research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis and DFT studies of 2-[(2-hy­dr­oxy-5-methyl­benzyl­­idene)amino]­benzo­nitrile

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Langat Singh College, B.R.A. Bihar University, Muzaffarpur, Bihar-842001, India, bOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, Samsun, Turkey, cOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Chemistry, Samsun, Turkey, and dDepartment of Pharmacy, University of Science and Technology, Ibb Branch, Ibb, Yemen
*Correspondence e-mail: ashraf.yemen7@gmail.com

Edited by M. Zeller, Purdue University, USA (Received 3 June 2020; accepted 30 June 2020; online 3 July 2020)

The title compound, C15H12N2O, was synthesized by condensation reaction of 2-hy­droxy-5-methyl­benzaldehyde and 2-amino­benzo­nitrile, and crystallizes in the ortho­rhom­bic space group Pbca. The phenol ring is inclined to the benzo­nitrile ring by 25.65 (3)°. The configuration about the C=N bond is E, stabilized by a strong intra­molecular O—H⋯N hydrogen bond that forms an S(6) ring motif. In the crystal, C—H⋯O and C—H⋯N inter­actions lead to the formation of sheets perpendicular to the a axis. C—H⋯π inter­actions, forming polymeric chains along the a-axis direction, connect these sheets into a three-dimensional network. A Hirshfeld surface analysis indicates that the most important contributions for the packing arrangement are from H⋯H and C⋯H/H⋯C inter­actions. The density functional theory (DFT) optimized structure at the B3LYP/6–311 G(d,p) level is compared with the experimentally determined mol­ecular structure and the HOMO–LUMO energy gap is given.

1. Chemical context

Schiff bases containing the azomethine moiety (–RCH=N–R′) are prepared by a condensation reaction between amines and reactive carbonyl compounds, such as aldehydes. Schiff bases are employed as catalyst carriers (Grigoras et al., 2001[Grigoras, M., Catanescu, O. & Simonescu, C. I. (2001). Rev. Roum. Chim. 46, 927-939.]), thermo-stable materials (Vančo et al., 2004[Vančo, J., Švajlenová, O., Račanská, E. J., Muselík, J. & Valentová, J. (2004). J. Trace Elem. Med. Biol. 18, 155-161.]), metal–cation complexing agents and in biological systems (Taggi et al., 2002[Taggi, A. E., Hafez, A. M., Wack, H., Young, B., Ferraris, D. & Lectka, T. (2002). J. Am. Chem. Soc. 124, 6626-6635.]). They also show biological activities such as anti­bacterial, anti­fungal, anti­cancer, anti­viral and herbicidal (Desai et al., 2001[Desai, S. B., Desai, P. B. & Desai, K. R. (2001). Heterocycl. Commun. 7, 83-90.]; Singh & Dash, 1988[Singh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33-37.]; Karia & Parsania, 1999[Karia, F. D. & Parsania, P. H. (1999). Asian J. Chem. 11, 991-995.]; Siddiqui et al., 2006[Siddiqui, J. I., Iqbal, A., Ahmad, S. & Weaver, W. (2006). Molecules, 11, 206-211.]). Schiff bases are also capable of forming stable complexes by coordination to metal ions via their nitro­gen donor atoms (Ebrahimipour et al., 2012[Ebrahimipour, S. Y., Mague, J. T., Akbari, A. & Takjoo, R. (2012). J. Mol. Struct. 1028, 148-155.]). They are important for their photochromic properties and have applications in various fields such as the measurement and control of radiation intensities in imaging systems and in optical computers, electronics, optoelectronics and photonics (Iwan et al., 2007[Iwan, A., Kaczmarczyk, B., Janeczek, H., Sek, D. & Ostrowski, S. (2007). Spectrochim. Acta A Mol. Biomol. Spectrosc. 66, 1030-1041.]). ortho-Hy­droxy Schiff base compounds such as the title compound can display two tautomeric forms, the enol–imine (OH) and keto–amine (NH) forms. Depending on the tautomers, two types of intra­molecular hydrogen bonds are generally observed in ortho-hy­droxy Schiff bases, namely O—H⋯N in enol–imine and N—H⋯O in keto–amine tautomers (Tanak et al., 2010[Tanak, H., Ağar, A. & Yavuz, M. (2010). J. Mol. Model. 16, 577-587.]). The present work is a part of an ongoing structural study of Schiff bases and their utilization in the synthesis of quinoxaline derivatives (Faizi et al., 2018[Faizi, M. S. H., Alam, M. J., Haque, A., Ahmad, S., Shahid, M. & Ahmad, M. (2018). J. Mol. Struct. 1156, 457-464.]), fluorescence sensors (Faizi et al., 2016[Faizi, M. S. H., Gupta, S., Mohan, V. K., Jain, K. V. & Sen, P. (2016). Sens. Actuators B Chem. 222, 15-20.][Faizi, M. S. H., Ali, A. & Potaskalov, V. A. (2016). Acta Cryst. E72, 1366-1369.]; Mukherjee et al., 2018[Mukherjee, P., Das, A., Faizi, M. S. H. & Sen, P. (2018). Chemistry Select, 3, 3787-3796.]; Kumar et al., 2017[Kumar, S., Hansda, A., Chandra, A., Kumar, A., Kumar, M., Sithambaresan, M., Faizi, M. S. H., Kumar, V. & John, R. P. (2017). Polyhedron, 134, 11-21.]; 2018[Kumar, M., Kumar, A., Faizi, M. S. H., Kumar, S., Singh, M. K., Sahu, S. K., Kishor, S. & John, R. P. (2018). Sens. Actuators B Chem. 260, 888-899.]) and non-linear optical properties (Faizi et al., 2020[Faizi, M. S. H., Osório, F. A. P. & Valverde, C. (2020). J. Mol. Struct. 1210, 128039-464.]). We report herein the synthesis of the title compound 2-[(2-hy­droxy-5-methyl­benzyl­idene)amino]­benzo­nitrile (I)[link] from 2-hy­droxy-5-methyl­benzaldehyde and 3-chloro-4-methyl­aniline, as well as its crystal structure, Hirshfeld surface analysis and DFT computational calculations. The results of calculations by density functional theory (DFT) carried out at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig.1. The configuration of the C8=N2 bond of this Schiff base is E, stabilized by the intra­molecular O1—H1⋯N1 hydrogen bond that forms an S(6) ring motif (Fig. 1[link] and Table 1[link]). This is a relatively common feature in analogous imine-phenol compounds (see Database survey section). The C10—O1 bond length [1.3503 (17) Å for X-ray and 1.337 Å for B3LYP] indicates single-bond character, while the imine C8=N2 bond length [1.2795 (17)Å for X-ray and 1.291 Å for B3LYP] indicates double-bond character. All bond lengths and bond angles are within normal ranges and are comparable with those in related Schiff base compounds (Faizi et al., 2019[Faizi, M. S. H., Dege, N., Çiçek, C., Agar, E. & Fritsky, I. O. (2019). Acta Cryst. E75, 987-990.]; Kansiz et al., 2018[Kansiz, S., Macit, M., Dege, N. & Pavlenko, V. A. (2018). Acta Cryst. E74, 1887-1890.]; Ozeryanskii et al., 2006[Ozeryanskii, V. A., Pozharskii, A. F., Schilf, W., Kamieński, B., Sawka-Dobrowolska, W., Sobczyk, L. & Grech, E. (2006). Eur. J. Org. Chem. pp. 782-790.]). The C10—O1 and C8=N2 bond lengths confirm the enol–imine form of the title compound (Wozniak et al., 1995[Wozniak, K., He, H., Klinowski, J., Jones, W., Dziembowska, T. & Grech, E. (1995). J. Chem. Soc. Faraday Trans. 91, 7-85.]; Pizzala et al., 2000[Pizzala, H., Carles, M., Stone, W. E. E. & Thevand, A. (2000). J. Chem. Soc. Perkin Trans. 2, pp. 935-939.]). The mol­ecule is not planar, with the benzo­nitrile ring tilted by 25.65 (3)° to the plane of the 5-methyl­phenol moiety. The imine and 5-methyl­phenol groups are, however, essentially coplanar, as indicated by the C9—C8—N2—C7 torsion angle of −178.75 (13)° and the C1—C14—C15—N1 torsion angle [0.31 (3)° for X-ray and 0.44° for B3LYP].

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C9–C14 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2 0.92 1.83 2.6280 (16) 145
C4—H4⋯N1i 0.93 2.77 3.610 (3) 150
C15—H15A⋯O1ii 0.96 2.74 3.641 (3) 158
C11—H11⋯Cg1iii 0.93 2.85 3.654 (16) 146
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link] with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. The intra­molecular O—H⋯N hydrogen bond (Table1) is shown as a dashed line.

3. Supra­molecular features and Hirshfeld surface analysis

The crystal structure of the title compound is consolidated by C—H⋯O and C—H⋯N inter­actions, forming corrugated layers perpendicular to the a axis (Fig. 2[link], Table 1[link]). The mol­ecules are also linked through inter­molecular C—H⋯π inter­actions hydrogen atom H11 and the centroid of the C9–C14 ring at [{1\over 2}] + x, [{1\over 2}] − y, 1 − z, which connect mol­ecules along the a-axis direction (Fig. 3[link]). C—H⋯O, C—H⋯N and C—H⋯π inter­actions combined lead to the formation of a three-dimensional network.

[Figure 2]
Figure 2
View along the a axis of the unit cell showing the mol­ecular sheets, formed via C—H⋯O and C—H⋯N inter­actions (see Table 1[link] for details).
[Figure 3]
Figure 3
View along the c axis of the unit cell showing the infinite chains, formed via C—H⋯π inter­actions (see Table 1[link] for details).

In order to better visualize and analyze the role of weak inter­molecular contacts in the crystal, a Hirshfeld surface (HS) analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) generated using CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. The University of Western Australia.]) were analysed. The three-dimensional dnorm surface is shown in Fig. 4[link] with a standard surface resolution and a fixed colour scale of −0.1805 to 1.0413 a.u. The darkest red spots on the Hirshfeld surface indicate contact points with atoms participating in the C—H⋯π inter­actions involving C11—H11 and the phenyl substituent (Table 1[link]). As illustrated in Fig. 5[link]a, the corresponding fingerprint plots for the compound have characteristic pseudo-symmetric wings along the de and di diagonal axes. The presence of C—H⋯π inter­actions in the crystal is indicated by the pair of characteristic wings in the fingerprint plot delineated into C⋯H/H⋯C contacts (Fig. 5[link]c, 27.1% contribution to the Hirshfeld surface). As shown in Fig. 5[link]b, the most widely scattered points in the fingerprint plot are related to H⋯H contacts, which make a contribution of 39.2% to the Hirshfeld surface. There are also N⋯H/H⋯N (16.0%; Fig. 5[link]d), O⋯H/H⋯O (8.3%; Fig. 5[link]e) and C⋯C (6.2%; Fig. 5[link]f) contacts, with smaller contributions from C⋯N/N⋯C (2.6%), C⋯O/O⋯C (0.4%) and N⋯N (0.3%) contacts.

[Figure 4]
Figure 4
The Hirshfeld surface of compound (I)[link] mapped over dnorm.
[Figure 5]
Figure 5
The overall two-dimensional finger print plots for compound (I)[link], and those delineated into: (b) H⋯H (39.2%), (c) C⋯H/H⋯C (27.1%), (d) N⋯H/H⋯N (16.0%), (e) O⋯H/H⋯O (8.3%) and C⋯C (6.2%) contacts.

4. DFT calculations

The optimized structure of the title compound in the gas phase was generated theoretically via density functional theory (DFT) calculations using the standard B3LYP functional and a 6-311G(d,p) basis-set (Becke, 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]) as implemented in GAUSSIAN09 (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.]). The theoretical and experimental results are in good agreement (Table 2[link]). The C8=N2 bond length is 1.2795 (17) Å for X-ray and 1.291 Å for B3LYP and the C10—O1 bond length is 1.3503 (17) Å for X-ray and 1.367 Å for B3LYP.

Table 2
Comparison of selected observed (X-ray data) and calculated (DFT) geometric parameters (Å, °)

Parameter X-ray B3LYP/6–311G(d,p)
O1—C10 1.3503 (17) 1.3366
N2—C8 1.2795 (17) 1.2909
N2—C7 1.4130 (18) 1.3979
C1—N1 1.138 (2) 1.155
C1—C2 1.436 (3) 1.429
C8—C9 1.4380 (19) 1.4432
     
N1—C1—C2 179.2 (2) 178.3
C8—N2—C7 121.58 (13) 121.07
N2—C8—C9 122.03 (13) 122.79
     
C7—N2—C8—C9 −178.75 (13) −176.57

The highest-occupied mol­ecular orbital (HOMO) and the lowest-unoccupied mol­ecular orbital (LUMO) are very important parameters for quantum chemistry. Many electronic, optical and chemical reactivity properties of compounds can be predicted from frontier mol­ecular orbitals (Tanak, 2019[Tanak, H. (2019). ChemistrySelect 4, 10876-10883.]). A mol­ecule with a small HOMO–LUMO bandgap is more polarizable than one with a large gap and is considered a soft mol­ecule because of its high polarizibility, while mol­ecules with a large bandgap are considered to be `hard mol­ecules'. To better understand the nature of the title compound, the electron affinity (A = -EHOMO), the ionization potential (I = -ELUMO), HOMO–LUMO energy gap (ΔE), the chemical hardness (η) and softness (S) of the title compound were predicted based on the EHOMO and ELUMO energies (Tanak, 2019[Tanak, H. (2019). ChemistrySelect 4, 10876-10883.]). For the title compound, I = 6.146 eV, A = 2.223 eV, ΔE = 3.923 eV, η = 1.961 eV and S = 0.311 eV. Based on the relatively large ΔE and η values, the title compound can be classified as a hard mol­ecule.

The electron distribution of the HOMO-1, HOMO, LUMO and the LUMO+1 energy levels are shown in Fig. 6[link]. The DFT study shows that the HOMO and LUMO are localized in the plane extending from the whole 2-hy­droxy-5-methyl-benzaldehyde ring to the 2 amino­benzo­nitrile unit. The HOMO, HOMO-1 and LUMO orbitals are delocalized over the π systems of the two aromatic rings and connected by the Schiff base bridge. HOMO and HOMO-1 can be said to be π-bonding with respect to the C=N imine bond, while the LUMO orbital has imine π* anti­bonding character. The LUMO+1 orbital on the other hand is localized only on the amino­benzo­nitrile ring and the C atom of the Schiff base. With respect to the imine π-bond it is mostly non-bonding. From the frontier orbital analysis, it can be concluded that a HOMO-to-LUMO excitation of (I)[link] would be a ππ* transition that would weaken the imine bond and drive the production of an excited-state keto–amine tautomer from the enol–imine ground state observed in the solid state. The calculated bandgap of (I)[link] is 3.923 eV, which is similar to that reported for other Schiff base materials, such as for example (E)-2-{[(3-chloro­phen­yl)imino]­meth­yl}-6-methyl­phenol (energy gap = 4.069 eV; Faizi et al., 2019[Faizi, M. S. H., Dege, N., Çiçek, C., Agar, E. & Fritsky, I. O. (2019). Acta Cryst. E75, 987-990.]) and (E)-2-[(2-hy­droxy-5-meth­oxy­benzyl­idene)amino]­benzo­nitrile (energy gap = 3.520 eV; Saraçoğlu et al., 2020[Saraçoğlu, H., Doğan, O. E., Ağar, T., Dege, N. & Iskenderov, T. S. (2020). Acta Cryst. E76, 141-144.]).

[Figure 6]
Figure 6
Electron distribution of the HOMO-1, HOMO, LUMO and the LUMO+1 energy levels for the title compound.

5. Database survey

A search of the Cambridge Structural Database (CSD, version 5.39, update of November 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave 14 hits for a 2-{[(2-hy­droxy-5-methyl­phen­yl)methyl­idene]amino}­benzo­nitrile moiety. The eight most closely related compounds are (E)-2-[(5-bromo-2-hy­droxy­benzyl­idene)amino]­benzo­nitrile (FOWXOF; Zhou et al., 2009a[Zhou, J.-C., Li, N.-X., Zhang, C.-M. & Zhang, Z.-Y. (2009a). Acta Cryst. E65, o1416.]), 5-chloro-2-(2-hy­droxy­benzyl­idene­amino)­benzo­nitrile (GEJGAE; Cheng et al., 2006[Cheng, K., Zhu, H.-L., Li, Z.-B. & Yan, Z. (2006). Acta Cryst. E62, o2417-o2418.]), 2-{[(2-hy­droxy-5-meth­oxy­phen­yl)methyl­idene]amino}­benzo­nitrile (GOGYUZ; Faizi et al., 2019[Faizi, M. S. H., Dege, N., Çiçek, C., Agar, E. & Fritsky, I. O. (2019). Acta Cryst. E75, 987-990.]), trans-2-(2-hy­droxy­benzyl­idene­amino)­benzo­nitrile (LOCBOV; Xia et al., 2008[Xia, R., Xu, H.-J. & Gong, X.-X. (2008). Acta Cryst. E64, o1047.]), 2-[(2-hy­droxy-6-meth­oxy­benzyl­idene)amino]­benzo­nitrile (LOVDUX; Demircioğlu et al., 2015[Demircioğlu, Z., Kaştaş, A. Ç. & Büyükgüngör, O. (2015). Spectrochim. Acta Part A, 139, 539-548.]), (E)-2-(2,4 di­hydroxy­benzyl­idene­amino)­benzo­nitrile (MOZPAT; Liu, 2009[Liu, T. (2009). Acta Cryst. E65, o1502.]), (E)-2-(4-di­ethyl­amino-2-hy­droxy­benzyl­idene­amino)­ben­zo­nitrile (PUJDOO; Wang et al., 2010[Wang, X.-C., Xu, H. & Qian, K. (2010). Acta Cryst. E66, o528.]) and (E)-2-[(3,5-di-tert-butyl-2-hy­droxy­benzyl­idene)amino]­benzo­nitrile (YOVBUH; Zhou et al., 2009b[Zhou, J.-C., Li, N.-X., Zhang, C.-M. & Zhang, Z.-Y. (2009b). Acta Cryst. E65, o1949.]). All of these compounds are enol–imine tautomers, feature an E imine configuration and have the same common strong intra­molecular O—H⋯N hydrogen-bonding inter­action that stabilizes the mol­ecular conformation and forms an S(6) ring motif. The dihedral angles between the aromatic rings are generally smaller than the value of 25.65 (3)° observed for the title compound, with angles between 1.09 (4)° (for FOWXOF and GEJGAE) and 13.84 (13)° (for PUJDOO). Only YOVBUH features angles similar to those of (I)[link], with dihedral angles of 21.74 (5), 27.59 (5) and 27.87 (5)° for the three independent mol­ecules in its structure. Steric crowding within each mol­ecule seem to be no issue for the eight structures analysed, and the varying torsion angles might be the result of subtle effects from crystal packing forces.

6. Synthesis and crystallization

The title compound was prepared by combining solutions of 2-hy­droxy-5-methyl-benzaldehyde (38.0 mg, 0.25 mmol) in ethanol (15 ml) and 2-amino­benzo­nitrile (33.0 mg, 0.25 mmol) in ethanol (15 ml) and stirring the mixture for 5 h under reflux (yield 60%, m.p. 412–414 K). Single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. C-bound H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å and Uiso(H) = 1.2–1.5Ueq(C). The position of the H1 atom was obtained from a difference map; it was placed in a calculated position with a fixed C—O—H angle, but the O—H distance and the torsion angle were allowed to freely refine.

Table 3
Experimental details

Crystal data
Chemical formula C15H12N2O
Mr 236.27
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 296
a, b, c (Å) 7.8139 (3), 27.047 (1), 11.7683 (5)
V3) 2487.14 (17)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.73 × 0.42 × 0.24
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.951, 0.989
No. of measured, independent and observed [I > 2σ(I)] reflections 15314, 2270, 1552
Rint 0.040
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.103, 1.04
No. of reflections 2270
No. of parameters 167
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.10, −0.09
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXT2018/3 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2018/3 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009), Mercury (Macrae et al., 2020); software used to prepare material for publication: WinGX (Farrugia, 2012), PLATON (Spek, 2020), SHELXL2018/3 (Sheldrick, 2015b) and publCIF (Westrip, 2010).

2-[(2-Hydroxy-5-methylbenzylidene)amino]benzonitrile top
Crystal data top
C15H12N2ODx = 1.262 Mg m3
Mr = 236.27Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 13160 reflections
a = 7.8139 (3) Åθ = 1.5–25.8°
b = 27.047 (1) ŵ = 0.08 mm1
c = 11.7683 (5) ÅT = 296 K
V = 2487.14 (17) Å3Prism, colorless
Z = 80.73 × 0.42 × 0.24 mm
F(000) = 992
Data collection top
STOE IPDS 2
diffractometer
2270 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus1552 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.040
Detector resolution: 6.67 pixels mm-1θmax = 25.3°, θmin = 1.5°
rotation method scansh = 99
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 3232
Tmin = 0.951, Tmax = 0.989l = 1414
15314 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0529P)2 + 0.0539P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2270 reflectionsΔρmax = 0.10 e Å3
167 parametersΔρmin = 0.09 e Å3
0 restraintsExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: dualExtinction coefficient: 0.0048 (9)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4510 (2)0.43624 (6)0.56936 (18)0.0817 (5)
C20.4377 (2)0.43849 (6)0.69096 (14)0.0740 (4)
C30.3751 (3)0.48102 (6)0.7420 (2)0.0926 (5)
H30.3432030.5079740.6977130.111*
C40.3606 (3)0.48315 (8)0.8578 (2)0.1034 (6)
H40.3167460.5113340.8924600.124*
C50.4108 (3)0.44357 (8)0.92255 (18)0.0991 (6)
H50.4013740.4453151.0012200.119*
C60.4752 (2)0.40119 (6)0.87308 (15)0.0836 (5)
H60.5105440.3749220.9183420.100*
C70.48704 (18)0.39788 (5)0.75604 (13)0.0686 (4)
C80.54747 (18)0.31307 (5)0.73859 (12)0.0641 (4)
H80.4994190.3085290.8101270.077*
C90.61539 (17)0.27095 (5)0.67918 (11)0.0598 (4)
C100.69055 (18)0.27512 (6)0.57110 (12)0.0654 (4)
C110.7545 (2)0.23368 (6)0.51800 (14)0.0759 (4)
H110.8055390.2364380.4469000.091*
C120.7430 (2)0.18837 (7)0.56968 (15)0.0800 (5)
H120.7874890.1608290.5327330.096*
C130.6667 (2)0.18226 (6)0.67585 (15)0.0780 (5)
C140.6052 (2)0.22403 (5)0.72774 (13)0.0696 (4)
H140.5541520.2209060.7987750.084*
C150.6544 (3)0.13194 (6)0.7305 (2)0.1221 (8)
H15A0.6730660.1349710.8108470.183*
H15B0.7395870.1105010.6984570.183*
H15C0.5427810.1183290.7170440.183*
O10.70348 (16)0.31893 (4)0.51676 (10)0.0877 (4)
H10.654 (3)0.3432 (6)0.5601 (13)0.132*
N10.4603 (3)0.43494 (6)0.47293 (15)0.1085 (6)
N20.55113 (16)0.35659 (5)0.69604 (10)0.0681 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0981 (12)0.0574 (9)0.0896 (13)0.0001 (8)0.0131 (11)0.0016 (9)
C20.0722 (9)0.0636 (9)0.0861 (11)0.0043 (7)0.0017 (8)0.0097 (9)
C30.0903 (12)0.0715 (11)0.1160 (15)0.0009 (9)0.0017 (11)0.0165 (11)
C40.1000 (14)0.0856 (13)0.1245 (18)0.0013 (11)0.0128 (13)0.0354 (13)
C50.1078 (14)0.0977 (14)0.0919 (13)0.0108 (12)0.0155 (11)0.0295 (12)
C60.0909 (12)0.0832 (11)0.0766 (11)0.0075 (9)0.0047 (9)0.0145 (9)
C70.0653 (9)0.0666 (9)0.0738 (10)0.0066 (7)0.0033 (7)0.0123 (8)
C80.0613 (8)0.0729 (9)0.0582 (8)0.0055 (7)0.0024 (7)0.0020 (7)
C90.0557 (7)0.0681 (9)0.0558 (8)0.0041 (6)0.0009 (6)0.0045 (7)
C100.0618 (8)0.0749 (10)0.0597 (8)0.0040 (7)0.0004 (7)0.0017 (8)
C110.0704 (9)0.0948 (12)0.0624 (9)0.0027 (9)0.0066 (7)0.0124 (9)
C120.0785 (10)0.0809 (11)0.0804 (11)0.0103 (8)0.0002 (9)0.0180 (9)
C130.0823 (11)0.0691 (10)0.0827 (11)0.0009 (8)0.0020 (9)0.0063 (8)
C140.0729 (9)0.0715 (9)0.0645 (9)0.0027 (7)0.0048 (7)0.0020 (8)
C150.156 (2)0.0725 (12)0.1380 (18)0.0078 (13)0.0243 (15)0.0080 (12)
O10.1075 (9)0.0844 (8)0.0713 (7)0.0015 (7)0.0194 (6)0.0055 (6)
N10.1567 (16)0.0760 (10)0.0927 (12)0.0039 (9)0.0181 (11)0.0018 (9)
N20.0721 (8)0.0658 (8)0.0663 (7)0.0029 (6)0.0019 (6)0.0029 (6)
Geometric parameters (Å, º) top
C1—N11.138 (2)C9—C141.3940 (19)
C1—C21.436 (3)C9—C101.406 (2)
C2—C31.387 (2)C10—O11.3503 (17)
C2—C71.393 (2)C10—C111.377 (2)
C3—C41.369 (3)C11—C121.371 (2)
C3—H30.9300C11—H110.9300
C4—C51.371 (3)C12—C131.394 (2)
C4—H40.9300C12—H120.9300
C5—C61.381 (2)C13—C141.371 (2)
C5—H50.9300C13—C151.509 (2)
C6—C71.383 (2)C14—H140.9300
C6—H60.9300C15—H15A0.9600
C7—N21.4130 (18)C15—H15B0.9600
C8—N21.2795 (17)C15—H15C0.9600
C8—C91.4380 (19)O1—H10.92 (2)
C8—H80.9300
N1—C1—C2179.2 (2)C10—C9—C8122.05 (13)
C3—C2—C7120.90 (16)O1—C10—C11118.18 (14)
C3—C2—C1119.48 (16)O1—C10—C9122.02 (14)
C7—C2—C1119.62 (14)C11—C10—C9119.80 (15)
C4—C3—C2119.7 (2)C12—C11—C10120.16 (15)
C4—C3—H3120.2C12—C11—H11119.9
C2—C3—H3120.2C10—C11—H11119.9
C3—C4—C5119.78 (19)C11—C12—C13122.10 (15)
C3—C4—H4120.1C11—C12—H12119.0
C5—C4—H4120.1C13—C12—H12119.0
C4—C5—C6121.21 (19)C14—C13—C12116.84 (15)
C4—C5—H5119.4C14—C13—C15122.08 (17)
C6—C5—H5119.4C12—C13—C15121.08 (16)
C5—C6—C7119.87 (18)C13—C14—C9123.19 (15)
C5—C6—H6120.1C13—C14—H14118.4
C7—C6—H6120.1C9—C14—H14118.4
C6—C7—C2118.54 (14)C13—C15—H15A109.5
C6—C7—N2124.92 (15)C13—C15—H15B109.5
C2—C7—N2116.51 (14)H15A—C15—H15B109.5
N2—C8—C9122.03 (13)C13—C15—H15C109.5
N2—C8—H8119.0H15A—C15—H15C109.5
C9—C8—H8119.0H15B—C15—H15C109.5
C14—C9—C10117.90 (14)C10—O1—H1109.5
C14—C9—C8120.05 (13)C8—N2—C7121.58 (13)
C7—C2—C3—C40.4 (3)C14—C9—C10—C111.4 (2)
C1—C2—C3—C4179.34 (17)C8—C9—C10—C11179.69 (14)
C2—C3—C4—C51.2 (3)O1—C10—C11—C12179.53 (15)
C3—C4—C5—C60.4 (3)C9—C10—C11—C120.8 (2)
C4—C5—C6—C71.1 (3)C10—C11—C12—C130.4 (3)
C5—C6—C7—C21.9 (2)C11—C12—C13—C140.9 (3)
C5—C6—C7—N2179.77 (15)C11—C12—C13—C15179.52 (18)
C3—C2—C7—C61.1 (2)C12—C13—C14—C90.3 (2)
C1—C2—C7—C6179.13 (15)C15—C13—C14—C9179.81 (17)
C3—C2—C7—N2179.21 (14)C10—C9—C14—C130.9 (2)
C1—C2—C7—N21.1 (2)C8—C9—C14—C13179.80 (14)
N2—C8—C9—C14178.55 (13)C9—C8—N2—C7178.75 (13)
N2—C8—C9—C100.3 (2)C6—C7—N2—C825.3 (2)
C14—C9—C10—O1178.93 (14)C2—C7—N2—C8156.72 (13)
C8—C9—C10—O10.0 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C9–C14 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.921.832.6280 (16)145
C4—H4···N1i0.932.773.610 (3)150
C15—H15A···O1ii0.962.743.641 (3)158
C11—H11···Cg1iii0.932.853.654 (16)146
Symmetry codes: (i) x+1/2, y+1, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z+1.
Comparison of selected observed (X-ray data) and calculated (DFT) geometric parameters (Å, °) top
ParameterX-rayB3LYP/6–311G(d,p)
O1—C101.3503 (17)1.3366
N2—C81.2795 (17)1.2909
N2—C71.4130 (18)1.3979
C1—N11.138 (2)1.155
C1—C21.436 (3)1.429
C8—C91.4380 (19)1.4432
N1—C1—C2179.2 (2)178.3
C8—N2—C7121.58 (13)121.07
N2—C8—C9122.03 (13)122.79
C7—N2—C8—C9-178.75 (13)-176.57
 

Funding information

This study was supported by Ondokuz Mayıs University under project No. PYOFEN.1906.19.001. Funding for this research was provided by a Startup Project, University Grants Commission, India.

References

First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationCheng, K., Zhu, H.-L., Li, Z.-B. & Yan, Z. (2006). Acta Cryst. E62, o2417–o2418.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDemircioğlu, Z., Kaştaş, A. Ç. & Büyükgüngör, O. (2015). Spectrochim. Acta Part A, 139, 539–548.  Google Scholar
First citationDesai, S. B., Desai, P. B. & Desai, K. R. (2001). Heterocycl. Commun. 7, 83–90.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEbrahimipour, S. Y., Mague, J. T., Akbari, A. & Takjoo, R. (2012). J. Mol. Struct. 1028, 148–155.  Google Scholar
First citationFaizi, M. S. H., Alam, M. J., Haque, A., Ahmad, S., Shahid, M. & Ahmad, M. (2018). J. Mol. Struct. 1156, 457–464.  Web of Science CSD CrossRef CAS Google Scholar
First citationFaizi, M. S. H., Ali, A. & Potaskalov, V. A. (2016). Acta Cryst. E72, 1366–1369.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFaizi, M. S. H., Dege, N., Çiçek, C., Agar, E. & Fritsky, I. O. (2019). Acta Cryst. E75, 987–990.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFaizi, M. S. H., Gupta, S., Mohan, V. K., Jain, K. V. & Sen, P. (2016). Sens. Actuators B Chem. 222, 15–20.  Web of Science CrossRef CAS Google Scholar
First citationFaizi, M. S. H., Osório, F. A. P. & Valverde, C. (2020). J. Mol. Struct. 1210, 128039–464.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationGrigoras, M., Catanescu, O. & Simonescu, C. I. (2001). Rev. Roum. Chim. 46, 927–939.  CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationIwan, A., Kaczmarczyk, B., Janeczek, H., Sek, D. & Ostrowski, S. (2007). Spectrochim. Acta A Mol. Biomol. Spectrosc. 66, 1030–1041.  Web of Science CrossRef PubMed Google Scholar
First citationKansiz, S., Macit, M., Dege, N. & Pavlenko, V. A. (2018). Acta Cryst. E74, 1887–1890.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKaria, F. D. & Parsania, P. H. (1999). Asian J. Chem. 11, 991–995.  CAS Google Scholar
First citationKumar, M., Kumar, A., Faizi, M. S. H., Kumar, S., Singh, M. K., Sahu, S. K., Kishor, S. & John, R. P. (2018). Sens. Actuators B Chem. 260, 888–899.  Web of Science CrossRef CAS Google Scholar
First citationKumar, S., Hansda, A., Chandra, A., Kumar, A., Kumar, M., Sithambaresan, M., Faizi, M. S. H., Kumar, V. & John, R. P. (2017). Polyhedron, 134, 11–21.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, T. (2009). Acta Cryst. E65, o1502.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMukherjee, P., Das, A., Faizi, M. S. H. & Sen, P. (2018). Chemistry Select, 3, 3787–3796.  CAS Google Scholar
First citationOzeryanskii, V. A., Pozharskii, A. F., Schilf, W., Kamieński, B., Sawka-Dobrowolska, W., Sobczyk, L. & Grech, E. (2006). Eur. J. Org. Chem. pp. 782–790.  Web of Science CSD CrossRef Google Scholar
First citationPizzala, H., Carles, M., Stone, W. E. E. & Thevand, A. (2000). J. Chem. Soc. Perkin Trans. 2, pp. 935–939.  CSD CrossRef Google Scholar
First citationSaraçoğlu, H., Doğan, O. E., Ağar, T., Dege, N. & Iskenderov, T. S. (2020). Acta Cryst. E76, 141–144.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiddiqui, J. I., Iqbal, A., Ahmad, S. & Weaver, W. (2006). Molecules, 11, 206–211.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSingh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33–37.  Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTaggi, A. E., Hafez, A. M., Wack, H., Young, B., Ferraris, D. & Lectka, T. (2002). J. Am. Chem. Soc. 124, 6626–6635.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTanak, H. (2019). ChemistrySelect 4, 10876–10883.  Web of Science CrossRef CAS Google Scholar
First citationTanak, H., Ağar, A. & Yavuz, M. (2010). J. Mol. Model. 16, 577–587.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. The University of Western Australia.  Google Scholar
First citationVančo, J., Švajlenová, O., Račanská, E. J., Muselík, J. & Valentová, J. (2004). J. Trace Elem. Med. Biol. 18, 155–161.  Web of Science PubMed Google Scholar
First citationWang, X.-C., Xu, H. & Qian, K. (2010). Acta Cryst. E66, o528.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWozniak, K., He, H., Klinowski, J., Jones, W., Dziembowska, T. & Grech, E. (1995). J. Chem. Soc. Faraday Trans. 91, 7–85.  CSD CrossRef Web of Science Google Scholar
First citationXia, R., Xu, H.-J. & Gong, X.-X. (2008). Acta Cryst. E64, o1047.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhou, J.-C., Li, N.-X., Zhang, C.-M. & Zhang, Z.-Y. (2009a). Acta Cryst. E65, o1416.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhou, J.-C., Li, N.-X., Zhang, C.-M. & Zhang, Z.-Y. (2009b). Acta Cryst. E65, o1949.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds