research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Structural diversity in copper(I) iodide complexes with 6-thioxopiperidin-2-one, piperidine-2,6-di­thione and isoindoline-1,3-di­thione ligands

CROSSMARK_Color_square_no_text.svg

aUniversity of Wisconsin-Madison, Department of Chemistry, 1101 University Avenue, Madison, WI, 53703, USA
*Correspondence e-mail: iguzei@chem.wisc.edu

Edited by M. Zeller, Purdue University, USA (Received 4 July 2020; accepted 15 July 2020; online 21 July 2020)

Copper(I) iodide complexes are well known for displaying a diverse array of structural features even when only small changes in ligand design are made. This structural diversity is well displayed by five copper(I) iodide compounds reported here with closely related piperidine-2,6-di­thione (SNS), isoindoline-1,3-di­thione (SNS6), and 6-thioxopiperidin-2-one (SNO) ligands: di-μ-iodido-bis­[(aceto­nitrile-κN)(6-sulfanylidenepiperidin-2-one-κS)copper(I)], [Cu2I2(CH3CN)2(C5H7NOS)2] (I), bis­(aceto­nitrile-κN)tetra-μ3-iodido-bis­(6-sulfanylidenepiperidin-2-one-κS)-tetra­hedro-tetra­copper(I), [Cu4I4(CH3CN)4(C5H7NOS)4] (II), catena-poly[[(μ-6-sulfanylidenepiperidin-2-one-κ2O:S)copper(I)]-μ3-iodido], [CuI(C5H7NOS)]n (III), poly[[(piperidine-2,6-di­thione-κS)copper(I)]-μ3-iodido], [CuI(C5H7NS2)]n (IV), and poly[[(μ-isoindoline-1,3-di­thione-κ2S:S)copper(I)]-μ3-iodido], [CuI(C8H5NS2)]n (V). Compounds I and II crystallize as discrete dimeric and tetra­meric complexes, whereas III, IV, and V crystallize as polymeric two-dimensional sheets. To the best of our knowledge, compound III is the first instance of an extended hexa­gonal [Cu3I3] structure that is not supported by bridging ligands. Structures I, II, and IV display weak to moderately strong Cu⋯Cu cuprophilic inter­actions [Cu⋯Cu inter­nuclear distances range between 2.5803 (10) and 2.8485 (14) Å]. All structures except III display weak hydrogen-bonding inter­actions between the N—H of the ligand and the μ2 and μ3-I atoms. Structure III contains classical N–H⋯O inter­actions between the SNO ligands that connect the mol­ecules in a three-dimensional framework. Complex V features ππ stacking inter­actions between the aryl rings of the SNS6 ligands within the same polymeric sheet. In structure IV, there were three partially occupied solvent mol­ecules of di­chloro­methane and one partially occupied mol­ecule of aceto­nitrile present in the asymmetric unit. The SQUEEZE routine [Spek (2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). Acta Cryst. C71, 9–18] was used to correct the diffraction data for diffuse scattering effects and to identify the solvent mol­ecules. The given chemical formula and other crystal data do not take into account the solvent mol­ecules.

1. Chemical context

Copper (I)[link] iodide compounds have been of inter­est for the past 50 years because of their diverse structural (Peng et al., 2010[Peng, R., Li, M. & Li, D. (2010). Coord. Chem. Rev. 254, 1-18.]) and spectroscopic properties (Ford et al., 1999[Ford, P. C., Cariati, E. & Bourassa, J. (1999). Chem. Rev. 99, 3625-3648.]; Hardt & Pierre, 1973[Hardt, H. & Pierre, A. (1973). Z. Anorg. Allg. Chem. 402, 107-112.]). In particular, CuI complexes range from simple Cu2I2L2 dimers (L = Lewis basic ligands) to complex three-dimensional coordination polymers (Peng et al., 2010[Peng, R., Li, M. & Li, D. (2010). Coord. Chem. Rev. 254, 1-18.]). Traditionally, soft Lewis basic donors such as thiols or phosphines have been used as ligands to the CuI centers. We were inter­ested in exploring the structures of CuI coordination complexes with three ligands, piperidine-2,6-di­thione (SNS), isoindoline-1,3-di­thione (SNS6), and 6-thioxopiperidin-2-one (SNO) (Fig. 1[link]). These ligands have been previously utilized in our work due to their polydentate binding modes, which provide individual binding sites that display a range of `hard' to `soft' Lewis basic behavior (Dolinar & Berry, 2013[Dolinar, B. S. & Berry, J. F. (2013). Inorg. Chem. 52, 4658-4667.], 2014[Dolinar, B. S. & Berry, J. F. (2014). Dalton Trans. 43, 6165-6176.]). Herein we report the synthesis and structural characterization of a series of five copper(I) iodide complexes with piperidine-2,6-di­thione (SNS), isoindoline-1,3-di­thione (SNS6), and 6-thioxopiperidin-2-one (SNO) ligands.

[Scheme 1]
[Figure 1]
Figure 1
Diagrams of the three ligands used in the preparation of structures IV.

2. Structural commentary

Compound I crystallizes as a discrete dimer with a rhombic Cu2(μ2-I)2 core that resides on a crystallographic inversion center; thus, only one half of the dimer is symmetry-independent (Fig. 2[link]). The rhombic core is close to having an ideal geometry with almost equal Cu—I distances (Table 1[link]). Each Cu center is coordinated by two μ2-I atoms, one mol­ecule of aceto­nitrile, and the thione moiety of the SNO ligand and has a slightly distorted tetra­hedral geometry (I—Cu—I and I—Cu—L angles of 100.19 (3)–118.719 (16)°; L = SNO or aceto­nitrile). The Cu⋯Cu inter­nuclear distance of 2.7274 (6) Å is slightly shorter than the sum of the covalent radii (ca 2.87 Å) and is consistent with a weak cuprophilic inter­action. The Cu—N and Cu—S distances (Table 1[link]) in I are similar to the Cu—N and Cu—S distances in other discrete Cu2(μ2-I)2 dimers reported to the Cambridge Structural Database (CSD) and selected with moderate search criteria (Groom et al. 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]; no errors, no polymers, single-crystal structures only). The SNO ligand adopts an envelope conformation, with a 49.07 (9)° dihedral angle between the planes defined by atoms C2–C3–C4 and C2–C1–N1–C5–C4.

Table 1
Selected bond lengths for structures IV

  Ia   IIb   IIIc   IVd   Ve  
Cu—I I1—Cu1 2.6261 (6) I1—Cu1 2.6451 (6) I1—Cu1 2.6264 (11) I1—Cu1 2.6365 (8) I1—Cu1 2.6152 (13)
  I1—Cu1i 2.6321 (7) I1—Cu2i 2.7017 (7) I1—Cu1i 2.6709 (12) I1—Cu1i 2.6687 (8) I1—Cu1i 2.6798 (13)
      I1—Cu2 2.7250 (6) I1—Cu1ii 2.6342 (10) I2—Cu2 2.6719 (8)    
      I2—Cu1 2.7796 (6)     I2—Cu2ii 2.6724 (8)    
      I2—Cu1i 2.6542 (6)            
      I2—Cu2 2.6456 (6)            
Cu⋯Cu Cu1—Cu1i 2.7274 (6) Cu1—Cu1i 2.8150 (11)            
      Cu1—Cu2 2.7864 (8)            
      Cu1—Cu2i 2.7106 (8)            
      Cu2—Cu2i 2.5803 (10)            
Cu—S Cu1—S1 2.3205 (6) Cu1–S1 2.2869 (10) Cu1—S1 2.2827 (15) Cu1—S1 2.3086 (14) Cu1—S1 2.269 (2)
              Cu1—S4iii 2.3075 (13) Cu1—S2ii 2.273 (2)
              Cu2—S2 2.2802 (15)    
              Cu2—S3 2.2933 (15)    
Cu—N Cu1—N2 2.0225 (10) Cu2—N2 1.974 (3)            
Symmetry codes: (a) (i) −x + 1, −y + 1, −z for I; (b) (i) −x + 1, y, −z + [{1\over 2}] for II; (c) (i) -x + 1/2, −y + [{3\over 2}], z − [{1\over 2}] and (ii) x, −y + 1, z − [{1\over 2}] for III; (d) (i) −x, −y, −z + 1; (ii) −x + 1, −y + 1, −z + 1 and (iii) −x + 1, −y, −z + 1 for IV; (e) (i) x, y − 1, z and (ii) x, −y + 1, z + [{1\over 2}] for V.
[Figure 2]
Figure 2
A mol­ecular drawing of I with 50% probability ellipsoids. Dotted lines are used to indicate hydrogen-bonding inter­actions. All H atoms bound to C atoms are omitted. [Symmetry code: (i) −x + 1, −y + 1, −z.]

Complex II crystallizes with a Cu4(μ3-I)4 core; the four Cu atoms form a distorted tetra­hedron with μ3-I atoms capping each of the tetra­hedron faces (Fig. 3[link]). The center of the tetra­hedron resides on a crystallographic twofold axis and therefore only two of the Cu centers are symmetry-independent. These two Cu atoms have different first coordination spheres: Cu1 is coordinated by three μ3-I atoms and one thione-bound SNO ligand; Cu2 is coordinated by three μ3-I atoms and one aceto­nitrile ligand. Both Cu atoms have a distorted tetra­hedral geometry [I—Cu—I and I—Cu—L angles between 97.98 (3) and 118.71 (2)°; L = SNO or aceto­nitrile]. The inter­nuclear Cu⋯Cu distances vary between 2.5803 (10) and 2.8150 (11) Å (Table 1[link]), which (similarly to I) are indicative of weak to moderately strong cuprophilic inter­actions between Cu atoms in the tetra­hedron. The Cu1—S and Cu2—N distances in II (Table 1[link]) are slightly shorter than the Cu—S and Cu—N distances in I as a result of the increase from two μ2-I to three μ3-I atoms coordinating to each Cu center. The SNO ligand adopts an envelope conformation with a 47.5 (2)° dihedral angle between the planes defined by atoms C2–C3–C4 and C2–C1–N1–C5–C4.

[Figure 3]
Figure 3
A mol­ecular drawing of II shown with 50% probability ellipsoids. Dotted lines are used to indicate hydrogen-bonding inter­actions. All H atoms bound to C atoms are omitted. [Symmetry code: (i) −x + 1, y, −z + [{1\over 2}].]

Compound III crystallizes with layered two-dimensional polymeric sheets with a repeat (and symmetry-independent) unit formula of [Cu(μ3-I)(SNO)]. The Cu atoms are coordinated by three μ3-I atoms and one SNO ligand and have distorted tetra­hedral geometries [I—Cu—I and I—Cu—S angles of 97.12 (4)–120.62 (4)°] (Fig. 4[link]). The I ions have distorted trigonal pyramidal geometries [Cu—I—Cu angles of 99.58 (3)–116.92 (2)°] with two short and one long Cu—I bonds (Table 1[link]). The polymeric sheet is based on fused Cu3I3 six-membered rings with a screw-boat conformation (3S2 with puckering amplitude Q = 1.3385 Å; Cremer & Pople, 1975[Cremer, D. & Pople, J. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) that propagate parallel to and stack perpendicularly to the (100) crystallographic plane (Fig. 5[link]). These fused six-membered rings are reminiscent of the zinc-blend structure present in crystalline γ-CuI (Gruzintsev & Zagorodnev, 2012[Gruzintsev, A. N. & Zagorodnev, W. N. (2012). Semiconductors 46, 149-154.]) except that the anions are μ3 rather than μ4. Each polymeric sheet is insulated by a sheath of SNO ligands, whose Cu—S bonds are perpendicular to the plane of propagation of the Cu3I3 rings (Fig. 6[link]). The Cu⋯Cu distances between neighboring Cu atoms in the Cu3I3 rings measure between 4.2226 (15) and 4.5148 (15) Å, which are outside the range of inter­nuclear distances for cuprophilic inter­actions.

[Figure 4]
Figure 4
A mol­ecular drawing of the symmetry-independent portion of III with the full coordination sphere of the Cu center shown. All atoms are shown with 50% probability ellipsoids; all H atoms bound to C atoms are omitted. [Symmetry codes: (i) x, −y + 1, z − [{1\over 2}]; (ii) −x + [{1\over 2}], −y + [{3\over 2}], z − [{1\over 2}].]
[Figure 5]
Figure 5
A mol­ecular drawing of III's Cu3I3 fused rings viewed along the crystallographic a axis with 50% probability ellipsoids. All H atoms bound to C atoms are omitted.
[Figure 6]
Figure 6
A mol­ecular drawing of III viewed along the crystallographic b axis with 50% probability ellipsoids. Dotted lines are used to indicate hydrogen-bonding inter­actions. All H atoms bound to C atoms are omitted.

Similarly to III, IV crystallizes with layered two-dimensional polymeric sheets with the symmetry-independent unit formula [Cu(μ2-I)(μ2-SNS)]2 (Fig. 7[link]); the Cu and μ2-I atoms form Cu2(μ2-I)2 rhombi where the center of each rhombus resides on a crystallographic inversion center. Thus, the symmetry-independent unit is best described as containing two structurally distinct [Cu2(μ2-I)2(μ2-SNS)2] half-dimers. The structures of the symmetry-independent Cu2(μ2-I)2 rhombi differ in two notable ways: first, while the Cu2(μ2-I)2 rhombus formed by Cu1, I1, and their symmetry-equivalents is slightly distorted, the rhombus formed by Cu2, I2, and their symmetry-equivalents is near ideal (Table 1[link]). Secondly, the Cu⋯Cu distances in the rhombi differ by ca 0.07 Å [2.8485 (14) Å for the Cu1 rhombus; 2.7746 (15) Å for the Cu2 rhombus]. These values are consistent with little to no Cu⋯Cu cuprophilic inter­action in the Cu1 dimer while also indicating that there is a weak Cu⋯Cu cuprophilic inter­action in the Cu2 dimer. For both half dimers, the Cu atom's distorted tetra­hedral [I—Cu—I angles between 115.06 (3) and 117.46 (3)° and S—Cu—I angles of 96.95 (4)–119.35 (6)°] coordination sphere is filled by two thione moieties from the μ2-SNS ligand; however, only one of these μ2-SNS ligands per Cu atom is symmetry-independent (Fig. 8[link]).

[Figure 7]
Figure 7
A mol­ecular drawing of the repeat unit of IV shown with 50% probability ellipsoids.
[Figure 8]
Figure 8
A mol­ecular drawing of IV with the full coordination spheres of the Cu centers shown with selected atom labels. All atoms are shown with 50% probability ellipsoids; dotted lines are used to indicate hydrogen-bonding inter­actions. All H atoms bound to C atoms are omitted. [Symmetry codes: (i) −x, −y, 1 − z; (ii) 1 − x, 1 − y, 1 − z; (iii) 1 − x, 1 − y, 1 − z; (iv) −1 + x, y, z]

In contrast to the monodentate SNO ligands in III, which only permit polymer propagation in III through the μ3-I atoms, the bidentate SNS ligand facilitates polymer propagation in IV. This results in the formation of rings formed by four [Cu(μ2-I)2(μ2-SNS)] units. The propagation of these rings in the (001) crystallographic plane results in a mesh-like sheet structure, and the layering of these sheets perpendicularly to the (001) plane results in the presence of sizable solvent-accessible voids (ca 200 Å3) in the structure (Fig. 9[link]). These voids are filled with a combination of aceto­nitrile and di­chloro­methane in an approximately 2:1 ratio; however, these solvent species were positionally disordered and the PLATON SQUEEZE routine (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) was required to model the diffuse electron density from the solvent species in these voids (see Refinement section).

[Figure 9]
Figure 9
A mol­ecular drawing of IV viewed along the [101] crystallographic direction with 50% probability ellipsoids. All H atoms bound to C atoms are omitted.

Complex V also crystallizes as two-dimensional polymeric sheets with the symmetry-independent unit formula [Cu(μ2-I)(μ2-SNS6)] (Fig. 10[link]). The Cu center is coordinated by two μ2-I atoms and two thione moieties of the μ2-SNS6 ligands and has a distorted tetra­hedral geometry [I—Cu—I and I—Cu—S angles between 100.30 (6) and 120.16 (7)°]. Whereas the two S—Cu distances are almost identical, the two Cu—I distances are quite different (Table 1[link]).

[Figure 10]
Figure 10
A mol­ecular drawing of the symmetry-independent portion of V with the full coordination sphere of the Cu center shown. All atoms are shown with 50% probability ellipsoids; dotted lines are used to indicate hydrogen-bonding inter­actions. All H atoms bound to C atoms are omitted. [Symmetry codes: (i) x, 1 + y, z; (ii) x, 1 − y, [{1\over 2}] + z.]

The polymeric sheet propagates parallel to the (100) crystallographic plane. The μ2-I atoms bridge two Cu centers and form Cu–I zigzag chains that propagate parallel to the [010] crystallographic direction. Similarly to IV, the μ2-SNS6 ligands participate in the polymer propagation in V by bridging two Cu atoms and connecting the Cu–I chains and are generated by the c glide plane (Fig. 11[link]). Among the five structures discussed, V is the only non-centrosymmetric structure. This results in a packing motif with a polar arrangement of SNS6 ligands on one side of the inorganic sheets, which results in a smaller spacing between the inorganic layers [7.598 (3) Å, see Fig. 12[link]] in V than in III [14.134 (5) Å, see Fig. 13[link]].

[Figure 11]
Figure 11
A mol­ecular drawing of V viewed along the crystallographic b axis with 50% probability ellipsoids with emphasis on the weak N—H⋯I inter­actions (dotted lines). All H atoms bound to C atoms are omitted.
[Figure 12]
Figure 12
A mol­ecular drawing of V viewed along the crystallographic c axis with 50% probability ellipsoids. Dotted lines are used to indicate hydrogen-bonding inter­actions. All H atoms bound to C atoms are omitted.
[Figure 13]
Figure 13
A mol­ecular drawing of III viewed along the crystallographic c axis with 50% probability ellipsoids. Dotted lines are used to indicate hydrogen-bonding inter­actions. All H atoms bound to C atoms are omitted.

3. Supra­molecular features

Among the five structures reported in this work, III, IV, and V crystallize as polymeric sheets; their extended structural characteristics are described above. In addition to the polymeric structural features in III, IV, and V, there are also several types of inter­molecular inter­actions present in each of the five structures that are relevant to a description of their supra­molecular architectures.

All structures except III display non-classical (e.g., H-atom acceptors that are not N, O or Cl) hydrogen-bonding inter­actions between the N—H of the SNO/SNS/SNS6 ligands and the μ2–I/μ3–I atoms. According to our statistical analysis of 3396 N—H⋯I inter­actions observed in 2030 structures reported to the CSD, their DA distances range from 3.15 to 4.12 Å with a mean DA distance of 3.69 (13) Å. The DA distances in structures I, II, IV, and V are typical for these types of inter­actions (Table 2[link]). For structures I and II, the N—H⋯I inter­action is intra­molecular. For IV, there are two symmetry-independent hydrogen–bonding inter­actions, which is expected given that the structure contains two symmetry-independent SNS ligands. The first, between atoms N1—H1⋯I1ii [symmetry code: (ii) −x + 1, −y + 1, −z + 1], is a stronger inter­action; the second is between atoms N2iv—H2iv⋯I1 [symmetry code: (iv) x + 1, y, z] and is a weaker inter­action (Table 2[link]). Both inter­actions form S(6) hydrogen-bonding motifs (Etter et al. 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]), which provide some rigidity to the mesh-like sheet of the polymer.

Table 2
Hydrogen bonding geometries for IV

  D—H⋯A D—H H⋯A DA D—H⋯A
Ia N1—H1⋯I1i 0.857 (12) 2.845 (13) 3.6980 (12) 173.8 (13)
II N1—H1⋯I2 0.870 (19) 2.81 (2) 3.672 (3) 170 (4)
IIIb N1—H1⋯O1iii 0.86 (2) 2.03 (2) 2.881 (5) 171 (5)
IVc N1—H1⋯I2ii 0.88 2.79 3.628 (4) 160.9
  N2—H2⋯I1iv 0.88 2.90 3.679 (4) 149.2
Vd N1—H1⋯I1iii 0.88 2.84 3.692 (7) 163.2
Symmetry codes: (a) (i) −x + 1, −y + 1, −z for I; (b) (iii) −x + 1, −y + 1, −z + 2 for III; (c) (ii) −x + 1, −y + 1, −z + 1 and (iv) x + 1, y, z for IV; (d) (iii) x, −y + 1, z − [{1\over 2}] for IV.

Structure III is unique among all the structures discussed in this work as it is the only structure to exhibit classical hydrogen-bonding inter­actions. There are two identical hydrogen bonds per SNO ligand, with the N—H serving as an H-bond donor and the O atom serving as an H-bond acceptor [N1—H1⋯O1iii and N1iii—Hiii⋯O1; symmetry code: (iii) −x + 1, −y + 1, −z + 2]. These hydrogen bonds are relatively strong (Table 2[link]) and form R22(8) motifs between the stacked [Cu3I3]n polymeric layers. Their presence leads to an extended three-dimensional framework structure, where the propagation of the [Cu3I3]n polymeric sheets accounts for two dimensions and the connection of those sheets through the hydrogen-bonding inter­actions provides the third (Fig. 13[link]).

Structure V has two distinct types of inter­molecular inter­actions. First, there is the non-classical hydrogen-bonding inter­action between the N—H of the SNS6 ligand and the symmetry-equivalent μ2-I atoms [N1—H1⋯I1ii; symmetry code: (ii) x, 1 − y, −[{1\over 2}] + z] within the same polymeric sheet. This inter­action forms R22(6) motifs that are of typical strength (see Figs. 10[link] and 11[link]; Table 2[link]). In addition to the non-classical hydrogen-bonding inter­actions, there are also ππ stacking inter­actions between SNS6 ligands within the same polymeric sheet due to the presence of the extended π system in the SNS6 ligand backbone. These inter­actions, formed by the overlap between the five-membered rings with atoms C1–C2–C7–C8–N1 (R5) and the phenyl rings with atoms C2i–C3i–C4i–C5i–C6i–C7i (R6) [symmetry code: (i) x, 1 + y, z], is of moderate strength [plane R5 to R6 centroid distance: 3.369 (5) Å; R5 to R6 centroid offset distance: 1.165 (14) Å]. These ππ stacking inter­actions, in tandem with the increased size of the SNS6 ligand relative to the SNS/SNO ligands, results in a tightly packed two-dimensional sheet (packing coefficient: 71.8%), which prevents the formation of the more mesh-like structure seen in IV (packing coefficient: 54.1%) (Kitaigorodskii, 1973[Kitaigorodskii, A. I. (1973). Molecular crystals and molecules. Academic Press.]).

4. Database survey

All searches in the Cambridge Structural Database (Version 5.41, latest update May 2020; Groom et al. 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) were performed with moderate search criteria (for structures I and II: no errors or ions, not polymeric, only single crystal structures; for structures III, IV, and V: no errors or ions, only single crystal structures. The surveys of the database for each individual structure are described below.

I: A search for Cu2(μ2-I)2 dimers with two neutral ligands binding with one nitro­gen and one sulfur atom resulted in 17 matches. Only one had a homometallic [Cu(μ2-I)2(S)(N)]2 type structure where the S and N donors were part of monodentate ligands, which indicates that the coordination environment in I is a relatively unusual one. This structure, bis­[(μ2-iodo)(aceto­nitrile)(tri­phenyl­thio­phospho­rane)copper(I)] (refcode: OCALOT; Lobana et al., 2001[Lobana, T. S., Mahajan, R. & Castineiras, A. (2001). Trans. Met. Chem. 26, 440-444.]), has similar Cu—S and Cu—N distances and a slightly longer Cu—I distance. However, OCALOT has a dramatically longer Cu⋯Cu distance [3.4141 (16) Å] than that in I (Table 1[link]). This elongation is likely due to the larger steric requirements of the SPPh3 sulfur donor ligand in OCALOT.

II: a survey of the Cambridge Structural Database for Cu4(μ3-I)4 tetra­hedrons with a mix of two Cu I3N coordination spheres and two I3S coordination spheres provided only one match, octa­kis­(μ3-iodo)­bis­{μ2-bis­[(2,4-di­methyl­phen­yl)thio]­methane-S,S′}tetra­kis­(aceto­nitrile)­octa­copper(I) aceto­nitrile tetra­hydro­furan solvate (refcode: ENAXAT; Martínez-Alanis et al., 2011[Martínez-Alanis, P. R., Ugalde-Saldívar, V. M. & Castillo, I. (2011). Eur. J. Inorg. Chem. 2011, 212-220.]), which features two Cu4(μ3-I)4 tetra­hedrons. Two of the Cu centers in each tetra­hedron have a (μ3-I)3(NCCH3) coordination sphere. The other two Cu centers have (μ3-I)3S coordination spheres with bridging bis­[(3,5-di­methyl­phen­yl)thio]­methane ligands that tether the two tetra­hedra together. The geometric parameters of this structure [Cu⋯Cu, Cu—I, Cu—S, and Cu—N distances: 2.69 (3), 2.68 (4), 2.315 (11), and Cu—N 1.979 (6) Å] are very similar to those in II.

An additional, broader search for all non-polymeric Cu4(μ3-I) tetra­hedra yielded 130 results for Cu4(μ3-I)4(L)4 (L = N, S, P, I, O, As) tetra­hedra with L as a neutral ligand. All of the resulting structures had identical first coordination spheres for each of the Cu centers [e.g., Cu4(μ3-I)4(L)4, rather than the Cu4(μ3-I)4(L)2(L′)2 in II]. To the best of our knowledge, II is the first reported instance of a non-polymeric Cu4(μ3-I)4 tetra­hedron with N and (non-bridging) S ligands.

III: A search for structures containing Cu3(μ3-X)3 ring motifs that did not contain Cu4(μ3-X)4 (X = any halogen) tetra­hedral motifs yielded 60 structures. Four of them contained Cu3(μ3-X)3 motifs and one of them (DENQEV; Liu et al., 2018[Liu, J., Tang, Y.-H., Wang, F. & Zhang, J. (2018). CrystEngComm, 20, 1232-1236.]) contained a Cu3(μ3-X)3 ring motif. This structure, catena-[bis­[μ-5-(1-amino­eth­yl)tetra­zolato]tetra­kis­(μ-iodo)­copper(II)tetra­copper(I)], contains four monovalent and one divalent symmetry-independent Cu centers that form a one-dimensional ribbon. This ribbon, in combination with the bridging (1S)-1-(5-tetra­zol­yl) ethyl­amine ligands, forms a three-dimensional network. There are a few other examples of copper halide extended structures based on Cu3(μ3-X)3 ring motifs that are both one-dimensional (Näther & Jess, 2003[Näther, C. & Jess, I. (2003). Inorg. Chem. 42, 2968-2976.]; Oliver et al., 1977[Oliver, K., Waters, T., Cook, D. & Rickard, C. (1977). Inorg. Chim. Acta, 24, 85-89.]) and two-dimensional (Blake et al., 1999[Blake, A. J., Brooks, N. R., Champness, N. R., Cooke, P. A., Deveson, A. M., Fenske, D., Hubberstey, P., Li, W.-S. & Schröder, M. (1999). J. Chem. Soc. Dalton Trans. pp. 2103-2110.]; Haakansson et al., 1991[Haakansson, M., Jagner, S. & Walther, D. (1991). Organometallics, 10, 1317-1319.]; Haakansson & Jagner, 1990[Haakansson, M. & Jagner, S. (1990). Inorg. Chem. 29, 5241-5244.]). Among these, the [Cu2I2(μ3-1,3,5-triazine)] structure reported by Blake et al. is the only two-dimensional sheet with hexa­gonal Cu3I3 rings and μ3-triazine linkers. To the best of our knowledge, III is the first instance of this extended hexa­gonal Cu3I3 structure that is not supported by bridging ligands.

IV: A search for polymeric structures containing Cu2(μ2-X)2(μ2-S) (X = F, Cl, Br, I) rhombi afforded 91 matches that included 35 polymeric homometallic structures. Among the 35 structures, 23 were two-dimensional polymers. Whereas there were no closely related matches for IV, a similar structure (JIZPEQ; Raghuvanshi et al., 2019[Raghuvanshi, A., Knorr, M., Knauer, L., Strohmann, C., Boullanger, S., Moutarlier, V. & Viau, L. (2019). Inorg. Chem. 58, 5753-5775.]) was found. This structure has the same chemical composition as IV except with μ2-1,3-di­thiane ligands rather than μ2-SNS ligands. In contrast to the two-dimensional mesh-like structure of IV, JIZPEQ crystallizes with one-dimensional chains with links comprised of two Cu2(μ2-I)2 rhombi and two μ2-1,3-di­thiane ligands. The geometric parameters of the Cu2(μ2-I)2 rhombi are in good agreement with those in IV [Cu⋯Cu, Cu—I (average), and Cu—S (average) distances: 2.8904 (6), 2.63 (2), and 2.329 (3) Å].

V: A search for structures with Cu—X zigzag chains that did not contain the Cu2(μ2-X)2 rhombus afforded 112 matches. Among these, 56 were for polymeric homometallic structures and three of these [refcodes: AFUDUA (Caradoc-Davies et al., 2002[Caradoc-Davies, P. L., Hanton, L. R., Hodgkiss, J. M. & Spicer, M. D. (2002). J. Chem. Soc. Dalton Trans. pp. 1581-1585.]), CIQQOL (Musina et al., 2017[Musina, E. I., Galimova, M. F., Musin, R. R., Dobrynin, A. B., Gubaidullin, A. T., Litvinov, I. A., Karasik, A. A. & G.Sinyashin, O. (2017). ChemistrySelect ,2, 11755-11761.]), and FIWWAK (Cingolani et al., 2005[Cingolani, A., Di Nicola, C., Effendy, P., Pettinari, C., Skelton, B. W., Somers, N. & White, A. H. (2005). Inorg. Chim. Acta, 358, 748-762.])] contained one-dimensional Cu—I zigzag chains. All three structures contain tetra­hedral CuI centers coordinated by the two μ2-I atoms and two neutral donor ligands (binding with sulfur and nitro­gen for AFUNDA, arsenic for CIQQOL, and FIWWAK). These structures have similar geometries to that of V except for the Cu–ligand distances.

5. Synthesis and crystallization

The ligands piperidine-2,6-di­thione (SNS) and 6-thioxopiperidin-2-one (SNO) were purchased from Sigma–Aldrich and used as received. Isoindoline-1,3-di­thione (SNS6) was prepared in a similar manner to that previously described in the literature (Yde et al., 1984[Yde, B., Yousif, N., Pedersen, U., Thomsen, I. & Lawesson, S.-O. (1984). Tetrahedron, 40, 2047-2052.]).

Unless otherwise specified, all reactions were performed at room temperature under a dry N2 atmosphere using standard glovebox methods.

I was prepared by combining 10 ml of a clear yellow solution of 6-thioxopiperidin-2-one (0.500 mmol) in di­chloro­methane with 10 mL of a colorless solution of CuI (0.502 mmol) in aceto­nitrile. Upon combination, the solution turned a bright-orange color. Vapor diffusion of the orange solution with diethyl ether afforded large, yellow, block-shaped crystals of I after three days.

Two by-products were also obtained from the reaction of 6-thioxopiperidin-2-one and CuI. The first (II) were small, yellow, plate-shaped crystals that co-crystallized with the larger yellow block-shaped crystals of I. The second by-product formed after exposing the initial orange solution from the reaction of 6-thioxopiperidin-2-one and CuI to air, and allowing that solution to slowly evaporate in air for approximately one week. After this time, small, red–orange crystals of III were obtained.

IV was prepared by layering 10 mL of a clear yellow solution of piperidine-2,6-di­thione (1.01 mmol) in di­chloro­methane over 10 mL of a colorless solution of CuI (1.00 mmol) in aceto­nitrile. Dark-red crystals of IV were obtained after one week.

Black, needle-shaped crystals of V were obtained in a similar manner to IV, with the exception that 1.00 mmol of isoindoline-1,3-di­thione was used instead of piperidine-2,6-di­thione.

6. Refinement

For structure I, the diffraction data were consistent with the space groups P1 and P[\overline{1}]; the E-statistics were consistent for the centrosymmetric space group P[\overline{1}] and were used to make the final space-group determination. For structures IIV, a combination of the systematic absences in the diffraction data and the E-statistics were used to assign the centrosymmetric space groups C2/c (II), Pbcn (III), P21/c (IV) and the non-centrosymmetric space group Cc (V).

The structures were solved via intrinsic phasing and refined by least-squares refinement on F2 followed by difference-Fourier synthesis. All non-hydrogen atoms were refined with anisotropic displacement parameters. Unless otherwise specified, all hydrogen atoms were included in the final structure-factor calculation at idealized positions and were allowed to ride on the neighboring atoms with relative isotropic displacement coefficients.

The coordinates of the H atoms bound to N atoms in structures I, II, and III were refined freely with a distance restraint for each N—H distance.

In structure IV, there were three partially occupied solvent mol­ecules of di­chloro­methane and one partially occupied mol­ecule of aceto­nitrile present in the asymmetric unit. A significant amount of time was invested in identifying and refining the disordered mol­ecules. Bond-length restraints were applied to model the mol­ecules, but the resulting isotropic displacement coefficients suggested the mol­ecules were mobile. In addition, the refinement was computationally unstable. The SQUEEZE option (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) of the PLATON software suite (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) was used to correct the diffraction data for diffuse scattering effects and to identify the solvent mol­ecule. PLATON calculated the upper limit of volume that can be occupied by the solvent in the unit cell to be 615 Å3. This solvent-accessible volume is comprised of two smaller (ca 115 Å3) and two larger (ca 196 Å3) solvent-accessible voids and is 27% of the unit-cell volume. The program calculated 155 electrons in the unit cell for the diffuse species. This corresponds to approximately one mol­ecule of di­chloro­methane (42 electrons) that is 50% occupied and one mol­ecule of aceto­nitrile (22 electrons) in the asymmetric unit. It is very likely that the solvent mol­ecules are disordered over several positions. All derived results in Tables 1[link] and 2[link] are based on the known contents. No data are given for the diffusely scattering species.

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

  I II III IV V
Crystal data
Chemical formula [Cu2I2(C2H3N)2(C5H7NOS)2] [Cu4I4(C2H3N)2(C5H7NOS)2] [CuI(C5H7NOS)] [Cu2I2(C5H7NS2)2] [CuI(C8H5NS2)]
Mr 721.34 1102.22 319.62 671.35 369.69
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, C2/c Orthorhombic, Pbcn Monoclinic, P21/c Monoclinic, Cc
Temperature (K) 100 105 100 100 100
a, b, c (Å) 8.121 (2), 8.433 (2), 9.154 (2) 14.4669 (8), 12.2157 (7), 16.9969 (11) 26.982 (11), 8.195 (4), 7.351 (3) 13.2866 (9), 11.6974 (13), 14.8089 (9) 15.174 (5), 4.1188 (16), 15.785 (6)
α, β, γ (°) 68.918 (12), 80.523 (12), 71.270 (9) 90, 112.562 (5), 90 90, 90, 90 90, 96.998 (6), 90 90, 92.98 (2), 90
V3) 553.2 (2) 2773.9 (3) 1625.4 (13) 2284.4 (3) 985.2 (6)
Z 1 4 8 4 4
Radiation type Mo Kα Cu Kα Cu Kα Cu Kα Mo Kα
μ (mm−1) 4.92 39.97 35.47 26.87 5.72
Crystal size (mm) 0.15 × 0.13 × 0.13 0.1 × 0.08 × 0.04 0.08 × 0.07 × 0.03 0.22 × 0.13 × 0.09 0.30 × 0.02 × 0.01
 
Data collection
Diffractometer Bruker APEXII Quazar Bruker SMART APEXII area detector Bruker SMART APEXII area detector Bruker SMART APEXII area detector Bruker APEXII Quazar
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). SADABS. Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2016[Bruker (2016). SADABS. Madison, Wisconsin, USA.]) Multi-scan SADABS; Bruker, 2016[Bruker (2016). SADABS. Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2016[Bruker (2016). SADABS. Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2016[Bruker (2016). SADABS. Madison, Wisconsin, USA.])
Tmin, Tmax 0.079, 0.120 0.042, 0.188 0.030, 0.144 0.009, 0.094 0.322, 0.404
No. of measured, independent and observed [I > 2σ(I)] reflections 17922, 4099, 3988 23553, 2753, 2669 25274, 1631, 1467 78133, 4597, 4236 11871, 3603, 3226
Rint 0.021 0.060 0.051 0.063 0.041
(sin θ/λ)max−1) 0.779 0.622 0.622 0.622 0.770
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.012, 0.030, 1.07 0.026, 0.063, 1.10 0.032, 0.082, 1.07 0.048, 0.126, 1.06 0.036, 0.089, 1.06
No. of reflections 4099 2753 1631 4597 3603
No. of parameters 122 140 94 181 118
No. of restraints 1 1 1 0 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.43, −0.34 0.84, −1.25 1.31, −1.03 1.58, −0.49 3.17, −1.13
Absolute structure Flack x determined using 1438 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.034 (12)
Computer programs: APEX3 (Bruker, 2017[Bruker (2017). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), APEX2 and SAINT (Bruker, 2013[Bruker (2013). SAINT. and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2017) for (I), (V); APEX2 (Bruker, 2013) for (II), (III), (IV). Cell refinement: APEX3 (Bruker, 2017) for (I), (V); SAINT (Bruker, 2013) for (II), (III), (IV). Data reduction: APEX3 (Bruker, 2017) for (I), (V); SAINT (Bruker, 2013) for (II), (III), (IV). For all structures, program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Di-µ-iodido-bis[(acetonitrile-κN)(6-sulfanylidenepiperidin-2-one-κS)copper(I)] (I) top
Crystal data top
[Cu2I2(C2H3N)2(C5H7NOS)2]Z = 1
Mr = 721.34F(000) = 344
Triclinic, P1Dx = 2.165 Mg m3
a = 8.121 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.433 (2) ÅCell parameters from 9905 reflections
c = 9.154 (2) Åθ = 2.4–33.6°
α = 68.918 (12)°µ = 4.92 mm1
β = 80.523 (12)°T = 100 K
γ = 71.270 (9)°Block, yellow
V = 553.2 (2) Å30.15 × 0.13 × 0.13 mm
Data collection top
Bruker APEXII Quazar
diffractometer
4099 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs3988 reflections with I > 2σ(I)
Mirror optics monochromatorRint = 0.021
Detector resolution: 7.9 pixels mm-1θmax = 33.6°, θmin = 2.4°
0.5° ω and 0.5° φ scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1213
Tmin = 0.079, Tmax = 0.120l = 1413
17922 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.012H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.030 w = 1/[σ2(Fo2) + (0.010P)2 + 0.2P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
4099 reflectionsΔρmax = 0.43 e Å3
122 parametersΔρmin = 0.34 e Å3
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.71563 (2)0.27834 (2)0.05209 (2)0.01894 (2)
Cu10.45123 (2)0.38128 (2)0.13294 (2)0.01894 (3)
S10.56399 (3)0.24010 (4)0.37914 (3)0.01986 (5)
O10.05297 (11)0.66482 (10)0.51701 (10)0.02183 (14)
N10.28752 (11)0.45357 (12)0.47278 (10)0.01722 (15)
H10.278 (2)0.5149 (19)0.3753 (15)0.021*
N20.26648 (13)0.25871 (13)0.15713 (11)0.02214 (17)
C10.41889 (13)0.30218 (13)0.51318 (11)0.01629 (16)
C20.42947 (14)0.19443 (14)0.68381 (12)0.02105 (18)
H2A0.5089660.2275810.7313370.025*
H2B0.4790000.0673270.6947090.025*
C30.25216 (15)0.22197 (14)0.77191 (12)0.02196 (19)
H3A0.2658590.1573620.8853790.026*
H3B0.1766420.1744050.7345210.026*
C40.16790 (15)0.41932 (14)0.74515 (12)0.02137 (19)
H4A0.0486280.4372800.7951160.026*
H4B0.2358160.4625320.7952540.026*
C50.15956 (13)0.52448 (13)0.57383 (12)0.01738 (17)
C60.17193 (13)0.17425 (13)0.20890 (12)0.01823 (17)
C70.05487 (15)0.06411 (15)0.27580 (14)0.02279 (19)
H7A0.0125450.0438300.1916520.034*
H7B0.0441240.1239700.3324370.034*
H7C0.1171670.0498210.3484520.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.02097 (3)0.01735 (3)0.01597 (3)0.00396 (2)0.00281 (2)0.00554 (2)
Cu10.02026 (6)0.01995 (6)0.01757 (6)0.00817 (5)0.00300 (4)0.00688 (5)
S10.01667 (10)0.02251 (11)0.01925 (11)0.00292 (9)0.00063 (8)0.00856 (9)
O10.0229 (4)0.0176 (3)0.0234 (4)0.0036 (3)0.0001 (3)0.0073 (3)
N10.0191 (4)0.0168 (4)0.0141 (3)0.0045 (3)0.0007 (3)0.0044 (3)
N20.0219 (4)0.0223 (4)0.0229 (4)0.0073 (3)0.0004 (3)0.0079 (3)
C10.0164 (4)0.0175 (4)0.0165 (4)0.0059 (3)0.0013 (3)0.0062 (3)
C20.0237 (5)0.0204 (4)0.0161 (4)0.0028 (4)0.0038 (3)0.0044 (3)
C30.0292 (5)0.0181 (4)0.0165 (4)0.0082 (4)0.0017 (4)0.0033 (3)
C40.0270 (5)0.0200 (4)0.0159 (4)0.0075 (4)0.0037 (4)0.0059 (3)
C50.0192 (4)0.0169 (4)0.0176 (4)0.0071 (3)0.0020 (3)0.0071 (3)
C60.0180 (4)0.0177 (4)0.0183 (4)0.0029 (3)0.0013 (3)0.0069 (3)
C70.0233 (5)0.0219 (5)0.0254 (5)0.0108 (4)0.0042 (4)0.0088 (4)
Geometric parameters (Å, º) top
I1—Cu12.6261 (6)C2—H2B0.9900
I1—Cu1i2.6321 (7)C2—C31.5216 (16)
Cu1—Cu1i2.7274 (6)C3—H3A0.9900
Cu1—S12.3205 (6)C3—H3B0.9900
Cu1—N22.0225 (10)C3—C41.5260 (16)
S1—C11.6607 (11)C4—H4A0.9900
O1—C51.2117 (13)C4—H4B0.9900
N1—H10.857 (12)C4—C51.4988 (15)
N1—C11.3493 (13)C6—C71.4518 (15)
N1—C51.4055 (13)C7—H7A0.9800
N2—C61.1446 (14)C7—H7B0.9800
C1—C21.4987 (15)C7—H7C0.9800
C2—H2A0.9900
Cu1—I1—Cu1i62.489 (13)C3—C2—H2B109.2
I1—Cu1—I1i117.511 (13)C2—C3—H3A109.7
I1i—Cu1—Cu1i58.647 (16)C2—C3—H3B109.7
I1—Cu1—Cu1i58.864 (17)C2—C3—C4109.71 (9)
S1—Cu1—I1102.61 (2)H3A—C3—H3B108.2
S1—Cu1—I1i118.719 (16)C4—C3—H3A109.7
S1—Cu1—Cu1i132.375 (17)C4—C3—H3B109.7
N2—Cu1—I1i105.18 (3)C3—C4—H4A109.3
N2—Cu1—I1111.38 (3)C3—C4—H4B109.3
N2—Cu1—Cu1i127.14 (3)H4A—C4—H4B108.0
N2—Cu1—S1100.19 (3)C5—C4—C3111.49 (9)
C1—S1—Cu1109.94 (4)C5—C4—H4A109.3
C1—N1—H1118.1 (10)C5—C4—H4B109.3
C1—N1—C5127.15 (9)O1—C5—N1118.17 (9)
C5—N1—H1114.7 (10)O1—C5—C4125.23 (10)
C6—N2—Cu1162.96 (9)N1—C5—C4116.60 (9)
N1—C1—S1121.16 (8)N2—C6—C7178.87 (12)
N1—C1—C2117.20 (9)C6—C7—H7A109.5
C2—C1—S1121.63 (8)C6—C7—H7B109.5
C1—C2—H2A109.2C6—C7—H7C109.5
C1—C2—H2B109.2H7A—C7—H7B109.5
C1—C2—C3112.14 (9)H7A—C7—H7C109.5
H2A—C2—H2B107.9H7B—C7—H7C109.5
C3—C2—H2A109.2
Cu1—S1—C1—N120.58 (9)C1—C2—C3—C454.31 (12)
Cu1—S1—C1—C2160.32 (7)C2—C3—C4—C554.18 (12)
S1—C1—C2—C3153.63 (8)C3—C4—C5—O1153.16 (10)
N1—C1—C2—C327.24 (13)C3—C4—C5—N127.45 (13)
C1—N1—C5—O1178.41 (10)C5—N1—C1—S1177.90 (8)
C1—N1—C5—C41.02 (15)C5—N1—C1—C21.24 (15)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···I1i0.86 (1)2.85 (1)3.6980 (12)174 (1)
Symmetry code: (i) x+1, y+1, z.
Bis(acetonitrile-κN)tetra-µ3-iodido-bis(6-sulfanylidenepiperidin-2-one-κS)-tetrahedro-tetracopper(I) (II) top
Crystal data top
[Cu4I4(C2H3N)2(C5H7NOS)2]F(000) = 2032
Mr = 1102.22Dx = 2.639 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54178 Å
a = 14.4669 (8) ÅCell parameters from 9916 reflections
b = 12.2157 (7) Åθ = 4.9–73.4°
c = 16.9969 (11) ŵ = 39.97 mm1
β = 112.562 (5)°T = 105 K
V = 2773.9 (3) Å3Block, yellow
Z = 40.1 × 0.08 × 0.04 mm
Data collection top
Bruker SMART APEXII area detector
diffractometer
2753 independent reflections
Radiation source: sealed X-ray tube, Siemens, K FFCU 2K 902669 reflections with I > 2σ(I)
Equatorially mounted graphite monochromatorRint = 0.060
Detector resolution: 7.9 pixels mm-1θmax = 73.4°, θmin = 4.9°
0.60° ω and 0.6° φ scansh = 1717
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1515
Tmin = 0.042, Tmax = 0.188l = 1920
23553 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.063 w = 1/[σ2(Fo2) + (0.0336P)2 + 8.1228P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
2753 reflectionsΔρmax = 0.84 e Å3
140 parametersΔρmin = 1.25 e Å3
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.60668 (2)0.86418 (2)0.17606 (2)0.01452 (8)
I20.64470 (2)0.62302 (2)0.36802 (2)0.01064 (8)
Cu10.56033 (4)0.66150 (4)0.20182 (3)0.01367 (13)
Cu20.57587 (4)0.82337 (4)0.32174 (3)0.01552 (13)
S10.60446 (7)0.54868 (7)0.11461 (5)0.01569 (19)
O10.6145 (2)0.2772 (2)0.32682 (16)0.0174 (6)
N10.6055 (2)0.3917 (3)0.22074 (19)0.0126 (6)
H10.606 (4)0.445 (3)0.255 (2)0.015*
N20.6525 (3)0.9386 (3)0.4015 (2)0.0169 (7)
C10.6091 (3)0.4194 (3)0.1448 (2)0.0123 (7)
C20.6188 (3)0.3267 (3)0.0903 (2)0.0159 (8)
H2A0.6905890.3145220.1021770.019*
H2B0.5853840.3474360.0295900.019*
C30.5734 (3)0.2208 (3)0.1056 (2)0.0202 (8)
H3A0.5874160.1608250.0725140.024*
H3B0.4999190.2288930.0861540.024*
C40.6177 (3)0.1928 (3)0.2001 (3)0.0191 (8)
H4A0.5811170.1295360.2104780.023*
H4B0.6885020.1707610.2162760.023*
C50.6128 (3)0.2859 (3)0.2552 (2)0.0132 (7)
C60.6848 (3)1.0148 (3)0.4409 (2)0.0148 (7)
C70.7242 (3)1.1137 (3)0.4894 (2)0.0180 (8)
H7A0.7096491.1765230.4506630.027*
H7B0.7967631.1066560.5197960.027*
H7C0.6927321.1248540.5306320.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01753 (14)0.01161 (13)0.01566 (13)0.00092 (8)0.00776 (10)0.00418 (7)
I20.01430 (13)0.01007 (13)0.00576 (12)0.00111 (7)0.00185 (9)0.00183 (7)
Cu10.0197 (3)0.0114 (3)0.0103 (2)0.0035 (2)0.0062 (2)0.00158 (19)
Cu20.0167 (3)0.0119 (3)0.0134 (2)0.0027 (2)0.0007 (2)0.00354 (19)
S10.0246 (5)0.0150 (4)0.0113 (4)0.0070 (3)0.0112 (4)0.0050 (3)
O10.0214 (14)0.0183 (13)0.0118 (11)0.0011 (11)0.0056 (11)0.0035 (10)
N10.0198 (17)0.0107 (14)0.0071 (13)0.0003 (12)0.0049 (12)0.0007 (11)
N20.0173 (16)0.0157 (16)0.0139 (14)0.0037 (13)0.0019 (12)0.0027 (13)
C10.0123 (17)0.0152 (18)0.0078 (14)0.0021 (13)0.0021 (13)0.0000 (13)
C20.0216 (19)0.0150 (18)0.0118 (15)0.0062 (15)0.0071 (15)0.0020 (13)
C30.023 (2)0.019 (2)0.0190 (18)0.0007 (16)0.0083 (16)0.0087 (15)
C40.027 (2)0.0127 (18)0.0225 (18)0.0004 (15)0.0145 (17)0.0027 (15)
C50.0111 (17)0.0135 (17)0.0132 (16)0.0019 (13)0.0029 (14)0.0001 (13)
C60.0169 (18)0.0143 (18)0.0091 (14)0.0025 (14)0.0003 (14)0.0011 (14)
C70.029 (2)0.0071 (17)0.0103 (16)0.0010 (15)0.0003 (15)0.0020 (13)
Geometric parameters (Å, º) top
I1—Cu12.6451 (6)N1—C51.405 (5)
I1—Cu2i2.7017 (7)N2—C61.137 (5)
I1—Cu22.7250 (6)C1—C21.504 (5)
I2—Cu12.6542 (6)C2—H2A0.9900
I2—Cu1i2.7796 (6)C2—H2B0.9900
I2—Cu22.6456 (6)C2—C31.518 (6)
Cu1—Cu1i2.8150 (11)C3—H3A0.9900
Cu1—Cu22.7864 (8)C3—H3B0.9900
Cu1—Cu2i2.7106 (8)C3—C41.523 (5)
Cu2—Cu2i2.5803 (10)C4—H4A0.9900
Cu1—S12.2869 (10)C4—H4B0.9900
Cu2—N21.974 (3)C4—C51.492 (5)
S1—C11.654 (4)C6—C71.451 (5)
O1—C51.213 (5)C7—H7A0.9800
N1—H10.870 (19)C7—H7B0.9800
N1—C11.354 (5)C7—H7C0.9800
Cu1—I1—Cu2i60.911 (18)N2—Cu2—I1i98.80 (11)
Cu1—I1—Cu262.493 (17)N2—Cu2—I1104.44 (10)
Cu2i—I1—Cu256.78 (2)N2—Cu2—I2114.05 (10)
Cu1—I2—Cu1i62.35 (2)N2—Cu2—Cu1151.07 (11)
Cu2—I2—Cu163.439 (17)N2—Cu2—Cu1i143.75 (11)
Cu2—I2—Cu1i59.892 (17)N2—Cu2—Cu2i134.36 (10)
I1—Cu1—I2107.43 (2)C1—S1—Cu1111.24 (13)
I1—Cu1—I2i112.60 (2)C1—N1—H1117 (3)
I1—Cu1—Cu1i110.454 (13)C1—N1—C5127.1 (3)
I1—Cu1—Cu2i60.576 (18)C5—N1—H1115 (3)
I1—Cu1—Cu260.157 (18)C6—N2—Cu2169.7 (3)
I2—Cu1—I2i113.84 (2)N1—C1—S1121.6 (3)
I2—Cu1—Cu1i61.007 (19)N1—C1—C2116.4 (3)
I2i—Cu1—Cu1i56.64 (2)C2—C1—S1122.0 (3)
I2i—Cu1—Cu2101.87 (2)C1—C2—H2A109.0
I2—Cu1—Cu2i107.32 (2)C1—C2—H2B109.0
I2—Cu1—Cu258.129 (16)C1—C2—C3112.8 (3)
Cu2i—Cu1—I2i57.602 (18)H2A—C2—H2B107.8
Cu2i—Cu1—Cu1i60.53 (2)C3—C2—H2A109.0
Cu2—Cu1—Cu1i57.881 (18)C3—C2—H2B109.0
Cu2i—Cu1—Cu255.97 (2)C2—C3—H3A109.7
S1—Cu1—I1107.77 (3)C2—C3—H3B109.7
S1—Cu1—I2i97.98 (3)C2—C3—C4109.7 (3)
S1—Cu1—I2117.03 (3)H3A—C3—H3B108.2
S1—Cu1—Cu1i140.07 (3)C4—C3—H3A109.7
S1—Cu1—Cu2159.65 (4)C4—C3—H3B109.7
S1—Cu1—Cu2i135.38 (3)C3—C4—H4A109.0
I1i—Cu2—I1118.71 (2)C3—C4—H4B109.0
I1i—Cu2—Cu1i58.512 (18)H4A—C4—H4B107.8
I1i—Cu2—Cu1109.64 (2)C5—C4—C3112.9 (3)
I1—Cu2—Cu157.350 (16)C5—C4—H4A109.0
I2—Cu2—I1i115.15 (2)C5—C4—H4B109.0
I2—Cu2—I1105.38 (2)O1—C5—N1117.9 (3)
I2—Cu2—Cu1i62.509 (18)O1—C5—C4125.1 (3)
I2—Cu2—Cu158.432 (17)N1—C5—C4117.0 (3)
Cu1i—Cu2—I1111.24 (2)N2—C6—C7178.5 (4)
Cu1i—Cu2—Cu161.59 (3)C6—C7—H7A109.5
Cu2i—Cu2—I161.16 (2)C6—C7—H7B109.5
Cu2i—Cu2—I1i62.06 (2)C6—C7—H7C109.5
Cu2i—Cu2—I2111.572 (12)H7A—C7—H7B109.5
Cu2i—Cu2—Cu160.528 (19)H7A—C7—H7C109.5
Cu2i—Cu2—Cu1i63.50 (2)H7B—C7—H7C109.5
Cu1—S1—C1—N111.4 (4)C1—C2—C3—C453.9 (4)
Cu1—S1—C1—C2169.3 (3)C2—C3—C4—C551.0 (5)
S1—C1—C2—C3152.4 (3)C3—C4—C5—O1156.9 (4)
N1—C1—C2—C328.3 (5)C3—C4—C5—N122.9 (5)
C1—N1—C5—O1175.3 (4)C5—N1—C1—S1177.2 (3)
C1—N1—C5—C44.9 (6)C5—N1—C1—C22.1 (6)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···I20.87 (2)2.81 (2)3.672 (3)170 (4)
catena-Poly[[(µ-6-sulfanylidenepiperidin-2-one-κ2O:S)copper(I)]-µ3-iodido] (III) top
Crystal data top
[CuI(C5H7NOS)]Dx = 2.612 Mg m3
Mr = 319.62Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, PbcnCell parameters from 6676 reflections
a = 26.982 (11) Åθ = 3.3–73.1°
b = 8.195 (4) ŵ = 35.47 mm1
c = 7.351 (3) ÅT = 100 K
V = 1625.4 (13) Å3Plate, orange
Z = 80.08 × 0.07 × 0.03 mm
F(000) = 1200
Data collection top
Bruker SMART APEXII area detector
diffractometer
1631 independent reflections
Radiation source: sealed X-ray tube, Siemens, K FFCU 2K 901467 reflections with I > 2σ(I)
Equatorially mounted graphite monochromatorRint = 0.051
Detector resolution: 7.9 pixels mm-1θmax = 73.6°, θmin = 3.3°
0.60° ω and 0.6° φ scansh = 3233
Absorption correction: multi-scan
SADABS; Bruker, 2016)
k = 109
Tmin = 0.030, Tmax = 0.144l = 99
25274 measured reflections
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.055P)2 + 1.1889P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
1631 reflectionsΔρmax = 1.31 e Å3
94 parametersΔρmin = 1.03 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.23415 (2)0.59898 (3)0.50901 (3)0.02390 (13)
Cu10.28100 (2)0.62683 (8)0.82066 (9)0.02635 (18)
S10.36555 (4)0.63113 (12)0.83026 (14)0.0266 (2)
O10.50567 (13)0.2890 (4)0.9865 (4)0.0346 (8)
N10.43783 (13)0.4297 (5)0.9030 (5)0.0274 (8)
H10.4550 (18)0.516 (4)0.923 (7)0.033*
C10.38916 (15)0.4443 (5)0.8540 (6)0.0253 (8)
C20.35970 (15)0.2932 (5)0.8285 (6)0.0269 (8)
H2A0.3348490.3114830.7315190.032*
H2B0.3416370.2684910.9424120.032*
C30.39185 (16)0.1470 (5)0.7775 (7)0.0303 (9)
H3A0.4057400.1627390.6540720.036*
H3B0.3714320.0466110.7765240.036*
C40.43403 (17)0.1289 (6)0.9153 (7)0.0333 (10)
H4A0.4201420.0958721.0344550.040*
H4B0.4568630.0417940.8742680.040*
C50.46238 (17)0.2851 (6)0.9374 (6)0.0299 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.02516 (19)0.0217 (2)0.02479 (19)0.00135 (8)0.00003 (9)0.00010 (9)
Cu10.0258 (3)0.0243 (3)0.0290 (4)0.0002 (2)0.0002 (2)0.0001 (3)
S10.0245 (5)0.0238 (5)0.0315 (5)0.0009 (4)0.0001 (4)0.0002 (4)
O10.0273 (16)0.0285 (16)0.048 (2)0.0009 (14)0.0039 (13)0.0007 (14)
N10.0253 (18)0.0211 (17)0.036 (2)0.0028 (13)0.0010 (15)0.0012 (15)
C10.0257 (19)0.025 (2)0.0252 (19)0.0017 (16)0.0007 (16)0.0006 (17)
C20.0245 (19)0.025 (2)0.031 (2)0.0007 (16)0.0000 (17)0.0015 (17)
C30.029 (2)0.023 (2)0.039 (2)0.0018 (16)0.0003 (18)0.0042 (19)
C40.029 (2)0.025 (2)0.046 (3)0.0004 (18)0.001 (2)0.001 (2)
C50.028 (2)0.028 (2)0.034 (2)0.0032 (17)0.0023 (17)0.0001 (19)
Geometric parameters (Å, º) top
I1—Cu12.6264 (11)C2—H2A0.9900
I1—Cu1i2.6709 (12)C2—H2B0.9900
I1—Cu1ii2.6342 (10)C2—C31.526 (6)
Cu1—S12.2827 (15)C3—H3A0.9900
S1—C11.668 (4)C3—H3B0.9900
O1—C51.223 (6)C3—C41.531 (6)
N1—H10.86 (2)C4—H4A0.9900
N1—C11.367 (6)C4—H4B0.9900
N1—C51.381 (6)C4—C51.500 (6)
C1—C21.483 (6)
Cu1—I1—Cu1ii106.77 (3)H2A—C2—H2B107.8
Cu1—I1—Cu1i116.92 (2)C3—C2—H2A109.1
Cu1ii—I1—Cu1i113.08 (4)C3—C2—H2B109.1
I1iii—Cu1—I1iv104.19 (4)C2—C3—H3A109.7
I1—Cu1—I1iv116.85 (3)C2—C3—H3B109.7
I1—Cu1—I1iii99.58 (3)C2—C3—C4109.6 (4)
S1—Cu1—I1iv97.12 (4)H3A—C3—H3B108.2
S1—Cu1—I1120.62 (4)C4—C3—H3A109.7
S1—Cu1—I1iii118.31 (4)C4—C3—H3B109.7
C1—S1—Cu1111.76 (15)C3—C4—H4A109.3
C1—N1—H1120 (4)C3—C4—H4B109.3
C1—N1—C5125.7 (4)H4A—C4—H4B108.0
C5—N1—H1115 (4)C5—C4—C3111.6 (4)
N1—C1—S1118.4 (3)C5—C4—H4A109.3
N1—C1—C2118.3 (4)C5—C4—H4B109.3
C2—C1—S1123.3 (3)O1—C5—N1119.3 (4)
C1—C2—H2A109.1O1—C5—C4122.8 (4)
C1—C2—H2B109.1N1—C5—C4117.9 (4)
C1—C2—C3112.5 (3)
Cu1—S1—C1—N1165.4 (3)C1—C2—C3—C452.5 (5)
Cu1—S1—C1—C213.3 (4)C2—C3—C4—C552.7 (5)
S1—C1—C2—C3155.5 (3)C3—C4—C5—O1154.2 (5)
N1—C1—C2—C325.9 (5)C3—C4—C5—N126.9 (6)
C1—N1—C5—O1177.4 (4)C5—N1—C1—S1176.5 (4)
C1—N1—C5—C41.5 (7)C5—N1—C1—C22.2 (7)
Symmetry codes: (i) x+1/2, y+3/2, z1/2; (ii) x, y+1, z1/2; (iii) x, y+1, z+1/2; (iv) x+1/2, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1v0.86 (2)2.03 (2)2.881 (5)171 (5)
Symmetry code: (v) x+1, y+1, z+2.
Poly[[(piperidine-2,6-dithione-κS)copper(I)]-µ3-iodido] (IV) top
Crystal data top
[Cu2I2(C5H7NS2)2]F(000) = 1264
Mr = 671.35Dx = 1.952 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 13.2866 (9) ÅCell parameters from 9761 reflections
b = 11.6974 (13) Åθ = 3.4–73.6°
c = 14.8089 (9) ŵ = 26.87 mm1
β = 96.998 (6)°T = 100 K
V = 2284.4 (3) Å3Block, red
Z = 40.22 × 0.13 × 0.09 mm
Data collection top
Bruker SMART APEXII area detector
diffractometer
4597 independent reflections
Radiation source: sealed X-ray tube, Siemens, K FFCU 2K 904236 reflections with I > 2σ(I)
Equatorially mounted graphite monochromatorRint = 0.063
Detector resolution: 7.9 pixels mm-1θmax = 73.6°, θmin = 3.4°
0.60° ω and 0.6° φ scansh = 1616
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1414
Tmin = 0.009, Tmax = 0.094l = 1818
78133 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0963P)2 + 0.866P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
4597 reflectionsΔρmax = 1.58 e Å3
181 parametersΔρmin = 0.48 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I20.55860 (2)0.62760 (3)0.40198 (2)0.04041 (13)
I10.04785 (2)0.16932 (3)0.55075 (2)0.04179 (13)
Cu10.09352 (5)0.01033 (6)0.55762 (5)0.03868 (18)
Cu20.50067 (5)0.41451 (7)0.43516 (5)0.04040 (19)
S40.88076 (9)0.04448 (10)0.29165 (8)0.0381 (3)
S20.38476 (10)0.38690 (11)0.31034 (9)0.0419 (3)
S30.64474 (10)0.30477 (12)0.45389 (8)0.0444 (3)
S10.24194 (9)0.09681 (11)0.52729 (8)0.0410 (3)
N10.2946 (3)0.2359 (4)0.4050 (3)0.0400 (9)
H10.3415950.2558120.4493060.048*
N20.7560 (3)0.1895 (4)0.3534 (3)0.0393 (9)
H20.7840790.1646250.4066560.047*
C60.6808 (4)0.2704 (4)0.3544 (3)0.0392 (10)
C10.2258 (4)0.1562 (5)0.4253 (3)0.0399 (10)
C100.7913 (4)0.1441 (4)0.2793 (4)0.0373 (10)
C50.2980 (4)0.2881 (4)0.3228 (4)0.0400 (10)
C20.1396 (4)0.1307 (5)0.3541 (4)0.0451 (12)
H2A0.0770330.1218680.3835530.054*
H2B0.1527020.0569880.3248390.054*
C90.7453 (4)0.1855 (5)0.1882 (3)0.0414 (11)
H9A0.6873960.1357040.1655750.050*
H9B0.7961270.1805380.1447600.050*
C70.6364 (5)0.3190 (5)0.2646 (4)0.0473 (12)
H7A0.6200410.4006240.2725800.057*
H7B0.5725240.2784090.2433950.057*
C40.2216 (4)0.2518 (5)0.2464 (4)0.0449 (11)
H4A0.2470230.1841120.2160750.054*
H4B0.2110150.3141980.2009900.054*
C80.7087 (5)0.3083 (5)0.1928 (4)0.0480 (12)
H8A0.6735950.3315330.1328070.058*
H8B0.7674600.3597530.2082030.058*
C30.1218 (4)0.2229 (5)0.2805 (4)0.0474 (12)
H3A0.0729270.1948530.2294930.057*
H3B0.0929690.2921950.3059070.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I20.0431 (2)0.0411 (2)0.0377 (2)0.00315 (12)0.00764 (14)0.00019 (12)
I10.0442 (2)0.0404 (2)0.0395 (2)0.00544 (12)0.00003 (14)0.00445 (12)
Cu10.0398 (4)0.0393 (4)0.0368 (4)0.0010 (3)0.0043 (3)0.0020 (3)
Cu20.0397 (4)0.0416 (4)0.0404 (4)0.0001 (3)0.0066 (3)0.0006 (3)
S40.0389 (6)0.0400 (6)0.0356 (5)0.0026 (4)0.0055 (4)0.0004 (5)
S20.0425 (6)0.0427 (6)0.0406 (6)0.0043 (5)0.0054 (5)0.0042 (5)
S30.0462 (7)0.0530 (7)0.0346 (6)0.0106 (5)0.0069 (5)0.0011 (5)
S10.0416 (6)0.0460 (7)0.0352 (6)0.0036 (5)0.0034 (5)0.0044 (5)
N10.039 (2)0.044 (2)0.0367 (19)0.0026 (17)0.0041 (16)0.0006 (18)
N20.039 (2)0.044 (2)0.0346 (19)0.0019 (17)0.0018 (16)0.0039 (17)
C60.041 (2)0.038 (2)0.038 (2)0.0000 (19)0.0046 (19)0.003 (2)
C10.041 (3)0.044 (3)0.035 (2)0.000 (2)0.004 (2)0.001 (2)
C100.036 (2)0.037 (2)0.039 (2)0.0020 (18)0.0048 (19)0.001 (2)
C50.038 (2)0.042 (3)0.040 (2)0.001 (2)0.0050 (19)0.001 (2)
C20.047 (3)0.051 (3)0.037 (3)0.008 (2)0.003 (2)0.003 (2)
C90.046 (3)0.044 (3)0.034 (2)0.005 (2)0.006 (2)0.001 (2)
C70.055 (3)0.049 (3)0.037 (3)0.013 (2)0.004 (2)0.002 (2)
C40.049 (3)0.045 (3)0.040 (3)0.005 (2)0.004 (2)0.006 (2)
C80.062 (3)0.047 (3)0.035 (2)0.012 (3)0.010 (2)0.006 (2)
C30.042 (3)0.057 (3)0.042 (3)0.004 (2)0.001 (2)0.002 (2)
Geometric parameters (Å, º) top
I1—Cu12.6365 (8)C1—C21.490 (7)
I1—Cu1i2.6687 (8)C10—C91.491 (7)
I2—Cu22.6719 (8)C5—C41.487 (7)
I2—Cu2ii2.6724 (8)C2—H2A0.9900
Cu1—S4iii2.3075 (13)C2—H2B0.9900
Cu1—S12.3086 (14)C2—C31.531 (8)
Cu2—S22.2802 (15)C9—H9A0.9900
Cu2—S32.2933 (15)C9—H9B0.9900
S4—C101.659 (5)C9—C81.521 (7)
S2—C51.659 (5)C7—H7A0.9900
S3—C61.654 (5)C7—H7B0.9900
S1—C11.652 (5)C7—C81.522 (8)
N1—H10.8800C4—H4A0.9900
N1—C11.365 (7)C4—H4B0.9900
N1—C51.367 (7)C4—C31.514 (8)
N2—H20.8800C8—H8A0.9900
N2—C61.378 (7)C8—H8B0.9900
N2—C101.354 (7)C3—H3A0.9900
C6—C71.498 (7)C3—H3B0.9900
Cu2—I2—Cu2ii62.54 (3)C1—C2—H2A108.8
Cu1—I1—Cu1i64.94 (3)C1—C2—H2B108.8
I1—Cu1—I1i115.06 (3)C1—C2—C3113.7 (5)
S4iii—Cu1—I1104.72 (4)H2A—C2—H2B107.7
S4iii—Cu1—I1i111.04 (4)C3—C2—H2A108.8
S4iii—Cu1—S1106.30 (5)C3—C2—H2B108.8
S1—Cu1—I1i111.41 (4)C10—C9—H9A109.4
S1—Cu1—I1107.75 (4)C10—C9—H9B109.4
I2—Cu2—I2ii117.46 (3)C10—C9—C8111.3 (4)
S2—Cu2—I2ii117.47 (4)H9A—C9—H9B108.0
S2—Cu2—I299.46 (4)C8—C9—H9A109.4
S2—Cu2—S3119.35 (6)C8—C9—H9B109.4
S3—Cu2—I2ii96.95 (4)C6—C7—H7A109.2
S3—Cu2—I2106.83 (5)C6—C7—H7B109.2
C10—S4—Cu1iii108.78 (18)C6—C7—C8112.1 (5)
C5—S2—Cu2114.75 (19)H7A—C7—H7B107.9
C6—S3—Cu2110.88 (19)C8—C7—H7A109.2
C1—S1—Cu1110.1 (2)C8—C7—H7B109.2
C1—N1—H1116.7C5—C4—H4A109.5
C1—N1—C5126.6 (5)C5—C4—H4B109.5
C5—N1—H1116.7C5—C4—C3110.7 (5)
C6—N2—H2116.5H4A—C4—H4B108.1
C10—N2—H2116.5C3—C4—H4A109.5
C10—N2—C6127.0 (4)C3—C4—H4B109.5
N2—C6—S3117.7 (4)C9—C8—C7109.9 (5)
N2—C6—C7117.3 (4)C9—C8—H8A109.7
C7—C6—S3125.0 (4)C9—C8—H8B109.7
N1—C1—S1118.2 (4)C7—C8—H8A109.7
N1—C1—C2117.3 (5)C7—C8—H8B109.7
C2—C1—S1124.5 (4)H8A—C8—H8B108.2
N2—C10—S4120.0 (4)C2—C3—H3A109.8
N2—C10—C9117.5 (4)C2—C3—H3B109.8
C9—C10—S4122.5 (4)C4—C3—C2109.2 (5)
N1—C5—S2120.6 (4)C4—C3—H3A109.8
N1—C5—C4117.2 (4)C4—C3—H3B109.8
C4—C5—S2122.2 (4)H3A—C3—H3B108.3
Cu1iii—S4—C10—N28.2 (5)N2—C6—C7—C823.4 (7)
Cu1iii—S4—C10—C9170.5 (4)N2—C10—C9—C829.6 (7)
Cu1—S1—C1—N1162.9 (4)C6—N2—C10—S4178.4 (4)
Cu1—S1—C1—C215.7 (5)C6—N2—C10—C90.4 (8)
Cu2—S2—C5—N14.8 (5)C6—C7—C8—C951.7 (7)
Cu2—S2—C5—C4174.9 (4)C1—N1—C5—S2177.9 (4)
Cu2—S3—C6—N2169.5 (3)C1—N1—C5—C42.4 (8)
Cu2—S3—C6—C79.3 (5)C1—C2—C3—C448.8 (7)
S4—C10—C9—C8151.7 (4)C10—N2—C6—S3175.3 (4)
S2—C5—C4—C3145.6 (4)C10—N2—C6—C73.7 (8)
S3—C6—C7—C8157.7 (4)C10—C9—C8—C754.8 (6)
S1—C1—C2—C3160.4 (4)C5—N1—C1—S1175.1 (4)
N1—C1—C2—C318.2 (7)C5—N1—C1—C26.3 (8)
N1—C5—C4—C334.7 (7)C5—C4—C3—C256.3 (6)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···I2ii0.882.793.628 (4)161
N2—H2···I1iv0.882.903.679 (4)149
Symmetry codes: (ii) x+1, y+1, z+1; (iv) x+1, y, z.
Poly[[(µ-isoindoline-1,3-dithione-κ2S:S)copper(I)]-µ3-iodido] (V) top
Crystal data top
[CuI(C8H5NS2)]F(000) = 696
Mr = 369.69Dx = 2.492 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 15.174 (5) ÅCell parameters from 4507 reflections
b = 4.1188 (16) Åθ = 2.6–31.9°
c = 15.785 (6) ŵ = 5.72 mm1
β = 92.98 (2)°T = 100 K
V = 985.2 (6) Å3Block, black
Z = 40.30 × 0.02 × 0.01 mm
Data collection top
Bruker APEXII Quazar
diffractometer
3603 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs3226 reflections with I > 2σ(I)
Mirror optics monochromatorRint = 0.041
Detector resolution: 7.9 pixels mm-1θmax = 33.2°, θmin = 2.6°
0.5° ω and 0.5° φ scansh = 2222
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 66
Tmin = 0.322, Tmax = 0.404l = 2323
11871 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(Fo2) + (0.0417P)2 + 7.0163P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.089(Δ/σ)max < 0.001
S = 1.06Δρmax = 3.17 e Å3
3603 reflectionsΔρmin = 1.13 e Å3
118 parametersAbsolute structure: Flack x determined using 1438 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
2 restraintsAbsolute structure parameter: 0.034 (12)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.68957 (2)0.10931 (10)0.74974 (2)0.01374 (11)
Cu10.59491 (6)0.5992 (2)0.69164 (6)0.0146 (2)
S10.60747 (14)0.6607 (5)0.54996 (12)0.0139 (3)
S20.46550 (14)0.2757 (5)0.25028 (12)0.0146 (3)
N10.5450 (5)0.4774 (16)0.3969 (4)0.0133 (12)
H10.5876240.5790000.3719510.016*
C10.5382 (5)0.4700 (18)0.4850 (5)0.0122 (13)
C20.4596 (5)0.2691 (18)0.4975 (5)0.0124 (14)
C30.4197 (5)0.1812 (19)0.5712 (5)0.0147 (14)
H30.4426990.2528480.6251130.018*
C40.3448 (5)0.015 (2)0.5639 (5)0.0148 (14)
H40.3166670.0820040.6134030.018*
C50.3106 (5)0.115 (2)0.4828 (5)0.0165 (15)
H50.2597180.2497340.4789130.020*
C60.3493 (5)0.0227 (18)0.4093 (5)0.0128 (13)
H60.3256680.0900750.3552690.015*
C70.4244 (5)0.1733 (18)0.4172 (5)0.0125 (13)
C80.4795 (5)0.3123 (19)0.3538 (5)0.0118 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0131 (2)0.01109 (17)0.0169 (2)0.0009 (2)0.00081 (15)0.0008 (2)
Cu10.0155 (5)0.0162 (5)0.0122 (5)0.0008 (4)0.0004 (4)0.0010 (4)
S10.0141 (9)0.0150 (8)0.0124 (8)0.0001 (6)0.0003 (7)0.0011 (6)
S20.0132 (8)0.0185 (9)0.0120 (8)0.0011 (7)0.0002 (7)0.0017 (7)
N10.014 (3)0.014 (3)0.012 (3)0.001 (2)0.001 (2)0.001 (2)
C10.012 (3)0.012 (3)0.013 (3)0.003 (2)0.000 (3)0.002 (3)
C20.012 (4)0.009 (3)0.017 (3)0.006 (3)0.002 (3)0.000 (2)
C30.014 (3)0.013 (3)0.017 (3)0.002 (3)0.002 (3)0.001 (3)
C40.010 (3)0.018 (3)0.017 (4)0.001 (3)0.003 (3)0.002 (3)
C50.012 (3)0.018 (4)0.019 (4)0.002 (3)0.003 (3)0.001 (3)
C60.011 (3)0.011 (3)0.017 (3)0.000 (2)0.001 (3)0.001 (3)
C70.015 (3)0.009 (3)0.014 (3)0.002 (2)0.002 (3)0.001 (2)
C80.011 (3)0.013 (3)0.012 (3)0.003 (2)0.002 (3)0.000 (2)
Geometric parameters (Å, º) top
I1—Cu12.6152 (13)C2—C71.405 (11)
I1—Cu1i2.6798 (13)C3—H30.9500
Cu1—S12.269 (2)C3—C41.394 (12)
Cu1—S2ii2.273 (2)C4—H40.9500
S1—C11.632 (8)C4—C51.417 (12)
S2—C81.645 (7)C5—H50.9500
N1—H10.8800C5—C61.380 (11)
N1—C11.400 (10)C6—H60.9500
N1—C81.357 (10)C6—C71.396 (11)
C1—C21.473 (11)C7—C81.455 (11)
C2—C31.388 (11)
Cu1—I1—Cu1i102.12 (4)C2—C3—H3120.9
I1—Cu1—I1iii102.12 (4)C2—C3—C4118.1 (8)
S1—Cu1—I1iii100.30 (6)C4—C3—H3120.9
S1—Cu1—I1111.05 (6)C3—C4—H4120.0
S1—Cu1—S2ii119.65 (8)C3—C4—C5120.1 (8)
S2ii—Cu1—I1iii98.16 (7)C5—C4—H4120.0
S2ii—Cu1—I1120.16 (7)C4—C5—H5119.1
C1—S1—Cu1118.8 (3)C6—C5—C4121.8 (8)
C8—S2—Cu1iv108.3 (3)C6—C5—H5119.1
C1—N1—H1123.3C5—C6—H6121.1
C8—N1—H1123.3C5—C6—C7117.7 (7)
C8—N1—C1113.3 (7)C7—C6—H6121.1
N1—C1—S1122.3 (6)C2—C7—C8107.7 (7)
N1—C1—C2104.3 (7)C6—C7—C2120.9 (7)
C2—C1—S1133.3 (6)C6—C7—C8131.4 (7)
C3—C2—C1130.6 (7)N1—C8—S2126.7 (6)
C3—C2—C7121.4 (7)N1—C8—C7106.6 (6)
C7—C2—C1108.0 (7)C7—C8—S2126.7 (6)
Cu1—S1—C1—N1175.6 (5)C2—C7—C8—S2179.1 (6)
Cu1—S1—C1—C25.3 (9)C2—C7—C8—N11.0 (8)
Cu1iv—S2—C8—N118.3 (8)C3—C2—C7—C62.0 (11)
Cu1iv—S2—C8—C7161.5 (6)C3—C2—C7—C8178.2 (7)
S1—C1—C2—C30.4 (13)C3—C4—C5—C60.2 (12)
S1—C1—C2—C7178.6 (6)C4—C5—C6—C70.4 (12)
N1—C1—C2—C3178.9 (8)C5—C6—C7—C20.7 (11)
N1—C1—C2—C70.6 (8)C5—C6—C7—C8179.6 (8)
C1—N1—C8—S2178.7 (6)C6—C7—C8—S21.1 (12)
C1—N1—C8—C71.5 (9)C6—C7—C8—N1178.7 (8)
C1—C2—C3—C4179.8 (8)C7—C2—C3—C42.1 (11)
C1—C2—C7—C6179.5 (7)C8—N1—C1—S1178.0 (6)
C1—C2—C7—C80.2 (8)C8—N1—C1—C21.3 (8)
C2—C3—C4—C51.0 (12)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z+1/2; (iii) x, y+1, z; (iv) x, y+1, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···I1iv0.882.843.692 (7)163
Symmetry code: (iv) x, y+1, z1/2.
Selected bond lengths for structures IV top
IaIIbIIIcIVdVe
Cu—II1—Cu12.6261 (6)I1—Cu12.6451 (6)I1—Cu12.6264 (11)I1—Cu12.6365 (8)I1—Cu12.6152 (13)
I1—Cu1i2.6321 (7)I1—Cu2i2.7017 (7)I1—Cu1i2.6709 (12)I1—Cu1i2.6687 (8)I1—Cu1i2.6798 (13)
I1—Cu22.7250 (6)I1—Cu1ii2.6342 (10)I2—Cu22.6719 (8)
I2—Cu12.7796 (6)I2—Cu2ii2.6724 (8)
I2—Cu1i2.6542 (6)
I2—Cu22.6456 (6)
Cu···CuCu1—Cu1i2.7274 (6)Cu1—Cu1i2.8150 (11)
Cu1—Cu22.7864 (8)
Cu1—Cu2i2.7106 (8)
Cu2—Cu2i2.5803 (10)
Cu—SCu1—S12.3205 (6)Cu1–S12.2869 (10)Cu1—S12.2827 (15)Cu1—S12.3086 (14)Cu1—S12.269 (2)
Cu1—S4iii2.3075 (13)Cu1—S2ii2.273 (2)
Cu2—S22.2802 (15)
Cu2—S32.2933 (15)
Cu—NCu1—N22.0225 (10)Cu2—N21.974 (3)
Symmetry codes: (a) (i) -x + 1, -y + 1, -z for I; (b) (i) -x + 1, y, -z + 1/2 for II; (c) (i) -x + 1/2, -y + 3/2, z - 1/2 and (ii) x, -y + 1, z - 1/2 for III; (d) (i) -x, -y, -z + 1; (ii) -x + 1, -y + 1, -z + 1 and (iii) -x + 1, -y, -z + 1 for IV; (e) (i) x, y - 1, z and (ii) x, -y + 1, z + 1/2 for V.
Hydrogen bonding geometries for IV top
D—H···AD—HH···AD···AD—H···A
IaN1—H1···I1i0.857 (12)2.845 (13)3.6980 (12)173.8 (13)
IIN1—H1···I20.870 (19)2.81 (2)3.672 (3)170 (4)
IIIbN1—H1···O1iii0.86 (2)2.03 (2)2.881 (5)171 (5)
IVcN1—H1···I2ii0.882.793.628 (4)160.9
N2—H2···I1iv0.882.903.679 (4)149.2
VdN1—H1···I1iii0.882.843.692 (7)163.2
Symmetry codes: (a) (i) -x + 1, -y + 1, -z for I; (b) (iii) -x + 1, -y + 1, -z + 2 for III; (c) (ii) -x + 1, -y + 1, -z + 1 and (iv) x + 1, y, z for IV; (d) (iii) x, -y + 1, z - 1/2 for IV.
 

Acknowledgements

AMW would like to thank Michael M. Aristov for aid with the data collection of IIIV. In-house programs Gn (Guzei, 2013[Guzei, I. A. (2013). Programs Gn. University of Wisconsin-Madison, Madison, Wisconsin, USA.]) were used during experiment planning and structure refinement. The Bruker Quazar APEXII was UW–Madison Department of Chemistry with a portion of a generous gift from Paul J. and Margaret M. Bender.

Funding information

Funding for this research was provided by: National Science Foundation (grant No. 1664999; grant No. 1953924).

References

First citationBlake, A. J., Brooks, N. R., Champness, N. R., Cooke, P. A., Deveson, A. M., Fenske, D., Hubberstey, P., Li, W.-S. & Schröder, M. (1999). J. Chem. Soc. Dalton Trans. pp. 2103–2110.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2013). SAINT. and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2016). SADABS. Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2017). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaradoc-Davies, P. L., Hanton, L. R., Hodgkiss, J. M. & Spicer, M. D. (2002). J. Chem. Soc. Dalton Trans. pp. 1581–1585.  Google Scholar
First citationCingolani, A., Di Nicola, C., Effendy, P., Pettinari, C., Skelton, B. W., Somers, N. & White, A. H. (2005). Inorg. Chim. Acta, 358, 748–762.  CSD CrossRef CAS Google Scholar
First citationCremer, D. & Pople, J. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDolinar, B. S. & Berry, J. F. (2013). Inorg. Chem. 52, 4658–4667.  CSD CrossRef CAS PubMed Google Scholar
First citationDolinar, B. S. & Berry, J. F. (2014). Dalton Trans. 43, 6165–6176.  CSD CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationFord, P. C., Cariati, E. & Bourassa, J. (1999). Chem. Rev. 99, 3625–3648.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGruzintsev, A. N. & Zagorodnev, W. N. (2012). Semiconductors 46, 149-154.  CrossRef CAS Google Scholar
First citationGuzei, I. A. (2013). Programs Gn. University of Wisconsin-Madison, Madison, Wisconsin, USA.  Google Scholar
First citationHaakansson, M. & Jagner, S. (1990). Inorg. Chem. 29, 5241–5244.  CSD CrossRef CAS Google Scholar
First citationHaakansson, M., Jagner, S. & Walther, D. (1991). Organometallics, 10, 1317–1319.  CSD CrossRef CAS Google Scholar
First citationHardt, H. & Pierre, A. (1973). Z. Anorg. Allg. Chem. 402, 107–112.  CrossRef CAS Google Scholar
First citationKitaigorodskii, A. I. (1973). Molecular crystals and molecules. Academic Press.  Google Scholar
First citationLiu, J., Tang, Y.-H., Wang, F. & Zhang, J. (2018). CrystEngComm, 20, 1232–1236.  CSD CrossRef CAS Google Scholar
First citationLobana, T. S., Mahajan, R. & Castineiras, A. (2001). Trans. Met. Chem. 26, 440–444.  CSD CrossRef CAS Google Scholar
First citationMartínez-Alanis, P. R., Ugalde-Saldívar, V. M. & Castillo, I. (2011). Eur. J. Inorg. Chem. 2011, 212–220.  Google Scholar
First citationMusina, E. I., Galimova, M. F., Musin, R. R., Dobrynin, A. B., Gubaidullin, A. T., Litvinov, I. A., Karasik, A. A. & G.Sinyashin, O. (2017). ChemistrySelect ,2, 11755–11761.  Google Scholar
First citationNäther, C. & Jess, I. (2003). Inorg. Chem. 42, 2968–2976.  PubMed Google Scholar
First citationOliver, K., Waters, T., Cook, D. & Rickard, C. (1977). Inorg. Chim. Acta, 24, 85–89.  CSD CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPeng, R., Li, M. & Li, D. (2010). Coord. Chem. Rev. 254, 1–18.  Web of Science CrossRef CAS Google Scholar
First citationRaghuvanshi, A., Knorr, M., Knauer, L., Strohmann, C., Boullanger, S., Moutarlier, V. & Viau, L. (2019). Inorg. Chem. 58, 5753–5775.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYde, B., Yousif, N., Pedersen, U., Thomsen, I. & Lawesson, S.-O. (1984). Tetrahedron, 40, 2047–2052.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds