research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1R,3S)-3-(1H-Benzo[d]imidazol-2-yl)-1,2,2-tri­methyl­cyclo­pentane-1-carb­­oxy­lic acid as a new anti-diabetic active pharmaceutical ingredient

CROSSMARK_Color_square_no_text.svg

aV.N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61077, Ukraine, bState Scientific Institution Institute for Single Crystals of the National Academy of Sciences of Ukraine, 61001, Kharkov, Ukraine, cNational University of Pharmacy, 53 Pushkinska St., Kharkiv, 61002, Ukraine, dFederal State Autonomous Educational Institution of Higher Education Belgorod State University, 85, Pobedy St., Belgorod, 308015, Russian Federation, eExperimental Plant for Dental Materials Vladmiva, 81d, Michurin St., Belgorod, 308015, Russian Federation, and fChemical Diversity Research Institute, 2A Rabochaya St., Khimki, Moscow Region, 141400, Russian Federation
*Correspondence e-mail: ikonovalova0210@gmail.com

Edited by G. Diaz de Delgado, Universidad de Los Andes, Venezuela (Received 15 May 2020; accepted 28 July 2020; online 4 August 2020)

The chiral title compound, C16H20N2O2, which can be used for producing active pharmaceutical ingredients for treatment of type 2 pancreatic diabetes and other pathologies dependent on insulin resistance, was prepared from (1R,3S)-camphoric acid and o-phenyl­enedi­amine. It crystallized from an ethanol solution in the chiral monoclinic P21 space group. The five-membered ring adopts a twisted conformation with the methyl-substituted C atoms displaced by −0.273 (5) and 0.407 (5) Å from the mean plane through the other three atoms. In the crystal, mol­ecules are linked by O—H⋯N hydrogen bonds, forming chains along the a-axis direction. Hirshfeld surface analysis and two-dimensional fingerprint plots were used to analyze the inter­molecular contacts present in the crystal.

1. Chemical context

The incidence of diabetes has taken on the character of an epidemic in the world. According to the forecasts of the World Health Organization, the number of patients with diabetes will double and reach 300 million people by 2025 (Zimmet et al., 2001[Zimmet, P., Alberti, K. G. M. M. & Shaw, J. (2001). Nature, 414, 782-787.]). In this regard, developing and introducing new anti­diabetic drugs is of great importance.

A great number of camphoric acid as well as benzimidazole derivatives exhibit different types of biological activities (Merzlikin et al., 2008[Merzlikin, S. I. & Podgayny, D. G. (2008). Zh. Org. Farmats. Khim. 6, 67-71.]; Ivachtchenko et al., 2002[Ivachtchenko, A., Kovalenko, S., Parkhomenko, O. & Chernykh, V. (2002). Heterocycl. Commun. 8, 329-330.], 2019[Ivachtchenko, A. V., Mitkin, O. D., Kravchenko, D. V., Kovalenko, S. M., Shishkina, S. V., Bunyatyan, N. D., Konovalova, I. S., Ivanov, V. V., Konovalova, O. D. & Langer, T. (2019). Crystals, 9, 644-660.]; Kovalenko et al., 1998[Kovalenko, S. N., Vasil'ev, M. V., Sorokina, I. V., Chernykh, V. P., Turov, A. V. & Rudnev, S. A. (1998). Chem. Heterocycl. Compd. 34, 1412-1415.]).

[Scheme 1]

Our research on the mol­ecular design, construction and synthesis of new benzimidazole derivatives of 1,2,2,3-tetra­methyl­cyclo­pentane-1-carb­oxy­lic acid has shown that (1R,3S)-3-(1H-benzo[d]imidazol-2-yl)-1,2,2-tri­methyl­cyclo­pentane-1-carb­oxy­lic acid, 4, exhibits pronounced anti­diabetic activity and, in particular, anti­hyperglycemic effect, which reduces insulin resistance and restores the physiological function of pancreatic β-cells (Jain et al., 2009[Jain, M., Merzlikin, S. I. & Merzlikin, D. S. (2009). Benzimidazole derivatives and the use thereof, PCT Int. Appl., WO 2009/093990, 30 July 2009.]; Chuev et al., 2017[Chuev, V. P., Buzov, A. A., Kovalenko, S. N., Merzlikin, S. I. & Shtrygol, S. Yu. (2017). Pharmaceutical antidiabetic composition based on (+)-cis-3-(1H-benzimidazol-2-yl)-1,2,2-trimethylcyclopentane carboxylic acid. Patent RU 2624872, C1, 07 July 2017.]).

Racemic and enanti­omeric crystals are known to possess different activities, which is very important in the pharmaceutical industry. We have found that the disadvantage of the (±) and (-) forms of compound 4 described in the patent of Merzlikin et al. (2009[Merzlikin, S. I. & Jain, M. (2009). Method for the treatment of metabolic syndrome X, PCT Int. Appl., WO 2009005483, A1, 08 January 2009.]) is their poor bioavailability as compared to the (+) form. To obtain (1R,3S)-3-(1H-benzo[d] imidazol-2-yl)-1,2,2-tri­methyl­cyclo­pentane-1-carb­oxy­lic acid 4, the enanti­omerically pure (1R,3S)-camphoric acid 1 was used.

In the first stage, (1R,5S)-1,8,8-trimethyl-3-oxabi­cyclo­[3.2.1]octane-2,4-dione [D-(+)-camphoric anhydride] 2 was obtained by refluxing a mixture of (1R,3S)-camphoric acid and acetic anhydride for 2 h (Dong et al., 2016[Dong, Y., Li, Q., Wang, J., Lu, L., Wang, Y., Bao, L., Wang, Z. & Zhang, Y. (2016). Mendeleev Commun. 26, 166-168.]) (Fig. 1[link]).

[Figure 1]
Figure 1
Synthesis of (1R,5S)-1,8,8-trimethyl-3-oxabi­cyclo­[3.2.1]octane-2,4-dione, 2.

In the second stage, the synthesis of (1R,3S)-3-(1H-benzo[d]imidazol-2-yl)-1,2,2- tri­methyl­cyclo­pentane-1-carb­oxy­lic acid 4 was carried out according to Fig. 2[link] via cyclo­condensation of D-(+)-camphoric anhydride 2 with o-phenyl­enedi­amine 3 in a mixture of toluene and DMF (383 K) by refluxing for several hours (Fig. 2[link]).

[Figure 2]
Figure 2
Synthesis of (1R,3S)-3-(1H-benzo[d]imidazol-2-yl)-1,2,2- tri­methyl­cyclo­pentane-1-carb­oxy­lic acid, 4.

It should be noted that during the synthesis, the configuration of the chiral centers did not change and the structure of the title mol­ecule was unambiguously confirmed by X-ray analysis.

2. Structural commentary

The asymmetric unit contains one mol­ecule of the title compound 4 (Fig. 3[link]). The bicyclic fragment is planar with a maximum deviation of 0.016 (6) Å (for atom C16). The saturated five-membered ring adopts a twisted conformation in which the deviations of atoms C11 and C12 from the mean-square plane through the remaining ring atoms are −0.273 (5) and 0.407 (5) Å, respectively. The cyclo­pentane ring is turned in relation to the N1—C1 endocyclic bond, the N1—C1—C8—C9 torsion angle being −30.0 (7)°. It can be assumed that the weak intra­molecular C9—H9B⋯N1 (H⋯N = 2.53 Å, C—H⋯N = 108°) hydrogen bond additionally stabilizes such a location of the saturated ring. The methyl group on the C11 atom is located in the axial position [C9—C10—C11—C15 = 87.5 (6)°]. The carboxyl group has an equatorial orientation and is almost coplanar to the endocyclic C10–C11 bond [the C9—C10—C11—C16 and C10—C11—C16—O1 torsion angles are −150.8 (5) and 13.9 (8)°, respectively]. This position is stabilized by the formation of weak intra­molecular C10—H10A⋯O1 and C15—H15B⋯O2 hydrogen bonds between the vicinal and geminal substituents (H⋯O = 2.43 and 2.42 Å, C—H⋯O = 103 and 100°, respectively). The presence of geminal substituents on neighboring atoms of the pentane ring leads to significant steric repulsion (the shortened intra­molecular contacts are given in Table 1[link]), which causes elongation of the C8—C12 bond to 1.571 (7) Å, compared with its mean value of 1.556 Å (Burgi et al., 1994[Burgi, H.-B. & Dunitz, J. D. (1994). Structure correlation, Vol. 2, pp. 741-784. Weinheim: VCH.]).

Table 1
Intra­molecular short contacts (Å) in compound 4 together with the sums of the respective van der Waals radii

The van der Waals radii sum values (Zefirov et al., 1997[Zefirov, Yu. V. (1997). Kristallographiya, 42, 936-958.]) are given in parentheses.

H8⋯H15A 2.26 (2.34) H15B⋯H14C 2.32 (2.34)
H13C⋯C1 2.57 (2.87) H13B⋯C16 2.54 (2.87)
[Figure 3]
Figure 3
The mol­ecular structure of the title compound 4 with the atom labeling. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, mol­ecules of 4 form layers parallel to the (100) plane as a result of the strong N2—H⋯O1 and O2—H⋯N1 and weak C14—H14C⋯C2(π) inter­molecular hydrogen bonds (Table 2[link], Fig. 4[link]a,b). The neighboring layers are not bound any specific inter­actions (Fig. 4[link]a). It is inter­esting to note that the mol­ecules are linked by hydrogen bonds that use the O—H⋯N heterosynthon instead of the carb­oxy­lic acid dimer homosynthon. Despite the presence of an aromatic ring in the mol­ecule, no stacking inter­actions are observed in the crystal of 4. Instead of ππ inter­actions, C—H⋯π inter­actions are formed (Table 2[link], Fig. 4[link]b).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N1i 0.82 1.82 2.631 (6) 170
N2—H2A⋯O1ii 0.86 2.16 2.871 (6) 140
C14—H14C⋯C2iii 0.96 2.81 3.439 (8) 124
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+1]; (ii) x, y, z-1; (iii) [-x+1, y+{\script{1\over 2}}, -z].
[Figure 4]
Figure 4
(a) View of the structure of compound 4 down the b axis and (b) hydrogen bonds within a layer in the crystal of 4.

4. Hirshfeld surface analysis

Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net.]) was used to analyze the inter­actions in the crystal and fingerprint plots mapped over dnorm (Figs. 5[link] and 6[link]) were generated. The mol­ecular Hirshfeld surfaces were obtained using a standard (high) surface resolution with the three-dimensional dnorm surfaces mapped over a fixed color scale of −0.716 (red) to 1.406 (blue) a.u. The red spots indicate regions of donor–acceptor inter­actions or short contacts. There are three red spots in the dnorm surface for 4 (Fig. 5[link]), which correspond to the inter­actions listed in Table 2[link].

[Figure 5]
Figure 5
Two orientations of the Hirshfeld surface for the title compound mapped over dnorm.
[Figure 6]
Figure 6
(a) The two-dimensional fingerprint plot for compound 4, and those delineated into (b) H⋯H (61.7%), (c) C⋯H/H⋯C (18.1%), (d) O⋯H/H⋯O (13.5%) and (e) N⋯H/H⋯N (6.6%) contacts.

All of the inter­molecular inter­actions of the title compound are shown in the two-dimensional fingerprint plot presented in Fig. 6[link]a. The fingerprint plots indicate that the principal contributions are from H⋯H (61.7%; Fig. 6[link]b), C⋯H/H⋯C (18.1%; Fig. 6[link]c), O⋯H/H⋯O (13.5%; Fig. 6[link]d) and N⋯H/H⋯N (6.6%; Fig. 6[link]e) contacts. The H⋯H inter­actions appear in the middle of the plot scattered over a large area, while the C⋯H/H⋯C contacts are represented by the `wings' of the plot. O⋯H/H⋯O inter­actions appear as inner spikes and the N⋯H/H⋯N contacts, corresponding to the O—H⋯N inter­action, are represented by a pair of sharp outer spikes, which indicate they are the strongest inter­actions in the crystal of 4.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.41, November 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the 1,2,2-tri­methyl­cyclo­pentane-1-carb­oxy­lic acid skeleton yielded 27 hits. Only one structure involves a benzo­thia­zol-2′-yl ring in position 3, viz. (1R,3S)-(+)-cis-1,3-bis­(benzo­thia­zol-2′-yl)-1,2,2-tri­methyl­cyclo­pentane (CSD refcode XUMXIM; Gilbert et al., 2002[Gilbert, J. G., Addison, A. W., Palaniandavar, M. & Butcher, R. J. (2002). J. Heterocycl. Chem. 39, 399-404.]). The cyclo­pentane ring has the twist conformation with the atoms C1 and C4 displaced by 0.48 (1) and −0.26 (2) Å from the mean plane through the other three atoms [cf. 0.407 (5) Å and −0.273 (5) Å in the title compound].

6. Synthesis and crystallization

(1R,3S)-3-(1H-Benzo[d]imidazol-2-yl)-1,2,2-tri­methyl­cyclo­pentane-1-carb­oxy­lic acid, 4

In a glass reactor equipped with a Dean–Stark receiver, D-(+)-camphoric anhydride 2 (2.20 kg, 12.1 mol), o-phenyl­enedi­amine 3 (1.31 kg, 12.1 mol), toluene (11.46 L) and di­methyl­formamide (0.91 L) were charged. Under stirring, the reaction mixture was heated to boiling (383 K). The mixture was refluxed and the released water was collected in the Dean–Stark receiver. When the removal of water had finished, the reaction mixture was cooled to room temperature. The precipitate that formed was filtered in vacuo using a Nutsche filter. The precipitate was thoroughly squeezed, washed twice with toluene (1.4 L) and re-squeezed. Then the precipitate was washed on the filter with 70% water–ethanol (3.7 L), heated to a temperature of 348±5 K. Finally, the precipitate of the product 4 was thoroughly squeezed and dried at 343 K for 4 h, yielding 2.41 kg (73.2%) of a white crystal-like powder that is practically insoluble in water, soluble in 96% alcohol, m.p. 527–528 K. UV (ethanol) λmax (): 204 nm (48960), 245 nm (6800), 275 nm (9160), 281 nm (9320); IR (KBr): ν (cm−1) 3450 (O—H), 3286 (N—H), 2970, 2935, 2887 (C—H), 1673 (C=O), 1529, 1456, 1436, 1373, 1279, 1358, 1167, 1124, 1057, 740; 1H NMR (400 MHz, DMSO-d6) δ 12.22 (s.br, 1H, OH), 12.10 (s.br, 1H, NH), 7.52 (s.br, 1H, H-4, H-7), 7.44 (s.br, 1H, H-4, H-7), 7.10 (t, J = 4.5 Hz, 2H, H-5, H-6), 3.41–3.31 (m, 1H, CH), 2.64–2.54 (m, 1H,CH), 2.43–2.33 (m, 1H, CH), 2.05–1.95 (m, 1H, CH), 1.55–1.45 (m, 1H, CH), 1.25 (s, 3H, CH3), 1.14 (s, 3H, CH3), 0.61 (s, 3H, CH3); LC/MS m/z (%): 273.2 [MH]+ (100); found, %: C 70.88; H 7.83; N 10.55. C16H20N2O2. Calculated, %: C 70.56; H 7.40; N 10.29.

Further crystallization by slow evaporation of an ethanol solution was carried out to provide single block-like colorless crystals (Fig. 7[link]) suitable for X-ray diffraction analysis.

[Figure 7]
Figure 7
Crystals of the title compound 4.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms were included in calculated positions and treated as riding on their parent C atom: C—H = 0.82–0.98 Å with Uiso(H) = 1.5Ueq(C-methyl and O-hydrox­yl) and 1.2Ueq(C) for other H atoms. The Flack parameter cannot be determined reliably, because there is no X-ray anomalous scattering because of the absence of heavy atoms in the mol­ecule.

Table 3
Experimental details

Crystal data
Chemical formula C16H20N2O2
Mr 272.34
Crystal system, space group Monoclinic, P21
Temperature (K) 293
a, b, c (Å) 7.9805 (7), 10.8671 (8), 8.4912 (7)
β (°) 94.056 (7)
V3) 734.55 (10)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.3 × 0.2 × 0.1
 
Data collection
Diffractometer Rigaku Oxford Diffraction Xcalibur, Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.182, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 4859, 2455, 1731
Rint 0.058
(sin θ/λ)max−1) 0.594
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.180, 1.04
No. of reflections 2455
No. of parameters 185
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.15, −0.19
Absolute structure Flack x determined using 459 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −1.8 (10)
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(1R,3S)-3-(1H-Benzo[d]imidazol-2-yl)-1,2,2-trimethylcyclopentane-1-carboxylic acid top
Crystal data top
C16H20N2O2F(000) = 292
Mr = 272.34Dx = 1.231 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 7.9805 (7) ÅCell parameters from 748 reflections
b = 10.8671 (8) Åθ = 3.6–20.3°
c = 8.4912 (7) ŵ = 0.08 mm1
β = 94.056 (7)°T = 293 K
V = 734.55 (10) Å3Plate, colourless
Z = 20.3 × 0.2 × 0.1 mm
Data collection top
Rigaku Oxford Diffraction Xcalibur, Sapphire3
diffractometer
2455 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source1731 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
Detector resolution: 16.1827 pixels mm-1θmax = 25.0°, θmin = 3.1°
ω scansh = 98
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)
k = 1211
Tmin = 0.182, Tmax = 1.000l = 910
4859 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.065 w = 1/[σ2(Fo2) + (0.0794P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.180(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.15 e Å3
2455 reflectionsΔρmin = 0.19 e Å3
185 parametersAbsolute structure: Flack x determined using 459 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 1.8 (10)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3639 (6)0.5406 (4)0.7106 (5)0.0801 (12)
O20.2632 (6)0.7051 (3)0.5806 (5)0.0755 (12)
H20.2899770.7387490.6651070.113*
N10.6692 (5)0.3376 (4)0.1635 (5)0.0593 (11)
N20.5767 (6)0.4717 (4)0.0168 (5)0.0673 (13)
H2A0.5102940.5227650.0672580.081*
C10.5454 (7)0.4112 (5)0.1190 (6)0.0584 (13)
C20.7894 (7)0.3527 (5)0.0550 (7)0.0604 (14)
C30.7336 (8)0.4365 (5)0.0588 (7)0.0654 (14)
C40.8269 (10)0.4678 (6)0.1848 (8)0.0831 (19)
H40.7869650.5237970.2612690.100*
C50.9807 (11)0.4124 (8)0.1914 (9)0.096 (2)
H51.0479510.4323690.2727570.115*
C61.0379 (9)0.3261 (7)0.0773 (9)0.090 (2)
H61.1424130.2895320.0848210.108*
C70.9429 (8)0.2942 (7)0.0460 (8)0.0759 (17)
H70.9803420.2356040.1202670.091*
C80.3928 (7)0.4359 (5)0.2036 (6)0.0580 (13)
H80.3008460.4558080.1250780.070*
C90.3372 (7)0.3271 (5)0.3025 (7)0.0679 (15)
H9A0.2455580.2831810.2463690.082*
H9B0.4298680.2704120.3241450.082*
C100.2806 (9)0.3803 (5)0.4556 (8)0.0716 (16)
H10A0.3604950.3597110.5430710.086*
H10B0.1716040.3475480.4773820.086*
C110.2707 (6)0.5205 (5)0.4334 (7)0.0597 (14)
C120.4144 (6)0.5465 (5)0.3225 (6)0.0575 (12)
C130.5865 (7)0.5408 (6)0.4150 (7)0.0707 (15)
H13A0.5979700.4636260.4695950.106*
H13B0.5956520.6069740.4900440.106*
H13C0.6735470.5484090.3431190.106*
C140.3983 (9)0.6692 (5)0.2366 (8)0.0764 (17)
H14A0.4911740.6793830.1719020.115*
H14B0.3984230.7347440.3123820.115*
H14C0.2950390.6708370.1713360.115*
C150.0964 (7)0.5560 (7)0.3588 (8)0.0811 (18)
H15A0.0791090.5184620.2566320.122*
H15B0.0894160.6438480.3481020.122*
H15C0.0116240.5279410.4251660.122*
C160.3042 (6)0.5877 (5)0.5895 (7)0.0612 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.100 (3)0.086 (3)0.053 (2)0.005 (2)0.011 (2)0.006 (2)
O20.103 (3)0.063 (2)0.058 (3)0.012 (2)0.014 (2)0.0111 (18)
N10.067 (3)0.060 (3)0.051 (3)0.004 (2)0.001 (2)0.001 (2)
N20.083 (3)0.067 (3)0.050 (3)0.003 (2)0.004 (2)0.006 (2)
C10.070 (3)0.060 (3)0.043 (3)0.001 (3)0.006 (2)0.001 (2)
C20.063 (3)0.066 (3)0.051 (3)0.002 (3)0.000 (2)0.006 (3)
C30.078 (4)0.063 (3)0.055 (3)0.010 (3)0.004 (3)0.005 (3)
C40.104 (5)0.088 (4)0.059 (4)0.026 (4)0.016 (3)0.001 (3)
C50.098 (5)0.119 (6)0.073 (5)0.039 (5)0.027 (4)0.019 (4)
C60.075 (4)0.113 (6)0.083 (5)0.011 (4)0.012 (4)0.026 (5)
C70.071 (4)0.090 (4)0.066 (4)0.000 (3)0.001 (3)0.011 (3)
C80.068 (3)0.056 (3)0.049 (3)0.002 (2)0.007 (2)0.002 (2)
C90.074 (4)0.055 (3)0.074 (4)0.001 (3)0.003 (3)0.001 (3)
C100.088 (4)0.061 (3)0.066 (4)0.005 (3)0.008 (3)0.005 (3)
C110.056 (3)0.055 (3)0.067 (4)0.003 (2)0.004 (2)0.000 (3)
C120.061 (3)0.052 (3)0.058 (3)0.001 (2)0.002 (2)0.003 (2)
C130.064 (3)0.071 (3)0.075 (4)0.000 (3)0.005 (3)0.010 (3)
C140.102 (5)0.058 (3)0.069 (4)0.007 (3)0.003 (3)0.007 (3)
C150.063 (3)0.097 (4)0.081 (4)0.005 (4)0.012 (3)0.019 (4)
C160.057 (3)0.068 (4)0.058 (4)0.001 (3)0.001 (3)0.005 (3)
Geometric parameters (Å, º) top
O1—C161.216 (6)C5—C61.401 (11)
O2—C161.319 (6)C6—C71.380 (9)
N1—C11.307 (7)C8—C91.533 (8)
N1—C21.386 (7)C8—C121.571 (7)
N2—C11.366 (7)C9—C101.520 (9)
N2—C31.381 (8)C10—C111.536 (8)
C1—C81.481 (8)C11—C121.560 (8)
C2—C31.378 (8)C11—C151.537 (7)
C2—C71.387 (8)C11—C161.520 (8)
C3—C41.388 (8)C12—C131.534 (7)
C4—C51.372 (10)C12—C141.521 (8)
C1—N1—C2106.3 (5)C10—C9—C8106.8 (5)
C1—N2—C3107.9 (5)C9—C10—C11106.7 (5)
N1—C1—N2111.0 (5)C10—C11—C12102.7 (4)
N1—C1—C8127.0 (5)C10—C11—C15109.7 (5)
N2—C1—C8121.9 (5)C15—C11—C12112.9 (5)
N1—C2—C7129.6 (6)C16—C11—C10111.4 (5)
C3—C2—N1109.9 (5)C16—C11—C12110.4 (4)
C3—C2—C7120.5 (6)C16—C11—C15109.7 (4)
N2—C3—C4132.6 (6)C11—C12—C8101.4 (4)
C2—C3—N2104.9 (5)C13—C12—C8110.6 (4)
C2—C3—C4122.5 (6)C13—C12—C11110.7 (4)
C5—C4—C3117.0 (7)C14—C12—C8111.1 (4)
C4—C5—C6120.9 (6)C14—C12—C11114.0 (5)
C7—C6—C5121.6 (7)C14—C12—C13108.8 (5)
C6—C7—C2117.5 (7)O1—C16—O2122.4 (5)
C1—C8—C9113.9 (5)O1—C16—C11124.8 (5)
C1—C8—C12113.2 (4)O2—C16—C11112.8 (5)
C9—C8—C12105.1 (4)
N1—C1—C8—C930.0 (7)C7—C2—C3—N2177.5 (5)
N1—C1—C8—C1290.0 (6)C7—C2—C3—C41.0 (8)
N1—C2—C3—N20.1 (6)C8—C9—C10—C1110.7 (7)
N1—C2—C3—C4178.6 (5)C9—C8—C12—C1135.1 (5)
N1—C2—C7—C6179.1 (5)C9—C8—C12—C1382.4 (6)
N2—C1—C8—C9153.8 (5)C9—C8—C12—C14156.6 (5)
N2—C1—C8—C1286.2 (6)C9—C10—C11—C1232.7 (6)
N2—C3—C4—C5178.8 (6)C9—C10—C11—C1587.5 (6)
C1—N1—C2—C31.0 (6)C9—C10—C11—C16150.8 (5)
C1—N1—C2—C7178.3 (6)C10—C11—C12—C841.1 (5)
C1—N2—C3—C21.1 (6)C10—C11—C12—C1376.3 (5)
C1—N2—C3—C4179.4 (6)C10—C11—C12—C14160.6 (5)
C1—C8—C9—C10140.0 (5)C10—C11—C16—O113.9 (8)
C1—C8—C12—C11160.0 (4)C10—C11—C16—O2166.9 (5)
C1—C8—C12—C1342.5 (6)C12—C8—C9—C1015.6 (6)
C1—C8—C12—C1478.5 (6)C12—C11—C16—O199.5 (6)
C2—N1—C1—N21.7 (6)C12—C11—C16—O279.7 (5)
C2—N1—C1—C8174.8 (5)C15—C11—C12—C876.9 (5)
C2—C3—C4—C50.8 (9)C15—C11—C12—C13165.7 (5)
C3—N2—C1—N11.8 (6)C15—C11—C12—C1442.6 (6)
C3—N2—C1—C8174.9 (5)C15—C11—C16—O1135.5 (6)
C3—C2—C7—C62.0 (8)C15—C11—C16—O245.3 (7)
C3—C4—C5—C61.4 (10)C16—C11—C12—C8160.0 (4)
C4—C5—C6—C70.4 (10)C16—C11—C12—C1342.6 (6)
C5—C6—C7—C21.3 (9)C16—C11—C12—C1480.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N1i0.821.822.631 (6)170
N2—H2A···O1ii0.862.162.871 (6)140
C14—H14C···C2iii0.962.813.439 (8)124
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x, y, z1; (iii) x+1, y+1/2, z.
Intramolecular short contacts (Å) in compound 4 together with the sums of the respective van der Waals radii top
The van der Waals radii sum values (Zefirov et al., 1997) are given in parentheses.
H8···H15A2.26 (2.34)H15B···H14C2.32 (2.34)
H13C···C12.57 (2.87)H13B···C162.54 (2.87)
 

References

First citationBurgi, H.-B. & Dunitz, J. D. (1994). Structure correlation, Vol. 2, pp. 741-784. Weinheim: VCH.  Google Scholar
First citationChuev, V. P., Buzov, A. A., Kovalenko, S. N., Merzlikin, S. I. & Shtrygol, S. Yu. (2017). Pharmaceutical antidiabetic composition based on (+)-cis-3-(1H-benzimidazol-2-yl)-1,2,2-trimethylcyclopentane carboxylic acid. Patent RU 2624872, C1, 07 July 2017.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDong, Y., Li, Q., Wang, J., Lu, L., Wang, Y., Bao, L., Wang, Z. & Zhang, Y. (2016). Mendeleev Commun. 26, 166–168.  Web of Science CrossRef CAS Google Scholar
First citationGilbert, J. G., Addison, A. W., Palaniandavar, M. & Butcher, R. J. (2002). J. Heterocycl. Chem. 39, 399–404.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationIvachtchenko, A., Kovalenko, S., Parkhomenko, O. & Chernykh, V. (2002). Heterocycl. Commun. 8, 329–330.  CAS Google Scholar
First citationIvachtchenko, A. V., Mitkin, O. D., Kravchenko, D. V., Kovalenko, S. M., Shishkina, S. V., Bunyatyan, N. D., Konovalova, I. S., Ivanov, V. V., Konovalova, O. D. & Langer, T. (2019). Crystals, 9, 644–660.  Web of Science CSD CrossRef Google Scholar
First citationJain, M., Merzlikin, S. I. & Merzlikin, D. S. (2009). Benzimidazole derivatives and the use thereof, PCT Int. Appl., WO 2009/093990, 30 July 2009.  Google Scholar
First citationKovalenko, S. N., Vasil'ev, M. V., Sorokina, I. V., Chernykh, V. P., Turov, A. V. & Rudnev, S. A. (1998). Chem. Heterocycl. Compd. 34, 1412–1415.  CrossRef CAS Google Scholar
First citationMerzlikin, S. I. & Jain, M. (2009). Method for the treatment of metabolic syndrome X, PCT Int. Appl., WO 2009005483, A1, 08 January 2009.  Google Scholar
First citationMerzlikin, S. I. & Podgayny, D. G. (2008). Zh. Org. Farmats. Khim. 6, 67–71.  CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net.  Google Scholar
First citationZefirov, Yu. V. (1997). Kristallographiya, 42, 936-958.  CAS Google Scholar
First citationZimmet, P., Alberti, K. G. M. M. & Shaw, J. (2001). Nature, 414, 782–787.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds