research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure at 219 K and Hirshfeld surface analyses of 1,4,6-tri­methyl­quinoxaline-2,3(1H,4H)-dione monohydrate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, BP 2202, Fez, Morocco, bDepartment of Chemistry, Langat Singh College, B.R.A. Bihar University, Muzaffarpur, Bihar-842001, India, cLaboratoire de Chimie Physique et Chimie Bio-organique, Faculté des Sciences et Techniques Mohammedia, Université Hassan II, Casablanca, BP 146, 28800, Mohammedia, Morocco, dInstitut Lavoisier de Versailles, UVSQ, CNRS, Université Paris-Saclay, 78035 Versailles, France, eDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Samsun, 55200, Turkey, and fDepartment of Pharmacy, University of Science and Technology, Ibb Branch, Ibb, Yemen
*Correspondence e-mail: ashraf.yemen7@gmail.com

Edited by A. V. Yatsenko, Moscow State University, Russia (Received 17 June 2020; accepted 13 July 2020; online 17 July 2020)

The asymmetric unit of the title compound, C11H12N2O2·H2O, contains a mol­ecule of 1,4,6-trimethyl-1,4-di­hydro­quinoxaline-2,3-dione and a solvent water mol­ecule. Four atoms of the benzene ring are disordered over two sets of sites in a 0.706 (7):0.294 (7) ratio while the N-bound methyl groups are rotationally disordered with occupancy ratios of 0.78 (4):0.22 (4) and 0.76 (5):0.24 (5). In the crystal, mol­ecules are linked by O—H⋯O and C—H⋯O hydrogen bonds into layers lying parallel to (10[\overline{1}]). The Hirshfeld surface analysis indicates that the most important contributions to the packing arrangement are due to H⋯H (51.3%) and O⋯H/H⋯O (28.6%) inter­actions. The mol­ecular structure calculated by density functional theory is compared with the experimentally determined mol­ecular structure, and the HOMO–LUMO energy gap has been calculated.

1. Chemical context

Quinoxalines are well-known important nitro­gen-containing heterocyclic compounds with fused benzene and pyrazine rings. Quinoxalines and their derivatives display various pharmacological and biological activities, such as anti­cancer (Carta et al., 2006[Carta, A., Loriga, M., Piras, S., Paglietti, G., La Colla, P., Busonera, B., Collu, G. & Loddo, R. (2006). Med. Chem. 2, 113-122.]), anti­diabetic (Bahekar et al., 2007[Bahekar, R. H., Jain, M. R., Gupta, A. A., Goel, A., Jadav, P. A., Patel, D. N., Prajapati, V. M. & Patel, P. R. (2007). Arch. Pharm. Chem. Life Sci. 340, 359-366.]), anti­viral (Fonseca et al., 2004[Fonseca, T., Gigante, B., Marques, M. M., Gilchrist, T. L. & De Clercq, E. (2004). Bioorg. Med. Chem. 12, 103-112.]), anti­bacterial (El-Sabbagh et al., 2009[El-Sabbagh, O. I., El-Sadek, M. E., Lashine, S. M., Yassin, S. H. & El-Nabtity, S. M. (2009). Med. Chem. Res. 18, 782-797.]), anti-inflammatory (Wagle et al., 2008[Wagle, S., Adhikari, A. V. & Kumari, N. S. (2008). Indian J. Chem. 47, 439-448.]) and anti­protozoal (Hui et al., 2006[Hui, X., Desrivot, J., Bories, C., Loiseau, P. M., Franck, X., Hocquemiller, R. & Figadère, B. (2006). Bioorg. Med. Chem. Lett. 16, 815-820.]). The present work is a part of an ongoing structural study of quinoxaline derivatives (Faizi & Parashchenko 2015[Faizi, M. S. H. & Parashchenko, Y. (2015). Acta Cryst. E71, 1332-1335.]; Faizi et al., 2015[Faizi, M. S. H., Sharkina, N. O. & Iskenderov, T. S. (2015). Acta Cryst. E71, o17-o18.], 2018[Faizi, M. S. H., Alam, M. J., Haque, A., Ahmad, S., Shahid, M. & Ahmad, M. (2018). J. Mol. Struct. 1156, 457-464.]).

[Scheme 1]

As a continuation of our research devoted to the synthesis and applications of new heterocyclic compounds obtained by N-alkyl­ation reactions (Tribak et al., 2017[Tribak, Z., Kandri Rodi, Y., Haoudi, A., Skalli, M. K., Mazzah, A., Akhazzane, M. & Essassi, E. M. (2017). J. Mar. Chim. Heterocycl. 16, 58-65.]; Qachchachi et al., 2016[Qachchachi, F., Kandri Rodi, Y., Elmsellem, H., Steli, H., Haoudi, A., Mazzah, A., Ouzidan, Y., Sebbar, N. K. & Essassi, E. M. (2016). J. Materials Environ. Sci. 7, 2897-2907.]; Belaziz et al., 2012[Belaziz, D., Kandri Rodi, Y., Essassi, E. M. & El Ammari, L. (2012). Acta Cryst. E68, o1276.]), we report here the synthesis of 1,4,6-tri­methyl­quinoxaline-2,3(1H,4H)-dione obtained by the action of iodo­methane on 6-methyl­quinoxaline-2,3(1H,4H)-dione, and the crystal structure of its monohydrate derivative along with the Hirshfeld surface analysis. The experimentally determined mol­ecular structure is compared with that calculated at the DFT/B3LYP/6-311 G(d,p) level.

2. Structural commentary

The title compound crystallizes in space group P21/n with one quinoxaline and one water mol­ecule per asymmetric unit. The organic mol­ecule is disordered over two sets of sites with an occupancy ratio of 0.706 (7):0.294 (7). The disorder involves not only the orientation of the methyl group attached to the benzene ring, but also the positions of four carbon atoms of this ring, which are split (Fig. 1[link]). Only the predominant orientation of the 1,4,6-tri­methyl­quinoxaline-2,3(1H,4H)-dione mol­ecule is discussed below. Besides this, the methyl groups attached to N1 and N2 nitro­gen atoms are also rotationally disordered with occupancy ratios of 0.78 (4):0.22 (4) and 0.76 (5):0.24 (5), respectively. The quinoxaline ring system is essentially planar, the largest deviation from the mean plane being 0.015 (3) Å for the N2 atom. The C=O and Csp2—N bond lengths are typical of such type of compounds and indicate strong conjugation in the amide fragments.

[Figure 1]
Figure 1
The asymmetric unit of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 40% probability level. O—H⋯O hydrogen bonds are indicated by dashed lines. The benzene fragment of the organic mol­ecule, C2/C3/C4/C5/C7, is disordered over two sets of sites.

3. Supra­molecular features

In the crystal, mol­ecules are linked by O—H⋯O and C—H⋯O hydrogen bonds (Table 1[link]) into double layers lying parallel to (10[\overline{1}]). The smallest element of the hydrogen-bonding motif, where the R42(8) rings are formed, is shown in Fig. 2[link], whereas the whole packing diagram is presented in Fig. 3[link]. The water mol­ecule behaves both as a donor and an acceptor of hydrogen atoms in the hydrogen bonds. As seen in Fig. 3[link], in centrosymmetric pairs of organic mol­ecules, the aromatic and heterocyclic rings overlap with each other with an inter­centroid distance of 3.522 (4) Å, indicating that some ππ inter­actions occur.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O1 0.86 2.09 2.936 (4) 170
O3—H3C⋯O1i 0.86 2.38 3.062 (4) 137
O3—H3C⋯O2i 0.86 2.19 2.972 (5) 150
C5A—H5A⋯O3ii 0.94 2.40 3.298 (13) 160
C8—H8E⋯O2iii 0.97 2.45 3.335 (4) 151
Symmetry codes: (i) -x+1, -y+3, -z; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{5\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
A view along the a axis of a hydrogen-bonded fragment. The O—H⋯O and C—H⋯O hydrogen bonds (shown as dashed lines) form an R42(8) ring motif.
[Figure 3]
Figure 3
Packing diagram of the title compound viewed along the a-axis direction. Only the major disorder component is shown.

4. Hirshfeld surface analysis

The inter­molecular inter­actions were investigated qu­anti­tatively and visualized with Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17.5. The University of Western Australia.]; Spackman et al., 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]). The dnorm, water inter­action, curvedness and 2D finger print plots are depicted in Fig. 4[link]ac and 5[link]ah, respectively. The red spots on the Hirshfeld surface represent O—H⋯O contacts while the blue regions correspond to weak inter­actions such as C—H⋯O contacts. The H⋯H inter­actions (51.3%) are the major factor in the crystal packing with O⋯H/H⋯O inter­actions (28.6%) representing the next highest contribution. The percentage contributions of other weak inter­actions are: C⋯C (8.2%), C⋯H/H⋯C (5.8%), C⋯N/N⋯C (4.5%), N⋯H/H⋯N (1.1%) and O⋯C/C⋯O (0.5%).

[Figure 4]
Figure 4
Views of the three-dimensional Hirshfeld surface for the title compound plotted over (a, b) dnorm and (c) shape-index.
[Figure 5]
Figure 5
Two-dimensional fingerprint plots showing (a) all inter­actions and those delineated into (b) H⋯H, (c) O⋯H/H⋯O, (d) C⋯C, (e) C⋯H/H⋯C, (f) C⋯N/N⋯C,(g) N⋯H/H⋯N and (h) O⋯C/C⋯O.

5. DFT calculations

The structure of the title organic mol­ecule was optimized in the gas-phase approximation at the level of density functional theory (DFT) using the B3LYP functional (Becke, 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]) and 6-311 G(d,p) basis set as implemented in GAUSSIAN 09 (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.]). The theoretical and experimental bond lengths and angles are in good agreement (Table 2[link]). The energetic and spatial characteristics of the highest occupied mol­ecular orbital (HOMO), acting as an electron donor, and the lowest unoccupied mol­ecular orbital (LUMO), acting as an electron acceptor, are very important parameters for quantum chemistry. When the energy gap is small, the mol­ecule is highly polarizable and has high chemical reactivity (Fukui, 1982[Fukui, K. (1982). Science, 218, 747-754.]; Khan et al., 2015[Khan, E., Shukla, A., Srivastava, A., Shweta, P. & Tandon, P. (2015). New J. Chem. 39, 9800-9812.]). The DFT calculations provide some important information on the reactivity and site selectivity of the mol­ecular framework, EHOMO and ELUMO, electronegativity (χ), hardness (η), electrophilicity (ω), softness (σ) and fraction of electrons transferred (ΔN). These data are given in Table 3[link]. The parameters η and σ are significant for evaluation of both the reactivity and stability. The electron transition from HOMO to LUMO is shown in Fig. 6[link]. The HOMO and LUMO are localized in the plane of the whole 1,4,6-tri­methyl­quinoxaline-2,3(1H,4H)-dione bicyclic ring system. The energy gap [ΔE = ELUMO − EHOMO] of the mol­ecule is 4.6907 eV, the frontier mol­ecular orbital energies EHOMO and ELUMO being −6.1139 eV and −1.4232 eV, respectively. The dipole moment of (I)[link] is estimated to be 5.56 Debye.

Table 2
Comparison of observed (X-ray data) and calculated (DFT) geometric parameters (Å, °)

Parameter X-ray B3LYP/6–311G(d,p)
O1—C9 1.228 (4) 1.217
O2—C10 1.226 (4) 1.211
N1—C6 1.401 (4) 1.407
N1—C8 1.470 (4) 1.468
N1—C9 1.351 (4) 1.375
N2—C1 1.409 (4) 1.375
N2—C10 1.365 (5) 1.384
N2—C11 1.458 (5) 1.464
O1—C9—N1 123.5 (3) 123.9
O2—C10—N2 122.8 (3) 123.4
O1—C9—C10 118.3 (3) 118.3

Table 3
DFT-calculated mol­ecular characteristics for the title compound

Total Energy, TE (eV) −20757.4747
EHOMO (eV) −6.1139
ELUMO (eV) −1.4232
Gap, ΔE (eV) 4.6907
Dipole moment, μ (D) 5.56
Ionization potential, I (eV) 6.1139
Electron affinity, A (eV) 1.4232
Electronegativity, χ 3.929
Hardness, η 2.345
Electrophilicity index, ω 3.291
Softness, σ 0.213
Fraction of electron transferred, ΔN 0.655
[Figure 6]
Figure 6
Frontier mol­ecular orbitals of the 1,4,6-tri­methyl­quinoxaline-2,3(1H,4H)-dione mol­ecule.

6. Database survey

A search of the Cambridge Structural Database (CSD, version 5.39; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave nine hits for the 1,4,6-tri­methyl­quinoxaline-2,3(1H,4H)-dione moiety. Two of them are metal complexes, bis­(μ2-nitrato-O,O,O′)-bis­[1,4-bis­(N,N- diisopropyl-acetamido)­quinoxaline-2,3-dione-O,O′]tetra­kis(nitrato-O,O′)di­aqua­dineodymium(III) monohydrate (WIKSOZ; Song et al., 2007[Song, X.-Q., Yu, Y., Liu, W.-S., Dou, W., Zheng, J.-R. & Yao, J.-N. (2007). J. Solid State Chem. 180, 2616-2624.]) and catena-(μ2-iodo)-bis­(1,4-di­methyl­quinoxalin-2,3-dionato)potassium (FADQOS; Benali et al., 2008[Benali, B., Lazar, Z., Boucetta, A., El Assyry, A., Lakhrissi, B., Massoui, M., Jermoumi, C., Negrier, P., Leger, J. M. & Mondieig, D. (2008). Spectrosc. Lett. 41, 64-71.]). Seven organic compounds similar to the title compound are reported in the literature. In 1,4-dihexyl-1,4-di­hydro­quinoxaline-2,3-dione (FECROX; El Bourakadi et al., 2017a[El Bourakadi, K., El Bakri, Y., Sebhaoui, J., Rayni, I., Essassi, E. M. & Mague, J. T. (2017a). IUCrData, 2, x171019.]), the methyl groups attached to the N atoms are replaced by hexyl groups. In 1,4-di­allyl­quinoxaline-2,3(1H,4H)-dione (GURGAB; Mustaphi et al., 2001[Mustaphi, N. E., Ferfra, S., Essassi, E. M. & Pierrot, M. (2001). Acta Cryst. E57, o176-o177.]), the allyl groups are bound to the N atoms. In 1-ethyl-4-phenyl­ethyl-1,4-di­hydro­quinoxaline-2,3-dione (IXATOQ; Akkurt et al., 2004[Akkurt, M., Öztürk, S., Küçükbay, H., Orhan, E. & Büyükgüngör, O. (2004). Acta Cryst. E60, o1266-o1268.]), one N atom is bound to an ethyl group, and the other to an ethyl­phenyl group. In 6-methyl-1,4-bis­[(pyridin-2-yl)meth­yl]-1,4-di­hydro­quinoxaline-2,3-dione (KELMIA; Zouitini et al., 2017[Zouitini, A., Kandri Rodi, Y., Ouazzani Chahdi, F., Jasinski, J. P., Kaur, M. & Essassi, E. M. (2017). IUCrData, 2, x171651.]), methyl­pyridinyl groups are attached to both N atoms. In 1,4-dibenzyl-6-chloro-1,4-di­hydro­quinoxaline-2,3-dione (PAWFEB; El Janati et al., 2017a[El Janati, A., Kandri Rodi, Y., Jasinski, J. P., Kaur, M., Ouzidan, Y. & Essassi, E. M. (2017a). IUCrData, 2, x170901.]), the N atoms are attached to the benzyl groups, and the methyl group on the benzene ring is substituted by chlorine. In 1,4-dioctyl-1,4-di­hydro­quinoxaline-2,3-dione (WAPWAO; El Bourakadi et al., 2017b[El Bourakadi, K., El Bakri, Y., Sebhaoui, J., Rayni, I., Essassi, E. M. & Mague, J. T. (2017b). IUCrData, 2, x170520.]), octyl groups are attached to the N atoms. In 6-chloro-1,4-diethyl-1,4-di­hydro­quinoxaline-2,3-dione (XEFMON; El Janati et al., 2017b[El Janati, A., Kandri Rodi, Y., Jasinski, J. P., Kaur, M., Ouzidan, Y. & Essassi, E. M. (2017b). IUCrData, 2, x171052.]), the ethyl groups are attached to the N atoms, and the methyl group on the benzene ring is substituted by chlorine, as in PAWFEB. None of these structures contains solvent mol­ecules.

7. Synthesis and crystallization

To a solution of 6-methyl-1,4-di­hydro­quinoxaline-2,3-dione (0.3 g, 1.73 mmol) in DMF (15 ml) potassium carbonate (0.47 g, 3.61 mmol) and tetra-n-butyl­ammonium (0.07g, 0.23 mmol) were added. After 10 min of stirring, 0.27 ml (4.32 mmol) of iodo­methane were added, and the mixture was stirred at room temperature for 6 h. The inorganic salts were filtered off, DMF was evaporated under reduced pressure and the residue was dissolved in di­chloro­methane. The organic phase was dried over Na2SO4 and then concentrated. The crude product was purified by chromatography on a silica gel column [eluent: hexa­ne/ethyl­acetate (2/1)].

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. Water mol­ecules were refined as rigid groups with Uiso(H) = 1.5Ueq(O). Other H atoms were positioned geometrically, with C—H = 0.94 and 0.97 Å for aromatic and aliphatic H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(C-meth­yl). The disorder of the organic mol­ecule was taken into account using free variables.

Table 4
Experimental details

Crystal data
Chemical formula C11H12N2O2·H2O
Mr 222.24
Crystal system, space group Monoclinic, P21/n
Temperature (K) 219
a, b, c (Å) 7.0695 (4), 10.8321 (5), 14.4349 (6)
β (°) 101.556 (3)
V3) 1082.98 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.30 × 0.18 × 0.04
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
No. of measured, independent and observed [I > 2σ(I)] reflections 32798, 1935, 1563
Rint 0.062
(sin θ/λ)max−1) 0.598
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.147, 1.24
No. of reflections 1935
No. of parameters 201
No. of restraints 30
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.21, −0.18
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2020); software used to prepare material for publication: WinGX (Farrugia, 2012), PLATON (Spek, 2020) and publCIF (Westrip, 2010).

1,4,6-Trimethylquinoxaline-2,3(1H,4H)-dione monohydrate top
Crystal data top
C11H12N2O2·H2OF(000) = 472
Mr = 222.24Dx = 1.363 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.0695 (4) ÅCell parameters from 7373 reflections
b = 10.8321 (5) Åθ = 2.4–24.7°
c = 14.4349 (6) ŵ = 0.10 mm1
β = 101.556 (3)°T = 219 K
V = 1082.98 (9) Å3Parallelepiped, yellow
Z = 40.30 × 0.18 × 0.04 mm
Data collection top
Bruker APEXII CCD
diffractometer
1563 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.062
φ and ω scansθmax = 25.2°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 88
k = 1212
32798 measured reflectionsl = 1717
1935 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.067H-atom parameters constrained
wR(F2) = 0.147 w = 1/[σ2(Fo2) + (0.0097P)2 + 1.8308P]
where P = (Fo2 + 2Fc2)/3
S = 1.24(Δ/σ)max < 0.001
1935 reflectionsΔρmax = 0.21 e Å3
201 parametersΔρmin = 0.18 e Å3
30 restraintsExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0031 (9)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.3712 (4)1.3409 (2)0.00205 (17)0.0479 (7)
O20.3853 (4)1.2710 (3)0.18106 (17)0.0581 (8)
C10.2612 (4)0.9861 (3)0.0618 (3)0.0409 (8)
C2A0.2177 (14)0.8598 (10)0.0725 (6)0.034 (2)0.706 (7)
H2A0.2192010.8303350.1338950.041*0.706 (7)
C2B0.228 (5)0.879 (3)0.1074 (16)0.048 (7)0.294 (7)
H2B0.2378480.8679910.1728110.057*0.294 (7)
C3A0.1723 (13)0.7756 (12)0.0031 (7)0.037 (2)0.706 (7)
C3B0.175 (4)0.788 (3)0.0367 (16)0.037 (5)0.294 (7)
H3B0.1521510.7068370.0554460.045*0.294 (7)
C4A0.1703 (14)0.8174 (10)0.0933 (6)0.038 (2)0.706 (7)
H4A0.1420000.7618120.1441480.045*0.706 (7)
C4B0.156 (3)0.811 (2)0.0554 (16)0.035 (6)0.294 (7)
C5A0.210 (2)0.9418 (16)0.1111 (9)0.039 (3)0.706 (7)
H5A0.2071570.9701800.1728340.047*0.706 (7)
C5B0.193 (5)0.923 (4)0.087 (2)0.032 (6)0.294 (7)
H5B0.1760180.9334940.1530490.038*0.294 (7)
C60.2535 (4)1.0233 (3)0.0314 (2)0.0369 (8)
N10.2915 (4)1.1465 (2)0.05089 (18)0.0359 (7)
C90.3382 (4)1.2324 (3)0.0177 (2)0.0354 (7)
C100.3472 (5)1.1936 (3)0.1182 (2)0.0402 (8)
N20.3101 (4)1.0729 (3)0.1354 (2)0.0440 (7)
C80.2761 (6)1.1869 (4)0.1493 (2)0.0540 (10)
H8A0.2230181.1204970.1917290.081*0.22 (4)
H8B0.4031941.2085750.1599410.081*0.22 (4)
H8C0.1919731.2583170.1612540.081*0.22 (4)
H8D0.3224391.2710950.1502200.081*0.78 (4)
H8E0.1422631.1830170.1820090.081*0.78 (4)
H8F0.3534841.1332750.1806950.081*0.78 (4)
C110.3169 (7)1.0381 (4)0.2335 (3)0.0696 (13)
H11A0.2799490.9522050.2364490.104*0.24 (5)
H11B0.2282851.0895320.2597970.104*0.24 (5)
H11C0.4469481.0495490.2697090.104*0.24 (5)
H11D0.3568391.1086520.2741870.104*0.76 (5)
H11E0.4085030.9713260.2508390.104*0.76 (5)
H11F0.1898391.0113080.2409280.104*0.76 (5)
O30.3982 (6)1.4989 (3)0.1600 (2)0.0833 (11)
H3A0.3829751.4604100.1099070.125*
H3C0.4774621.5591460.1444500.125*
C7A0.1315 (8)0.6428 (5)0.0165 (4)0.0528 (17)0.706 (7)
H7A20.0352710.6390390.0557820.079*0.706 (7)
H7A30.2493820.6033810.0490190.079*0.706 (7)
H7A10.0834950.6003990.0427610.079*0.706 (7)
C7B0.0926 (19)0.7135 (13)0.1317 (10)0.062 (5)0.294 (7)
H7B10.0256340.7530110.1892720.093*0.294 (7)
H7B20.0066260.6552270.1100560.093*0.294 (7)
H7B30.2050650.6701980.1439670.093*0.294 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0528 (15)0.0419 (15)0.0475 (14)0.0027 (12)0.0067 (11)0.0004 (12)
O20.0675 (18)0.0632 (18)0.0414 (14)0.0097 (14)0.0057 (12)0.0075 (14)
C10.0219 (15)0.0408 (19)0.059 (2)0.0014 (14)0.0050 (14)0.0022 (17)
C2A0.026 (3)0.038 (6)0.038 (5)0.003 (3)0.007 (4)0.000 (5)
C2B0.051 (9)0.040 (10)0.051 (13)0.009 (7)0.008 (11)0.016 (11)
C3A0.029 (3)0.039 (5)0.043 (8)0.003 (3)0.006 (5)0.005 (6)
C3B0.040 (8)0.034 (10)0.036 (13)0.003 (7)0.003 (10)0.004 (11)
C4A0.035 (3)0.039 (4)0.037 (5)0.003 (2)0.002 (4)0.005 (4)
C4B0.033 (7)0.042 (11)0.029 (14)0.002 (7)0.008 (10)0.013 (11)
C5A0.038 (5)0.038 (5)0.039 (6)0.002 (4)0.002 (4)0.006 (4)
C5B0.014 (7)0.042 (14)0.038 (13)0.005 (7)0.003 (8)0.005 (10)
C60.0200 (15)0.0367 (18)0.050 (2)0.0025 (13)0.0020 (13)0.0011 (15)
N10.0297 (14)0.0393 (15)0.0358 (15)0.0005 (12)0.0002 (11)0.0006 (12)
C90.0259 (16)0.0385 (19)0.0407 (18)0.0022 (14)0.0037 (13)0.0001 (15)
C100.0318 (17)0.052 (2)0.0362 (18)0.0002 (15)0.0048 (14)0.0006 (16)
N20.0360 (15)0.0523 (18)0.0448 (17)0.0004 (14)0.0108 (13)0.0091 (14)
C80.063 (3)0.057 (2)0.037 (2)0.002 (2)0.0016 (17)0.0010 (17)
C110.081 (3)0.078 (3)0.054 (3)0.002 (3)0.023 (2)0.017 (2)
O30.127 (3)0.069 (2)0.0480 (17)0.041 (2)0.0053 (18)0.0030 (16)
C7A0.055 (3)0.041 (3)0.063 (4)0.001 (2)0.013 (3)0.002 (3)
C7B0.048 (8)0.063 (9)0.077 (10)0.005 (7)0.014 (7)0.045 (8)
Geometric parameters (Å, º) top
O1—C91.228 (4)N1—C81.470 (4)
O2—C101.226 (4)C9—C101.499 (5)
C1—C2B1.38 (3)C10—N21.365 (5)
C1—C61.394 (5)N2—C111.458 (5)
C1—N21.409 (4)C8—H8A0.9700
C1—C2A1.418 (12)C8—H8B0.9700
C2A—C3A1.409 (11)C8—H8C0.9700
C2A—H2A0.9400C8—H8D0.9700
C2B—C3B1.41 (2)C8—H8E0.9700
C2B—H2B0.9400C8—H8F0.9700
C3A—C4A1.375 (11)C11—H11A0.9700
C3A—C7A1.504 (14)C11—H11B0.9700
C3B—C4B1.34 (3)C11—H11C0.9700
C3B—H3B0.9400C11—H11D0.9700
C4A—C5A1.41 (2)C11—H11E0.9700
C4A—H4A0.9400C11—H11F0.9700
C4B—C5B1.34 (4)O3—H3A0.8603
C4B—C7B1.53 (2)O3—H3C0.8598
C5A—C61.434 (17)C7A—H7A20.9700
C5A—H5A0.9400C7A—H7A30.9700
C5B—C61.37 (4)C7A—H7A10.9700
C5B—H5B0.9400C7B—H7B10.9700
C6—N11.401 (4)C7B—H7B20.9700
N1—C91.351 (4)C7B—H7B30.9700
C2B—C1—C6136.5 (10)H8B—C8—H8C109.5
C2B—C1—N2104.1 (10)N1—C8—H8D109.5
C6—C1—N2119.4 (3)H8A—C8—H8D141.1
C6—C1—C2A114.6 (5)H8B—C8—H8D56.3
N2—C1—C2A126.0 (5)H8C—C8—H8D56.3
C3A—C2A—C1124.1 (8)N1—C8—H8E109.5
C3A—C2A—H2A117.9H8A—C8—H8E56.3
C1—C2A—H2A117.9H8B—C8—H8E141.1
C1—C2B—C3B107 (2)H8C—C8—H8E56.3
C1—C2B—H2B126.6H8D—C8—H8E109.5
C3B—C2B—H2B126.6N1—C8—H8F109.5
C4A—C3A—C2A118.5 (11)H8A—C8—H8F56.3
C4A—C3A—C7A121.8 (10)H8B—C8—H8F56.3
C2A—C3A—C7A119.7 (9)H8C—C8—H8F141.1
C4B—C3B—C2B123 (3)H8D—C8—H8F109.5
C4B—C3B—H3B118.5H8E—C8—H8F109.5
C2B—C3B—H3B118.5N2—C11—H11A109.5
C3A—C4A—C5A121.5 (11)N2—C11—H11B109.5
C3A—C4A—H4A119.2H11A—C11—H11B109.5
C5A—C4A—H4A119.2N2—C11—H11C109.5
C3B—C4B—C5B122 (3)H11A—C11—H11C109.5
C3B—C4B—C7B123 (2)H11B—C11—H11C109.5
C5B—C4B—C7B115 (2)N2—C11—H11D109.5
C4A—C5A—C6117.4 (9)H11A—C11—H11D141.1
C4A—C5A—H5A121.3H11B—C11—H11D56.3
C6—C5A—H5A121.3H11C—C11—H11D56.3
C4B—C5B—C6125 (2)N2—C11—H11E109.5
C4B—C5B—H5B117.5H11A—C11—H11E56.3
C6—C5B—H5B117.5H11B—C11—H11E141.1
C5B—C6—C1106.7 (11)H11C—C11—H11E56.3
C5B—C6—N1133.4 (11)H11D—C11—H11E109.5
C1—C6—N1119.8 (3)N2—C11—H11F109.5
C1—C6—C5A123.8 (6)H11A—C11—H11F56.3
N1—C6—C5A116.4 (6)H11B—C11—H11F56.3
C9—N1—C6122.5 (3)H11C—C11—H11F141.1
C9—N1—C8117.6 (3)H11D—C11—H11F109.5
C6—N1—C8119.9 (3)H11E—C11—H11F109.5
O1—C9—N1123.5 (3)H3A—O3—H3C109.5
O1—C9—C10118.3 (3)C3A—C7A—H7A2109.5
N1—C9—C10118.2 (3)C3A—C7A—H7A3109.5
O2—C10—N2122.8 (3)H7A2—C7A—H7A3109.5
O2—C10—C9119.0 (3)C3A—C7A—H7A1109.5
N2—C10—C9118.2 (3)H7A2—C7A—H7A1109.5
C10—N2—C1121.9 (3)H7A3—C7A—H7A1109.5
C10—N2—C11117.0 (3)C4B—C7B—H7B1109.5
C1—N2—C11121.0 (3)C4B—C7B—H7B2109.5
N1—C8—H8A109.5H7B1—C7B—H7B2109.5
N1—C8—H8B109.5C4B—C7B—H7B3109.5
H8A—C8—H8B109.5H7B1—C7B—H7B3109.5
N1—C8—H8C109.5H7B2—C7B—H7B3109.5
H8A—C8—H8C109.5
C6—C1—C2A—C3A0.8 (11)C5B—C6—N1—C9175.2 (19)
N2—C1—C2A—C3A179.0 (7)C1—C6—N1—C90.7 (4)
C6—C1—C2B—C3B1 (4)C5A—C6—N1—C9178.8 (8)
N2—C1—C2B—C3B179.2 (19)C5B—C6—N1—C83 (2)
C1—C2A—C3A—C4A0.2 (15)C1—C6—N1—C8177.6 (3)
C1—C2A—C3A—C7A179.0 (7)C5A—C6—N1—C82.8 (9)
C1—C2B—C3B—C4B3 (4)C6—N1—C9—O1179.7 (3)
C2A—C3A—C4A—C5A0.9 (17)C8—N1—C9—O11.3 (5)
C7A—C3A—C4A—C5A179.7 (10)C6—N1—C9—C100.6 (4)
C2B—C3B—C4B—C5B2 (5)C8—N1—C9—C10177.8 (3)
C2B—C3B—C4B—C7B178 (2)O1—C9—C10—O20.6 (5)
C3A—C4A—C5A—C60.5 (19)N1—C9—C10—O2178.5 (3)
C3B—C4B—C5B—C60 (5)O1—C9—C10—N2179.9 (3)
C7B—C4B—C5B—C6179 (2)N1—C9—C10—N20.8 (4)
C4B—C5B—C6—C12 (3)O2—C10—N2—C1178.2 (3)
C4B—C5B—C6—N1177.0 (19)C9—C10—N2—C11.0 (4)
C2B—C1—C6—C5B1 (2)O2—C10—N2—C110.1 (5)
N2—C1—C6—C5B176.8 (15)C9—C10—N2—C11179.1 (3)
C2B—C1—C6—N1177.2 (19)C2B—C1—N2—C10177.6 (14)
N2—C1—C6—N10.9 (4)C6—C1—N2—C101.1 (4)
C2A—C1—C6—N1179.2 (5)C2A—C1—N2—C10179.0 (5)
N2—C1—C6—C5A178.5 (9)C2B—C1—N2—C110.4 (14)
C2A—C1—C6—C5A1.3 (10)C6—C1—N2—C11179.1 (3)
C4A—C5A—C6—C10.7 (17)C2A—C1—N2—C111.1 (7)
C4A—C5A—C6—N1179.8 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O10.862.092.936 (4)170
O3—H3C···O1i0.862.383.062 (4)137
O3—H3C···O2i0.862.192.972 (5)150
C5A—H5A···O3ii0.942.403.298 (13)160
C8—H8E···O2iii0.972.453.335 (4)151
Symmetry codes: (i) x+1, y+3, z; (ii) x+1/2, y1/2, z1/2; (iii) x1/2, y+5/2, z1/2.
Comparison of observed (X-ray data) and calculated (DFT) geometric parameters (Å, °) top
ParameterX-rayB3LYP/6–311G(d,p)
O1—C91.228 (4)1.217
O2—C101.226 (4)1.211
N1—C61.401 (4)1.407
N1—C81.470 (4)1.468
N1—C91.351 (4)1.375
N2—C11.409 (4)1.375
N2—C101.365 (5)1.384
N2—C111.458 (5)1.464
O1—C9—N1123.5 (3)123.9
O2—C10—N2122.8 (3)123.4
O1—C9—C10118.3 (3)118.3
DFT-calculated molecular characteristics for the title compound top
Total Energy, TE (eV)-20757.4747
EHOMO (eV)-6.1139
ELUMO (eV)-1.4232
Gap, ΔE (eV)4.6907
Dipole moment, µ (D)5.56
Ionization potential, I (eV)6.1139
Electron affinity, A (eV)1.4232
Electronegativity, χ3.929
Hardness, η2.345
Electrophilicity index, ω3.291
Softness, σ0.213
Fraction of electron transferred, ΔN0.655
 

Acknowledgements

Langat Singh College, B·R. Bihar University India is thanked for access to laboratory facilities.

Funding information

Funding for this research was provided by: University Grants Commission, New Delhi. This study was supported financially by Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Morocco and the University of Science and Technology, Ibb Branch, Ibb, Yemen.

References

First citationAkkurt, M., Öztürk, S., Küçükbay, H., Orhan, E. & Büyükgüngör, O. (2004). Acta Cryst. E60, o1266–o1268.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBahekar, R. H., Jain, M. R., Gupta, A. A., Goel, A., Jadav, P. A., Patel, D. N., Prajapati, V. M. & Patel, P. R. (2007). Arch. Pharm. Chem. Life Sci. 340, 359–366.  Web of Science CrossRef CAS Google Scholar
First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationBelaziz, D., Kandri Rodi, Y., Essassi, E. M. & El Ammari, L. (2012). Acta Cryst. E68, o1276.  CSD CrossRef IUCr Journals Google Scholar
First citationBenali, B., Lazar, Z., Boucetta, A., El Assyry, A., Lakhrissi, B., Massoui, M., Jermoumi, C., Negrier, P., Leger, J. M. & Mondieig, D. (2008). Spectrosc. Lett. 41, 64–71.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarta, A., Loriga, M., Piras, S., Paglietti, G., La Colla, P., Busonera, B., Collu, G. & Loddo, R. (2006). Med. Chem. 2, 113–122.  CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEl Bourakadi, K., El Bakri, Y., Sebhaoui, J., Rayni, I., Essassi, E. M. & Mague, J. T. (2017a). IUCrData, 2, x171019.  Google Scholar
First citationEl Bourakadi, K., El Bakri, Y., Sebhaoui, J., Rayni, I., Essassi, E. M. & Mague, J. T. (2017b). IUCrData, 2, x170520.  Google Scholar
First citationEl Janati, A., Kandri Rodi, Y., Jasinski, J. P., Kaur, M., Ouzidan, Y. & Essassi, E. M. (2017a). IUCrData, 2, x170901.  Google Scholar
First citationEl Janati, A., Kandri Rodi, Y., Jasinski, J. P., Kaur, M., Ouzidan, Y. & Essassi, E. M. (2017b). IUCrData, 2, x171052.  Google Scholar
First citationEl-Sabbagh, O. I., El-Sadek, M. E., Lashine, S. M., Yassin, S. H. & El-Nabtity, S. M. (2009). Med. Chem. Res. 18, 782–797.  CAS Google Scholar
First citationFaizi, M. S. H., Alam, M. J., Haque, A., Ahmad, S., Shahid, M. & Ahmad, M. (2018). J. Mol. Struct. 1156, 457–464.  Web of Science CSD CrossRef CAS Google Scholar
First citationFaizi, M. S. H. & Parashchenko, Y. (2015). Acta Cryst. E71, 1332–1335.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFaizi, M. S. H., Sharkina, N. O. & Iskenderov, T. S. (2015). Acta Cryst. E71, o17–o18.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFonseca, T., Gigante, B., Marques, M. M., Gilchrist, T. L. & De Clercq, E. (2004). Bioorg. Med. Chem. 12, 103–112.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationFukui, K. (1982). Science, 218, 747–754.  CrossRef PubMed CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHui, X., Desrivot, J., Bories, C., Loiseau, P. M., Franck, X., Hocquemiller, R. & Figadère, B. (2006). Bioorg. Med. Chem. Lett. 16, 815–820.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, E., Shukla, A., Srivastava, A., Shweta, P. & Tandon, P. (2015). New J. Chem. 39, 9800–9812.  Web of Science CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMustaphi, N. E., Ferfra, S., Essassi, E. M. & Pierrot, M. (2001). Acta Cryst. E57, o176–o177.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQachchachi, F., Kandri Rodi, Y., Elmsellem, H., Steli, H., Haoudi, A., Mazzah, A., Ouzidan, Y., Sebbar, N. K. & Essassi, E. M. (2016). J. Materials Environ. Sci. 7, 2897–2907.  CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSong, X.-Q., Yu, Y., Liu, W.-S., Dou, W., Zheng, J.-R. & Yao, J.-N. (2007). J. Solid State Chem. 180, 2616–2624.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTribak, Z., Kandri Rodi, Y., Haoudi, A., Skalli, M. K., Mazzah, A., Akhazzane, M. & Essassi, E. M. (2017). J. Mar. Chim. Heterocycl. 16, 58–65.  CAS Google Scholar
First citationTurner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17.5. The University of Western Australia.  Google Scholar
First citationWagle, S., Adhikari, A. V. & Kumari, N. S. (2008). Indian J. Chem. 47, 439–448.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZouitini, A., Kandri Rodi, Y., Ouazzani Chahdi, F., Jasinski, J. P., Kaur, M. & Essassi, E. M. (2017). IUCrData, 2, x171651.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds