research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­(5-bromo-1,10-phenanthroline-κ2N,N′)bis­­[di­hydro­bis­­(pyrazol-1-yl)borato-κ2N2,N2′]iron(II) toluene disolvate

CROSSMARK_Color_square_no_text.svg

aInstitut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth Str. 2, D-24118 Kiel, Germany
*Correspondence e-mail: sossinger@ac.uni-kiel.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 14 July 2020; accepted 27 July 2020; online 31 July 2020)

The structure determination of the title compound was undertaken as part of a project on the modification and synthesis of new spin-crossover (SCO) compounds based on octa­hedral FeII bis­(pyrazol­yl)borate complexes. In the course of these investigations, the compound [Fe(C6H8BN4)2(C12H7BrN2)] was synthesized, for which magnetic measurements revealed an incomplete spin-crossover behaviour. Crystallization of this compound from toluene led to the formation of crystals of the toluene disolvate, [Fe(C6H8N4B)2(C12H7N2Br)]·2C7H8. Its asymmetric unit comprises two discrete metal complex mol­ecules and two toluene solvent mol­ecules. One of the latter is severely disordered and its contribution to the diffracted intensities was removed using the SQUEEZE routine [Spek (2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). Acta Cryst. C71, 9–18]. In each complex mol­ecule, the FeII cation is coordinated by the two N atoms of a 5-bromo-1,10-phenanthroline ligand and by two pairs of N atoms of chelating di­hydro­bis(pyrazol-1-yl)borate ligands in the form of a slightly distorted octa­hedron. The discrete complexes are arranged in columns along the a-axis direction with the toluene solvate mol­ecules located between the columns. The 5-bromo-1,10-phenanthroline ligands of neighbouring columns are approximately parallel and are slightly shifted relative to each other, indicating ππ inter­actions.

1. Chemical context

Spin crossover (SCO) occurs in octa­hedrally coordinated transition-metal complexes with an electron configuration of 3d4–3d7 and is of extraordinary importance in coordination chemistry and the field of mol­ecular magnetism. Such mat­erials are also of inter­est because of their potential for future applications as mol­ecular switches, in data storage or in spintronics (Gütlich et al., 2013[Gütlich, P., Gaspar, A. B. & Garcia, Y. (2013). Beilstein J. Org. Chem. 9, 342-391.]; Halcrow, 2007[Halcrow, M. A. (2007). Polyhedron, 26, 3523-3576.], 2013b[Halcrow, M. A. (2013b). Spin-Crossover Materials. Oxford, UK: John Wiley and Sons Ltd.]). SCO compounds can be switched between the paramagnetic high-spin (HS, S = 2) and the diamagnetic low-spin state (LS, S = 0) by external stimuli such as temperature or light (Gütlich et al., 2013[Gütlich, P., Gaspar, A. B. & Garcia, Y. (2013). Beilstein J. Org. Chem. 9, 342-391.]). Most compounds reported in the literature are based on FeII in an octa­hedral coordination because, in this case, a very long lifetime of the photochemically excited high-spin state is expected. During the spin-transition, the Fe—L (L = ligand) bond lengths and also the unit-cell volume change significantly. Therefore, cooperativity effects are of importance, which frequently lead to abrupt spin transitions, very often associated with a hysteresis or a more complicated SCO behaviour (Halcrow, 2007[Halcrow, M. A. (2007). Polyhedron, 26, 3523-3576.], 2013a[Halcrow, M. A. (2013a). Chem. Commun. 49, 10890-10892.]). Up to date, hundreds of FeII SCO complexes have been published (Halcrow, 2007[Halcrow, M. A. (2007). Polyhedron, 26, 3523-3576.]). Recently, complexes based on organoborate ligands such as [Fe(H2B(pz)2)2(L)] (with pz = pyrazole and L = di­imine co-ligand) have become of particular inter­est, because they can be evaporated in vacuo and therefore allow a facile preparation of thin films (Ruben & Kumar, 2019[Ruben, M. & Kumar, K. S. (2019). Angew. Chem. Int. Ed. 10, https://doi.org/10.1002/anie.201911256.]; Naggert et al., 2015[Naggert, H., Rudnik, J., Kipgen, L., Bernien, M., Nickel, F., Arruda, L. M., Kuch, W., Näther, C. & Tuczek, F. (2015). J. Mater. Chem. C. 3, 7870-7877.]; Ossinger et al., 2020a[Ossinger, S., Kipgen, L., Naggert, H., Bernien, M., Britton, A. J., Nickel, F., Arruda, L. M., Kumberg, I., Engesser, T. A., Golias, E., Näther, C., Tuczek, F. & Kuch, W. (2020a). J. Phys. Condens. Matter, 32, 114003.]).

[Scheme 1]

In our own systematic investigations we are inter­ested how a chemical modification of such Fe organoborate complexes influences the SCO behavior in the bulk material and in thin films. This includes functionalization of the neutral di­imine ligand L and the pyrazole ligand in iron(II) complexes with general composition [Fe(H2B(pz)2)2(L)], which leads to characteristic changes in the spin-transition behaviour in the solid state (Naggert et al., 2015[Naggert, H., Rudnik, J., Kipgen, L., Bernien, M., Nickel, F., Arruda, L. M., Kuch, W., Näther, C. & Tuczek, F. (2015). J. Mater. Chem. C. 3, 7870-7877.]; Ossinger et al., 2019[Ossinger, S., Naggert, H., Bill, E., Näther, C. & Tuczek, F. (2019). Inorg. Chem. 58, 12873-12887.], 2020a[Ossinger, S., Kipgen, L., Naggert, H., Bernien, M., Britton, A. J., Nickel, F., Arruda, L. M., Kumberg, I., Engesser, T. A., Golias, E., Näther, C., Tuczek, F. & Kuch, W. (2020a). J. Phys. Condens. Matter, 32, 114003.],b[Ossinger, S., Näther, C. & Tuczek, F. (2020b). J. Phys. Condens. Matter, 32, 094001.]). Analysis of the crystal structures of these iron(II) bis­(di­hydro­bis­(pyrazol­yl)borate) complexes reveals that most of them are built up of dimers that are linked by inter­molecular ππ inter­actions between the phenyl rings of the co-ligands L (Ossinger et al., 2020b[Ossinger, S., Näther, C. & Tuczek, F. (2020b). J. Phys. Condens. Matter, 32, 094001.]). We found that the toluene solvate [Fe(H2B(pz)2)2(4,7-dimephen)]·0.5C7H8 exhibits a short ππ intra-dimer distance (3.507 Å at 293 K and 3.483 Å at 200 K) and consequently the complexes are locked in the high-spin state, whereas for [Fe(H2B(pz)2)2(4,4′-dimebipy)] with a long ππ distance (3.753 Å at 293 K and 3.736 Å at 200 K) complete thermal SCO is observed (Ossinger et al., 2020b[Ossinger, S., Näther, C. & Tuczek, F. (2020b). J. Phys. Condens. Matter, 32, 094001.]). Alternatively, for the inter­mediate distances (3.575 Å at 300 K and 3.508 Å at 140 K) found in [Fe(H2B(4-CH3-pz)2)2(bipy)] an incomplete spin-crossover is observed (Ossinger et al., 2020b[Ossinger, S., Näther, C. & Tuczek, F. (2020b). J. Phys. Condens. Matter, 32, 094001.]). In the course of this project we became inter­ested in the compound [Fe(H2B(pz)2)2(5-Br-phen)] (pz = pyrazole, 5-Br-phen = 5-bromo-1,10-phenanthroline). Magnetic measurements of this new complex revealed an incomplete SCO in the temperature range from 2 to 300 K with only one step during the spin transition (see Fig. S1 in the supporting information). This compound can easily be crystallized from toluene whereby a toluene disolvate, [Fe(H2B(pz)2)2(5-Br-phen)]·2C7H8, is formed. The crystal structure of this solvate shows dimers that are linked by phenanthroline ligands with an intra-dimer distance of 3.465 (6) Å at 200 K, indicating strong inter­molecular ππ inter­actions (see above). Therefore, the system may be locked in the HS, which would concur with the observed bond lengths at 200 K, reflecting a HS configuration, see Structural commentary. Unfortunately, we were not able to prepare large amounts of pure samples of the title compound for magnetic measurements. On the other hand, a comparison of the experimental XRPD pattern of the ansolvate with the simulated pattern of the title complex based on single-crystal data (Fig. S2) reveals that the crystal structure of the disolvate is entirely different from that of the ansolvate. Therefore, we have no information as to whether ππ inter­actions are also present in the ansolvate and, if so, how strong these are. Nevertheless, from the observation of thermal spin-crossover in the latter (albeit in an incomplete fashion), we can conclude that the strength of the ππ inter­actions must be weaker in the ansolvate than in the solvate.

2. Structural commentary

The asymmetric unit of the title compound comprises two discrete complexes of [Fe(H2B(pz)2)2(5-bromo-1,10-phenanthroline)] and two toluene mol­ecules (Fig. 1[link]). One of the solvent mol­ecules shows severe disorder and was not taken into account in the final model (see Refinement). The FeII cation of each independent complex is distorted octa­hedrally coordinated (Table 1[link]) by the two N atoms of the chelating 5-bromo-1,10-phenanthroline ligand and by two pairs of N atoms of two chelating di­hydro­bis­(pyrazol-1-yl)borate ligands (Fig. 1[link]). The two complexes are different regarding their individual bond lengths and angles (Table 1[link]). The Fe—N bond lengths involving the di­hydro­bis­(pyrazol-1-yl)borate ligand are 2.144 (3)–2.166 (3) or 2.138 (3)–2.205 (3) Å and thus are significantly shorter than those to the 5-bromo-1,10-phenanthroline ligand of 2.204 (3)–2.206 (3) or 2.212 (3)–2.228 (3) Å. The overall bond lengths (average 2.170 Å for complex Fe1, and 2.188 Å for complex Fe2) are in the range expected for FeII high-spin complexes.

Table 1
Selected bond lengths and angles (Å, °) for the title compound at 200 K

Fe1—N11 2.144 (3) Fe2—N54 2.138 (3)
Fe1—N4 2.145 (3) Fe2—N44 2.167 (3)
Fe1—N14 2.154 (3) Fe2—N51 2.178 (3)
Fe1—N1 2.166 (3) Fe2—N41 2.205 (3)
Fe1—N21 2.204 (3) Fe2—N61 2.212 (3)
Fe1—N22 2.206 (3) Fe2—N62 2.228 (3)
Average bond length 2.170 Average bond length 2.188
       
N11—Fe1—N4 93.27 (13) N54—Fe2—N44 91.37 (13)
N11—Fe1—N14 88.85 (12) N54—Fe2—N51 89.35 (12)
N4—Fe1—N14 88.10 (11) N44—Fe2—N51 89.67 (12)
N11—Fe1—N1 89.44 (12) N54—Fe2—N41 86.68 (13)
N4—Fe1—N1 90.52 (12) N44—Fe2—N41 88.27 (12)
N11—Fe1—N21 93.22 (12) N44—Fe2—N61 93.62 (12)
N14—Fe1—N21 93.76 (11) N51—Fe2—N61 93.43 (12)
N1—Fe1—N21 87.82 (12) N41—Fe2—N61 90.72 (12)
N4—Fe1—N22 98.88 (12) N54—Fe2—N62 100.34 (13)
N14—Fe1—N22 90.32 (12) N51—Fe2—N62 95.71 (12)
N1—Fe1—N22 91.66 (12) N41—Fe2—N62 87.13 (12)
N21—Fe1—N22 74.68 (12) N61—Fe2—N62 74.43 (12)
[Figure 1]
Figure 1
Mol­ecular structures of both crystallographically independent title complexes (left and middle) and of the toluene solvate mol­ecule (right) with atom labelling and displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In the crystal structure, the discrete complexes are arranged into columns that extend along the a-axis direction (Fig. 2[link]). Between these columns, channels are formed in which the toluene solvate mol­ecules are embedded. The planes of the 5-bromo-1,10-phenanthroline ligands of neighbouring columns are approximately parallel with the planes slightly tilted and shifted relative to each other (Fig. 3[link]). The shortest distance between two parallel-aligned carbon atoms C28 and C64(−x, −y, −z + 1) of neighbouring 5-bromo-1,10-phenanthroline planes is 3.465 (6) Å, indicating strong ππ inter­actions.

[Figure 2]
Figure 2
Crystal structure of the title compound in a view along the a axis.
[Figure 3]
Figure 3
Parts of the crystal structure of the title compound emphasizing the arrangement of the 5-bromo-1,10-phenanthroline ligands.

4. Database survey

There are at least 21 crystal structures of iron complexes with di­hydro­bis­(pyrazol-1-yl)borate and different co-ligands reported in the literature, which include [Fe(H2B(pz)2)2(phen)] and [Fe(H2B(pz)2)2(2,2′-bipy)] (Real et al., 1997[Real, J. A., Muñoz, M. C., Faus, J. & Solans, X. (1997). Inorg. Chem. 36, 3008-3013.]; Thompson et al., 2004[Thompson, A. L., Goeta, A. E., Real, J. A., Galet, A. & Carmen Muñoz, M. (2004). Chem. Commun. pp. 1390-1391.]) as the most well-known complexes. In the others, the co-ligand is replaced by annelated bipyridyl ligands (Kulmaczewski et al., 2014[Kulmaczewski, R., Shepherd, H. J., Cespedes, O. & Halcrow, M. A. (2014). Inorg. Chem. 53, 9809-9817.]), various modified diaryl-ethene ligands (Nihei et al., 2013[Nihei, M., Suzuki, Y., Kimura, N., Kera, Y. & Oshio, H. (2013). Chem. Eur. J. 19, 6946-6949.]; Milek et al., 2013[Milek, M., Heinemann, F. W. & Khusniyarov, M. M. (2013). Inorg. Chem. 52, 11585-11592.]; Mörtel et al., 2017[Mörtel, M., Witt, A., Heinemann, F. W., Bochmann, S., Bachmann, J. & Khusniyarov, M. M. (2017). Inorg. Chem. 56, 13174-13186.], 2020[Mörtel, M., Lindner, T., Scheurer, A., Heinemann, F. W. & Khusniyarov, M. M. (2020). Inorg. Chem. 59, 2659-2666.]), 4,7-di­methyl­phenanthroline (Naggert et al., 2015[Naggert, H., Rudnik, J., Kipgen, L., Bernien, M., Nickel, F., Arruda, L. M., Kuch, W., Näther, C. & Tuczek, F. (2015). J. Mater. Chem. C. 3, 7870-7877.]), di­methyl­bipyridine derivatives substituted in the 5,5′ position (Xue et al., 2018[Xue, S., Guo, Y., Rotaru, A., Müller-Bunz, H., Morgan, G. G., Trzop, E., Collet, E., Oláh, J. & Garcia, Y. (2018). Inorg. Chem. 57, 9880-9891.]), di­amino­bipyridine (Luo et al., 2016[Luo, Y.-H., Liu, Q.-L., Yang, L.-J., Sun, Y., Wang, J.-W., You, C.-Q. & Sun, B. (2016). J. Mater. Chem. C. 4, 8061-8069.]), chiral (R)/(S)-4,5-pinenepyridyl-2-pyrazine ligands (Ru et al., 2017[Ru, J., Yu, F., Shi, P.-P., Jiao, C.-Q., Li, C.-H., Xiong, R.-G., Liu, T., Kurmoo, M. & Zuo, J.-L. (2017). Eur. J. Inorg. Chem. 2017, 3144-3149.]) and further complexes with methyl substituents at the pyrazole unit or co-ligand unit also forming solvate-free or toluene solvate crystals (Ossinger et al., 2019[Ossinger, S., Naggert, H., Bill, E., Näther, C. & Tuczek, F. (2019). Inorg. Chem. 58, 12873-12887.], 2020a[Ossinger, S., Kipgen, L., Naggert, H., Bernien, M., Britton, A. J., Nickel, F., Arruda, L. M., Kumberg, I., Engesser, T. A., Golias, E., Näther, C., Tuczek, F. & Kuch, W. (2020a). J. Phys. Condens. Matter, 32, 114003.],b[Ossinger, S., Näther, C. & Tuczek, F. (2020b). J. Phys. Condens. Matter, 32, 094001.]). In all of these complexes, the FeII cations are coordinated by three bidentate chelate ligands in a more or less distorted octa­hedral environment and show spin-crossover behaviour. Moreover, the structure of the synthetic inter­mediate used for the preparation of the Fe phenanthroline complex, [Fe(H2B(pz)2)2(MeOH)2], has also been published (Ossinger et al., 2016[Ossinger, S., Näther, C. & Tuczek, F. (2016). IUCrData, 1, x161252.]).

5. Synthesis and crystallization

All reactions were carried out in dry solvents and the complexation was carried out under nitro­gen-atmosphere using standard Schlenk techniques or in an M-Braun Labmaster 130 glovebox under argon.

1H-Pyrazole, 5-bromo-1,10-phenanthroline and potassium tetra­hydro­borate were purchased from commercial sources and used without further purification. Iron(II) triflate is also commercial available but was purified by the following method: the compound was dissolved in dry methanol (a few ml for a supersaturated solution), filtered off and afterwards the solvent was removed in vacuo. Solvents were purchased from commercial sources and purified by distilling over conventional drying agents. K[H2B(pz)2] was synthesized according to previously reported procedures (Naggert et al., 2015[Naggert, H., Rudnik, J., Kipgen, L., Bernien, M., Nickel, F., Arruda, L. M., Kuch, W., Näther, C. & Tuczek, F. (2015). J. Mater. Chem. C. 3, 7870-7877.]; Ossinger et al., 2019[Ossinger, S., Naggert, H., Bill, E., Näther, C. & Tuczek, F. (2019). Inorg. Chem. 58, 12873-12887.], 2020a[Ossinger, S., Kipgen, L., Naggert, H., Bernien, M., Britton, A. J., Nickel, F., Arruda, L. M., Kumberg, I., Engesser, T. A., Golias, E., Näther, C., Tuczek, F. & Kuch, W. (2020a). J. Phys. Condens. Matter, 32, 114003.]).

Synthesis of [Fe(H2B(pz)2)2(5-bromo-1,10-phenanthroline]: To a solution of Fe(OTf)2 (353 mg, 1.00 mmol) in methanol (3 ml), a solution of K(H2B(pz)2) (373 mg, 2.00 mmol) in methanol (5 ml) was added, leading to the formation of a slightly yellow-coloured solution, which was stirred for 15 min at room temperature. A solution of 5-bromo-1,10-phenanthroline (259 mg, 1.00 mmol) in methanol (3 ml) was added dropwise to the reaction mixture. Immediately, the solution turned purple and a purple-coloured precipitate was formed. The solution was stirred for 1 h at room temperature and then the precipitate was filtered off, washed with methanol (7 ml), and dried under reduced pressure. Yield: 373mg [612 µmol, 61% based on Fe(OTf)2].

Elemental analysis calculated for C24H23B2BrFeN10: C 47.34, H 3.81, N 23.00, Br 13.12%, found C 47.11, H 3.92, N 22.97, Br 13.41%.

HRESI–MS (+) (MeOH): m/z (%) = [H2B(Hpz)2]+ calculated 149.09930, found 149.09927 (33), [co-ligand + H]+ calculated 258.98654, found 258.98631 (3), [M – H2B(pz)2]+ calculated 460.99786, found 460.99758 (25), [M + H]+ calculated 609.08988, found 609.08946 (6), [M – H2B(pz)2 + co-ligand]+ calculated 720.97507, found 720.97455 (100).

IR (ATR, 298 K): ν/cm−1 = 3105, 3058 (w, ν[=C—H]), 2401, 2352 (m, νasym.[–BH2]), 2285 (m, νsym.[–BH2]), 1599 (w), 1574 (w), 1501 (m), 1482 (w), 1421 (m), 1398 (m), 1372 (w), 1339 (w), 1292 (m), 1258 (w), 1203 (m), 1184 (m), 1154 (s), 1092 (m), 1064 (m), 1049 (s), 996 (w), 978 (m), 933 (m), 921 (w), 880 (s), 845 (w), 823 (w), 804 (m), 766 (s), 747 (s), 731 (s), 719 (m), 674 (m), 637 (s), 621 (m), 612 (m), 421 (m).

Raman (Bulk, 298K): ν/cm−1 = 2781 (br, s), 1447 (w), 1410 (w), 1366 (w), 1339 (w), 1312 (w), 1290 (w), 1205 (w), 1092 (w), 1051 (w), 758 (w), 719 (w).

UV/Vis (KBr, 298K): λmax/nm = 212, 234, 279, 314, 425–702 (br).

Crystallization: Single crystals of [Fe(H2B(pz)2)2(5-bromo-1,10-phenanthroline]·2C7H8 were obtained under a nitro­gen atmosphere by dissolving microcrystalline [Fe(H2B(pz)2)2(5-bromo-1,10-phenanthroline] in dry toluene and overlaying with dry n-hexane. After a few days, purple-coloured single crystals were obtained that were collected and dried under reduced pressure.

Experimental details: Elemental analyses were performed using a vario MICRO cube CHNS element analyser from Elementar. Samples were burned in sealed tin containers by a stream of oxygen. High-resolution ESI mass spectra were recorded on a ThermoFisher Orbitrap spectrometer. IR spectra were recorded on a Bruker Alpha-P ATR–IR Spectrometer. Signal intensities are marked as s (strong), m (medium), w (weak) and br (broad). For FT–Raman spectroscopy, a Bruker RAM II-1064 FT–Raman Module, a R510-N/R Nd:YAG-laser (1046 nm, up to 500 mW) and a D418-T/R liquid-nitro­gen-cooled, highly sensitive Ge detector or a Bruker IFS 66 with a FRA 106 unit and a 35 mW NdYAG-LASER (1064 nm) were used. XRPD experiments were performed with a Stoe Transmission Powder Diffraction System (STADI P) with Cu Kα radiation (λ = 1.5406 Å) that is equipped with position-sensitive detectors (Mythen-K1). UV/vis spectra were recorded with a Cary 5000 spectrometer in transmission geometry. The magnetic measurement was performed at 1 T between 300 and 2 K using a physical property measurement system (PPMS) from Quantum Design. Diamagnetic corrections were applied with the use of Pascal's constants (Bain & Berry, 2008[Bain, G. A. & Berry, J. F. (2008). J. Chem. Educ. 85, 532-536.]).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. C-bound H atoms were positioned with idealized geometry and refined with Uiso(H) = 1.2Ueq(C) using a riding model. B-bound H atoms were located in a difference map, their bond lengths were set to ideal values, and finally they were refined with Uiso(H) = 1.2Ueq(B) using a riding model. The asymmetric unit contains two toluene solvate mol­ecules, of which one is severely disordered. Its contribution to the intensity data was removed using the SQUEEZE (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) routine in PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]). The disordered toluene mol­ecule was not taken into account in the calculation of the mol­ecular formula and the mol­ecular weight.

Table 2
Experimental details

Crystal data
Chemical formula [Fe(C6H8BN4)2(C12H7BrN2)]·C7H8
Mr 701.04
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 200
a, b, c (Å) 10.5035 (4), 15.2782 (5), 20.9003 (7)
α, β, γ (°) 80.266 (3), 86.443 (3), 78.066 (3)
V3) 3233.0 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.74
Crystal size (mm) 0.14 × 0.10 × 0.08
 
Data collection
Diffractometer Stoe IPDS2
Absorption correction
No. of measured, independent and observed [I > 2σ(I)] reflections 26954, 12583, 8306
Rint 0.037
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.139, 1.02
No. of reflections 12583
No. of parameters 749
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.82, −0.84
Computer programs: X-AREA (Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA. Stoe & Cie, Darmstadt, Germany.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA (Stoe & Cie, 2008); data reduction: X-AREA (Stoe & Cie, 2008); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

(5-Bromo-1,10-πhenanthroline-κ2N,N')bis[dihydrobis(pyrazol-1-yl)borato-κ2N2,N2']iron(II) toluene disolvate top
Crystal data top
[Fe(C6H8BN4)2(C12H7BrN2)]·C7H8Z = 4
Mr = 701.04F(000) = 1432
Triclinic, P1Dx = 1.440 Mg m3
a = 10.5035 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 15.2782 (5) ÅCell parameters from 26954 reflections
c = 20.9003 (7) Åθ = 1.4–26.0°
α = 80.266 (3)°µ = 1.74 mm1
β = 86.443 (3)°T = 200 K
γ = 78.066 (3)°Block, purple
V = 3233.0 (2) Å30.14 × 0.10 × 0.08 mm
Data collection top
Stoe IPDS-2
diffractometer
Rint = 0.037
ω scansθmax = 26.0°, θmin = 1.4°
26954 measured reflectionsh = 1212
12583 independent reflectionsk = 1818
8306 reflections with I > 2σ(I)l = 2524
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.139 w = 1/[σ2(Fo2) + (0.0751P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
12583 reflectionsΔρmax = 0.82 e Å3
749 parametersΔρmin = 0.84 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.01316 (5)0.25886 (3)0.51367 (3)0.03976 (13)
N10.1584 (3)0.1569 (2)0.52782 (16)0.0459 (7)
N20.2794 (3)0.1631 (2)0.51202 (17)0.0476 (8)
C10.3628 (4)0.0856 (3)0.5195 (2)0.0544 (10)
H10.45350.07310.51170.065*
C20.2971 (4)0.0280 (3)0.5399 (2)0.0586 (11)
H20.33120.03130.54910.070*
C30.1695 (4)0.0749 (3)0.5443 (2)0.0523 (10)
H30.09940.05190.55730.063*
B10.3132 (4)0.2520 (3)0.4989 (3)0.0545 (12)
H1A0.30940.29800.54560.065*
H1B0.41390.23560.48210.065*
N30.2232 (3)0.2899 (2)0.44479 (17)0.0487 (8)
N40.0926 (3)0.3169 (2)0.45283 (16)0.0459 (7)
C40.0457 (4)0.3549 (3)0.4006 (2)0.0505 (9)
H40.04360.37970.39300.061*
C50.1434 (4)0.3533 (3)0.3594 (2)0.0605 (11)
H50.13610.37590.31950.073*
C60.2535 (4)0.3116 (3)0.3892 (2)0.0605 (11)
H60.33880.29990.37280.073*
N110.0743 (3)0.1673 (2)0.43396 (16)0.0462 (7)
N120.1960 (3)0.1776 (2)0.40582 (16)0.0479 (7)
C110.1945 (4)0.1166 (3)0.3515 (2)0.0559 (10)
H110.26740.10940.32340.067*
C120.0712 (5)0.0664 (3)0.3431 (2)0.0610 (11)
H120.04160.01840.30880.073*
C130.0007 (4)0.1003 (3)0.3949 (2)0.0545 (10)
H130.09120.07930.40220.065*
B110.3162 (4)0.2430 (3)0.4384 (3)0.0517 (11)
H11A0.39920.24310.40360.062*
H11B0.33440.21840.48290.062*
N130.2871 (3)0.3399 (2)0.45791 (16)0.0474 (7)
N140.1829 (3)0.3589 (2)0.49551 (16)0.0462 (7)
C140.1978 (4)0.4491 (3)0.5076 (2)0.0526 (10)
H140.13900.48130.53310.063*
C150.3123 (4)0.4893 (3)0.4775 (2)0.0596 (11)
H150.34570.55210.47790.071*
C160.3654 (4)0.4183 (3)0.4473 (2)0.0563 (11)
H160.44500.42330.42270.068*
N210.1093 (3)0.2068 (2)0.58586 (16)0.0434 (7)
N220.0224 (3)0.3417 (2)0.60769 (17)0.0469 (7)
C210.1738 (4)0.1395 (3)0.5734 (2)0.0485 (9)
H210.17790.10880.53000.058*
C220.2357 (4)0.1123 (3)0.6215 (2)0.0535 (10)
H220.28260.06470.61080.064*
C230.2285 (4)0.1545 (3)0.6840 (2)0.0544 (10)
H230.26990.13600.71710.065*
C240.1596 (4)0.2255 (2)0.6994 (2)0.0482 (9)
C250.1454 (5)0.2758 (3)0.7631 (2)0.0615 (11)
C260.0766 (5)0.3412 (3)0.7750 (2)0.0631 (11)
H260.06830.37180.81810.076*
C270.0148 (4)0.3658 (3)0.7233 (2)0.0527 (10)
C280.0595 (4)0.4335 (3)0.7322 (3)0.0616 (11)
H280.07310.46490.77450.074*
C290.1123 (4)0.4543 (3)0.6800 (3)0.0615 (12)
H290.16270.50020.68560.074*
C300.0911 (4)0.4071 (3)0.6183 (2)0.0556 (10)
H300.12750.42230.58220.067*
C310.0291 (3)0.3208 (2)0.65962 (19)0.0449 (8)
C320.1014 (3)0.2495 (2)0.64774 (19)0.0417 (8)
Br10.23079 (7)0.24781 (4)0.83229 (3)0.08442 (19)
Fe20.48657 (5)0.55322 (4)0.16744 (3)0.04260 (14)
N410.3003 (3)0.6101 (2)0.21358 (16)0.0506 (8)
N420.1941 (3)0.6567 (2)0.17944 (18)0.0540 (8)
C410.1160 (5)0.7097 (3)0.2169 (3)0.0664 (12)
H410.03560.74860.20440.080*
C420.1712 (5)0.6983 (3)0.2760 (2)0.0650 (12)
H420.13780.72690.31220.078*
C430.2857 (4)0.6366 (3)0.2716 (2)0.0568 (10)
H430.34630.61560.30540.068*
B410.1731 (5)0.6448 (4)0.1090 (3)0.0592 (12)
H41A0.07560.68590.09800.071*
H41B0.17590.57420.10310.071*
N430.2882 (3)0.6726 (2)0.06536 (17)0.0528 (8)
N440.4142 (3)0.6303 (2)0.07557 (15)0.0469 (7)
C440.4863 (4)0.6724 (3)0.0307 (2)0.0545 (10)
H440.57850.65730.02710.065*
C450.4096 (5)0.7404 (4)0.0094 (2)0.0706 (13)
H450.43670.77980.04550.085*
C460.2849 (5)0.7390 (3)0.0141 (2)0.0683 (13)
H460.20840.77870.00310.082*
N510.6733 (3)0.5079 (2)0.11990 (16)0.0472 (7)
N520.7812 (3)0.5414 (2)0.12632 (17)0.0511 (8)
C510.6983 (4)0.4628 (3)0.0693 (2)0.0537 (10)
H510.63960.43210.05370.064*
C520.8216 (4)0.4674 (3)0.0430 (2)0.0620 (11)
H520.86330.44130.00700.074*
C530.8700 (4)0.5178 (3)0.0802 (2)0.0585 (11)
H530.95330.53360.07430.070*
B510.7952 (5)0.5886 (4)0.1847 (3)0.0562 (12)
H51A0.79040.54220.23080.067*
H51B0.88960.60930.17490.067*
N530.6854 (3)0.6724 (2)0.18431 (19)0.0569 (9)
N540.5571 (3)0.6657 (2)0.19003 (18)0.0522 (8)
C540.4884 (5)0.7498 (3)0.1891 (3)0.0634 (12)
H540.39610.76550.19130.076*
C550.5697 (5)0.8105 (3)0.1845 (3)0.0853 (17)
H550.54590.87410.18390.102*
C560.6935 (5)0.7587 (3)0.1808 (3)0.0807 (16)
H560.77200.78120.17640.097*
N610.4111 (3)0.4326 (2)0.15460 (15)0.0458 (7)
N620.5271 (3)0.4562 (2)0.25960 (15)0.0472 (7)
C610.3550 (4)0.4223 (3)0.1025 (2)0.0521 (9)
H610.36150.46380.06360.063*
C620.2870 (4)0.3537 (3)0.1015 (2)0.0574 (10)
H620.24640.34950.06310.069*
C630.2793 (4)0.2923 (3)0.1566 (2)0.0562 (10)
H630.23350.24480.15680.067*
C640.3394 (4)0.2999 (3)0.2131 (2)0.0488 (9)
C650.3370 (4)0.2405 (3)0.2740 (2)0.0559 (10)
C660.4008 (4)0.2491 (3)0.3257 (2)0.0576 (11)
H660.39980.20680.36460.069*
C670.4698 (4)0.3205 (3)0.32275 (19)0.0506 (9)
C680.5378 (4)0.3337 (3)0.3750 (2)0.0542 (10)
H680.54180.29250.41470.065*
C690.5977 (4)0.4052 (3)0.3686 (2)0.0569 (11)
H690.64530.41380.40350.068*
C700.5891 (4)0.4663 (3)0.3104 (2)0.0559 (10)
H700.62940.51720.30710.067*
C710.4697 (4)0.3835 (3)0.26542 (19)0.0453 (8)
C720.4050 (3)0.3714 (2)0.20966 (18)0.0424 (8)
Br20.23735 (6)0.14820 (3)0.28221 (3)0.07646 (17)
C810.2205 (8)0.0581 (5)0.0990 (5)0.112 (2)
C820.1121 (7)0.1262 (5)0.0968 (4)0.110 (2)
H820.04600.12330.12980.132*
C830.0989 (10)0.1987 (6)0.0468 (6)0.122 (3)
H830.02370.24570.04590.147*
C840.1909 (13)0.2042 (7)0.0010 (5)0.136 (3)
H840.17940.25330.03600.163*
C850.3007 (11)0.1379 (9)0.0019 (5)0.142 (3)
H850.36760.14230.03050.170*
C860.3155 (9)0.0636 (7)0.0519 (5)0.131 (3)
H860.39140.01720.05310.157*
C870.2347 (11)0.0239 (7)0.1542 (5)0.164 (4)
H87A0.23810.07930.13580.245*
H87B0.16000.01560.18460.245*
H87C0.31510.02890.17720.245*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0376 (3)0.0402 (3)0.0424 (3)0.0073 (2)0.0043 (2)0.0084 (2)
N10.0462 (17)0.0437 (17)0.0485 (19)0.0089 (13)0.0012 (14)0.0091 (14)
N20.0385 (16)0.0447 (17)0.057 (2)0.0007 (13)0.0043 (14)0.0103 (15)
C10.047 (2)0.050 (2)0.059 (3)0.0018 (18)0.0014 (18)0.0013 (19)
C20.062 (2)0.041 (2)0.069 (3)0.0008 (19)0.005 (2)0.013 (2)
C30.061 (2)0.040 (2)0.057 (3)0.0091 (17)0.0024 (19)0.0115 (18)
B10.036 (2)0.063 (3)0.067 (3)0.008 (2)0.002 (2)0.021 (2)
N30.0371 (15)0.0561 (19)0.056 (2)0.0081 (14)0.0088 (14)0.0170 (16)
N40.0414 (16)0.0502 (18)0.0467 (19)0.0069 (13)0.0038 (13)0.0114 (14)
C40.053 (2)0.055 (2)0.046 (2)0.0106 (18)0.0007 (18)0.0129 (18)
C50.068 (3)0.069 (3)0.048 (2)0.015 (2)0.005 (2)0.016 (2)
C60.055 (2)0.068 (3)0.062 (3)0.013 (2)0.017 (2)0.015 (2)
N110.0419 (16)0.0465 (17)0.0507 (19)0.0087 (13)0.0038 (14)0.0078 (14)
N120.0497 (18)0.0521 (18)0.0451 (19)0.0165 (14)0.0056 (14)0.0075 (15)
C110.068 (3)0.055 (2)0.048 (2)0.022 (2)0.002 (2)0.0059 (19)
C120.076 (3)0.051 (2)0.054 (3)0.014 (2)0.015 (2)0.0042 (19)
C130.054 (2)0.052 (2)0.055 (3)0.0037 (18)0.0157 (19)0.0066 (19)
B110.038 (2)0.061 (3)0.057 (3)0.013 (2)0.0049 (19)0.008 (2)
N130.0381 (16)0.0559 (19)0.0487 (19)0.0059 (14)0.0055 (14)0.0125 (15)
N140.0426 (16)0.0486 (18)0.0495 (19)0.0113 (14)0.0058 (14)0.0093 (14)
C140.052 (2)0.046 (2)0.061 (3)0.0097 (17)0.0144 (19)0.0076 (18)
C150.055 (2)0.054 (2)0.070 (3)0.000 (2)0.015 (2)0.019 (2)
C160.048 (2)0.061 (3)0.057 (3)0.007 (2)0.0098 (19)0.020 (2)
N210.0451 (16)0.0373 (15)0.0485 (19)0.0108 (13)0.0042 (13)0.0045 (13)
N220.0420 (16)0.0418 (16)0.059 (2)0.0119 (13)0.0014 (14)0.0110 (15)
C210.053 (2)0.0401 (19)0.054 (2)0.0121 (16)0.0038 (18)0.0055 (17)
C220.055 (2)0.042 (2)0.068 (3)0.0152 (17)0.007 (2)0.0118 (19)
C230.057 (2)0.047 (2)0.062 (3)0.0083 (18)0.012 (2)0.016 (2)
C240.048 (2)0.0402 (19)0.056 (2)0.0033 (16)0.0055 (17)0.0116 (17)
C250.078 (3)0.053 (2)0.051 (3)0.005 (2)0.010 (2)0.008 (2)
C260.088 (3)0.051 (2)0.048 (3)0.015 (2)0.002 (2)0.0018 (19)
C270.057 (2)0.042 (2)0.056 (3)0.0081 (17)0.0019 (19)0.0032 (18)
C280.067 (3)0.046 (2)0.068 (3)0.012 (2)0.009 (2)0.002 (2)
C290.057 (2)0.041 (2)0.085 (3)0.0126 (18)0.011 (2)0.007 (2)
C300.049 (2)0.046 (2)0.074 (3)0.0113 (17)0.004 (2)0.016 (2)
C310.0441 (19)0.0390 (19)0.050 (2)0.0039 (15)0.0042 (16)0.0068 (16)
C320.0413 (18)0.0370 (18)0.046 (2)0.0054 (14)0.0040 (15)0.0071 (16)
Br10.1226 (5)0.0752 (3)0.0588 (3)0.0206 (3)0.0276 (3)0.0097 (2)
Fe20.0480 (3)0.0463 (3)0.0376 (3)0.0182 (2)0.0029 (2)0.0068 (2)
N410.0559 (19)0.062 (2)0.0398 (18)0.0210 (16)0.0001 (14)0.0130 (15)
N420.0470 (18)0.062 (2)0.058 (2)0.0156 (16)0.0012 (16)0.0188 (17)
C410.060 (3)0.067 (3)0.078 (3)0.018 (2)0.014 (2)0.029 (3)
C420.075 (3)0.070 (3)0.062 (3)0.030 (2)0.017 (2)0.031 (2)
C430.069 (3)0.063 (3)0.046 (2)0.026 (2)0.006 (2)0.016 (2)
B410.048 (2)0.080 (3)0.056 (3)0.021 (2)0.003 (2)0.017 (3)
N430.0523 (19)0.060 (2)0.0454 (19)0.0111 (16)0.0082 (15)0.0053 (16)
N440.0467 (17)0.0537 (18)0.0411 (18)0.0134 (14)0.0053 (14)0.0044 (14)
C440.062 (2)0.057 (2)0.044 (2)0.020 (2)0.0031 (19)0.0031 (19)
C450.080 (3)0.074 (3)0.054 (3)0.022 (3)0.006 (2)0.007 (2)
C460.070 (3)0.070 (3)0.058 (3)0.004 (2)0.012 (2)0.002 (2)
N510.0515 (18)0.0530 (18)0.0429 (18)0.0198 (15)0.0022 (14)0.0117 (15)
N520.0460 (17)0.061 (2)0.049 (2)0.0177 (15)0.0038 (15)0.0085 (16)
C510.059 (2)0.056 (2)0.048 (2)0.0129 (19)0.0038 (19)0.0123 (19)
C520.063 (3)0.077 (3)0.047 (2)0.014 (2)0.006 (2)0.013 (2)
C530.049 (2)0.079 (3)0.046 (2)0.018 (2)0.0035 (18)0.004 (2)
B510.048 (2)0.073 (3)0.053 (3)0.014 (2)0.007 (2)0.018 (2)
N530.0538 (19)0.061 (2)0.066 (2)0.0250 (16)0.0064 (17)0.0174 (18)
N540.0512 (18)0.0498 (19)0.062 (2)0.0197 (15)0.0047 (16)0.0130 (16)
C540.067 (3)0.046 (2)0.082 (3)0.017 (2)0.004 (2)0.017 (2)
C550.083 (3)0.051 (3)0.130 (5)0.025 (3)0.007 (3)0.022 (3)
C560.070 (3)0.063 (3)0.123 (5)0.031 (2)0.009 (3)0.028 (3)
N610.0527 (18)0.0517 (18)0.0365 (17)0.0157 (14)0.0018 (13)0.0097 (14)
N620.0474 (17)0.0571 (19)0.0395 (18)0.0122 (15)0.0037 (14)0.0117 (15)
C610.063 (2)0.060 (2)0.039 (2)0.0227 (19)0.0032 (18)0.0100 (18)
C620.070 (3)0.069 (3)0.043 (2)0.031 (2)0.0003 (19)0.014 (2)
C630.068 (3)0.058 (2)0.052 (3)0.032 (2)0.003 (2)0.014 (2)
C640.051 (2)0.048 (2)0.048 (2)0.0107 (17)0.0050 (17)0.0111 (18)
C650.063 (2)0.049 (2)0.054 (3)0.0111 (19)0.011 (2)0.0066 (19)
C660.073 (3)0.046 (2)0.047 (2)0.004 (2)0.004 (2)0.0006 (18)
C670.052 (2)0.051 (2)0.042 (2)0.0021 (18)0.0013 (17)0.0050 (17)
C680.051 (2)0.062 (3)0.042 (2)0.001 (2)0.0052 (17)0.0010 (19)
C690.049 (2)0.079 (3)0.039 (2)0.002 (2)0.0041 (17)0.012 (2)
C700.055 (2)0.072 (3)0.045 (2)0.018 (2)0.0037 (18)0.016 (2)
C710.0457 (19)0.049 (2)0.040 (2)0.0071 (16)0.0005 (16)0.0087 (17)
C720.0451 (19)0.0423 (19)0.040 (2)0.0085 (15)0.0040 (15)0.0085 (16)
Br20.0981 (4)0.0581 (3)0.0763 (4)0.0337 (3)0.0113 (3)0.0022 (2)
C810.101 (5)0.096 (5)0.137 (7)0.012 (4)0.028 (5)0.015 (5)
C820.098 (5)0.100 (5)0.139 (7)0.027 (4)0.028 (4)0.026 (5)
C830.128 (7)0.091 (5)0.156 (9)0.020 (5)0.069 (6)0.023 (6)
C840.184 (10)0.118 (7)0.120 (8)0.063 (7)0.055 (7)0.004 (6)
C850.146 (8)0.165 (9)0.126 (8)0.055 (7)0.003 (6)0.027 (7)
C860.106 (6)0.135 (7)0.143 (8)0.008 (5)0.001 (6)0.022 (6)
C870.168 (9)0.136 (8)0.170 (10)0.012 (7)0.034 (8)0.009 (7)
Geometric parameters (Å, º) top
Fe1—N112.144 (3)Fe2—N612.212 (3)
Fe1—N42.145 (3)Fe2—N622.228 (3)
Fe1—N142.154 (3)N41—C431.332 (5)
Fe1—N12.166 (3)N41—N421.363 (5)
Fe1—N212.204 (3)N42—C411.342 (5)
Fe1—N222.206 (3)N42—B411.548 (6)
N1—C31.335 (5)C41—C421.365 (7)
N1—N21.359 (4)C42—C431.375 (6)
N2—C11.345 (5)B41—N431.556 (6)
N2—B11.544 (6)N43—C461.342 (6)
C1—C21.360 (6)N43—N441.360 (4)
C2—C31.384 (6)N44—C441.332 (5)
B1—N31.540 (6)C44—C451.370 (6)
N3—C61.334 (5)C45—C461.374 (7)
N3—N41.361 (4)N51—C511.341 (5)
N4—C41.342 (5)N51—N521.358 (5)
C4—C51.373 (6)N52—C531.340 (5)
C5—C61.368 (6)N52—B511.548 (6)
N11—C131.340 (5)C51—C521.386 (6)
N11—N121.364 (4)C52—C531.368 (7)
N12—C111.340 (5)B51—N531.536 (6)
N12—B111.552 (5)N53—C561.328 (6)
C11—C121.367 (6)N53—N541.368 (5)
C12—C131.373 (7)N54—C541.335 (5)
B11—N131.555 (6)C54—C551.372 (7)
N13—C161.350 (5)C55—C561.381 (7)
N13—N141.359 (5)N61—C611.317 (5)
N14—C141.337 (5)N61—C721.362 (5)
C14—C151.397 (6)N62—C701.326 (5)
C15—C161.364 (7)N62—C711.354 (5)
N21—C211.326 (5)C61—C621.387 (6)
N21—C321.352 (5)C62—C631.367 (6)
N22—C301.331 (5)C63—C641.404 (6)
N22—C311.355 (5)C64—C721.397 (6)
C21—C221.394 (6)C64—C651.437 (6)
C22—C231.359 (6)C65—C661.343 (6)
C23—C241.408 (6)C65—Br21.902 (5)
C24—C321.408 (5)C66—C671.421 (6)
C24—C251.436 (6)C67—C711.404 (6)
C25—C261.333 (7)C67—C681.405 (6)
C25—Br11.899 (5)C68—C691.353 (7)
C26—C271.433 (7)C69—C701.398 (6)
C27—C281.401 (6)C71—C721.441 (5)
C27—C311.406 (6)C81—C861.362 (12)
C28—C291.366 (7)C81—C821.371 (10)
C29—C301.395 (7)C81—C871.542 (12)
C31—C321.432 (5)C82—C831.380 (12)
Fe2—N542.138 (3)C83—C841.350 (13)
Fe2—N442.167 (3)C84—C851.365 (13)
Fe2—N512.178 (3)C85—C861.396 (14)
Fe2—N412.205 (3)
N11—Fe1—N493.27 (13)N44—Fe2—N4188.27 (12)
N11—Fe1—N1488.85 (12)N51—Fe2—N41175.48 (13)
N4—Fe1—N1488.10 (11)N54—Fe2—N61174.30 (13)
N11—Fe1—N189.44 (12)N44—Fe2—N6193.62 (12)
N4—Fe1—N190.52 (12)N51—Fe2—N6193.43 (12)
N14—Fe1—N1177.74 (13)N41—Fe2—N6190.72 (12)
N11—Fe1—N2193.22 (12)N54—Fe2—N62100.34 (13)
N4—Fe1—N21173.29 (12)N44—Fe2—N62167.13 (12)
N14—Fe1—N2193.76 (11)N51—Fe2—N6295.71 (12)
N1—Fe1—N2187.82 (12)N41—Fe2—N6287.13 (12)
N11—Fe1—N22167.79 (12)N61—Fe2—N6274.43 (12)
N4—Fe1—N2298.88 (12)C43—N41—N42106.1 (3)
N14—Fe1—N2290.32 (12)C43—N41—Fe2125.8 (3)
N1—Fe1—N2291.66 (12)N42—N41—Fe2123.4 (2)
N21—Fe1—N2274.68 (12)C41—N42—N41109.3 (4)
C3—N1—N2106.4 (3)C41—N42—B41128.3 (4)
C3—N1—Fe1130.4 (3)N41—N42—B41122.5 (3)
N2—N1—Fe1122.8 (2)N42—C41—C42108.7 (4)
C1—N2—N1108.9 (3)C41—C42—C43105.0 (4)
C1—N2—B1127.4 (3)N41—C43—C42110.9 (4)
N1—N2—B1123.0 (3)N42—B41—N43108.3 (3)
N2—C1—C2109.3 (4)C46—N43—N44108.7 (4)
C1—C2—C3104.7 (3)C46—N43—B41128.7 (4)
N1—C3—C2110.7 (4)N44—N43—B41122.7 (3)
N3—B1—N2110.5 (4)C44—N44—N43106.7 (3)
C6—N3—N4109.1 (3)C44—N44—Fe2124.2 (3)
C6—N3—B1129.6 (3)N43—N44—Fe2124.5 (2)
N4—N3—B1120.9 (3)N44—C44—C45111.0 (4)
C4—N4—N3105.8 (3)C44—C45—C46104.6 (4)
C4—N4—Fe1126.8 (3)N43—C46—C45109.1 (4)
N3—N4—Fe1122.9 (2)C51—N51—N52106.3 (3)
N4—C4—C5111.3 (4)C51—N51—Fe2128.5 (3)
C6—C5—C4104.1 (4)N52—N51—Fe2123.3 (2)
N3—C6—C5109.8 (4)C53—N52—N51109.4 (3)
C13—N11—N12106.2 (3)C53—N52—B51128.9 (4)
C13—N11—Fe1127.8 (3)N51—N52—B51121.3 (3)
N12—N11—Fe1125.0 (2)N51—C51—C52110.5 (4)
C11—N12—N11109.0 (3)C53—C52—C51104.6 (4)
C11—N12—B11127.6 (4)N52—C53—C52109.2 (4)
N11—N12—B11123.1 (3)N53—B51—N52109.3 (3)
N12—C11—C12109.2 (4)C56—N53—N54109.1 (4)
C11—C12—C13104.9 (4)C56—N53—B51129.1 (4)
N11—C13—C12110.7 (4)N54—N53—B51121.8 (3)
N12—B11—N13110.0 (3)C54—N54—N53106.5 (3)
C16—N13—N14109.0 (3)C54—N54—Fe2126.1 (3)
C16—N13—B11126.7 (3)N53—N54—Fe2123.6 (2)
N14—N13—B11123.9 (3)N54—C54—C55110.6 (4)
C14—N14—N13106.8 (3)C54—C55—C56104.8 (4)
C14—N14—Fe1128.2 (3)N53—C56—C55109.0 (4)
N13—N14—Fe1124.0 (2)C61—N61—C72118.3 (3)
N14—C14—C15110.3 (4)C61—N61—Fe2125.9 (3)
C16—C15—C14104.6 (4)C72—N61—Fe2114.9 (2)
N13—C16—C15109.3 (4)C70—N62—C71117.7 (4)
C21—N21—C32118.8 (3)C70—N62—Fe2127.5 (3)
C21—N21—Fe1125.7 (3)C71—N62—Fe2114.5 (2)
C32—N21—Fe1115.4 (2)N61—C61—C62123.2 (4)
C30—N22—C31117.8 (4)C63—C62—C61119.1 (4)
C30—N22—Fe1126.9 (3)C62—C63—C64119.6 (4)
C31—N22—Fe1115.2 (3)C72—C64—C63117.4 (4)
N21—C21—C22122.4 (4)C72—C64—C65117.8 (4)
C23—C22—C21119.6 (4)C63—C64—C65124.9 (4)
C22—C23—C24119.8 (4)C66—C65—C64122.1 (4)
C32—C24—C23116.9 (4)C66—C65—Br2119.1 (3)
C32—C24—C25117.7 (4)C64—C65—Br2118.8 (3)
C23—C24—C25125.4 (4)C65—C66—C67120.8 (4)
C26—C25—C24122.7 (4)C71—C67—C68116.8 (4)
C26—C25—Br1119.4 (4)C71—C67—C66119.5 (4)
C24—C25—Br1117.9 (4)C68—C67—C66123.7 (4)
C25—C26—C27120.6 (4)C69—C68—C67119.8 (4)
C28—C27—C31117.1 (4)C68—C69—C70119.6 (4)
C28—C27—C26123.7 (4)N62—C70—C69122.7 (4)
C31—C27—C26119.1 (4)N62—C71—C67123.3 (4)
C29—C28—C27120.0 (4)N62—C71—C72117.7 (3)
C28—C29—C30118.9 (4)C67—C71—C72119.0 (4)
N22—C30—C29123.2 (4)N61—C72—C64122.5 (4)
N22—C31—C27123.0 (4)N61—C72—C71116.9 (3)
N22—C31—C32117.3 (3)C64—C72—C71120.7 (4)
C27—C31—C32119.7 (4)C86—C81—C82119.3 (8)
N21—C32—C24122.5 (4)C86—C81—C87120.3 (8)
N21—C32—C31117.3 (3)C82—C81—C87120.4 (9)
C24—C32—C31120.2 (4)C81—C82—C83120.1 (9)
N54—Fe2—N4491.37 (13)C84—C83—C82121.2 (9)
N54—Fe2—N5189.35 (12)C83—C84—C85119.0 (10)
N44—Fe2—N5189.67 (12)C84—C85—C86120.7 (10)
N54—Fe2—N4186.68 (13)C81—C86—C85119.7 (9)
Selected bond lengths and angles (Å, °) for the title compound at 200 K top
Fe1—N112.144 (3)Fe2—N542.138 (3)
Fe1—N42.145 (3)Fe2—N442.167 (3)
Fe1—N142.154 (3)Fe2—N512.178 (3)
Fe1—N12.166 (3)Fe2—N412.205 (3)
Fe1—N212.204 (3)Fe2—N612.212 (3)
Fe1—N222.206 (3)Fe2—N622.228 (3)
Average bond length2.170Average bond length2.188
N11—Fe1—N493.27 (13)N54—Fe2—N4491.37 (13)
N11—Fe1—N1488.85 (12)N54—Fe2—N5189.35 (12)
N4—Fe1—N1488.10 (11)N44—Fe2—N5189.67 (12)
N11—Fe1—N189.44 (12)N54—Fe2—N4186.68 (13)
N4—Fe1—N190.52 (12)N44—Fe2—N4188.27 (12)
N11—Fe1—N2193.22 (12)N44—Fe2—N6193.62 (12)
N14—Fe1—N2193.76 (11)N51—Fe2—N6193.43 (12)
N1—Fe1—N2187.82 (12)N41—Fe2—N6190.72 (12)
N4—Fe1—N2298.88 (12)N54—Fe2—N62100.34 (13)
N14—Fe1—N2290.32 (12)N51—Fe2—N6295.71 (12)
N1—Fe1—N2291.66 (12)N41—Fe2—N6287.13 (12)
N21—Fe1—N2274.68 (12)N61—Fe2—N6274.43 (12)
 

Acknowledgements

We thank Professor Dr Wolfgang Bensch for access to his experimental facilities.

Funding information

This project was supported by the DFG (SFB 677 Function by Switching) and the State of Schleswig-Holstein.

References

First citationBain, G. A. & Berry, J. F. (2008). J. Chem. Educ. 85, 532–536.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationGütlich, P., Gaspar, A. B. & Garcia, Y. (2013). Beilstein J. Org. Chem. 9, 342–391.  Web of Science PubMed Google Scholar
First citationHalcrow, M. A. (2007). Polyhedron, 26, 3523–3576.  Web of Science CrossRef CAS Google Scholar
First citationHalcrow, M. A. (2013a). Chem. Commun. 49, 10890–10892.  CrossRef CAS Google Scholar
First citationHalcrow, M. A. (2013b). Spin-Crossover Materials. Oxford, UK: John Wiley and Sons Ltd.  Google Scholar
First citationKulmaczewski, R., Shepherd, H. J., Cespedes, O. & Halcrow, M. A. (2014). Inorg. Chem. 53, 9809–9817.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLuo, Y.-H., Liu, Q.-L., Yang, L.-J., Sun, Y., Wang, J.-W., You, C.-Q. & Sun, B. (2016). J. Mater. Chem. C. 4, 8061–8069.  Web of Science CSD CrossRef CAS Google Scholar
First citationMilek, M., Heinemann, F. W. & Khusniyarov, M. M. (2013). Inorg. Chem. 52, 11585–11592.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMörtel, M., Lindner, T., Scheurer, A., Heinemann, F. W. & Khusniyarov, M. M. (2020). Inorg. Chem. 59, 2659–2666.  Web of Science PubMed Google Scholar
First citationMörtel, M., Witt, A., Heinemann, F. W., Bochmann, S., Bachmann, J. & Khusniyarov, M. M. (2017). Inorg. Chem. 56, 13174–13186.  Web of Science PubMed Google Scholar
First citationNaggert, H., Rudnik, J., Kipgen, L., Bernien, M., Nickel, F., Arruda, L. M., Kuch, W., Näther, C. & Tuczek, F. (2015). J. Mater. Chem. C. 3, 7870–7877.  Web of Science CSD CrossRef CAS Google Scholar
First citationNihei, M., Suzuki, Y., Kimura, N., Kera, Y. & Oshio, H. (2013). Chem. Eur. J. 19, 6946–6949.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationOssinger, S., Kipgen, L., Naggert, H., Bernien, M., Britton, A. J., Nickel, F., Arruda, L. M., Kumberg, I., Engesser, T. A., Golias, E., Näther, C., Tuczek, F. & Kuch, W. (2020a). J. Phys. Condens. Matter, 32, 114003.  Web of Science CrossRef PubMed Google Scholar
First citationOssinger, S., Naggert, H., Bill, E., Näther, C. & Tuczek, F. (2019). Inorg. Chem. 58, 12873–12887.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationOssinger, S., Näther, C. & Tuczek, F. (2016). IUCrData, 1, x161252.  Google Scholar
First citationOssinger, S., Näther, C. & Tuczek, F. (2020b). J. Phys. Condens. Matter, 32, 094001.  Web of Science CrossRef PubMed Google Scholar
First citationReal, J. A., Muñoz, M. C., Faus, J. & Solans, X. (1997). Inorg. Chem. 36, 3008–3013.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationRu, J., Yu, F., Shi, P.-P., Jiao, C.-Q., Li, C.-H., Xiong, R.-G., Liu, T., Kurmoo, M. & Zuo, J.-L. (2017). Eur. J. Inorg. Chem. 2017, 3144–3149.  Web of Science CSD CrossRef CAS Google Scholar
First citationRuben, M. & Kumar, K. S. (2019). Angew. Chem. Int. Ed. 10, https://doi.org/10.1002/anie.201911256.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2008). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationThompson, A. L., Goeta, A. E., Real, J. A., Galet, A. & Carmen Muñoz, M. (2004). Chem. Commun. pp. 1390–1391.  Web of Science CSD CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXue, S., Guo, Y., Rotaru, A., Müller-Bunz, H., Morgan, G. G., Trzop, E., Collet, E., Oláh, J. & Garcia, Y. (2018). Inorg. Chem. 57, 9880–9891.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds