barium-coordinating water mol­ecule (O3), one water mol­ecule of crystallization (O19) and four oxalate O atoms, viz. O9vi, O13vi, O11iv and O17iv [symmetry codes refer to Table 2[link]]. Together, these inter­actions lead to a three-dimensional supra­molecular network structure.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O16iv 0.88 (1) 2.20 (2) 3.038 (4) 160 (3)
O1—H1B⋯O20A 0.88 (1) 1.80 (2) 2.660 (18) 165 (4)
O1—H1B⋯O20B 0.88 (1) 2.25 (3) 3.08 (2) 156 (3)
O2—H2A⋯O10iv 0.88 (1) 1.98 (1) 2.851 (3) 175 (4)
O2—H2B⋯O19v 0.88 (1) 1.96 (1) 2.835 (4) 175 (4)
O3—H3A⋯O7 0.89 (1) 2.32 (3) 2.993 (3) 132 (3)
O3—H3B⋯O20A 0.89 (1) 2.00 (2) 2.893 (16) 176 (3)
O3—H3B⋯O20B 0.89 (1) 1.86 (2) 2.722 (11) 163 (3)
O4—H4A⋯O3 0.88 (1) 1.96 (1) 2.819 (4) 166 (4)
O4—H4B⋯O17iv 0.87 (1) 1.92 (1) 2.791 (3) 179 (4)
O5—H5A⋯O11iv 0.87 (1) 1.96 (1) 2.811 (3) 165 (4)
O5—H5B⋯O9vi 0.88 (1) 1.84 (1) 2.703 (3) 167 (4)
O6—H6A⋯O13vi 0.87 (1) 1.91 (1) 2.761 (3) 165 (4)
O6—H6B⋯O19 0.87 (1) 1.83 (1) 2.693 (3) 172 (3)
O19—H19A⋯O1vii 0.87 (1) 1.94 (2) 2.759 (4) 157 (4)
O19—H19B⋯O15 0.87 (1) 1.93 (1) 2.789 (3) 172 (4)
O20A—H20A⋯O8iv 0.88 (1) 2.01 (3) 2.855 (10) 161 (8)
O20A—H20B⋯O20Aviii 0.88 (1) 1.74 (3) 2.60 (2) 168 (9)
O20B—H20C⋯O8iv 0.88 (1) 2.11 (4) 2.893 (11) 149 (7)
O20B—H20D⋯O6vi 0.88 (1) 2.07 (4) 2.90 (3) 159 (8)
Symmetry codes: (iv) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (v) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{5\over 2}}]; (vi) -x+1, -y+1, -z+2; (vii) x, y-1, z; (viii) -x+1, -y+2, -z+2.

4. Database survey

A search of the Cambridge Structural Database (CSD version 5.41, May 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for [M(C2O4)3]n complexes with each oxalate ligand bis-chelating M and another metal M′ gave 316 hits. Of these hits, 86 contain M = Cr and only one, the parent complex of (I)[link], contains M = Cr and M′ = Ba.

5. Synthesis and crystallization

The parent complex of (I)[link], {Ba6(H2O)17[Cr(C2O4)3]4}·7H2O, was prepared as previously described (Bélombé et al., 2003[Bélombé, M. M., Nenwa, J., Mbiangué, Y. A., Nnanga, G. E., Mbomekallé, I.-M., Hey-Hawkins, E., Lönnecke, P. & Majoumo, F. (2003). Dalton Trans. pp. 2117-2118.]). The title compound was synthesized as follows: NiSO4·6H2O (0.21 g, 0.8 mmol) was dissolved in water (20 ml) and the resulting green solution added dropwise, under stirring and at 313 K, to a violet suspension of {Ba6(H2O)17[Cr(C2O4)3]4}·7H2O (0.50 g, 0.2 mmol) in water (25 ml). After one h, the colorless precipitate of BaSO4 was filtered off, and the filtrate was left to evaporate at room temperature. Two days later, crystals suitable for X-ray analysis were harvested.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All hydrogen atoms were located in difference-Fourier maps and refined with O—H and H⋯H distance restraints of 0.88 (1) and 1.37 (2) Å, respectively, and with Uiso(H) = 1.5Ueq(O). One lattice water mol­ecule was refined as being disordered over two positions (O20A and O20B), with the occupancy ratio refined to 0.51 (5):0.49 (5). The distances Ba1—H3A and Ba1—H3B were restrained to be equal using a SADI instruction.

Table 3
Experimental details

Crystal data
Chemical formula [Ni(H2O)6][BaCr(C2O4)3(H2O)3]2·4H2O
Mr 1253.76
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 11.5556 (11), 11.0774 (13), 14.6105 (17)
β (°) 93.794 (4)
V3) 1866.1 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 3.27
Crystal size (mm) 0.14 × 0.09 × 0.06
 
Data collection
Diffractometer Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.564, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 53111, 4278, 3539
Rint 0.102
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.058, 1.03
No. of reflections 4278
No. of parameters 324
No. of restraints 28
H-atom treatment Only H-atom coordinates refined
Δρmax, Δρmin (e Å−3) 0.91, −0.85
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg & Putz, 2018[Brandenburg, K. & Putz, H. (2018). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Putz, 2018); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

Hexaaquanickel(II) bis[triaqua-µ3-oxalato-di-µ-oxalato-bariumchromate(III)] tetrahydrate top
Crystal data top
[Ni(H2O)6][BaCr(C2O4)3(H2O)3]2·4H2OF(000) = 1224
Mr = 1253.76Dx = 2.231 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.5556 (11) ÅCell parameters from 53111 reflections
b = 11.0774 (13) Åθ = 2.2–27.5°
c = 14.6105 (17) ŵ = 3.27 mm1
β = 93.794 (4)°T = 100 K
V = 1866.1 (4) Å3Block, metallic dark red
Z = 20.14 × 0.09 × 0.06 mm
Data collection top
Bruker D8 Venture
diffractometer
3539 reflections with I > 2σ(I)
ω scansRint = 0.102
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 27.5°, θmin = 2.2°
Tmin = 0.564, Tmax = 0.746h = 1514
53111 measured reflectionsk = 1414
4278 independent reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Only H-atom coordinates refined
wR(F2) = 0.058 w = 1/[σ2(Fo2) + (0.0172P)2 + 3.0153P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
4278 reflectionsΔρmax = 0.91 e Å3
324 parametersΔρmin = 0.85 e Å3
28 restraintsExtinction correction: SHELXL-2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00113 (15)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ba10.08524 (2)0.86116 (2)1.12114 (2)0.00717 (7)
Ni10.5000000.5000001.0000000.00719 (12)
Cr10.11343 (4)0.64371 (4)0.80510 (3)0.00671 (11)
O10.2825 (2)1.0283 (2)1.13529 (18)0.0194 (5)
H1A0.295 (3)1.065 (4)1.1884 (15)0.029*
H1B0.3528 (16)1.008 (4)1.120 (3)0.029*
O20.2458 (2)0.8272 (2)1.2695 (2)0.0254 (6)
H2A0.311 (2)0.867 (4)1.273 (3)0.038*
H2B0.242 (3)0.798 (4)1.3252 (14)0.038*
O30.2799 (2)0.7817 (2)1.02345 (18)0.0239 (6)
H3A0.268 (3)0.809 (4)0.9661 (11)0.036*
H3B0.340 (2)0.829 (3)1.041 (2)0.036*
O40.36196 (19)0.5495 (2)1.07281 (16)0.0128 (5)
H4A0.327 (3)0.6188 (19)1.064 (2)0.019*
H4B0.384 (3)0.551 (3)1.1313 (9)0.019*
O50.61283 (18)0.5438 (2)1.10821 (15)0.0111 (5)
H5A0.597 (3)0.606 (2)1.141 (2)0.017*
H5B0.6886 (9)0.541 (3)1.109 (3)0.017*
O60.4836 (2)0.3258 (2)1.04722 (16)0.0117 (5)
H6A0.508 (3)0.304 (3)1.1027 (12)0.018*
H6B0.4116 (13)0.301 (3)1.041 (2)0.018*
O70.27008 (18)0.71183 (19)0.82518 (14)0.0088 (4)
O80.17713 (18)0.57697 (19)0.69450 (15)0.0098 (4)
O90.15646 (18)0.49939 (19)0.87894 (15)0.0095 (4)
O100.03403 (18)0.55595 (19)0.78547 (15)0.0105 (5)
O110.04723 (18)0.78461 (19)0.73672 (14)0.0090 (4)
O120.06071 (18)0.73167 (19)0.91145 (15)0.0099 (4)
O130.44555 (18)0.7013 (2)0.76971 (15)0.0109 (5)
O140.34645 (19)0.5579 (2)0.62938 (16)0.0125 (5)
O150.08516 (19)0.32087 (19)0.92016 (15)0.0117 (5)
O160.12046 (19)0.3838 (2)0.82179 (17)0.0158 (5)
O170.06735 (19)0.94310 (19)0.75914 (15)0.0103 (4)
O180.03303 (18)0.89973 (19)0.94573 (15)0.0088 (4)
O190.2628 (2)0.2480 (2)1.04657 (19)0.0244 (6)
H19A0.256 (4)0.1727 (15)1.062 (3)0.037*
H19B0.206 (3)0.263 (3)1.007 (2)0.037*
O20A0.4749 (9)0.938 (2)1.0718 (8)0.015 (3)0.51 (5)
H20A0.543 (3)0.923 (8)1.099 (5)0.023*0.51 (5)
H20B0.493 (6)0.970 (8)1.020 (3)0.023*0.51 (5)
O20B0.4877 (12)0.895 (2)1.0565 (11)0.018 (2)0.49 (5)
H20C0.536 (6)0.875 (7)1.103 (4)0.027*0.49 (5)
H20D0.477 (7)0.825 (4)1.028 (5)0.027*0.49 (5)
C10.3415 (3)0.6770 (3)0.7665 (2)0.0085 (6)
C20.2869 (3)0.5965 (3)0.6882 (2)0.0087 (6)
C30.0763 (3)0.4184 (3)0.8807 (2)0.0081 (6)
C40.0373 (3)0.4528 (3)0.8258 (2)0.0092 (6)
C50.0088 (3)0.8571 (3)0.7871 (2)0.0073 (6)
C60.0054 (3)0.8296 (3)0.8905 (2)0.0078 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.00780 (10)0.00561 (9)0.00811 (10)0.00062 (7)0.00049 (6)0.00064 (7)
Ni10.0055 (3)0.0091 (3)0.0068 (3)0.0002 (2)0.0008 (2)0.0013 (2)
Cr10.0055 (2)0.0055 (2)0.0092 (2)0.00058 (18)0.00116 (18)0.00096 (19)
O10.0149 (12)0.0216 (13)0.0213 (14)0.0025 (10)0.0011 (10)0.0013 (11)
O20.0171 (13)0.0242 (14)0.0329 (16)0.0095 (11)0.0126 (12)0.0088 (12)
O30.0239 (14)0.0266 (15)0.0211 (14)0.0006 (11)0.0012 (11)0.0033 (11)
O40.0101 (11)0.0168 (12)0.0113 (11)0.0026 (9)0.0003 (9)0.0013 (9)
O50.0063 (10)0.0142 (11)0.0127 (12)0.0021 (9)0.0008 (9)0.0051 (9)
O60.0103 (11)0.0144 (11)0.0100 (11)0.0000 (9)0.0020 (9)0.0033 (9)
O70.0073 (10)0.0086 (10)0.0105 (11)0.0005 (8)0.0015 (8)0.0015 (9)
O80.0063 (10)0.0120 (11)0.0111 (11)0.0000 (8)0.0010 (8)0.0022 (9)
O90.0063 (10)0.0064 (10)0.0155 (12)0.0000 (8)0.0014 (9)0.0020 (9)
O100.0066 (10)0.0087 (10)0.0162 (12)0.0000 (8)0.0004 (9)0.0035 (9)
O110.0101 (10)0.0086 (10)0.0084 (11)0.0011 (8)0.0024 (8)0.0010 (9)
O120.0114 (11)0.0095 (11)0.0088 (11)0.0028 (9)0.0017 (8)0.0033 (9)
O130.0061 (10)0.0157 (12)0.0108 (11)0.0021 (8)0.0002 (8)0.0009 (9)
O140.0097 (11)0.0139 (11)0.0142 (12)0.0003 (9)0.0042 (9)0.0018 (9)
O150.0144 (11)0.0076 (10)0.0126 (12)0.0002 (9)0.0019 (9)0.0036 (9)
O160.0075 (11)0.0110 (12)0.0282 (14)0.0014 (9)0.0034 (10)0.0037 (10)
O170.0138 (11)0.0086 (11)0.0081 (11)0.0038 (9)0.0018 (9)0.0014 (9)
O180.0117 (11)0.0070 (10)0.0078 (11)0.0003 (8)0.0017 (9)0.0000 (8)
O190.0201 (13)0.0203 (14)0.0307 (15)0.0076 (11)0.0138 (11)0.0119 (12)
O20A0.015 (3)0.021 (7)0.009 (4)0.003 (4)0.000 (2)0.004 (4)
O20B0.021 (4)0.020 (6)0.012 (4)0.003 (4)0.002 (3)0.001 (4)
C10.0100 (15)0.0081 (13)0.0075 (15)0.0006 (11)0.0005 (12)0.0030 (11)
C20.0106 (15)0.0068 (13)0.0089 (15)0.0004 (11)0.0010 (12)0.0019 (12)
C30.0093 (14)0.0079 (15)0.0074 (15)0.0000 (12)0.0021 (12)0.0029 (12)
C40.0066 (14)0.0085 (14)0.0124 (16)0.0011 (11)0.0010 (12)0.0007 (12)
C50.0071 (14)0.0067 (13)0.0081 (14)0.0027 (12)0.0014 (11)0.0009 (12)
C60.0048 (14)0.0070 (14)0.0115 (15)0.0035 (11)0.0005 (12)0.0026 (12)
Geometric parameters (Å, º) top
Ba1—O22.784 (3)O4—H4A0.875 (10)
Ba1—O17i2.802 (2)O4—H4B0.874 (10)
Ba1—O15ii2.855 (2)O5—H5A0.870 (10)
Ba1—O182.856 (2)O5—H5B0.875 (10)
Ba1—O16ii2.859 (2)O6—H6A0.873 (10)
Ba1—O18i2.873 (2)O6—H6B0.874 (10)
Ba1—O13iii2.874 (2)O7—C11.288 (4)
Ba1—O32.880 (3)O8—C21.297 (4)
Ba1—O14iii2.912 (2)O9—C31.291 (4)
Ba1—O12.933 (2)O10—C41.287 (4)
Ni1—O5iv2.040 (2)O11—C51.292 (4)
Ni1—O52.040 (2)O12—C61.285 (4)
Ni1—O4iv2.050 (2)O13—C11.230 (4)
Ni1—O42.050 (2)O14—C21.213 (4)
Ni1—O6iv2.062 (2)O15—C31.225 (4)
Ni1—O62.062 (2)O16—C41.226 (4)
Cr1—O81.964 (2)O17—C51.223 (4)
Cr1—O121.965 (2)O18—C61.225 (4)
Cr1—O71.965 (2)O19—H19A0.870 (10)
Cr1—O101.966 (2)O19—H19B0.870 (10)
Cr1—O91.974 (2)O20A—H20A0.878 (10)
Cr1—O111.979 (2)O20A—H20B0.878 (10)
O1—H1A0.879 (10)O20B—H20C0.878 (10)
O1—H1B0.884 (10)O20B—H20D0.879 (10)
O2—H2A0.875 (10)C1—C21.550 (4)
O2—H2B0.878 (10)C3—C41.542 (4)
O3—H3A0.893 (10)C5—C61.540 (4)
O3—H3B0.891 (10)
O2—Ba1—O17i72.03 (7)O12—Cr1—O1092.84 (9)
O2—Ba1—O15ii118.93 (7)O7—Cr1—O10172.94 (9)
O17i—Ba1—O15ii126.88 (6)O8—Cr1—O992.88 (9)
O2—Ba1—O18166.84 (7)O12—Cr1—O992.84 (9)
O17i—Ba1—O18113.19 (6)O7—Cr1—O991.90 (9)
O15ii—Ba1—O1868.50 (6)O10—Cr1—O982.17 (9)
O2—Ba1—O16ii64.53 (7)O8—Cr1—O1192.00 (9)
O17i—Ba1—O16ii124.55 (7)O12—Cr1—O1183.02 (9)
O15ii—Ba1—O16ii58.29 (6)O7—Cr1—O1195.39 (9)
O18—Ba1—O16ii117.00 (7)O10—Cr1—O1190.80 (9)
O2—Ba1—O18i120.24 (7)O9—Cr1—O11171.68 (9)
O17i—Ba1—O18i58.43 (6)Ba1—O1—H1A116 (3)
O15ii—Ba1—O18i116.93 (6)Ba1—O1—H1B123 (3)
O18—Ba1—O18i58.65 (7)H1A—O1—H1B104 (2)
O16ii—Ba1—O18i175.13 (6)Ba1—O2—H2A121 (3)
O2—Ba1—O13iii76.00 (7)Ba1—O2—H2B134 (3)
O17i—Ba1—O13iii69.29 (6)H2A—O2—H2B103 (2)
O15ii—Ba1—O13iii64.89 (6)Ba1—O3—H3A106 (2)
O18—Ba1—O13iii117.03 (6)Ba1—O3—H3B107 (2)
O16ii—Ba1—O13iii68.14 (7)H3A—O3—H3B99 (2)
O18i—Ba1—O13iii111.27 (6)Ni1—O4—H4A122 (3)
O2—Ba1—O380.94 (8)Ni1—O4—H4B109 (2)
O17i—Ba1—O3129.65 (7)H4A—O4—H4B103 (2)
O15ii—Ba1—O3103.29 (7)Ni1—O5—H5A118 (2)
O18—Ba1—O386.79 (7)Ni1—O5—H5B126 (2)
O16ii—Ba1—O375.75 (7)H5A—O5—H5B105 (2)
O18i—Ba1—O3105.45 (7)Ni1—O6—H6A123 (2)
O13iii—Ba1—O3142.83 (7)Ni1—O6—H6B111 (2)
O2—Ba1—O14iii126.45 (8)H6A—O6—H6B104 (2)
O17i—Ba1—O14iii68.07 (6)C1—O7—Cr1114.17 (19)
O15ii—Ba1—O14iii65.42 (6)C2—O8—Cr1114.68 (19)
O18—Ba1—O14iii65.95 (6)C3—O9—Cr1114.79 (19)
O16ii—Ba1—O14iii113.40 (6)C4—O10—Cr1115.08 (19)
O18i—Ba1—O14iii63.38 (6)C5—O11—Cr1113.24 (19)
O13iii—Ba1—O14iii57.43 (6)C6—O12—Cr1113.91 (19)
O3—Ba1—O14iii152.62 (7)C1—O13—Ba1v120.99 (19)
O2—Ba1—O163.63 (7)C2—O14—Ba1v120.2 (2)
O17i—Ba1—O163.68 (7)C3—O15—Ba1ii119.24 (19)
O15ii—Ba1—O1169.31 (7)C4—O16—Ba1ii118.81 (19)
O18—Ba1—O1107.00 (7)C5—O17—Ba1i117.15 (19)
O16ii—Ba1—O1118.91 (7)C6—O18—Ba1108.89 (19)
O18i—Ba1—O165.59 (7)C6—O18—Ba1i115.98 (19)
O13iii—Ba1—O1124.84 (7)Ba1—O18—Ba1i121.35 (7)
O3—Ba1—O166.37 (8)H19A—O19—H19B106 (2)
O14iii—Ba1—O1122.46 (7)H20A—O20A—H20B102 (2)
O5iv—Ni1—O5180.00 (8)H20C—O20B—H20D103 (2)
O5iv—Ni1—O4iv90.78 (9)O13—C1—O7125.2 (3)
O5—Ni1—O4iv89.22 (9)O13—C1—C2120.2 (3)
O5iv—Ni1—O489.22 (9)O7—C1—C2114.6 (3)
O5—Ni1—O490.78 (9)O14—C2—O8126.5 (3)
O4iv—Ni1—O4180.0O14—C2—C1120.2 (3)
O5iv—Ni1—O6iv91.79 (9)O8—C2—C1113.3 (3)
O5—Ni1—O6iv88.21 (9)O15—C3—O9125.8 (3)
O4iv—Ni1—O6iv89.13 (9)O15—C3—C4120.3 (3)
O4—Ni1—O6iv90.87 (9)O9—C3—C4113.9 (3)
O5iv—Ni1—O688.21 (9)O16—C4—O10125.4 (3)
O5—Ni1—O691.79 (9)O16—C4—C3120.6 (3)
O4iv—Ni1—O690.87 (9)O10—C4—C3114.1 (3)
O4—Ni1—O689.13 (9)O17—C5—O11125.6 (3)
O6iv—Ni1—O6180.00 (4)O17—C5—C6120.2 (3)
O8—Cr1—O12171.94 (9)O11—C5—C6114.3 (3)
O8—Cr1—O782.86 (9)O18—C6—O12125.1 (3)
O12—Cr1—O791.28 (9)O18—C6—C5120.1 (3)
O8—Cr1—O1093.57 (9)O12—C6—C5114.8 (3)
Ba1v—O13—C1—O7172.7 (2)Cr1—O10—C4—C30.6 (3)
Ba1v—O13—C1—C28.4 (4)O15—C3—C4—O160.9 (4)
Cr1—O7—C1—O13174.5 (2)O9—C3—C4—O16180.0 (3)
Cr1—O7—C1—C24.4 (3)O15—C3—C4—O10178.0 (3)
Ba1v—O14—C2—O8173.1 (2)O9—C3—C4—O101.1 (4)
Ba1v—O14—C2—C17.5 (4)Ba1i—O17—C5—O11150.8 (2)
Cr1—O8—C2—O14175.1 (3)Ba1i—O17—C5—C627.7 (3)
Cr1—O8—C2—C14.3 (3)Cr1—O11—C5—O17171.9 (2)
O13—C1—C2—O140.5 (5)Cr1—O11—C5—C69.5 (3)
O7—C1—C2—O14179.5 (3)Ba1—O18—C6—O1220.2 (4)
O13—C1—C2—O8178.9 (3)Ba1i—O18—C6—O12161.3 (2)
O7—C1—C2—O80.1 (4)Ba1—O18—C6—C5158.5 (2)
Ba1ii—O15—C3—O9166.0 (2)Ba1i—O18—C6—C517.4 (3)
Ba1ii—O15—C3—C413.0 (3)Cr1—O12—C6—O18178.3 (2)
Cr1—O9—C3—O15178.1 (2)Cr1—O12—C6—C50.4 (3)
Cr1—O9—C3—C41.0 (3)O17—C5—C6—O186.7 (4)
Ba1ii—O16—C4—O10164.6 (2)O11—C5—C6—O18172.0 (3)
Ba1ii—O16—C4—C314.2 (4)O17—C5—C6—O12174.6 (3)
Cr1—O10—C4—O16179.4 (3)O11—C5—C6—O126.8 (4)
Symmetry codes: (i) x, y+2, z+2; (ii) x, y+1, z+2; (iii) x1/2, y+3/2, z+1/2; (iv) x+1, y+1, z+2; (v) x+1/2, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O16vi0.88 (1)2.20 (2)3.038 (4)160 (3)
O1—H1B···O20A0.88 (1)1.80 (2)2.660 (18)165 (4)
O1—H1B···O20B0.88 (1)2.25 (3)3.08 (2)156 (3)
O2—H2A···O10vi0.88 (1)1.98 (1)2.851 (3)175 (4)
O2—H2B···O19vii0.88 (1)1.96 (1)2.835 (4)175 (4)
O3—H3A···O70.89 (1)2.32 (3)2.993 (3)132 (3)
O3—H3B···O20A0.89 (1)2.00 (2)2.893 (16)176 (3)
O3—H3B···O20B0.89 (1)1.86 (2)2.722 (11)163 (3)
O4—H4A···O30.88 (1)1.96 (1)2.819 (4)166 (4)
O4—H4B···O17vi0.87 (1)1.92 (1)2.791 (3)179 (4)
O5—H5A···O11vi0.87 (1)1.96 (1)2.811 (3)165 (4)
O5—H5B···O9iv0.88 (1)1.84 (1)2.703 (3)167 (4)
O6—H6A···O13iv0.87 (1)1.91 (1)2.761 (3)165 (4)
O6—H6B···O190.87 (1)1.83 (1)2.693 (3)172 (3)
O19—H19A···O1viii0.87 (1)1.94 (2)2.759 (4)157 (4)
O19—H19B···O150.87 (1)1.93 (1)2.789 (3)172 (4)
O20A—H20A···O8vi0.88 (1)2.01 (3)2.855 (10)161 (8)
O20A—H20B···O20Aix0.88 (1)1.74 (3)2.60 (2)168 (9)
O20B—H20C···O8vi0.88 (1)2.11 (4)2.893 (11)149 (7)
O20B—H20D···O6iv0.88 (1)2.07 (4)2.90 (3)159 (8)
Symmetry codes: (iv) x+1, y+1, z+2; (vi) x+1/2, y+3/2, z+1/2; (vii) x+1/2, y+1/2, z+5/2; (viii) x, y1, z; (ix) x+1, y+2, z+2.
 

Acknowledgements

YAM thanks the PMD2X X-ray diffraction facility (https://crm2.univ-lorraine.fr/lab/fr/services/pmd2x) of the Institut Jean Barriol, Université de Lorraine, for the X-ray diffraction measurements, data processing and analysis, and providing reports for publication. YAM thanks also the CCDC for providing access to the Cambridge Structural Database through the FAIRE programme.

References

First citationAlabada, R., Kovalchukova, O., Polyakova, I., Strashnova, S. & Sergienko, V. (2015). Acta Cryst. E71, 459–462.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBélombé, M. M., Nenwa, J., Mbiangué, Y. A., Nnanga, G. E., Mbomekallé, I.-M., Hey-Hawkins, E., Lönnecke, P. & Majoumo, F. (2003). Dalton Trans. pp. 2117–2118.  Google Scholar
First citationBénard, S., Rivière, E., Yu, P., Nakatani, K. & Delouis, J. F. (2001). Chem. Mater. 13, 159–162.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2018). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCoronado, E., Galán-Mascarós, J. R., Martí-Gastaldo, C., Waerenborgh, J. C. & Gaczyński, P. (2008). Inorg. Chem. 47, 6829–6839.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHancock, R. D., Siddons, C. J., Oscarson, K. A. & Reibenspies, J. M. (2004). Inorg. Chim. Acta, 357, 723–727.  Web of Science CSD CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMartin, L., Lopez, J. R., Akutsu, H., Nakazawa, Y. & Imajo, S. (2017). Inorg. Chem. 56, 14045–14052.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationŌkawa, H., Yoshida, Y., Otsubo, K. & Kitagawa, H. (2020). Inorg. Chem. 59, 623–628.  Web of Science PubMed Google Scholar
First citationPardo, E., Train, C., Gontard, G., Boubekeur, K., Fabelo, O., Liu, H., Dkhil, B., Lloret, F., Nakagawa, K., Tokoro, H., Ohkoshi, S. & Verdaguer, M. (2011). J. Am. Chem. Soc. 133, 15328–15331.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTsobnang, P. K., Hastürk, E., Fröhlich, D., Wenger, E., Durand, P., Ngolui, L. J., Lecomte, C. & Janiak, C. (2019). Cryst. Growth Des. 19, 2869–2880.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhong, Z. J., Matsumoto, N., Okawa, H. & Kida, S. (1990). Chem. Lett. 19, 87–90.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds