research communications
Hirshfeld surface analysis and DFT studies of 2-[(2-hydroxy-5-methylbenzylidene)amino]benzonitrile
aDepartment of Chemistry, Langat Singh College, B.R.A. Bihar University, Muzaffarpur, Bihar-842001, India, bOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, Samsun, Turkey, cOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Chemistry, Samsun, Turkey, and dDepartment of Pharmacy, University of Science and Technology, Ibb Branch, Ibb, Yemen
*Correspondence e-mail: ashraf.yemen7@gmail.com
The title compound, C15H12N2O, was synthesized by condensation reaction of 2-hydroxy-5-methylbenzaldehyde and 2-aminobenzonitrile, and crystallizes in the orthorhombic Pbca. The phenol ring is inclined to the benzonitrile ring by 25.65 (3)°. The configuration about the C=N bond is E, stabilized by a strong intramolecular O—H⋯N hydrogen bond that forms an S(6) ring motif. In the crystal, C—H⋯O and C—H⋯N interactions lead to the formation of sheets perpendicular to the a axis. C—H⋯π interactions, forming polymeric chains along the a-axis direction, connect these sheets into a three-dimensional network. A Hirshfeld surface analysis indicates that the most important contributions for the packing arrangement are from H⋯H and C⋯H/H⋯C interactions. The density functional theory (DFT) optimized structure at the B3LYP/6–311 G(d,p) level is compared with the experimentally determined molecular structure and the HOMO–LUMO energy gap is given.
CCDC reference: 2013269
1. Chemical context
RCH=N–R′) are prepared by a condensation reaction between and reactive such as are employed as catalyst carriers (Grigoras et al., 2001), thermo-stable materials (Vančo et al., 2004), metal–cation complexing agents and in biological systems (Taggi et al., 2002). They also show biological activities such as antibacterial, antifungal, anticancer, antiviral and herbicidal (Desai et al., 2001; Singh & Dash, 1988; Karia & Parsania, 1999; Siddiqui et al., 2006). are also capable of forming stable complexes by coordination to metal ions via their nitrogen donor atoms (Ebrahimipour et al., 2012). They are important for their photochromic properties and have applications in various fields such as the measurement and control of radiation intensities in imaging systems and in optical computers, electronics, optoelectronics and photonics (Iwan et al., 2007). ortho-Hydroxy Schiff base compounds such as the title compound can display two tautomeric forms, the enol–imine (OH) and keto–amine (NH) forms. Depending on the tautomers, two types of intramolecular hydrogen bonds are generally observed in ortho-hydroxy namely O—H⋯N in enol–imine and N—H⋯O in keto–amine tautomers (Tanak et al., 2010). The present work is a part of an ongoing structural study of and their utilization in the synthesis of quinoxaline derivatives (Faizi et al., 2018), fluorescence sensors (Faizi et al., 2016; Mukherjee et al., 2018; Kumar et al., 2017; 2018) and non-linear optical properties (Faizi et al., 2020). We report herein the synthesis of the title compound 2-[(2-hydroxy-5-methylbenzylidene)amino]benzonitrile (I) from 2-hydroxy-5-methylbenzaldehyde and 3-chloro-4-methylaniline, as well as its Hirshfeld surface analysis and DFT computational calculations. The results of calculations by density functional theory (DFT) carried out at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state.
containing the azomethine moiety (–2. Structural commentary
The molecular structure of the title compound is shown in Fig.1. The configuration of the C8=N2 bond of this Schiff base is E, stabilized by the intramolecular O1—H1⋯N1 hydrogen bond that forms an S(6) ring motif (Fig. 1 and Table 1). This is a relatively common feature in analogous imine-phenol compounds (see Database survey section). The C10—O1 bond length [1.3503 (17) Å for X-ray and 1.337 Å for B3LYP] indicates single-bond character, while the imine C8=N2 bond length [1.2795 (17)Å for X-ray and 1.291 Å for B3LYP] indicates double-bond character. All bond lengths and bond angles are within normal ranges and are comparable with those in related Schiff base compounds (Faizi et al., 2019; Kansiz et al., 2018; Ozeryanskii et al., 2006). The C10—O1 and C8=N2 bond lengths confirm the enol–imine form of the title compound (Wozniak et al., 1995; Pizzala et al., 2000). The molecule is not planar, with the benzonitrile ring tilted by 25.65 (3)° to the plane of the 5-methylphenol moiety. The imine and 5-methylphenol groups are, however, essentially coplanar, as indicated by the C9—C8—N2—C7 torsion angle of −178.75 (13)° and the C1—C14—C15—N1 torsion angle [0.31 (3)° for X-ray and 0.44° for B3LYP].
3. Supramolecular features and Hirshfeld surface analysis
The a axis (Fig. 2, Table 1). The molecules are also linked through intermolecular C—H⋯π interactions hydrogen atom H11 and the centroid of the C9–C14 ring at + x, − y, 1 − z, which connect molecules along the a-axis direction (Fig. 3). C—H⋯O, C—H⋯N and C—H⋯π interactions combined lead to the formation of a three-dimensional network.
of the title compound is consolidated by C—H⋯O and C—H⋯N interactions, forming corrugated layers perpendicular to theIn order to better visualize and analyze the role of weak intermolecular contacts in the crystal, a Hirshfeld surface (HS) analysis (Spackman & Jayatilaka, 2009) was carried out and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) generated using CrystalExplorer17.5 (Turner et al., 2017) were analysed. The three-dimensional dnorm surface is shown in Fig. 4 with a standard surface resolution and a fixed colour scale of −0.1805 to 1.0413 a.u. The darkest red spots on the Hirshfeld surface indicate contact points with atoms participating in the C—H⋯π interactions involving C11—H11 and the phenyl substituent (Table 1). As illustrated in Fig. 5a, the corresponding fingerprint plots for the compound have characteristic pseudo-symmetric wings along the de and di diagonal axes. The presence of C—H⋯π interactions in the crystal is indicated by the pair of characteristic wings in the fingerprint plot delineated into C⋯H/H⋯C contacts (Fig. 5c, 27.1% contribution to the Hirshfeld surface). As shown in Fig. 5b, the most widely scattered points in the fingerprint plot are related to H⋯H contacts, which make a contribution of 39.2% to the Hirshfeld surface. There are also N⋯H/H⋯N (16.0%; Fig. 5d), O⋯H/H⋯O (8.3%; Fig. 5e) and C⋯C (6.2%; Fig. 5f) contacts, with smaller contributions from C⋯N/N⋯C (2.6%), C⋯O/O⋯C (0.4%) and N⋯N (0.3%) contacts.
4. DFT calculations
The optimized structure of the title compound in the gas phase was generated theoretically via density functional theory (DFT) calculations using the standard B3LYP functional and a 6-311G(d,p) basis-set (Becke, 1993) as implemented in GAUSSIAN09 (Frisch et al., 2009). The theoretical and experimental results are in good agreement (Table 2). The C8=N2 bond length is 1.2795 (17) Å for X-ray and 1.291 Å for B3LYP and the C10—O1 bond length is 1.3503 (17) Å for X-ray and 1.367 Å for B3LYP.
|
The highest-occupied molecular orbital (HOMO) and the lowest-unoccupied molecular orbital (LUMO) are very important parameters for quantum chemistry. Many electronic, optical and chemical reactivity properties of compounds can be predicted from frontier molecular orbitals (Tanak, 2019). A molecule with a small HOMO–LUMO bandgap is more polarizable than one with a large gap and is considered a soft molecule because of its high polarizibility, while molecules with a large bandgap are considered to be `hard molecules'. To better understand the nature of the title compound, the (A = -EHOMO), the (I = -ELUMO), HOMO–LUMO energy gap (ΔE), the chemical hardness (η) and softness (S) of the title compound were predicted based on the EHOMO and ELUMO energies (Tanak, 2019). For the title compound, I = 6.146 eV, A = 2.223 eV, ΔE = 3.923 eV, η = 1.961 eV and S = 0.311 eV. Based on the relatively large ΔE and η values, the title compound can be classified as a hard molecule.
The electron distribution of the HOMO-1, HOMO, LUMO and the LUMO+1 energy levels are shown in Fig. 6. The DFT study shows that the HOMO and LUMO are localized in the plane extending from the whole 2-hydroxy-5-methyl-benzaldehyde ring to the 2 aminobenzonitrile unit. The HOMO, HOMO-1 and LUMO orbitals are delocalized over the π systems of the two aromatic rings and connected by the Schiff base bridge. HOMO and HOMO-1 can be said to be π-bonding with respect to the C=N imine bond, while the LUMO orbital has imine π* antibonding character. The LUMO+1 orbital on the other hand is localized only on the aminobenzonitrile ring and the C atom of the Schiff base. With respect to the imine π-bond it is mostly non-bonding. From the frontier orbital analysis, it can be concluded that a HOMO-to-LUMO excitation of (I) would be a π–π* transition that would weaken the imine bond and drive the production of an excited-state keto–amine tautomer from the enol–imine ground state observed in the solid state. The calculated bandgap of (I) is 3.923 eV, which is similar to that reported for other Schiff base materials, such as for example (E)-2-{[(3-chlorophenyl)imino]methyl}-6-methylphenol (energy gap = 4.069 eV; Faizi et al., 2019) and (E)-2-[(2-hydroxy-5-methoxybenzylidene)amino]benzonitrile (energy gap = 3.520 eV; Saraçoğlu et al., 2020).
5. Database survey
A search of the Cambridge Structural Database (CSD, version 5.39, update of November 2019; Groom et al., 2016) gave 14 hits for a 2-{[(2-hydroxy-5-methylphenyl)methylidene]amino}benzonitrile moiety. The eight most closely related compounds are (E)-2-[(5-bromo-2-hydroxybenzylidene)amino]benzonitrile (FOWXOF; Zhou et al., 2009a), 5-chloro-2-(2-hydroxybenzylideneamino)benzonitrile (GEJGAE; Cheng et al., 2006), 2-{[(2-hydroxy-5-methoxyphenyl)methylidene]amino}benzonitrile (GOGYUZ; Faizi et al., 2019), trans-2-(2-hydroxybenzylideneamino)benzonitrile (LOCBOV; Xia et al., 2008), 2-[(2-hydroxy-6-methoxybenzylidene)amino]benzonitrile (LOVDUX; Demircioğlu et al., 2015), (E)-2-(2,4 dihydroxybenzylideneamino)benzonitrile (MOZPAT; Liu, 2009), (E)-2-(4-diethylamino-2-hydroxybenzylideneamino)benzonitrile (PUJDOO; Wang et al., 2010) and (E)-2-[(3,5-di-tert-butyl-2-hydroxybenzylidene)amino]benzonitrile (YOVBUH; Zhou et al., 2009b). All of these compounds are enol–imine tautomers, feature an E imine configuration and have the same common strong intramolecular O—H⋯N hydrogen-bonding interaction that stabilizes the molecular conformation and forms an S(6) ring motif. The dihedral angles between the aromatic rings are generally smaller than the value of 25.65 (3)° observed for the title compound, with angles between 1.09 (4)° (for FOWXOF and GEJGAE) and 13.84 (13)° (for PUJDOO). Only YOVBUH features angles similar to those of (I), with dihedral angles of 21.74 (5), 27.59 (5) and 27.87 (5)° for the three independent molecules in its structure. Steric crowding within each molecule seem to be no issue for the eight structures analysed, and the varying torsion angles might be the result of subtle effects from crystal packing forces.
6. Synthesis and crystallization
The title compound was prepared by combining solutions of 2-hydroxy-5-methyl-benzaldehyde (38.0 mg, 0.25 mmol) in ethanol (15 ml) and 2-aminobenzonitrile (33.0 mg, 0.25 mmol) in ethanol (15 ml) and stirring the mixture for 5 h under reflux (yield 60%, m.p. 412–414 K). Single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.
7. Refinement
Crystal data, data collection and structure . C-bound H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å and Uiso(H) = 1.2–1.5Ueq(C). The position of the H1 atom was obtained from a difference map; it was placed in a calculated position with a fixed C—O—H angle, but the O—H distance and the torsion angle were allowed to freely refine.
details are summarized in Table 3Supporting information
CCDC reference: 2013269
https://doi.org/10.1107/S2056989020008907/zl2787sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020008907/zl2787Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989020008907/zl2787Isup3.cml
Data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2018/3 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009), Mercury (Macrae et al., 2020); software used to prepare material for publication: WinGX (Farrugia, 2012), PLATON (Spek, 2020), SHELXL2018/3 (Sheldrick, 2015b) and publCIF (Westrip, 2010).C15H12N2O | Dx = 1.262 Mg m−3 |
Mr = 236.27 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 13160 reflections |
a = 7.8139 (3) Å | θ = 1.5–25.8° |
b = 27.047 (1) Å | µ = 0.08 mm−1 |
c = 11.7683 (5) Å | T = 296 K |
V = 2487.14 (17) Å3 | Prism, colorless |
Z = 8 | 0.73 × 0.42 × 0.24 mm |
F(000) = 992 |
STOE IPDS 2 diffractometer | 2270 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 1552 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.040 |
Detector resolution: 6.67 pixels mm-1 | θmax = 25.3°, θmin = 1.5° |
rotation method scans | h = −9→9 |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | k = −32→32 |
Tmin = 0.951, Tmax = 0.989 | l = −14→14 |
15314 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.038 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.103 | w = 1/[σ2(Fo2) + (0.0529P)2 + 0.0539P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
2270 reflections | Δρmax = 0.10 e Å−3 |
167 parameters | Δρmin = −0.09 e Å−3 |
0 restraints | Extinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: dual | Extinction coefficient: 0.0048 (9) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.4510 (2) | 0.43624 (6) | 0.56936 (18) | 0.0817 (5) | |
C2 | 0.4377 (2) | 0.43849 (6) | 0.69096 (14) | 0.0740 (4) | |
C3 | 0.3751 (3) | 0.48102 (6) | 0.7420 (2) | 0.0926 (5) | |
H3 | 0.343203 | 0.507974 | 0.697713 | 0.111* | |
C4 | 0.3606 (3) | 0.48315 (8) | 0.8578 (2) | 0.1034 (6) | |
H4 | 0.316746 | 0.511334 | 0.892460 | 0.124* | |
C5 | 0.4108 (3) | 0.44357 (8) | 0.92255 (18) | 0.0991 (6) | |
H5 | 0.401374 | 0.445315 | 1.001220 | 0.119* | |
C6 | 0.4752 (2) | 0.40119 (6) | 0.87308 (15) | 0.0836 (5) | |
H6 | 0.510544 | 0.374922 | 0.918342 | 0.100* | |
C7 | 0.48704 (18) | 0.39788 (5) | 0.75604 (13) | 0.0686 (4) | |
C8 | 0.54747 (18) | 0.31307 (5) | 0.73859 (12) | 0.0641 (4) | |
H8 | 0.499419 | 0.308529 | 0.810127 | 0.077* | |
C9 | 0.61539 (17) | 0.27095 (5) | 0.67918 (11) | 0.0598 (4) | |
C10 | 0.69055 (18) | 0.27512 (6) | 0.57110 (12) | 0.0654 (4) | |
C11 | 0.7545 (2) | 0.23368 (6) | 0.51800 (14) | 0.0759 (4) | |
H11 | 0.805539 | 0.236438 | 0.446900 | 0.091* | |
C12 | 0.7430 (2) | 0.18837 (7) | 0.56968 (15) | 0.0800 (5) | |
H12 | 0.787489 | 0.160829 | 0.532733 | 0.096* | |
C13 | 0.6667 (2) | 0.18226 (6) | 0.67585 (15) | 0.0780 (5) | |
C14 | 0.6052 (2) | 0.22403 (5) | 0.72774 (13) | 0.0696 (4) | |
H14 | 0.554152 | 0.220906 | 0.798775 | 0.084* | |
C15 | 0.6544 (3) | 0.13194 (6) | 0.7305 (2) | 0.1221 (8) | |
H15A | 0.673066 | 0.134971 | 0.810847 | 0.183* | |
H15B | 0.739587 | 0.110501 | 0.698457 | 0.183* | |
H15C | 0.542781 | 0.118329 | 0.717044 | 0.183* | |
O1 | 0.70348 (16) | 0.31893 (4) | 0.51676 (10) | 0.0877 (4) | |
H1 | 0.654 (3) | 0.3432 (6) | 0.5601 (13) | 0.132* | |
N1 | 0.4603 (3) | 0.43494 (6) | 0.47293 (15) | 0.1085 (6) | |
N2 | 0.55113 (16) | 0.35659 (5) | 0.69604 (10) | 0.0681 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0981 (12) | 0.0574 (9) | 0.0896 (13) | 0.0001 (8) | −0.0131 (11) | −0.0016 (9) |
C2 | 0.0722 (9) | 0.0636 (9) | 0.0861 (11) | −0.0043 (7) | −0.0017 (8) | −0.0097 (9) |
C3 | 0.0903 (12) | 0.0715 (11) | 0.1160 (15) | 0.0009 (9) | −0.0017 (11) | −0.0165 (11) |
C4 | 0.1000 (14) | 0.0856 (13) | 0.1245 (18) | 0.0013 (11) | 0.0128 (13) | −0.0354 (13) |
C5 | 0.1078 (14) | 0.0977 (14) | 0.0919 (13) | −0.0108 (12) | 0.0155 (11) | −0.0295 (12) |
C6 | 0.0909 (12) | 0.0832 (11) | 0.0766 (11) | −0.0075 (9) | 0.0047 (9) | −0.0145 (9) |
C7 | 0.0653 (9) | 0.0666 (9) | 0.0738 (10) | −0.0066 (7) | 0.0033 (7) | −0.0123 (8) |
C8 | 0.0613 (8) | 0.0729 (9) | 0.0582 (8) | −0.0055 (7) | 0.0024 (7) | −0.0020 (7) |
C9 | 0.0557 (7) | 0.0681 (9) | 0.0558 (8) | −0.0041 (6) | −0.0009 (6) | −0.0045 (7) |
C10 | 0.0618 (8) | 0.0749 (10) | 0.0597 (8) | −0.0040 (7) | −0.0004 (7) | −0.0017 (8) |
C11 | 0.0704 (9) | 0.0948 (12) | 0.0624 (9) | 0.0027 (9) | 0.0066 (7) | −0.0124 (9) |
C12 | 0.0785 (10) | 0.0809 (11) | 0.0804 (11) | 0.0103 (8) | 0.0002 (9) | −0.0180 (9) |
C13 | 0.0823 (11) | 0.0691 (10) | 0.0827 (11) | 0.0009 (8) | 0.0020 (9) | −0.0063 (8) |
C14 | 0.0729 (9) | 0.0715 (9) | 0.0645 (9) | −0.0027 (7) | 0.0048 (7) | −0.0020 (8) |
C15 | 0.156 (2) | 0.0725 (12) | 0.1380 (18) | 0.0078 (13) | 0.0243 (15) | 0.0080 (12) |
O1 | 0.1075 (9) | 0.0844 (8) | 0.0713 (7) | −0.0015 (7) | 0.0194 (6) | 0.0055 (6) |
N1 | 0.1567 (16) | 0.0760 (10) | 0.0927 (12) | 0.0039 (9) | −0.0181 (11) | 0.0018 (9) |
N2 | 0.0721 (8) | 0.0658 (8) | 0.0663 (7) | −0.0029 (6) | 0.0019 (6) | −0.0029 (6) |
C1—N1 | 1.138 (2) | C9—C14 | 1.3940 (19) |
C1—C2 | 1.436 (3) | C9—C10 | 1.406 (2) |
C2—C3 | 1.387 (2) | C10—O1 | 1.3503 (17) |
C2—C7 | 1.393 (2) | C10—C11 | 1.377 (2) |
C3—C4 | 1.369 (3) | C11—C12 | 1.371 (2) |
C3—H3 | 0.9300 | C11—H11 | 0.9300 |
C4—C5 | 1.371 (3) | C12—C13 | 1.394 (2) |
C4—H4 | 0.9300 | C12—H12 | 0.9300 |
C5—C6 | 1.381 (2) | C13—C14 | 1.371 (2) |
C5—H5 | 0.9300 | C13—C15 | 1.509 (2) |
C6—C7 | 1.383 (2) | C14—H14 | 0.9300 |
C6—H6 | 0.9300 | C15—H15A | 0.9600 |
C7—N2 | 1.4130 (18) | C15—H15B | 0.9600 |
C8—N2 | 1.2795 (17) | C15—H15C | 0.9600 |
C8—C9 | 1.4380 (19) | O1—H1 | 0.92 (2) |
C8—H8 | 0.9300 | ||
N1—C1—C2 | 179.2 (2) | C10—C9—C8 | 122.05 (13) |
C3—C2—C7 | 120.90 (16) | O1—C10—C11 | 118.18 (14) |
C3—C2—C1 | 119.48 (16) | O1—C10—C9 | 122.02 (14) |
C7—C2—C1 | 119.62 (14) | C11—C10—C9 | 119.80 (15) |
C4—C3—C2 | 119.7 (2) | C12—C11—C10 | 120.16 (15) |
C4—C3—H3 | 120.2 | C12—C11—H11 | 119.9 |
C2—C3—H3 | 120.2 | C10—C11—H11 | 119.9 |
C3—C4—C5 | 119.78 (19) | C11—C12—C13 | 122.10 (15) |
C3—C4—H4 | 120.1 | C11—C12—H12 | 119.0 |
C5—C4—H4 | 120.1 | C13—C12—H12 | 119.0 |
C4—C5—C6 | 121.21 (19) | C14—C13—C12 | 116.84 (15) |
C4—C5—H5 | 119.4 | C14—C13—C15 | 122.08 (17) |
C6—C5—H5 | 119.4 | C12—C13—C15 | 121.08 (16) |
C5—C6—C7 | 119.87 (18) | C13—C14—C9 | 123.19 (15) |
C5—C6—H6 | 120.1 | C13—C14—H14 | 118.4 |
C7—C6—H6 | 120.1 | C9—C14—H14 | 118.4 |
C6—C7—C2 | 118.54 (14) | C13—C15—H15A | 109.5 |
C6—C7—N2 | 124.92 (15) | C13—C15—H15B | 109.5 |
C2—C7—N2 | 116.51 (14) | H15A—C15—H15B | 109.5 |
N2—C8—C9 | 122.03 (13) | C13—C15—H15C | 109.5 |
N2—C8—H8 | 119.0 | H15A—C15—H15C | 109.5 |
C9—C8—H8 | 119.0 | H15B—C15—H15C | 109.5 |
C14—C9—C10 | 117.90 (14) | C10—O1—H1 | 109.5 |
C14—C9—C8 | 120.05 (13) | C8—N2—C7 | 121.58 (13) |
C7—C2—C3—C4 | −0.4 (3) | C14—C9—C10—C11 | −1.4 (2) |
C1—C2—C3—C4 | 179.34 (17) | C8—C9—C10—C11 | 179.69 (14) |
C2—C3—C4—C5 | 1.2 (3) | O1—C10—C11—C12 | −179.53 (15) |
C3—C4—C5—C6 | −0.4 (3) | C9—C10—C11—C12 | 0.8 (2) |
C4—C5—C6—C7 | −1.1 (3) | C10—C11—C12—C13 | 0.4 (3) |
C5—C6—C7—C2 | 1.9 (2) | C11—C12—C13—C14 | −0.9 (3) |
C5—C6—C7—N2 | 179.77 (15) | C11—C12—C13—C15 | 179.52 (18) |
C3—C2—C7—C6 | −1.1 (2) | C12—C13—C14—C9 | 0.3 (2) |
C1—C2—C7—C6 | 179.13 (15) | C15—C13—C14—C9 | 179.81 (17) |
C3—C2—C7—N2 | −179.21 (14) | C10—C9—C14—C13 | 0.9 (2) |
C1—C2—C7—N2 | 1.1 (2) | C8—C9—C14—C13 | 179.80 (14) |
N2—C8—C9—C14 | −178.55 (13) | C9—C8—N2—C7 | −178.75 (13) |
N2—C8—C9—C10 | 0.3 (2) | C6—C7—N2—C8 | 25.3 (2) |
C14—C9—C10—O1 | 178.93 (14) | C2—C7—N2—C8 | −156.72 (13) |
C8—C9—C10—O1 | 0.0 (2) |
Cg1 is the centroid of the C9–C14 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N2 | 0.92 | 1.83 | 2.6280 (16) | 145 |
C4—H4···N1i | 0.93 | 2.77 | 3.610 (3) | 150 |
C15—H15A···O1ii | 0.96 | 2.74 | 3.641 (3) | 158 |
C11—H11···Cg1iii | 0.93 | 2.85 | 3.654 (16) | 146 |
Symmetry codes: (i) −x+1/2, −y+1, z+1/2; (ii) x, −y+1/2, z+1/2; (iii) x+1/2, −y+1/2, −z+1. |
Parameter | X-ray | B3LYP/6–311G(d,p) |
O1—C10 | 1.3503 (17) | 1.3366 |
N2—C8 | 1.2795 (17) | 1.2909 |
N2—C7 | 1.4130 (18) | 1.3979 |
C1—N1 | 1.138 (2) | 1.155 |
C1—C2 | 1.436 (3) | 1.429 |
C8—C9 | 1.4380 (19) | 1.4432 |
N1—C1—C2 | 179.2 (2) | 178.3 |
C8—N2—C7 | 121.58 (13) | 121.07 |
N2—C8—C9 | 122.03 (13) | 122.79 |
C7—N2—C8—C9 | -178.75 (13) | -176.57 |
Funding information
This study was supported by Ondokuz Mayıs University under project No. PYOFEN.1906.19.001. Funding for this research was provided by a Startup Project, University Grants Commission, India.
References
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Cheng, K., Zhu, H.-L., Li, Z.-B. & Yan, Z. (2006). Acta Cryst. E62, o2417–o2418. Web of Science CSD CrossRef IUCr Journals Google Scholar
Demircioğlu, Z., Kaştaş, A. Ç. & Büyükgüngör, O. (2015). Spectrochim. Acta Part A, 139, 539–548. Google Scholar
Desai, S. B., Desai, P. B. & Desai, K. R. (2001). Heterocycl. Commun. 7, 83–90. CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ebrahimipour, S. Y., Mague, J. T., Akbari, A. & Takjoo, R. (2012). J. Mol. Struct. 1028, 148–155. Google Scholar
Faizi, M. S. H., Alam, M. J., Haque, A., Ahmad, S., Shahid, M. & Ahmad, M. (2018). J. Mol. Struct. 1156, 457–464. Web of Science CSD CrossRef CAS Google Scholar
Faizi, M. S. H., Ali, A. & Potaskalov, V. A. (2016). Acta Cryst. E72, 1366–1369. Web of Science CSD CrossRef IUCr Journals Google Scholar
Faizi, M. S. H., Dege, N., Çiçek, C., Agar, E. & Fritsky, I. O. (2019). Acta Cryst. E75, 987–990. Web of Science CSD CrossRef IUCr Journals Google Scholar
Faizi, M. S. H., Gupta, S., Mohan, V. K., Jain, K. V. & Sen, P. (2016). Sens. Actuators B Chem. 222, 15–20. Web of Science CrossRef CAS Google Scholar
Faizi, M. S. H., Osório, F. A. P. & Valverde, C. (2020). J. Mol. Struct. 1210, 128039–464. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA. Google Scholar
Grigoras, M., Catanescu, O. & Simonescu, C. I. (2001). Rev. Roum. Chim. 46, 927–939. CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Iwan, A., Kaczmarczyk, B., Janeczek, H., Sek, D. & Ostrowski, S. (2007). Spectrochim. Acta A Mol. Biomol. Spectrosc. 66, 1030–1041. Web of Science CrossRef PubMed Google Scholar
Kansiz, S., Macit, M., Dege, N. & Pavlenko, V. A. (2018). Acta Cryst. E74, 1887–1890. Web of Science CSD CrossRef IUCr Journals Google Scholar
Karia, F. D. & Parsania, P. H. (1999). Asian J. Chem. 11, 991–995. CAS Google Scholar
Kumar, M., Kumar, A., Faizi, M. S. H., Kumar, S., Singh, M. K., Sahu, S. K., Kishor, S. & John, R. P. (2018). Sens. Actuators B Chem. 260, 888–899. Web of Science CrossRef CAS Google Scholar
Kumar, S., Hansda, A., Chandra, A., Kumar, A., Kumar, M., Sithambaresan, M., Faizi, M. S. H., Kumar, V. & John, R. P. (2017). Polyhedron, 134, 11–21. Web of Science CSD CrossRef CAS Google Scholar
Liu, T. (2009). Acta Cryst. E65, o1502. Web of Science CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Mukherjee, P., Das, A., Faizi, M. S. H. & Sen, P. (2018). Chemistry Select, 3, 3787–3796. CAS Google Scholar
Ozeryanskii, V. A., Pozharskii, A. F., Schilf, W., Kamieński, B., Sawka-Dobrowolska, W., Sobczyk, L. & Grech, E. (2006). Eur. J. Org. Chem. pp. 782–790. Web of Science CSD CrossRef Google Scholar
Pizzala, H., Carles, M., Stone, W. E. E. & Thevand, A. (2000). J. Chem. Soc. Perkin Trans. 2, pp. 935–939. CSD CrossRef Google Scholar
Saraçoğlu, H., Doğan, O. E., Ağar, T., Dege, N. & Iskenderov, T. S. (2020). Acta Cryst. E76, 141–144. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Siddiqui, J. I., Iqbal, A., Ahmad, S. & Weaver, W. (2006). Molecules, 11, 206–211. Web of Science CrossRef PubMed CAS Google Scholar
Singh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33–37. Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Taggi, A. E., Hafez, A. M., Wack, H., Young, B., Ferraris, D. & Lectka, T. (2002). J. Am. Chem. Soc. 124, 6626–6635. Web of Science CrossRef PubMed CAS Google Scholar
Tanak, H. (2019). ChemistrySelect 4, 10876–10883. Web of Science CrossRef CAS Google Scholar
Tanak, H., Ağar, A. & Yavuz, M. (2010). J. Mol. Model. 16, 577–587. Web of Science CSD CrossRef PubMed CAS Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. The University of Western Australia. Google Scholar
Vančo, J., Švajlenová, O., Račanská, E. J., Muselík, J. & Valentová, J. (2004). J. Trace Elem. Med. Biol. 18, 155–161. Web of Science PubMed Google Scholar
Wang, X.-C., Xu, H. & Qian, K. (2010). Acta Cryst. E66, o528. Web of Science CSD CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wozniak, K., He, H., Klinowski, J., Jones, W., Dziembowska, T. & Grech, E. (1995). J. Chem. Soc. Faraday Trans. 91, 7–85. CSD CrossRef Web of Science Google Scholar
Xia, R., Xu, H.-J. & Gong, X.-X. (2008). Acta Cryst. E64, o1047. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhou, J.-C., Li, N.-X., Zhang, C.-M. & Zhang, Z.-Y. (2009a). Acta Cryst. E65, o1416. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhou, J.-C., Li, N.-X., Zhang, C.-M. & Zhang, Z.-Y. (2009b). Acta Cryst. E65, o1949. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.