research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Quaternary tryptammonium salts: N,N-di­methyl-N-n-propyl­tryptammonium (DMPT) iodide and N-allyl-N,N-di­methyl­tryptammonium (DMALT) iodide

CROSSMARK_Color_square_no_text.svg

aCaaMTech, LLC, 58 East Sunset Way, Suite 209, Issaquah, WA 98027, USA, and bUniversity of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
*Correspondence e-mail: dmanke@umassd.edu

Edited by O. Blacque, University of Zürich, Switzerland (Received 13 July 2020; accepted 20 July 2020; online 24 July 2020)

The solid-state structures of two quaternary trytpammonium salts, namely, N,N-dimethyl-N-n-propyl­tryptammonium (DMPT) iodide [systematic name: 2-(1H-indol-3-yl)-N,N-dimethyl-N-propyl­aza­nium iodide], C15H23N2+·I, and N-allyl-N,N-di­methyl­tryptammonium (DMALT) iodide, [systematic name: 2-(1H-indol-3-yl)-N,N-dimethyl-N-(prop-2-en-1-yl)aza­nium iodide], C15H21N2+·I, are reported. Both salts possess a tri­alkyl­tryptammonium cation and an iodide anion in the asymmetric unit, which are joined together through N—H⋯I inter­actions. The DMALT structure was refined as an inversion twin, and the allyl group is disordered over two orientations with a 0.70 (4):0.30 (4) ratio.

1. Chemical context

Quaternary tryptammonium salts have been observed in nature going back to 1934 when bufotenidine, the N-trimethyl analogue of serotonin, was discovered in the excretions of toads (Wieland et al., 1934[Wieland, H., Konz, W. & Mittasch, H. (1934). Justus Liebigs Ann. Chem. 513, 1-25.]). The unsubstituted N,N,N-tri­methyl­tryptammonium iodide was studied in 1936 and demonstrated nicotine-stimulating action (Lee et al., 1936[Lee, H. M., VanArenkonk, A. M. & Chen, K. K. (1936). J. Pharmacol. Exp. Ther. 56, 446-472.]). In 1987, Gartz first identified a quaternary tryptammonium in `magic mushrooms' when he isolated aeruginascin, N,N,N-trimethyl-4-phospho­ryloxytryptamine (Gartz, 1987[Gartz, J. (1987). Planta Med. 53, 539-541.]). The tryptamines of `magic mushrooms' have garnered a great deal of inter­est of late as their psychotropic activity is being explored for the treatment of mental disorders including depression and anxiety (Johnson & Griffiths, 2017[Johnson, M. W. & Griffiths, R. R. (2017). Neurotherapeutics, 14, 734-740.]; Daniel & Haberman, 2017[Daniel, J. & Haberman, M. (2017). Ment. Heal. Clin. 7, 24-28.]). Aeruginascin, in particular, has been featured in popular media for its potential to modulate the activity of psilocybin through an entourage effect (Farah, 2018[Farah, T. (2018). Discover, https://discovermagazine.com/health/beyond-psilocybin-mushrooms-have-lots-of-cool-compounds-scientists-should-study (accessed July, 2020).]), as well as its possible involvement in wood-lovers paralysis (Revell, 2020[Revell, J. (2020). Vice, https://vice. com/en_in/article-y3zp35/magic-mushroom-paralysis-heres-what-we-know (accessed July, 2020).]). The recent synthesis of aeruginascin (Sherwood, et al. 2020[Sherwood, A. M., Halberstadt, A. L., Klein, A. K., McCorvy, J. D., Kaylo, K. W., Kargbo, R. B. & Meisenheimer, P. J. (2020). J. Nat. Prod. 83, 461-467.]) and its active metabolite, 4-hy­droxy-N,N,N-tri­methyl­tryptamine (Chadeayne, Pham, Reid et al., 2020[Chadeayne, A. R., Pham, D. N. K., Reid, B. G., Golen, J. A. & Manke, D. R. (2020). ACS Omega, https://doi. org/10.1021/acsomega.0c02208]), as well as the biosynthetic production of both (Milne et al., 2020[Milne, N., Thomsen, P., Mølgaard Knudsen, N., Rubaszka, P., Kristensen, M. & Borodina, I. (2020). Metab. Eng. 60, 25-36.]) further demonstrate the attention that these mol­ecules have received. To this end, we sought to explore new quaternary tryptammonium salts, and the syntheses and structures of N,N-dimethyl-N-n-propyl­tryptammonium (DMPT) iodide and N-allyl-N,N-di­methyl­tryptammonium (DMALT) iodide are reported.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of DMPT iodide is shown on the left of Fig. 1[link]. The asymmetric unit contains one N,N-dimethyl-N-n-propyl­tryptammonium (C15H23N2+) cation and one iodide anion. The indole ring of the cation is near planar, with a mean deviation from planarity of 0.011 Å. The ethyl­ammonium arm is turned away from the plane with a C7—C8—C9—C10 torsion angle of 89.1 (4)°. The mol­ecular structure of DMALT iodide is shown on the right of Fig. 1[link]. The asymmetric unit contains one N-allyl-N,N-di­methyl­tryptammonium (C15H21N2+) cation and one iodide anion. The indole ring of the cation is near planar, with a mean deviation from planarity of 0.013 Å. The ethyl­ammonium arm is turned away from the plane with a C7—C8—C9—C10 torsion angle of 101.8 (10)°. The allyl group is disordered over two orientations with a 0.30 (4) to 0.70 (4) occupancy ratio for C14, C15 and C14A, C15A, respectively.

[Figure 1]
Figure 1
The mol­ecular structure of DMPT iodide (left) and DMALT iodide (right), showing the atomic labelling. Displacement ellipsoids are drawn at the 50% probability level. Dashed bonds indicate a disordered component in the structure. Hydrogen bonds are shown as dashed lines.

3. Supra­molecular features

The DMPT cation and the iodide anion are held together in the asymmetric unit via N1—H1⋯I1 hydrogen bonds, between the indole nitro­gen and the iodide (Table 1[link]). The packing of DMPT iodide is shown at the left of Fig. 2[link]. The DMALT structure is very similar to that of DMPT, possessing a very similar unit cell with half of the volume. The cation and anion are held together in the asymmetric unit through N1—H1⋯I1 hydrogen bonds (Table 2[link]). The packing of DMALT iodide is shown on the right of Fig. 2[link]

Table 1
Hydrogen-bond geometry (Å, °) for DMPT[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯I1 0.86 (1) 2.91 (2) 3.733 (3) 162 (3)

Table 2
Hydrogen-bond geometry (Å, °) for DMALT[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯I1 0.86 2.95 3.727 (6) 152
[Figure 2]
Figure 2
The crystal packing of DMPT iodide (left), viewed along the a axis, and the crystal packing of DMALT iodide (right), viewed along the a axis. The hydrogen bonds (Tables 1[link] and 2[link]) are shown as dashed lines. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms not involved in hydrogen bonds are omitted for clarity. Only one component of the allyl disorder is shown in the DMALT structure.

4. Database survey

Only two other quaternary tryptammonium structures have been reported, and are those of 4-hy­droxy-N,N,N-tri­methyl­tryptammonium (4-HO-TMT) iodide and 4-acet­oxy-N,N,N-tri­methyl­tryptammonium (4-AcO-TMT) iodide, whose structures demonstrate different packing including the oxygen atoms of the compounds (XUXFAA and XUXDUS: Chadeayne, Pham, Reid et al., 2020[Chadeayne, A. R., Pham, D. N. K., Reid, B. G., Golen, J. A. & Manke, D. R. (2020). ACS Omega, https://doi. org/10.1021/acsomega.0c02208]). The other most closely related structures reported are of the N,N,N-trimethyl deriv­ative of tryptophan – hypaphorine. This includes the zwitterionic hypaphorine (IZUTUU: Arderne & Ndinteh, 2016[Arderne, C. & Ndinteh, D. T. (2016). CSD Communication (refcode IZUTUU). CCDC, Cambridge, England.]), its hydro­iodide salt (PAMRUQ: Jones & Tiekink, 1997[Jones, G. P. & Tiekink, E. R. T. (1997). Z. Krystallogr. 212, 881-883.]), and its 6-bromo derivative (BHYPUR: Raverty et al., 1977[Raverty, W. D., Thomson, R. H. & King, T. J. (1977). J. Chem. Soc. Perkin Trans. 1, pp. 1204-1211.]). DMPT iodide is synthesized from the freebase of N-methyl-N-propyl­tryptamine (MPT), whose structure has been reported (WOHYAW: Chadeayne et al., 2019[Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2019). IUCrData, 4, x190962.]). DMALT iodide is synthesized from N-allyl-N-methyl­tryptamine (MALT), whose structure has been reported as its fumarate salt (GUPBOL; Chadeayne, Pham, Golen & Manke, 2020[Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020). Acta Cryst. E76, 1201-1205.]).

5. Synthesis and crystallization

N,N-dimethyl-N-propyl­tryptammonium iodide was prepared by mixing 101 mg of a commercial sample of N-methyl-N-propyl­tryptamine (The Indole Shop) and 4 mL of methyl iodide in 4 mL of methanol. The mixture was refluxed for twelve hours under an atmosphere of nitro­gen. The solvent was removed in vacuo, and the remaining residue was recrystallized from ethanol to yield colourless single crystals suitable for X-ray diffraction studies. The product was also characterized by nuclear magnetic resonance. 1H NMR (400 MHz, D2O): δ 7.69 (d, J = 8.0 Hz, 1 H, ArH), 7.55 (d, J = 8.2 Hz, 1 H, ArH), 7.33–7.28 (m, 2 H, ArH), 7.22 (t, J = 7.0 Hz, 1 H, ArH), 3.60 (m, 2 H, CH2), 3.36 (m, 4 H, CH2), 3.17 (s, 6 H, CH3), 1.82 (m, 2 H, CH2), 0.97 (t, J = 7.0 Hz, 3 H, CH3).

N-allyl-N,N-di­methyl­tryptammonium iodide was prepared by mixing 101 mg of a commercial sample of N-allyl-N-methyl­tryptamine (The Indole Shop) with 4 mL of methyl iodide in 4 mL of methanol. The mixture was refluxed for twelve hours under an atmosphere of nitro­gen. The solvent was removed in vacuo, and the remaining residue was recrystallized from acetone to yield coloruless crystals suitable for X-ray diffraction studies. The product was also characterized by nuclear magnetic resonance. 1H NMR (400 MHz, D2O): δ 7.69 (d, J = 7.8 Hz, 1 H, ArH), 7.55 (d, J = 8.2 Hz, 1 H, ArH), 7.32–7.28 (m, 2 H, ArH), 7.22 (t, J = 7.2 Hz, 1 H, ArH), 6.13–6.03 (m, 1 H, CH), 5.77–5.71 (m, 2 H, CH2), 4.04 (d, J = 7.3 Hz, 2 H, CH2), 3.61–3.56 (m, 2 H, CH2), 3.37–3.32 (m, 2 H, CH2), 3.17 (s, 6 H, CH3).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

  DMPT DMALT
Crystal data
Chemical formula C15H23N2+·I 0.5C15H21N2+·0.5I
Mr 358.25 178.12
Crystal system, space group Monoclinic, P21/c Monoclinic, P21
Temperature (K) 303 303
a, b, c (Å) 7.4471 (6), 9.9016 (9), 22.052 (2) 7.3471 (8), 9.9672 (9), 10.9499 (11)
β (°) 94.184 (3) 94.671 (3)
V3) 1621.8 (2) 799.20 (14)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 1.96 1.99
Crystal size (mm) 0.40 × 0.14 × 0.12 0.39 × 0.22 × 0.15
 
Data collection
Diffractometer Bruker D8 Venture CMOS Bruker D8 Venture CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2018[Bruker (2018). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2018[Bruker (2018). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison Wisconsin, USA.])
Tmin, Tmax 0.470, 0.562 0.608, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 44530, 3071, 2362 26314, 3038, 2868
Rint 0.036 0.031
(sin θ/λ)max−1) 0.611 0.611
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.054, 1.13 0.027, 0.071, 1.13
No. of reflections 3071 3038
No. of parameters 170 174
No. of restraints 1 5
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.53, −0.47 0.46, −0.48
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.29 (5)
Computer programs: APEX3 and SAINT (Bruker, 2018[Bruker (2018). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

2-(1H-Indol-3-yl)-N,N-dimethyl-N-propylazanium iodide (DMPT) top
Crystal data top
C15H23N2+·IF(000) = 720
Mr = 358.25Dx = 1.467 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.4471 (6) ÅCell parameters from 9256 reflections
b = 9.9016 (9) Åθ = 3.2–25.6°
c = 22.052 (2) ŵ = 1.96 mm1
β = 94.184 (3)°T = 303 K
V = 1621.8 (2) Å3Block, colourless
Z = 40.40 × 0.14 × 0.12 mm
Data collection top
Bruker D8 Venture CMOS
diffractometer
2362 reflections with I > 2σ(I)
φ and ω scansRint = 0.036
Absorption correction: multi-scan
(SADABS; Bruker, 2018)
θmax = 25.7°, θmin = 3.2°
Tmin = 0.470, Tmax = 0.562h = 98
44530 measured reflectionsk = 1212
3071 independent reflectionsl = 2626
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.0068P)2 + 2.2525P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.054(Δ/σ)max < 0.001
S = 1.13Δρmax = 0.53 e Å3
3071 reflectionsΔρmin = 0.47 e Å3
170 parametersExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0054 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.71085 (3)0.75133 (2)0.06875 (2)0.04767 (10)
N10.5983 (4)0.7145 (3)0.23013 (12)0.0567 (8)
H10.618 (5)0.743 (4)0.1943 (8)0.068*
N20.1783 (3)0.7602 (3)0.44696 (10)0.0399 (6)
C10.4437 (5)0.7359 (4)0.25813 (14)0.0527 (8)
H1A0.3512330.7932380.2437680.063*
C20.7010 (4)0.6220 (3)0.26291 (13)0.0428 (8)
C30.8656 (5)0.5669 (4)0.25282 (17)0.0576 (10)
H30.9269110.5924110.2193930.069*
C40.9359 (5)0.4738 (4)0.2933 (2)0.0648 (11)
H41.0459830.4337420.2869640.078*
C50.8457 (5)0.4376 (4)0.34402 (18)0.0614 (10)
H50.8973260.3740360.3710380.074*
C60.6836 (4)0.4930 (3)0.35502 (14)0.0461 (8)
H60.6251710.4680370.3891640.055*
C70.6070 (4)0.5878 (3)0.31407 (12)0.0359 (7)
C80.4436 (4)0.6624 (3)0.30961 (13)0.0411 (7)
C90.2957 (4)0.6588 (4)0.35230 (15)0.0499 (8)
H9A0.2890230.5690110.3695940.060*
H9B0.1816860.6774690.3297750.060*
C100.3259 (4)0.7604 (3)0.40295 (13)0.0409 (7)
H10A0.3337450.8498670.3853990.049*
H10B0.4401130.7413290.4252940.049*
C110.0058 (4)0.7839 (3)0.41756 (15)0.0465 (8)
H11A0.0899320.7885220.4490560.056*
H11B0.0392010.7068730.3920060.056*
C120.0254 (5)0.9091 (4)0.37978 (16)0.0557 (9)
H12A0.0409470.8984250.3438390.067*
H12B0.0261220.9848800.4028790.067*
C130.2223 (5)0.9394 (4)0.36047 (19)0.0702 (11)
H13A0.2301101.0222720.3378140.105*
H13B0.2889960.9479710.3959210.105*
H13C0.2717250.8670810.3355140.105*
C140.1764 (6)0.6260 (4)0.47924 (17)0.0642 (11)
H14A0.1444750.5559880.4503280.096*
H14B0.0897240.6286350.5093910.096*
H14C0.2936260.6079880.4985560.096*
C150.2247 (5)0.8653 (4)0.49425 (15)0.0533 (9)
H15A0.2342380.9517630.4750420.080*
H15B0.3374900.8429680.5157700.080*
H15C0.1320850.8686720.5223040.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.05122 (14)0.04717 (14)0.04582 (14)0.00087 (11)0.01182 (8)0.00478 (11)
N10.073 (2)0.064 (2)0.0345 (14)0.0053 (16)0.0152 (14)0.0093 (14)
N20.0471 (14)0.0354 (13)0.0387 (13)0.0045 (13)0.0129 (10)0.0017 (12)
C10.055 (2)0.056 (2)0.0470 (18)0.0115 (18)0.0010 (15)0.0021 (18)
C20.0478 (18)0.0453 (19)0.0359 (17)0.0042 (15)0.0081 (14)0.0101 (14)
C30.051 (2)0.061 (2)0.063 (2)0.0079 (19)0.0175 (18)0.022 (2)
C40.039 (2)0.064 (3)0.090 (3)0.0038 (18)0.002 (2)0.035 (2)
C50.062 (2)0.051 (2)0.066 (2)0.0092 (19)0.025 (2)0.0099 (19)
C60.053 (2)0.0460 (19)0.0373 (17)0.0026 (16)0.0063 (14)0.0037 (15)
C70.0400 (16)0.0390 (17)0.0286 (15)0.0042 (14)0.0010 (12)0.0052 (13)
C80.0430 (17)0.0449 (18)0.0357 (17)0.0011 (14)0.0057 (13)0.0051 (14)
C90.0435 (18)0.052 (2)0.055 (2)0.0039 (16)0.0125 (15)0.0113 (16)
C100.0378 (15)0.0432 (17)0.0430 (16)0.0048 (15)0.0106 (12)0.0006 (15)
C110.0450 (18)0.049 (2)0.0469 (18)0.0047 (14)0.0119 (14)0.0026 (15)
C120.053 (2)0.052 (2)0.061 (2)0.0003 (17)0.0026 (17)0.0053 (18)
C130.061 (2)0.074 (3)0.074 (3)0.000 (2)0.013 (2)0.004 (2)
C140.083 (3)0.050 (2)0.062 (2)0.004 (2)0.024 (2)0.0159 (18)
C150.061 (2)0.056 (2)0.0422 (19)0.0003 (18)0.0015 (16)0.0097 (17)
Geometric parameters (Å, º) top
N1—H10.861 (10)C9—H9A0.9700
N1—C11.362 (4)C9—H9B0.9700
N1—C21.366 (4)C9—C101.508 (4)
N2—C101.518 (3)C10—H10A0.9700
N2—C111.492 (4)C10—H10B0.9700
N2—C141.508 (4)C11—H11A0.9700
N2—C151.496 (4)C11—H11B0.9700
C1—H1A0.9300C11—C121.495 (4)
C1—C81.349 (4)C12—H12A0.9700
C2—C31.375 (5)C12—H12B0.9700
C2—C71.411 (4)C12—C131.527 (5)
C3—H30.9300C13—H13A0.9600
C3—C41.361 (5)C13—H13B0.9600
C4—H40.9300C13—H13C0.9600
C4—C51.394 (6)C14—H14A0.9600
C5—H50.9300C14—H14B0.9600
C5—C61.364 (5)C14—H14C0.9600
C6—H60.9300C15—H15A0.9600
C6—C71.395 (4)C15—H15B0.9600
C7—C81.420 (4)C15—H15C0.9600
C8—C91.501 (4)
C1—N1—H1125 (3)C10—C9—H9B109.2
C1—N1—C2108.9 (3)N2—C10—H10A108.9
C2—N1—H1126 (3)N2—C10—H10B108.9
C11—N2—C10114.0 (2)C9—C10—N2113.4 (2)
C11—N2—C14107.7 (3)C9—C10—H10A108.9
C11—N2—C15110.6 (2)C9—C10—H10B108.9
C14—N2—C10109.6 (2)H10A—C10—H10B107.7
C15—N2—C10107.7 (2)N2—C11—H11A108.5
C15—N2—C14107.1 (3)N2—C11—H11B108.5
N1—C1—H1A124.8N2—C11—C12115.0 (3)
C8—C1—N1110.5 (3)H11A—C11—H11B107.5
C8—C1—H1A124.8C12—C11—H11A108.5
N1—C2—C3130.7 (3)C12—C11—H11B108.5
N1—C2—C7107.0 (3)C11—C12—H12A109.3
C3—C2—C7122.3 (3)C11—C12—H12B109.3
C2—C3—H3121.1C11—C12—C13111.8 (3)
C4—C3—C2117.9 (3)H12A—C12—H12B107.9
C4—C3—H3121.1C13—C12—H12A109.3
C3—C4—H4119.5C13—C12—H12B109.3
C3—C4—C5121.0 (3)C12—C13—H13A109.5
C5—C4—H4119.5C12—C13—H13B109.5
C4—C5—H5119.2C12—C13—H13C109.5
C6—C5—C4121.6 (3)H13A—C13—H13B109.5
C6—C5—H5119.2H13A—C13—H13C109.5
C5—C6—H6120.6H13B—C13—H13C109.5
C5—C6—C7118.7 (3)N2—C14—H14A109.5
C7—C6—H6120.6N2—C14—H14B109.5
C2—C7—C8107.0 (3)N2—C14—H14C109.5
C6—C7—C2118.4 (3)H14A—C14—H14B109.5
C6—C7—C8134.6 (3)H14A—C14—H14C109.5
C1—C8—C7106.6 (3)H14B—C14—H14C109.5
C1—C8—C9125.9 (3)N2—C15—H15A109.5
C7—C8—C9127.5 (3)N2—C15—H15B109.5
C8—C9—H9A109.2N2—C15—H15C109.5
C8—C9—H9B109.2H15A—C15—H15B109.5
C8—C9—C10111.9 (3)H15A—C15—H15C109.5
H9A—C9—H9B107.9H15B—C15—H15C109.5
C10—C9—H9A109.2
N1—C1—C8—C71.0 (4)C3—C4—C5—C60.4 (5)
N1—C1—C8—C9179.5 (3)C4—C5—C6—C70.2 (5)
N1—C2—C3—C4179.0 (3)C5—C6—C7—C20.1 (4)
N1—C2—C7—C6179.4 (3)C5—C6—C7—C8178.2 (3)
N1—C2—C7—C80.9 (3)C6—C7—C8—C1178.1 (3)
N2—C11—C12—C13170.0 (3)C6—C7—C8—C90.3 (6)
C1—N1—C2—C3179.1 (3)C7—C2—C3—C41.7 (5)
C1—N1—C2—C71.5 (4)C7—C8—C9—C1089.1 (4)
C1—C8—C9—C1092.7 (4)C8—C9—C10—N2179.7 (3)
C2—N1—C1—C81.6 (4)C10—N2—C11—C1254.3 (4)
C2—C3—C4—C51.3 (5)C11—N2—C10—C956.6 (4)
C2—C7—C8—C10.1 (3)C14—N2—C10—C964.1 (3)
C2—C7—C8—C9178.6 (3)C14—N2—C11—C12176.1 (3)
C3—C2—C7—C61.1 (5)C15—N2—C10—C9179.7 (3)
C3—C2—C7—C8179.7 (3)C15—N2—C11—C1267.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···I10.86 (1)2.91 (2)3.733 (3)162 (3)
2-(1H-Indol-3-yl)-N,N-dimethyl-N-(prop-2-en-1-yl)azanium iodide (DMALT) top
Crystal data top
0.5C15H21N2+·0.5IF(000) = 356
Mr = 178.12Dx = 1.480 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 7.3471 (8) ÅCell parameters from 9625 reflections
b = 9.9672 (9) Åθ = 3.2–25.7°
c = 10.9499 (11) ŵ = 1.99 mm1
β = 94.671 (3)°T = 303 K
V = 799.20 (14) Å3Block, colourless
Z = 40.39 × 0.22 × 0.15 mm
Data collection top
Bruker D8 Venture CMOS
diffractometer
2868 reflections with I > 2σ(I)
φ and ω scansRint = 0.031
Absorption correction: multi-scan
(SADABS; Bruker, 2018)
θmax = 25.7°, θmin = 3.2°
Tmin = 0.608, Tmax = 0.745h = 88
26314 measured reflectionsk = 1212
3038 independent reflectionsl = 1313
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0345P)2 + 0.614P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.027(Δ/σ)max = 0.001
wR(F2) = 0.071Δρmax = 0.46 e Å3
S = 1.13Δρmin = 0.48 e Å3
3038 reflectionsExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
174 parametersExtinction coefficient: 0.056 (3)
5 restraintsAbsolute structure: Refined as an inversion twin
Hydrogen site location: inferred from neighbouring sitesAbsolute structure parameter: 0.29 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I10.30017 (4)0.61487 (8)0.86560 (3)0.05386 (18)
N10.3947 (9)0.5802 (8)0.5378 (5)0.080 (3)
H10.3665980.6194210.6036780.096*
N20.8350 (6)0.6202 (10)0.1131 (4)0.0491 (11)
C10.5456 (9)0.6076 (16)0.4777 (6)0.077 (2)
H1A0.6330900.6726200.4994950.093*
C20.2924 (9)0.4792 (7)0.4766 (5)0.0498 (14)
C30.1281 (10)0.4191 (8)0.5025 (7)0.0669 (19)
H30.0689390.4439780.5708940.080*
C40.0577 (10)0.3229 (9)0.4240 (9)0.076 (2)
H40.0513950.2813030.4394440.091*
C50.1458 (11)0.2850 (8)0.3203 (8)0.074 (2)
H50.0943460.2195540.2676570.089*
C60.3082 (10)0.3444 (7)0.2962 (6)0.0589 (16)
H60.3666470.3183280.2278230.071*
C70.3847 (8)0.4426 (6)0.3731 (5)0.0445 (12)
C80.5458 (9)0.5203 (7)0.3770 (6)0.0576 (16)
C90.6952 (11)0.5117 (9)0.2917 (8)0.074 (2)
H9A0.8124990.5162780.3390830.089*
H9B0.6878470.4256950.2500730.089*
C100.6846 (8)0.6175 (13)0.2017 (5)0.0589 (15)
H10A0.6859690.7026540.2446130.071*
H10B0.5678470.6104210.1539940.071*
C131.0232 (7)0.6147 (14)0.1727 (5)0.0670 (14)
H13A1.1065390.5836310.1144320.080*0.30 (4)
H13B1.0283420.5521400.2407380.080*0.30 (4)
H13C1.1086330.6161360.1096440.080*0.70 (4)
H13D1.0393230.5302350.2162370.080*0.70 (4)
C120.8059 (14)0.7411 (10)0.0302 (8)0.055 (2)
H12A0.8221330.8216110.0780220.083*
H12B0.6843350.7390460.0092370.083*
H12C0.8927020.7394520.0307150.083*
C141.080 (7)0.755 (3)0.219 (4)0.084 (5)0.30 (4)
H140.9953350.8182640.1893080.101*0.30 (4)
C151.216 (7)0.813 (8)0.290 (4)0.090 (5)0.30 (4)
H15A1.3114330.7617510.3260140.108*0.30 (4)
H15B1.2150320.9056450.3026220.108*0.30 (4)
C14A1.070 (2)0.7277 (18)0.2611 (18)0.084 (5)0.70 (4)
H14A1.0016410.7424610.3278290.101*0.70 (4)
C15A1.211 (3)0.806 (3)0.241 (2)0.090 (5)0.70 (4)
H15C1.2779820.7896710.1735040.108*0.70 (4)
H15D1.2435460.8764330.2935770.108*0.70 (4)
C110.811 (2)0.5005 (13)0.0358 (14)0.094 (5)
H11A0.6895490.4993550.0037420.140*
H11B0.8301230.4216670.0855400.140*
H11C0.8979050.5020450.0251640.140*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0558 (2)0.0573 (2)0.0503 (2)0.0009 (3)0.01514 (13)0.0030 (3)
N10.074 (4)0.120 (8)0.048 (3)0.014 (4)0.020 (3)0.026 (3)
N20.053 (2)0.046 (2)0.050 (2)0.020 (4)0.0160 (17)0.011 (4)
C10.064 (4)0.100 (6)0.068 (4)0.029 (7)0.012 (3)0.033 (7)
C20.053 (3)0.057 (4)0.042 (3)0.000 (3)0.014 (3)0.003 (3)
C30.058 (4)0.074 (5)0.072 (5)0.005 (4)0.023 (3)0.018 (4)
C40.045 (4)0.078 (5)0.101 (6)0.009 (3)0.004 (4)0.031 (5)
C50.071 (5)0.065 (4)0.080 (5)0.015 (4)0.027 (4)0.014 (4)
C60.071 (4)0.056 (4)0.048 (4)0.008 (3)0.007 (3)0.000 (3)
C70.047 (3)0.050 (3)0.036 (3)0.002 (2)0.002 (2)0.000 (2)
C80.052 (4)0.067 (4)0.056 (4)0.002 (3)0.018 (3)0.000 (3)
C90.065 (4)0.077 (5)0.086 (5)0.012 (4)0.034 (4)0.017 (4)
C100.055 (3)0.065 (3)0.059 (3)0.029 (6)0.019 (2)0.004 (6)
C130.053 (3)0.089 (4)0.062 (3)0.008 (8)0.019 (2)0.010 (8)
C120.066 (6)0.057 (5)0.042 (4)0.000 (4)0.001 (4)0.017 (4)
C140.072 (6)0.144 (11)0.040 (9)0.009 (7)0.025 (7)0.014 (9)
C150.072 (6)0.115 (9)0.081 (14)0.009 (6)0.001 (11)0.006 (14)
C14A0.072 (6)0.144 (11)0.040 (9)0.009 (7)0.025 (7)0.014 (9)
C15A0.072 (6)0.115 (9)0.081 (14)0.009 (6)0.001 (11)0.006 (14)
C110.110 (10)0.058 (6)0.121 (11)0.015 (6)0.062 (8)0.027 (6)
Geometric parameters (Å, º) top
N1—H10.8600C9—C101.441 (12)
N1—C11.363 (9)C10—H10A0.9700
N1—C21.396 (10)C10—H10B0.9700
N2—C101.529 (6)C13—H13A0.9700
N2—C131.482 (7)C13—H13B0.9700
N2—C121.513 (13)C13—H13C0.9700
N2—C111.465 (16)C13—H13D0.9700
C1—H1A0.9300C13—C141.530 (14)
C1—C81.405 (11)C13—C14A1.506 (12)
C2—C31.397 (10)C12—H12A0.9600
C2—C71.415 (8)C12—H12B0.9600
C3—H30.9300C12—H12C0.9600
C3—C41.361 (13)C14—H140.9300
C4—H40.9300C14—C151.349 (14)
C4—C51.404 (13)C15—H15A0.9300
C5—H50.9300C15—H15B0.9300
C5—C61.377 (11)C14A—H14A0.9300
C6—H60.9300C14A—C15A1.334 (12)
C6—C71.380 (9)C15A—H15C0.9300
C7—C81.412 (9)C15A—H15D0.9300
C8—C91.501 (9)C11—H11A0.9600
C9—H9A0.9700C11—H11B0.9600
C9—H9B0.9700C11—H11C0.9600
C1—N1—H1125.1C9—C10—N2116.4 (6)
C1—N1—C2109.9 (6)C9—C10—H10A108.2
C2—N1—H1125.1C9—C10—H10B108.2
C13—N2—C10114.6 (4)H10A—C10—H10B107.3
C13—N2—C12112.0 (8)N2—C13—H13A109.8
C12—N2—C10108.7 (7)N2—C13—H13B109.8
C11—N2—C10107.1 (9)N2—C13—H13C108.7
C11—N2—C13106.7 (9)N2—C13—H13D108.7
C11—N2—C12107.3 (6)N2—C13—C14109 (2)
N1—C1—H1A126.0N2—C13—C14A114.2 (11)
N1—C1—C8107.9 (8)H13A—C13—H13B108.2
C8—C1—H1A126.0H13C—C13—H13D107.6
N1—C2—C3130.7 (6)C14—C13—H13A109.8
N1—C2—C7107.2 (5)C14—C13—H13B109.8
C3—C2—C7122.1 (6)C14A—C13—H13C108.7
C2—C3—H3121.2C14A—C13—H13D108.7
C4—C3—C2117.6 (7)N2—C12—H12A109.5
C4—C3—H3121.2N2—C12—H12B109.5
C3—C4—H4119.2N2—C12—H12C109.5
C3—C4—C5121.6 (7)H12A—C12—H12B109.5
C5—C4—H4119.2H12A—C12—H12C109.5
C4—C5—H5119.9H12B—C12—H12C109.5
C6—C5—C4120.2 (7)C13—C14—H14110.4
C6—C5—H5119.9C15—C14—C13139 (5)
C5—C6—H6119.8C15—C14—H14110.4
C5—C6—C7120.3 (7)C14—C15—H15A120.0
C7—C6—H6119.8C14—C15—H15B120.0
C6—C7—C2118.2 (6)H15A—C15—H15B120.0
C6—C7—C8134.9 (6)C13—C14A—H14A121.1
C8—C7—C2106.9 (5)C15A—C14A—C13118 (2)
C1—C8—C7108.0 (6)C15A—C14A—H14A121.1
C1—C8—C9124.9 (7)C14A—C15A—H15C120.0
C7—C8—C9127.1 (7)C14A—C15A—H15D120.0
C8—C9—H9A109.1H15C—C15A—H15D120.0
C8—C9—H9B109.1N2—C11—H11A109.5
H9A—C9—H9B107.8N2—C11—H11B109.5
C10—C9—C8112.5 (6)N2—C11—H11C109.5
C10—C9—H9A109.1H11A—C11—H11B109.5
C10—C9—H9B109.1H11A—C11—H11C109.5
N2—C10—H10A108.2H11B—C11—H11C109.5
N2—C10—H10B108.2
N1—C1—C8—C73.0 (12)C4—C5—C6—C70.6 (11)
N1—C1—C8—C9175.9 (8)C5—C6—C7—C20.4 (9)
N1—C2—C3—C4178.9 (7)C5—C6—C7—C8178.6 (7)
N1—C2—C7—C6179.2 (6)C6—C7—C8—C1178.5 (9)
N1—C2—C7—C82.1 (7)C6—C7—C8—C92.6 (13)
N2—C13—C14—C15170 (6)C7—C2—C3—C40.1 (11)
N2—C13—C14A—C15A121.9 (19)C7—C8—C9—C10101.8 (10)
C1—N1—C2—C3179.4 (9)C8—C9—C10—N2178.0 (7)
C1—N1—C2—C70.2 (10)C10—N2—C13—C1480.6 (19)
C1—C8—C9—C1079.5 (12)C10—N2—C13—C14A58.9 (14)
C2—N1—C1—C81.8 (12)C13—N2—C10—C951.2 (12)
C2—C3—C4—C50.2 (11)C12—N2—C10—C9177.3 (8)
C2—C7—C8—C13.1 (9)C12—N2—C13—C1443.9 (18)
C2—C7—C8—C9175.8 (7)C12—N2—C13—C14A65.5 (12)
C3—C2—C7—C60.0 (9)C11—N2—C10—C967.0 (11)
C3—C2—C7—C8178.7 (7)C11—N2—C13—C14161.1 (18)
C3—C4—C5—C60.6 (12)C11—N2—C13—C14A177.3 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···I10.862.953.727 (6)152
 

Acknowledgements

Financial statements and conflict of inter­est: This study was funded by CaaMTech, Inc. ARC reports an ownership inter­est in CaaMTech, Inc., which owns US and worldwide patent applications, covering new tryptamine compounds, compositions, formulations, novel crystalline forms, and methods of making and using the same.

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (grant No. CHE-1429086).

References

First citationArderne, C. & Ndinteh, D. T. (2016). CSD Communication (refcode IZUTUU). CCDC, Cambridge, England.  Google Scholar
First citationBruker (2018). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison Wisconsin, USA.  Google Scholar
First citationChadeayne, A. R., Golen, J. A. & Manke, D. R. (2019). IUCrData, 4, x190962.  Google Scholar
First citationChadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020). Acta Cryst. E76, 1201–1205.  CSD CrossRef IUCr Journals Google Scholar
First citationChadeayne, A. R., Pham, D. N. K., Reid, B. G., Golen, J. A. & Manke, D. R. (2020). ACS Omega, https://doi. org/10.1021/acsomega.0c02208  Google Scholar
First citationDaniel, J. & Haberman, M. (2017). Ment. Heal. Clin. 7, 24–28.  CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarah, T. (2018). Discover, https://discovermagazine.com/health/beyond-psilocybin-mushrooms-have-lots-of-cool-compounds-scientists-should-study (accessed July, 2020).  Google Scholar
First citationGartz, J. (1987). Planta Med. 53, 539–541.  CrossRef PubMed CAS Google Scholar
First citationJohnson, M. W. & Griffiths, R. R. (2017). Neurotherapeutics, 14, 734–740.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJones, G. P. & Tiekink, E. R. T. (1997). Z. Krystallogr. 212, 881–883.  CAS Google Scholar
First citationLee, H. M., VanArenkonk, A. M. & Chen, K. K. (1936). J. Pharmacol. Exp. Ther. 56, 446–472.  Google Scholar
First citationMilne, N., Thomsen, P., Mølgaard Knudsen, N., Rubaszka, P., Kristensen, M. & Borodina, I. (2020). Metab. Eng. 60, 25–36.  CrossRef CAS PubMed Google Scholar
First citationRaverty, W. D., Thomson, R. H. & King, T. J. (1977). J. Chem. Soc. Perkin Trans. 1, pp. 1204–1211.  CSD CrossRef Google Scholar
First citationRevell, J. (2020). Vice, https://vice. com/en_in/article-y3zp35/magic-mushroom-paralysis-heres-what-we-know (accessed July, 2020).  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSherwood, A. M., Halberstadt, A. L., Klein, A. K., McCorvy, J. D., Kaylo, K. W., Kargbo, R. B. & Meisenheimer, P. J. (2020). J. Nat. Prod. 83, 461–467.  CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWieland, H., Konz, W. & Mittasch, H. (1934). Justus Liebigs Ann. Chem. 513, 1–25.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds