research communications
Synthesis, H,4H)-dione monohydrate
at 219 K and Hirshfeld surface analyses of 1,4,6-trimethylquinoxaline-2,3(1aLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, BP 2202, Fez, Morocco, bDepartment of Chemistry, Langat Singh College, B.R.A. Bihar University, Muzaffarpur, Bihar-842001, India, cLaboratoire de Chimie Physique et Chimie Bio-organique, Faculté des Sciences et Techniques Mohammedia, Université Hassan II, Casablanca, BP 146, 28800, Mohammedia, Morocco, dInstitut Lavoisier de Versailles, UVSQ, CNRS, Université Paris-Saclay, 78035 Versailles, France, eDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Samsun, 55200, Turkey, and fDepartment of Pharmacy, University of Science and Technology, Ibb Branch, Ibb, Yemen
*Correspondence e-mail: ashraf.yemen7@gmail.com
The 11H12N2O2·H2O, contains a molecule of 1,4,6-trimethyl-1,4-dihydroquinoxaline-2,3-dione and a solvent water molecule. Four atoms of the benzene ring are disordered over two sets of sites in a 0.706 (7):0.294 (7) ratio while the N-bound methyl groups are rotationally disordered with occupancy ratios of 0.78 (4):0.22 (4) and 0.76 (5):0.24 (5). In the crystal, molecules are linked by O—H⋯O and C—H⋯O hydrogen bonds into layers lying parallel to (10). The Hirshfeld surface analysis indicates that the most important contributions to the packing arrangement are due to H⋯H (51.3%) and O⋯H/H⋯O (28.6%) interactions. The molecular structure calculated by density functional theory is compared with the experimentally determined molecular structure, and the HOMO–LUMO energy gap has been calculated.
of the title compound, CKeywords: crystal structure; quinoxaline-2,3-dione; Hirshfeld surface analysis; disorder; hydrogen bonding.
CCDC reference: 1936663
1. Chemical context
Quinoxalines are well-known important nitrogen-containing et al., 2006), antidiabetic (Bahekar et al., 2007), antiviral (Fonseca et al., 2004), antibacterial (El-Sabbagh et al., 2009), anti-inflammatory (Wagle et al., 2008) and antiprotozoal (Hui et al., 2006). The present work is a part of an ongoing structural study of quinoxaline derivatives (Faizi & Parashchenko 2015; Faizi et al., 2015, 2018).
with fused benzene and pyrazine rings. Quinoxalines and their derivatives display various pharmacological and biological activities, such as anticancer (CartaAs a continuation of our research devoted to the synthesis and applications of new N-alkylation reactions (Tribak et al., 2017; Qachchachi et al., 2016; Belaziz et al., 2012), we report here the synthesis of 1,4,6-trimethylquinoxaline-2,3(1H,4H)-dione obtained by the action of iodomethane on 6-methylquinoxaline-2,3(1H,4H)-dione, and the of its monohydrate derivative along with the Hirshfeld surface analysis. The experimentally determined molecular structure is compared with that calculated at the DFT/B3LYP/6-311 G(d,p) level.
obtained by2. Structural commentary
The title compound crystallizes in P21/n with one quinoxaline and one water molecule per The organic molecule is disordered over two sets of sites with an occupancy ratio of 0.706 (7):0.294 (7). The disorder involves not only the orientation of the methyl group attached to the benzene ring, but also the positions of four carbon atoms of this ring, which are split (Fig. 1). Only the predominant orientation of the 1,4,6-trimethylquinoxaline-2,3(1H,4H)-dione molecule is discussed below. Besides this, the methyl groups attached to N1 and N2 nitrogen atoms are also rotationally disordered with occupancy ratios of 0.78 (4):0.22 (4) and 0.76 (5):0.24 (5), respectively. The quinoxaline ring system is essentially planar, the largest deviation from the mean plane being 0.015 (3) Å for the N2 atom. The C=O and Csp2—N bond lengths are typical of such type of compounds and indicate strong conjugation in the amide fragments.
3. Supramolecular features
In the crystal, molecules are linked by O—H⋯O and C—H⋯O hydrogen bonds (Table 1) into double layers lying parallel to (10). The smallest element of the hydrogen-bonding motif, where the R42(8) rings are formed, is shown in Fig. 2, whereas the whole packing diagram is presented in Fig. 3. The water molecule behaves both as a donor and an acceptor of hydrogen atoms in the hydrogen bonds. As seen in Fig. 3, in centrosymmetric pairs of organic molecules, the aromatic and heterocyclic rings overlap with each other with an intercentroid distance of 3.522 (4) Å, indicating that some π–π interactions occur.
4. Hirshfeld surface analysis
The intermolecular interactions were investigated quantitatively and visualized with Crystal Explorer 17.5 (Turner et al., 2017; Spackman et al., 2009). The dnorm, water interaction, curvedness and 2D finger print plots are depicted in Fig. 4a–c and 5a–h, respectively. The red spots on the Hirshfeld surface represent O—H⋯O contacts while the blue regions correspond to weak interactions such as C—H⋯O contacts. The H⋯H interactions (51.3%) are the major factor in the crystal packing with O⋯H/H⋯O interactions (28.6%) representing the next highest contribution. The percentage contributions of other weak interactions are: C⋯C (8.2%), C⋯H/H⋯C (5.8%), C⋯N/N⋯C (4.5%), N⋯H/H⋯N (1.1%) and O⋯C/C⋯O (0.5%).
5. DFT calculations
The structure of the title organic molecule was optimized in the gas-phase approximation at the level of density functional theory (DFT) using the B3LYP functional (Becke, 1993) and 6-311 G(d,p) basis set as implemented in GAUSSIAN 09 (Frisch et al., 2009). The theoretical and experimental bond lengths and angles are in good agreement (Table 2). The energetic and spatial characteristics of the highest occupied molecular orbital (HOMO), acting as an and the lowest unoccupied molecular orbital (LUMO), acting as an are very important parameters for quantum chemistry. When the energy gap is small, the molecule is highly polarizable and has high chemical reactivity (Fukui, 1982; Khan et al., 2015). The DFT calculations provide some important information on the reactivity and site selectivity of the molecular framework, EHOMO and ELUMO, (χ), hardness (η), (ω), softness (σ) and fraction of electrons transferred (ΔN). These data are given in Table 3. The parameters η and σ are significant for evaluation of both the reactivity and stability. The electron transition from HOMO to LUMO is shown in Fig. 6. The HOMO and LUMO are localized in the plane of the whole 1,4,6-trimethylquinoxaline-2,3(1H,4H)-dione bicyclic ring system. The energy gap [ΔE = ELUMO − EHOMO] of the molecule is 4.6907 eV, the frontier molecular orbital energies EHOMO and ELUMO being −6.1139 eV and −1.4232 eV, respectively. The of (I) is estimated to be 5.56 Debye.
|
|
6. Database survey
A search of the Cambridge Structural Database (CSD, version 5.39; Groom et al., 2016) gave nine hits for the 1,4,6-trimethylquinoxaline-2,3(1H,4H)-dione moiety. Two of them are metal complexes, bis(μ2-nitrato-O,O,O′)-bis[1,4-bis(N,N- diisopropyl-acetamido)quinoxaline-2,3-dione-O,O′]tetrakis(nitrato-O,O′)diaquadineodymium(III) monohydrate (WIKSOZ; Song et al., 2007) and catena-(μ2-iodo)-bis(1,4-dimethylquinoxalin-2,3-dionato)potassium (FADQOS; Benali et al., 2008). Seven organic compounds similar to the title compound are reported in the literature. In 1,4-dihexyl-1,4-dihydroquinoxaline-2,3-dione (FECROX; El Bourakadi et al., 2017a), the methyl groups attached to the N atoms are replaced by hexyl groups. In 1,4-diallylquinoxaline-2,3(1H,4H)-dione (GURGAB; Mustaphi et al., 2001), the allyl groups are bound to the N atoms. In 1-ethyl-4-phenylethyl-1,4-dihydroquinoxaline-2,3-dione (IXATOQ; Akkurt et al., 2004), one N atom is bound to an ethyl group, and the other to an ethylphenyl group. In 6-methyl-1,4-bis[(pyridin-2-yl)methyl]-1,4-dihydroquinoxaline-2,3-dione (KELMIA; Zouitini et al., 2017), methylpyridinyl groups are attached to both N atoms. In 1,4-dibenzyl-6-chloro-1,4-dihydroquinoxaline-2,3-dione (PAWFEB; El Janati et al., 2017a), the N atoms are attached to the benzyl groups, and the methyl group on the benzene ring is substituted by chlorine. In 1,4-dioctyl-1,4-dihydroquinoxaline-2,3-dione (WAPWAO; El Bourakadi et al., 2017b), octyl groups are attached to the N atoms. In 6-chloro-1,4-diethyl-1,4-dihydroquinoxaline-2,3-dione (XEFMON; El Janati et al., 2017b), the ethyl groups are attached to the N atoms, and the methyl group on the benzene ring is substituted by chlorine, as in PAWFEB. None of these structures contains solvent molecules.
7. Synthesis and crystallization
To a solution of 6-methyl-1,4-dihydroquinoxaline-2,3-dione (0.3 g, 1.73 mmol) in DMF (15 ml) potassium carbonate (0.47 g, 3.61 mmol) and tetra-n-butylammonium (0.07g, 0.23 mmol) were added. After 10 min of stirring, 0.27 ml (4.32 mmol) of iodomethane were added, and the mixture was stirred at room temperature for 6 h. The inorganic salts were filtered off, DMF was evaporated under reduced pressure and the residue was dissolved in dichloromethane. The organic phase was dried over Na2SO4 and then concentrated. The crude product was purified by on a silica gel column [eluent: hexane/ethylacetate (2/1)].
8. Refinement
Crystal data, data collection and structure . Water molecules were refined as rigid groups with Uiso(H) = 1.5Ueq(O). Other H atoms were positioned geometrically, with C—H = 0.94 and 0.97 Å for aromatic and aliphatic H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(C-methyl). The disorder of the organic molecule was taken into account using free variables.
details are summarized in Table 4Supporting information
CCDC reference: 1936663
https://doi.org/10.1107/S2056989020009573/yk2133sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020009573/yk2133Isup2.hkl
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2020); software used to prepare material for publication: WinGX (Farrugia, 2012), PLATON (Spek, 2020) and publCIF (Westrip, 2010).C11H12N2O2·H2O | F(000) = 472 |
Mr = 222.24 | Dx = 1.363 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 7.0695 (4) Å | Cell parameters from 7373 reflections |
b = 10.8321 (5) Å | θ = 2.4–24.7° |
c = 14.4349 (6) Å | µ = 0.10 mm−1 |
β = 101.556 (3)° | T = 219 K |
V = 1082.98 (9) Å3 | Parallelepiped, yellow |
Z = 4 | 0.30 × 0.18 × 0.04 mm |
Bruker APEXII CCD diffractometer | 1563 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.062 |
φ and ω scans | θmax = 25.2°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −8→8 |
k = −12→12 | |
32798 measured reflections | l = −17→17 |
1935 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.067 | H-atom parameters constrained |
wR(F2) = 0.147 | w = 1/[σ2(Fo2) + (0.0097P)2 + 1.8308P] where P = (Fo2 + 2Fc2)/3 |
S = 1.24 | (Δ/σ)max < 0.001 |
1935 reflections | Δρmax = 0.21 e Å−3 |
201 parameters | Δρmin = −0.18 e Å−3 |
30 restraints | Extinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0031 (9) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.3712 (4) | 1.3409 (2) | 0.00205 (17) | 0.0479 (7) | |
O2 | 0.3853 (4) | 1.2710 (3) | 0.18106 (17) | 0.0581 (8) | |
C1 | 0.2612 (4) | 0.9861 (3) | 0.0618 (3) | 0.0409 (8) | |
C2A | 0.2177 (14) | 0.8598 (10) | 0.0725 (6) | 0.034 (2) | 0.706 (7) |
H2A | 0.219201 | 0.830335 | 0.133895 | 0.041* | 0.706 (7) |
C2B | 0.228 (5) | 0.879 (3) | 0.1074 (16) | 0.048 (7) | 0.294 (7) |
H2B | 0.237848 | 0.867991 | 0.172811 | 0.057* | 0.294 (7) |
C3A | 0.1723 (13) | 0.7756 (12) | −0.0031 (7) | 0.037 (2) | 0.706 (7) |
C3B | 0.175 (4) | 0.788 (3) | 0.0367 (16) | 0.037 (5) | 0.294 (7) |
H3B | 0.152151 | 0.706837 | 0.055446 | 0.045* | 0.294 (7) |
C4A | 0.1703 (14) | 0.8174 (10) | −0.0933 (6) | 0.038 (2) | 0.706 (7) |
H4A | 0.142000 | 0.761812 | −0.144148 | 0.045* | 0.706 (7) |
C4B | 0.156 (3) | 0.811 (2) | −0.0554 (16) | 0.035 (6) | 0.294 (7) |
C5A | 0.210 (2) | 0.9418 (16) | −0.1111 (9) | 0.039 (3) | 0.706 (7) |
H5A | 0.207157 | 0.970180 | −0.172834 | 0.047* | 0.706 (7) |
C5B | 0.193 (5) | 0.923 (4) | −0.087 (2) | 0.032 (6) | 0.294 (7) |
H5B | 0.176018 | 0.933494 | −0.153049 | 0.038* | 0.294 (7) |
C6 | 0.2535 (4) | 1.0233 (3) | −0.0314 (2) | 0.0369 (8) | |
N1 | 0.2915 (4) | 1.1465 (2) | −0.05089 (18) | 0.0359 (7) | |
C9 | 0.3382 (4) | 1.2324 (3) | 0.0177 (2) | 0.0354 (7) | |
C10 | 0.3472 (5) | 1.1936 (3) | 0.1182 (2) | 0.0402 (8) | |
N2 | 0.3101 (4) | 1.0729 (3) | 0.1354 (2) | 0.0440 (7) | |
C8 | 0.2761 (6) | 1.1869 (4) | −0.1493 (2) | 0.0540 (10) | |
H8A | 0.223018 | 1.120497 | −0.191729 | 0.081* | 0.22 (4) |
H8B | 0.403194 | 1.208575 | −0.159941 | 0.081* | 0.22 (4) |
H8C | 0.191973 | 1.258317 | −0.161254 | 0.081* | 0.22 (4) |
H8D | 0.322439 | 1.271095 | −0.150220 | 0.081* | 0.78 (4) |
H8E | 0.142263 | 1.183017 | −0.182009 | 0.081* | 0.78 (4) |
H8F | 0.353484 | 1.133275 | −0.180695 | 0.081* | 0.78 (4) |
C11 | 0.3169 (7) | 1.0381 (4) | 0.2335 (3) | 0.0696 (13) | |
H11A | 0.279949 | 0.952205 | 0.236449 | 0.104* | 0.24 (5) |
H11B | 0.228285 | 1.089532 | 0.259797 | 0.104* | 0.24 (5) |
H11C | 0.446948 | 1.049549 | 0.269709 | 0.104* | 0.24 (5) |
H11D | 0.356839 | 1.108652 | 0.274187 | 0.104* | 0.76 (5) |
H11E | 0.408503 | 0.971326 | 0.250839 | 0.104* | 0.76 (5) |
H11F | 0.189839 | 1.011308 | 0.240928 | 0.104* | 0.76 (5) |
O3 | 0.3982 (6) | 1.4989 (3) | −0.1600 (2) | 0.0833 (11) | |
H3A | 0.382975 | 1.460410 | −0.109907 | 0.125* | |
H3C | 0.477462 | 1.559146 | −0.144450 | 0.125* | |
C7A | 0.1315 (8) | 0.6428 (5) | 0.0165 (4) | 0.0528 (17) | 0.706 (7) |
H7A2 | 0.035271 | 0.639039 | 0.055782 | 0.079* | 0.706 (7) |
H7A3 | 0.249382 | 0.603381 | 0.049019 | 0.079* | 0.706 (7) |
H7A1 | 0.083495 | 0.600399 | −0.042761 | 0.079* | 0.706 (7) |
C7B | 0.0926 (19) | 0.7135 (13) | −0.1317 (10) | 0.062 (5) | 0.294 (7) |
H7B1 | 0.025634 | 0.753011 | −0.189272 | 0.093* | 0.294 (7) |
H7B2 | 0.006626 | 0.655227 | −0.110056 | 0.093* | 0.294 (7) |
H7B3 | 0.205065 | 0.670198 | −0.143967 | 0.093* | 0.294 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0528 (15) | 0.0419 (15) | 0.0475 (14) | −0.0027 (12) | 0.0067 (11) | 0.0004 (12) |
O2 | 0.0675 (18) | 0.0632 (18) | 0.0414 (14) | −0.0097 (14) | 0.0057 (12) | −0.0075 (14) |
C1 | 0.0219 (15) | 0.0408 (19) | 0.059 (2) | 0.0014 (14) | 0.0050 (14) | 0.0022 (17) |
C2A | 0.026 (3) | 0.038 (6) | 0.038 (5) | 0.003 (3) | 0.007 (4) | 0.000 (5) |
C2B | 0.051 (9) | 0.040 (10) | 0.051 (13) | −0.009 (7) | 0.008 (11) | −0.016 (11) |
C3A | 0.029 (3) | 0.039 (5) | 0.043 (8) | −0.003 (3) | 0.006 (5) | −0.005 (6) |
C3B | 0.040 (8) | 0.034 (10) | 0.036 (13) | 0.003 (7) | 0.003 (10) | −0.004 (11) |
C4A | 0.035 (3) | 0.039 (4) | 0.037 (5) | 0.003 (2) | 0.002 (4) | −0.005 (4) |
C4B | 0.033 (7) | 0.042 (11) | 0.029 (14) | −0.002 (7) | 0.008 (10) | −0.013 (11) |
C5A | 0.038 (5) | 0.038 (5) | 0.039 (6) | −0.002 (4) | 0.002 (4) | 0.006 (4) |
C5B | 0.014 (7) | 0.042 (14) | 0.038 (13) | 0.005 (7) | 0.003 (8) | 0.005 (10) |
C6 | 0.0200 (15) | 0.0367 (18) | 0.050 (2) | 0.0025 (13) | −0.0020 (13) | −0.0011 (15) |
N1 | 0.0297 (14) | 0.0393 (15) | 0.0358 (15) | 0.0005 (12) | −0.0002 (11) | −0.0006 (12) |
C9 | 0.0259 (16) | 0.0385 (19) | 0.0407 (18) | 0.0022 (14) | 0.0037 (13) | −0.0001 (15) |
C10 | 0.0318 (17) | 0.052 (2) | 0.0362 (18) | −0.0002 (15) | 0.0048 (14) | −0.0006 (16) |
N2 | 0.0360 (15) | 0.0523 (18) | 0.0448 (17) | 0.0004 (14) | 0.0108 (13) | 0.0091 (14) |
C8 | 0.063 (3) | 0.057 (2) | 0.037 (2) | 0.002 (2) | −0.0016 (17) | 0.0010 (17) |
C11 | 0.081 (3) | 0.078 (3) | 0.054 (3) | 0.002 (3) | 0.023 (2) | 0.017 (2) |
O3 | 0.127 (3) | 0.069 (2) | 0.0480 (17) | −0.041 (2) | 0.0053 (18) | 0.0030 (16) |
C7A | 0.055 (3) | 0.041 (3) | 0.063 (4) | −0.001 (2) | 0.013 (3) | 0.002 (3) |
C7B | 0.048 (8) | 0.063 (9) | 0.077 (10) | −0.005 (7) | 0.014 (7) | −0.045 (8) |
O1—C9 | 1.228 (4) | N1—C8 | 1.470 (4) |
O2—C10 | 1.226 (4) | C9—C10 | 1.499 (5) |
C1—C2B | 1.38 (3) | C10—N2 | 1.365 (5) |
C1—C6 | 1.394 (5) | N2—C11 | 1.458 (5) |
C1—N2 | 1.409 (4) | C8—H8A | 0.9700 |
C1—C2A | 1.418 (12) | C8—H8B | 0.9700 |
C2A—C3A | 1.409 (11) | C8—H8C | 0.9700 |
C2A—H2A | 0.9400 | C8—H8D | 0.9700 |
C2B—C3B | 1.41 (2) | C8—H8E | 0.9700 |
C2B—H2B | 0.9400 | C8—H8F | 0.9700 |
C3A—C4A | 1.375 (11) | C11—H11A | 0.9700 |
C3A—C7A | 1.504 (14) | C11—H11B | 0.9700 |
C3B—C4B | 1.34 (3) | C11—H11C | 0.9700 |
C3B—H3B | 0.9400 | C11—H11D | 0.9700 |
C4A—C5A | 1.41 (2) | C11—H11E | 0.9700 |
C4A—H4A | 0.9400 | C11—H11F | 0.9700 |
C4B—C5B | 1.34 (4) | O3—H3A | 0.8603 |
C4B—C7B | 1.53 (2) | O3—H3C | 0.8598 |
C5A—C6 | 1.434 (17) | C7A—H7A2 | 0.9700 |
C5A—H5A | 0.9400 | C7A—H7A3 | 0.9700 |
C5B—C6 | 1.37 (4) | C7A—H7A1 | 0.9700 |
C5B—H5B | 0.9400 | C7B—H7B1 | 0.9700 |
C6—N1 | 1.401 (4) | C7B—H7B2 | 0.9700 |
N1—C9 | 1.351 (4) | C7B—H7B3 | 0.9700 |
C2B—C1—C6 | 136.5 (10) | H8B—C8—H8C | 109.5 |
C2B—C1—N2 | 104.1 (10) | N1—C8—H8D | 109.5 |
C6—C1—N2 | 119.4 (3) | H8A—C8—H8D | 141.1 |
C6—C1—C2A | 114.6 (5) | H8B—C8—H8D | 56.3 |
N2—C1—C2A | 126.0 (5) | H8C—C8—H8D | 56.3 |
C3A—C2A—C1 | 124.1 (8) | N1—C8—H8E | 109.5 |
C3A—C2A—H2A | 117.9 | H8A—C8—H8E | 56.3 |
C1—C2A—H2A | 117.9 | H8B—C8—H8E | 141.1 |
C1—C2B—C3B | 107 (2) | H8C—C8—H8E | 56.3 |
C1—C2B—H2B | 126.6 | H8D—C8—H8E | 109.5 |
C3B—C2B—H2B | 126.6 | N1—C8—H8F | 109.5 |
C4A—C3A—C2A | 118.5 (11) | H8A—C8—H8F | 56.3 |
C4A—C3A—C7A | 121.8 (10) | H8B—C8—H8F | 56.3 |
C2A—C3A—C7A | 119.7 (9) | H8C—C8—H8F | 141.1 |
C4B—C3B—C2B | 123 (3) | H8D—C8—H8F | 109.5 |
C4B—C3B—H3B | 118.5 | H8E—C8—H8F | 109.5 |
C2B—C3B—H3B | 118.5 | N2—C11—H11A | 109.5 |
C3A—C4A—C5A | 121.5 (11) | N2—C11—H11B | 109.5 |
C3A—C4A—H4A | 119.2 | H11A—C11—H11B | 109.5 |
C5A—C4A—H4A | 119.2 | N2—C11—H11C | 109.5 |
C3B—C4B—C5B | 122 (3) | H11A—C11—H11C | 109.5 |
C3B—C4B—C7B | 123 (2) | H11B—C11—H11C | 109.5 |
C5B—C4B—C7B | 115 (2) | N2—C11—H11D | 109.5 |
C4A—C5A—C6 | 117.4 (9) | H11A—C11—H11D | 141.1 |
C4A—C5A—H5A | 121.3 | H11B—C11—H11D | 56.3 |
C6—C5A—H5A | 121.3 | H11C—C11—H11D | 56.3 |
C4B—C5B—C6 | 125 (2) | N2—C11—H11E | 109.5 |
C4B—C5B—H5B | 117.5 | H11A—C11—H11E | 56.3 |
C6—C5B—H5B | 117.5 | H11B—C11—H11E | 141.1 |
C5B—C6—C1 | 106.7 (11) | H11C—C11—H11E | 56.3 |
C5B—C6—N1 | 133.4 (11) | H11D—C11—H11E | 109.5 |
C1—C6—N1 | 119.8 (3) | N2—C11—H11F | 109.5 |
C1—C6—C5A | 123.8 (6) | H11A—C11—H11F | 56.3 |
N1—C6—C5A | 116.4 (6) | H11B—C11—H11F | 56.3 |
C9—N1—C6 | 122.5 (3) | H11C—C11—H11F | 141.1 |
C9—N1—C8 | 117.6 (3) | H11D—C11—H11F | 109.5 |
C6—N1—C8 | 119.9 (3) | H11E—C11—H11F | 109.5 |
O1—C9—N1 | 123.5 (3) | H3A—O3—H3C | 109.5 |
O1—C9—C10 | 118.3 (3) | C3A—C7A—H7A2 | 109.5 |
N1—C9—C10 | 118.2 (3) | C3A—C7A—H7A3 | 109.5 |
O2—C10—N2 | 122.8 (3) | H7A2—C7A—H7A3 | 109.5 |
O2—C10—C9 | 119.0 (3) | C3A—C7A—H7A1 | 109.5 |
N2—C10—C9 | 118.2 (3) | H7A2—C7A—H7A1 | 109.5 |
C10—N2—C1 | 121.9 (3) | H7A3—C7A—H7A1 | 109.5 |
C10—N2—C11 | 117.0 (3) | C4B—C7B—H7B1 | 109.5 |
C1—N2—C11 | 121.0 (3) | C4B—C7B—H7B2 | 109.5 |
N1—C8—H8A | 109.5 | H7B1—C7B—H7B2 | 109.5 |
N1—C8—H8B | 109.5 | C4B—C7B—H7B3 | 109.5 |
H8A—C8—H8B | 109.5 | H7B1—C7B—H7B3 | 109.5 |
N1—C8—H8C | 109.5 | H7B2—C7B—H7B3 | 109.5 |
H8A—C8—H8C | 109.5 | ||
C6—C1—C2A—C3A | 0.8 (11) | C5B—C6—N1—C9 | 175.2 (19) |
N2—C1—C2A—C3A | −179.0 (7) | C1—C6—N1—C9 | 0.7 (4) |
C6—C1—C2B—C3B | 1 (4) | C5A—C6—N1—C9 | −178.8 (8) |
N2—C1—C2B—C3B | 179.2 (19) | C5B—C6—N1—C8 | −3 (2) |
C1—C2A—C3A—C4A | 0.2 (15) | C1—C6—N1—C8 | −177.6 (3) |
C1—C2A—C3A—C7A | 179.0 (7) | C5A—C6—N1—C8 | 2.8 (9) |
C1—C2B—C3B—C4B | −3 (4) | C6—N1—C9—O1 | −179.7 (3) |
C2A—C3A—C4A—C5A | −0.9 (17) | C8—N1—C9—O1 | −1.3 (5) |
C7A—C3A—C4A—C5A | −179.7 (10) | C6—N1—C9—C10 | −0.6 (4) |
C2B—C3B—C4B—C5B | 2 (5) | C8—N1—C9—C10 | 177.8 (3) |
C2B—C3B—C4B—C7B | −178 (2) | O1—C9—C10—O2 | 0.6 (5) |
C3A—C4A—C5A—C6 | 0.5 (19) | N1—C9—C10—O2 | −178.5 (3) |
C3B—C4B—C5B—C6 | 0 (5) | O1—C9—C10—N2 | 179.9 (3) |
C7B—C4B—C5B—C6 | −179 (2) | N1—C9—C10—N2 | 0.8 (4) |
C4B—C5B—C6—C1 | −2 (3) | O2—C10—N2—C1 | 178.2 (3) |
C4B—C5B—C6—N1 | −177.0 (19) | C9—C10—N2—C1 | −1.0 (4) |
C2B—C1—C6—C5B | 1 (2) | O2—C10—N2—C11 | 0.1 (5) |
N2—C1—C6—C5B | −176.8 (15) | C9—C10—N2—C11 | −179.1 (3) |
C2B—C1—C6—N1 | 177.2 (19) | C2B—C1—N2—C10 | −177.6 (14) |
N2—C1—C6—N1 | −0.9 (4) | C6—C1—N2—C10 | 1.1 (4) |
C2A—C1—C6—N1 | 179.2 (5) | C2A—C1—N2—C10 | −179.0 (5) |
N2—C1—C6—C5A | 178.5 (9) | C2B—C1—N2—C11 | 0.4 (14) |
C2A—C1—C6—C5A | −1.3 (10) | C6—C1—N2—C11 | 179.1 (3) |
C4A—C5A—C6—C1 | 0.7 (17) | C2A—C1—N2—C11 | −1.1 (7) |
C4A—C5A—C6—N1 | −179.8 (9) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3A···O1 | 0.86 | 2.09 | 2.936 (4) | 170 |
O3—H3C···O1i | 0.86 | 2.38 | 3.062 (4) | 137 |
O3—H3C···O2i | 0.86 | 2.19 | 2.972 (5) | 150 |
C5A—H5A···O3ii | 0.94 | 2.40 | 3.298 (13) | 160 |
C8—H8E···O2iii | 0.97 | 2.45 | 3.335 (4) | 151 |
Symmetry codes: (i) −x+1, −y+3, −z; (ii) −x+1/2, y−1/2, −z−1/2; (iii) x−1/2, −y+5/2, z−1/2. |
Parameter | X-ray | B3LYP/6–311G(d,p) |
O1—C9 | 1.228 (4) | 1.217 |
O2—C10 | 1.226 (4) | 1.211 |
N1—C6 | 1.401 (4) | 1.407 |
N1—C8 | 1.470 (4) | 1.468 |
N1—C9 | 1.351 (4) | 1.375 |
N2—C1 | 1.409 (4) | 1.375 |
N2—C10 | 1.365 (5) | 1.384 |
N2—C11 | 1.458 (5) | 1.464 |
O1—C9—N1 | 123.5 (3) | 123.9 |
O2—C10—N2 | 122.8 (3) | 123.4 |
O1—C9—C10 | 118.3 (3) | 118.3 |
Total Energy, TE (eV) | -20757.4747 |
EHOMO (eV) | -6.1139 |
ELUMO (eV) | -1.4232 |
Gap, ΔE (eV) | 4.6907 |
Dipole moment, µ (D) | 5.56 |
Ionization potential, I (eV) | 6.1139 |
Electron affinity, A (eV) | 1.4232 |
Electronegativity, χ | 3.929 |
Hardness, η | 2.345 |
Electrophilicity index, ω | 3.291 |
Softness, σ | 0.213 |
Fraction of electron transferred, ΔN | 0.655 |
Acknowledgements
Langat Singh College, B·R. Bihar University India is thanked for access to laboratory facilities.
Funding information
Funding for this research was provided by: University Grants Commission, New Delhi. This study was supported financially by Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Morocco and the University of Science and Technology, Ibb Branch, Ibb, Yemen.
References
Akkurt, M., Öztürk, S., Küçükbay, H., Orhan, E. & Büyükgüngör, O. (2004). Acta Cryst. E60, o1266–o1268. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bahekar, R. H., Jain, M. R., Gupta, A. A., Goel, A., Jadav, P. A., Patel, D. N., Prajapati, V. M. & Patel, P. R. (2007). Arch. Pharm. Chem. Life Sci. 340, 359–366. Web of Science CrossRef CAS Google Scholar
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Belaziz, D., Kandri Rodi, Y., Essassi, E. M. & El Ammari, L. (2012). Acta Cryst. E68, o1276. CSD CrossRef IUCr Journals Google Scholar
Benali, B., Lazar, Z., Boucetta, A., El Assyry, A., Lakhrissi, B., Massoui, M., Jermoumi, C., Negrier, P., Leger, J. M. & Mondieig, D. (2008). Spectrosc. Lett. 41, 64–71. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Carta, A., Loriga, M., Piras, S., Paglietti, G., La Colla, P., Busonera, B., Collu, G. & Loddo, R. (2006). Med. Chem. 2, 113–122. CrossRef PubMed CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
El Bourakadi, K., El Bakri, Y., Sebhaoui, J., Rayni, I., Essassi, E. M. & Mague, J. T. (2017a). IUCrData, 2, x171019. Google Scholar
El Bourakadi, K., El Bakri, Y., Sebhaoui, J., Rayni, I., Essassi, E. M. & Mague, J. T. (2017b). IUCrData, 2, x170520. Google Scholar
El Janati, A., Kandri Rodi, Y., Jasinski, J. P., Kaur, M., Ouzidan, Y. & Essassi, E. M. (2017a). IUCrData, 2, x170901. Google Scholar
El Janati, A., Kandri Rodi, Y., Jasinski, J. P., Kaur, M., Ouzidan, Y. & Essassi, E. M. (2017b). IUCrData, 2, x171052. Google Scholar
El-Sabbagh, O. I., El-Sadek, M. E., Lashine, S. M., Yassin, S. H. & El-Nabtity, S. M. (2009). Med. Chem. Res. 18, 782–797. CAS Google Scholar
Faizi, M. S. H., Alam, M. J., Haque, A., Ahmad, S., Shahid, M. & Ahmad, M. (2018). J. Mol. Struct. 1156, 457–464. Web of Science CSD CrossRef CAS Google Scholar
Faizi, M. S. H. & Parashchenko, Y. (2015). Acta Cryst. E71, 1332–1335. Web of Science CSD CrossRef IUCr Journals Google Scholar
Faizi, M. S. H., Sharkina, N. O. & Iskenderov, T. S. (2015). Acta Cryst. E71, o17–o18. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fonseca, T., Gigante, B., Marques, M. M., Gilchrist, T. L. & De Clercq, E. (2004). Bioorg. Med. Chem. 12, 103–112. Web of Science CrossRef PubMed CAS Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA. Google Scholar
Fukui, K. (1982). Science, 218, 747–754. CrossRef PubMed CAS Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hui, X., Desrivot, J., Bories, C., Loiseau, P. M., Franck, X., Hocquemiller, R. & Figadère, B. (2006). Bioorg. Med. Chem. Lett. 16, 815–820. Web of Science CrossRef PubMed CAS Google Scholar
Khan, E., Shukla, A., Srivastava, A., Shweta, P. & Tandon, P. (2015). New J. Chem. 39, 9800–9812. Web of Science CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mustaphi, N. E., Ferfra, S., Essassi, E. M. & Pierrot, M. (2001). Acta Cryst. E57, o176–o177. Web of Science CSD CrossRef IUCr Journals Google Scholar
Qachchachi, F., Kandri Rodi, Y., Elmsellem, H., Steli, H., Haoudi, A., Mazzah, A., Ouzidan, Y., Sebbar, N. K. & Essassi, E. M. (2016). J. Materials Environ. Sci. 7, 2897–2907. CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Song, X.-Q., Yu, Y., Liu, W.-S., Dou, W., Zheng, J.-R. & Yao, J.-N. (2007). J. Solid State Chem. 180, 2616–2624. Web of Science CSD CrossRef CAS Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Tribak, Z., Kandri Rodi, Y., Haoudi, A., Skalli, M. K., Mazzah, A., Akhazzane, M. & Essassi, E. M. (2017). J. Mar. Chim. Heterocycl. 16, 58–65. CAS Google Scholar
Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17.5. The University of Western Australia. Google Scholar
Wagle, S., Adhikari, A. V. & Kumari, N. S. (2008). Indian J. Chem. 47, 439–448. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zouitini, A., Kandri Rodi, Y., Ouazzani Chahdi, F., Jasinski, J. P., Kaur, M. & Essassi, E. M. (2017). IUCrData, 2, x171651. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.